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Abstract The paper offers a logical analysis of the concept of refutation and illustrates
some possible directions of research in the field of philosophical logic as well as in
the methodology of propositional calculi.
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1 Introduction

We analyze the concept of refutation in both philosophical and mathematical logic.
First, we deal with axiomatic refutation systems. Two types of such systems are con-
sidered. Systems with reverse substitution (having theoretical applications) and sys-
tems without this rule (applicable in counter-model constructions and decision proce-
dures). Then, we consider a list of topics, most of them in philosophical logic, which
could benefit from the specific technical and conceptual tools offered by the refuta-
tional approach.
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2 Axiomatic Refutation Systems

In formal logic, one can find two approaches to refutation: an indirect one and a direct
one. In the indirect approach, you refute a formula by failing to prove it. For example,
you search for a proof of A, and if all the possibilities of finding a proof for A have
been exhausted, you say that A is refuted. In the direct approach, a single refutation of
A, which is a derivation, justifies refuting A.

Although the indirect approach is standard, we believe that combining two direct
approaches (one looking for a proof and the other for a refutation) is more attractive
and can yield new results that are both interesting and useful. Note that if A is non-
valid, then finding a refutation for A may be simpler than producing all possibilities of
proving it.

2.1 Basic Concepts

An axiomatic refutation system is just like a traditional axiomatic system, but it is
applied to non-valid formulas rather than valid ones.

Let L be a logic, that is, a set of formulas closed under substitution, modus ponens,
and possibly some other rules (e.g. necessitation). We say that a rule

A1, ...,An

B

is a refutation rule for L iff B 62 L whenever every Ai 62 L. A refutation system for L is
a pair S = (AX,RU), where AX is a set of formulas that are not in L (called refutation
axioms for L) and RU is a set of refutation rules for L. A formula A is S-refutable
(in symbols aS A, or just a A) iff A has a derivation in S. Moreover, we say that a
refutation system S is characteristic for L iff, for every formula A, we have:

A 62 L iff aS A.

In the literature, various kinds of refutation rules can be found. Here, we focus
on refutation rules preserving non-validity (for another approach, see e.g. Fioren-
tini and Ferrari 2017). Let us start with the following refutation rules introduced by
(Łukasiewicz, 1951).

• Reverse substitution (RS): B/A where B is a substitution instance of A.
• Reverse modus ponens (RMP): B/A where ` A ! B.

Remark 1. In this section, by a rule we mean a set of pairs G /A, where G [ {A} is a
set of formulas. So, our description of RMP fits into the above definition of a refutation
rule.

Remark 2. We sometimes present refutation rules bottom-up:
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B
A1 | ... | An

as multiple-conclusion rules preserving validity. (If B 2 L then some Ai 2 L).

2.2 Systems with RS

CL (Classical Propositional Logic) can be characterized by the following simple refu-
tation system.

Refutation axiom: ? (the false).
Refutation rules: RS, RMP.

Refutation systems with RS (involving certain characteristic formulas of finite al-
gebras as refutation axioms) characterize every intermediate logic (and every normal
modal logic) with the FMP (finite model property) (Skura, 1992, 1994, 2013; Citkin,
2013). However, there are logics without the FMP (that is, they cannot be character-
ized by any class of finite models) that do have finite refutation systems (Skura, 1992,
1994, 2013).

Furthermore, there are logics with problematic (or unknown) proof theories, but
having neat syntactic descriptions of their non-validities. For example, Medvedev’s
logic is characterized by the following refutation system (Skura, 1992).

Refutation axiom: ? (the false).
Refutation rules: RS, RMPKP, RD, where

(RMPKP) B/A where `KP A ! B.
Here `KP means provability in the Kreisel-Putnam logic, which is the extension of
Intuitionistic Logic (Int) by the axiom

(¬A ! B_C)! (¬A ! B)_ (¬A ! C).

(RD) A,B/A_B (This rule reverses the disjunction property.)

Also, refutation systems with RS are useful for establishing certain facts about the
lattice of extensions of a given logic, especially, concerning maximality and minimal-
ity (Skura, 2004, 2009).

Another duality concerns the way you create a non-classical logic:

• (Positive approach) You reject some unacceptable classical law (for example, the
law of explosion or the positive paradox) and derive provable formulas from the
acceptable axioms getting P (Paraconsistent Logic or Implicational Relevance
Logic).

• (Negative approach) You keep the rejected law as a refutation axiom and you
declare a formula refutable iff the refutation axiom is derivable from it. The set of
refutable formulas is thus defined. If the complement N of this set is closed under
the inference rules, then N is our new logic (Skura, 2004, 2017a).
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Humorously speaking, in the positive approach, we want what is good, and in the
negative approach, we prevent what is bad. P and N are the two extremes of possible
solutions.

2.3 Systems without RS

Constructing Counter-Models

Of course, reverse substitution is not good for constructing counter-models. However,
reverse modus ponens is okay, but in Johansson’s logic and extensions (including Int
and intermediate logics), it must have the following form.

(RMP0) A ! C/B ! C where ` A ! B.

Roughly speaking, in Johansson’s logic and extensions as well as in normal modal
logics, finite countermodels can be constructed from syntactic refutations (which can
be presented as finite trees consisting of formulas) as follows.

• For every formula A, we construct its Mints-normal form FA such that ` A iff ` FA
(Mints, 1990). Every normal form has its natural number called its rank (Skura,
2011a, 2013).

• We give a Scott-style refutation rule involving normal forms.

(R) F1, ...,Fn
F

where F is a normal form of rank n > 0 and each Fi is (after simple modus ponens
transformations) a normal form of rank smaller than n (Scott, 1957; Skura, 2011a,
2013).

• Our refutation system consits of refutation axioms (which are normal forms of
rank 0 that are non-valid) and refutation rules: R and RMP (or RMP0).

• We prove, by a simple inductive argument, that every normal form F is either
provable or refutable (Scott, 1957; Skura, 2011a, 2013). So, if F is not provable
then F has a refutation tree.

• We transform every syntactic refutation tree into a Kripke frame by removing the
nodes obtained by RMP and by defining a suitable accessibility relation (Skura,
2002, 2013, 2017a). From the normal forms, we extract a valuation falsifying the
refutable formulas. So, if F is a node in a syntactic refutation tree, then it is false
at some point in the corresponding model built from this tree. (We remark that
the corresponding frames need not be trees.) Hence if F is refutable then F has a
countermodel, so F is not provable.

• As a result we get both syntactic completeness (F is not provable iff F is refutable)
and semantic completeness (F is provable iff F is valid in all finite tree-type
frames).
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Decision Procedures

Of course, RMP is not good for refutation search procedures. However, we do not need
the whole RMP in our syntactic completeness proof (Skura, 2011a). Just a few simple
auxiliary rules are enough. The completeness proof provides a refutation search pro-
cedure that is a finite tree consisting of finite sets of formulas and having the following
property: the origin is non-valid iff some end node is non-valid (Skura, 2017b). (Here
we say that a set of formulas is non-valid iff every member of it is non-valid.) Note
that it is in fact a decision procedure.

Refutation Procedures and Tableau Procedures

We focus on Modal Logic and follow Goré in our account of tableau systems (Goré,
1999). (We assume the reader to be familiar with basic concepts concerning tableaux.)

Tableau procedures are viewed as refutation procedures in the sense that in order
to show that a formula A is valid we assume that A is not valid (Fitting, 1999). Then
we apply tableau rules

G
G1 | ... | Gk

where G ,G1, ..,Gk are finite sets of formulas. The interpretation is that if G is satisfiable,
then so is some Gi. As a result, we get a tableau for {¬A}, which is a finite tree with
origin {¬A}. A formula A is tableau-provable iff there is a closed tableau for {¬A}.
Tableau procedures are a generalization of disjunctive normal form procedures.

It is easier to compare refutation procedures with tableau procedures when refuta-
tion rules are presented bottom-up (see Remark 2). In a bottom-up refutation proce-
dure, we assume that A is valid. Then we apply bottom-up refutation rules generating
finite trees consisting of formulas. A formula A is refutable iff there is a finite refuta-
tion tree with origin A and refutation axioms as end-nodes. Refutation procedures are a
generalization of conjunctive normal form procedures. Thus, as syntactic procedures,
tableau procedures and refutation procedures are complementary.

Tableau procedures also provide counter-model constructions. Assume that there
is no closed tableau for {¬A}. Then a finite tree-type counter-model for A can be
constructed from various open tableaux for {¬A}. Note that in transitive logics (K4
and extensions) such constructions involve cycles.

On the other hand, we get a finite tree-type counter-model for A from a refutation
tree for A directly, by deleting the nodes obtained by RMP and transforming the re-
sulting tree into a frame (Skura, 2002, 2013). We remark that our constructions are
cycle-free. It turns out that, at least in some cases, our counter-model constructions
are simpler than the tableau constructions (Skura, 2013, p.125).
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3 Concluding remarks and research perspectives

In short, philosophical logic is intended to provide the interface through which phi-
losophy and logic interact. On the one hand, philosophical logic concerns the study
of philosophical problems — especially problems in epistemology, (analytic) meta-
physics and the philosophy of language — by means of the specific mathematical
tools offered by logic (Grayling, 1982). On the other hand, once logically addressed,
meaningful philosophical settings never fail to produce challenging new logical prob-
lems to be solved mathematically.

In what follows we provide a list of topics in philosophical logic and, more in gen-
eral, in the methodology of propositional logic which could benefit from the specific
formal and conceptual tools made available by refutation systems.

3.1 General proof-theory program

In 1974, Prawitz proposed to emancipate proof-theory from classical foundational
studies by means of a new research program that he termed general proof-theory. The
core of this program consists in the fact that “proofs are studied in their own right
where one is interested in general questions about the nature and structure of proofs
[...]” (Prawitz, 1974, p. 66).

The introduction of refutation calculi can be seen as a way to ‘maximize’ Prawitz’s
program inasmuch as these systems allow us to widen the space of proofs by including
derivations ending with invalid formulas/sequents (Varzi, 1990, 1992; Goranko, 1994;
Skura, 2009, 2011b; Piazza and Pulcini, 2016; Carnielli and Pulcini, 2017; Piazza and
Pulcini, 2019). Here the basic idea is that one can have a better understanding of the
structure of proofs once the ‘affirmative’ and the ‘refutational’ parts are considered
together as two alternative and complementary ways to syntactically characterize a
given (decidable) logic.

On the one hand, this idea echoes what happens in Girard’s Ludics, where proofs
and para-proofs peacefully co-exist and interact (Girard, 2001). On the other, it can
be also seen as a way to further extend Wansing’s proposal of accommodating dual
proofs logically (Wansing, 2017). Indeed, from an epistemic point of view, ontological
parsimony is more an obstacle to the real understanding of the structure of proofs than
a virtue.

3.2 Meaning theory and proof-theoretic semantics

As a byproduct of the ontological extension posited in the previous point, refutation
calculi might provide new conceptual tools in the fields of anti-realist meaning theory
and proof-theoretic semantics (Dummett, 1975; Schroeder-Heister, 2018).
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Hardcore proof-theorists tend to believe that the meaning of logical operators is
primarily conveyed by their rules in a suitable proof-system. Model-theoretic seman-
tics comes into play at a later moment to provide a mathematical account of these
very epistemic insights (Sundholm, 1986; Schroeder-Heister, 2018; Kremer, 1988).
Yet this view has been discussed and criticized on several occasions; in this regard,
the logico-philosophical debate about the tonk connective is very well-known (Prior,
1960; Belnap, 1962; Avron, 2010).

It is our conviction that several of the problems arising in this field might be fruit-
fully addressed by considering the meaning of logical operators as given by their rules
in both the affirmative and the refutational parts. Take, for instance, the classical con-
junction operator (^). According to this view, its meaning should be considered as
being conveyed not only through its rules in the affirmative part LK:

G ,A,B ` D
^ `G ,A^B ` D

G ` A,D G 0
` B,D 0

` ^,
G ,G 0

` A^B,D ,D 0

but also by its rules in the refutational part LK (Goranko, 1994):

G ,A,B a D
^ aG ,A^B a D

G a A,D
a ^(1)G a A^B,D

G a B,D
a ^(2).G a A^B,D

It turns out that negation (¬) is the only classical connective which allows for the
very same (left and right) introduction rules in both parts, affirmative and negative:

G ` D ,A
¬ `G ,¬A ` D

G ,A ` D
` ¬G ` D ,¬A

G a D ,A
¬ aG ,¬A a D

G ,A a D
a ¬G ` D ,¬A

3.3 Comparative theory of formalisms

Formalized proofs and the study of their structural properties always relate to a specific
proof-system of reference, and new formalisms are expected to improve the already
known deductive engines in some respects (proof-search effectiveness, naturalness,
perspicuity, identity of proofs, etc.). Put thus, besides being a theory of proofs, proof-
theory can be also conceived of as a comparative meta-theory of formalisms. In this re-
gard, refutation calculi might suggest new strategies for improving our proof-systems
and challenging new problems. To take an example, the problem of designing a sat-
isfactory proof-net theory for classical logic still remains, in many respects, an open
problem (Girard, 1987). Surprisingly enough, once refutationally addressed, classi-
cal logic comes with a very simple and efficient proof-net theory which may, in turn,
provide new information about the deeper geometrical structure of proof-nets for the
affirmative counterpart (Pulcini and Varzi, 2019).
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3.4 Philosophy of logic

According to (Carnielli and Pulcini, 2017), we indicate with LK the sequent system
sound and complete with respect to the set of classically invalid sequents (Goranko,
1994). It seems quite reasonable to assert that LK is actually a logic, to the extent that
it provides an alternative syntactic characterization of propositional classical logic
(Casati and Varzi, 2000; Pulcini and Varzi, 2018).

It is worth observing that, unlike LK, LK is paraconsistent. In other words, classical
logic can be syntactically grasped, albeit in the negative, by means of a paraconsistent
sequent system. In general, any decidable logic whose semantics circumscribes a set of
contingent formulas allows for a refutational characterization which is paraconsistent
(Pulcini and Varzi, 2018). This kind of observation offers new insights into the logical
nature of paraconsistency, which turns out to be sensitive to the specific syntactic
formulation of our logic. The system LK does not need to resort to structural rules
either, therefore similar considerations also apply to the notion of substructurality
(Restall, 2018).

3.5 Rejection / assertion debate

Is the negation of a proposition A the same as the rejection of A? Frege famously
maintained that rejection and assertion do not have to be treated separately, since the
act of rejecting a proposition A is nothing but the act of affirming its negation (Frege,
1919). The opposite view is called bilateralism and finds in Smiley one of its more
tenacious proponents (Smiley, 1996).

This debate has remained lively and intense over the years, involving both philoso-
phers of language, linguists, and logicians interested in investigating the nature of the
negation operator (Rumfitt, 2000; Incurvati and Smith, 2010; Ripley, 2011; Incurvati
and Schlöder, 2017). It would be interesting to understand how technical advances in
the proof-theory of rejection calculi might contribute to the elucidation of this rejec-
tion/negation rapport.

3.6 Metaphysical grounding

In metaphysics, the ground relation is meant to connect the truth of some set of facts
A1, . . . ,An to the truth of some other fact B. This relation has to be something concep-
tually deeper than mere logical implication: it has to explain why B is true, by virtue
of the truth of each one of the As. Put differently, when we are in presence of a ground
relation, it is metaphysically necessary that the truth of the fact B came from the truth
of the premisses A1, . . . ,An (Fine, 2012).

Logic enters the debate at the moment we want to grasp methaphysical necessi-
tation by means of a suitable set of formal constraints regulating the transition from



What is refutation? 119

A1, . . . ,An to B. Needless to say, the resort to formal logic has been usually intended
as the resort to the affirmative part of logical systems (Fine, 2012). We guess that
refutation systems could provide new tools to fine-tune the formal grasp of ground-
ing by allowing us to introduce complementary considerations about the deductive
transmission of ungrounding.

3.7 Methodology of propositional logics

Our analysis shows that the concept of refutation provides new tools having the fol-
lowing interesting applications in the methodology of propositional logics.

• Specific/generic descriptions of the non-validities of logics.
• Establishing maximality/minimality in the lattices of logics.
• Non-classical logics via refutability.
• Constructive completeness proofs that are simple.
• Refined semantic characterizations of logics by finite tree-type frames.
• Cycle-free constructions of counter-models.
• Refutation search procedures that, at least in some cases, are simpler than those

provided by standard methods.
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