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Humankind has entered a new era of space exploration: settlements on other planetary
bodies are foreseen in the near future. Advanced technologies are being developed to
support the adaptation to extraterrestrial environments and, with a view on the longer term,
to support the viability of an independent economy. Biological processes will likely play a
key role and lead to the production of life-support consumables, and other commodities, in
a way that is cheaper and more sustainable than exclusively abiotic processes. Microbial
communities could be used to sustain the crews’ health as well as for the production of
consumables, for waste recycling, and for biomining. They can self-renew with little
resources from Earth, be highly productive on a per-volume basis, and be highly
versatile—all of which will be critical in planetary outposts. Well-defined, semi-open,
and stress-resistant microecosystems are particularly promising. An instance of it is
kombucha, known worldwide as a microbial association that produces an eponymous,
widespread soft drink that could be valuable for sustaining crews’ health or as a synbiotic
(i.e., probiotic and prebiotic) after a rational assemblage of defined probiotic bacteria and
yeasts with endemic or engineered cellulose producers. Bacterial cellulose products offer a
wide spectrum of possible functions, from leather-like to innovative smart materials during
long-termmissions and future activities in extraterrestrial settlements. Cellulose production
by kombucha is zero-waste and could be linked to bioregenerative life support system
(BLSS) loops. Another advantage of kombucha lies in its ability to mobilize inorganic ions
from rocks, which may help feed BLSS from local resources. Besides outlining those
applications and others, we discuss needs for knowledge and other obstacles, among
which is the biosafety of microbial producers.
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INTRODUCTION

Long-duration stays on the Moon are scheduled to start this decade
(Foing et al., 2018, 2021; Heinicke and Foing, 2021; Silk et al., 2021).
One may realistically expect the first steps on Mars to take place
within the subsequent few years and to be followed, on a longer term,
by settlements on the red planet (Ehrenfreund et al., 2012; Musk,
2017). Advanced biotechnologies could be central to the fulfilment of
such plans: they lend themselves to highly efficient use of resources
and tend to minimize both waste generation and environmental
impact (Camere and Karana, 2018), which will be (or, we argue,
should be) priorities of settlements on other celestial bodies.
Bioregenerative life-support systems (BLSS; confined self-
sustained artificial ecosystems for the generation and recycling of
life-support consumables), in particular, may be key to meeting
those constraints (Mitchell, 1994). Besides basic BLSS functions, the
dependency on Earth could be decreased by the biofabrication of
goods such as food, fabrics, construction materials, and medicines.
The use of local resources (in situ resource utilization, ISRU) could
decrease the reliance of bioprocesses on Earth-imported materials
and, thus, improve their cost-effectiveness. Researchers and
engineers are, for instance, designing ways of growing plants on
lunar or Martian analogue substrates (Lytvynenko et al., 2006; Zaets
et al., 2011; Duri et al., 2020), possibly after processing them using
microorganisms to release nutritive elements (Auerbach et al., 2019;
Castelein et al., 2021).

Here, we argue that the kombucha microbial community
(KMC) is worth considering as a multipurpose component of
crewed space missions. Kombucha has been consumed for
millennia as a health-promoting drink. Its use beyond Earth
has been considered for over a decade (Kozyrovska and Foing,
2010; Kozyrovska et al., 2012), and the idea gained momentum in
the frame of the BIOMEX project (de Vera et al., 2019; Reva et al.,
2015; Zaets et al., 2016; Podolich et al., 2017a,b; 2019; 2020; Góes-
Neto et al., 2021; Orlovska et al., 2021; Lee et al., 2021). The
applications of KMC we envision can be gathered in two broad
categories: 1) prophylaxis of spaceflight-related health disorders,
based on both live nutraceuticals and cell-free postbiotics (as well
as, perhaps more anecdotally, the psychological benefits of
tending cultures), and 2) resource production, which
encompasses functions in BLSS/ISRU processes as well as,
especially in advanced settlements, the waste-free fabrication
of consumer goods, such as comfort drinks and products
derived from bacterial cellulose.

The aim of this review is to provide insights into how KMC
could be integrated into BLSS for the Moon and Mars, draw
attention to obstacles on which research efforts should be focused,
and give an overview of the foreseen benefits. Some applications
we consider are well-proven and could be implemented at little
cost; others may be more speculative and harder to deploy in the
foreseeable future. If we elected to include the latter as well, it is
with the goal of stimulating constructive discussions, which may
help evidence which among them are worth pursuing.

Defining the relevance and feasibility of using KMC beyond
Earth will require significant research efforts. We suggest that
such efforts are justified, as the benefits may be vast.

KOMBUCHA PER SE: ECHOES OF THE
PAST OR BACK TO THE FUTURE

Kombucha as a Multimicrobial Community
KMC is an example of advanced microbial social interactions
between representatives of two domains of living beings, based on
metabolic cooperation and competition (May et al., 2019). More
specifically, it is a mutualistic multiculture of acetic acid bacteria
(AAB) and osmophilic yeasts, which produces an acidic medium
at the surface of which floats a cellulose-based pellicle biofilm.
This community is not found in nature; when it was formed is not
precisely known, but it is thought of having existed in anthropic
environments (human habitations) for over two millennia. The
core bacterial community within KMC is dominated by AAB:
representatives of the Komagataeibacter, Acetobacter, and
Gluconobacter genera (Jayabalan et al., 2014). The relative
dominance of yeast genera, such as Zygosaccharomyces,
Brettanomyces/Dekkera, Schizosaccharomyces, Saccharomyces,
and Pichia, varies in accordance with the geographical variants
of KMC (Jayabalan et al., 2014). Lactic acid bacteria are involved
in the fermentation process in some KMC ecotypes (Chakravorty
et al., 2016; Coton et al., 2017). The most beneficial genera
detected in KMC samples were Bacteroides and Prevotella,
which are known as dominant human gut microbiota
members (Lavefve et al., 2021). Metagenomics studies also
predicted opportunistic bacteria like Bacillus, Pseudomonas,
etc. (Arikan et al., 2020; Villarreal-Soto et al., 2020; Barbosa
et al., 2021; Harrison and Curtin, 2021), as well as bacteriophages
and yeast viruses (Góes-Neto et al., 2021). There is a metabolic
interplay between yeasts that convert sugar into monosaccharides
and ethanol, in a liquid phase, and AAB that use glucose, fructose,
and ethanol to produce organic acids and bacterial cellulose (BC),
in a pellicle film phase (Villarreal-Soto et al., 2018). The biofilm,
as a three-dimensional microbial hub, supports an evolutionary
stable social cooperation between its inhabitants, in a way that is
analogous to tissues in multicellular organisms. The biofilm may
also optimize oxygen concentrations for the microbial
microcolonies, which are stratified in the cellulosic matrix, as
well as protect the community from environmental stressors such
as UV radiation (Williams and Cannon, 1989). The capability of
KMC to generate and tolerate acidic conditions, metabolize
ethanol, and produce organic acids, protects the system from
invasion by competitor microbes. The bacterially produced
cellulose-based pellicle biofilm may also provide protection
from contaminants by inhibiting the diffusion of their
extracellular metabolites. The KMC as a multipurpose
ecosystem has the potential for usage in wide sectors of
human activity. The areas of application of kombucha
microbial culture products are represented in Figure 1.

Kombucha as Health-Promoting Products
Home-made drinks and pellicle films have been used for
prophylaxis, as well as for the treatment of various ailments,
before kombucha was widely commercialized (Danielian, 2005).
Cultivation was typically initiated by placing a piece of a
kombucha pellicle biofilm in a sweetened tea infusion. Owing
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to its antimicrobial properties, which were later evidenced
(Sreeramulu et al., 2000), and its presumed detoxifying and
energizing properties (Jayabalan et al., 2016), kombucha’s
products served as medicines for the lack of synthetic drugs.
In clinical settings of the former U.S.S.R., planktonic cultures
were used against severe alterations of the arterial pressure,
various forms of acute tonsillitis, chronic enterocolitis, and
bacterial dysentery. The cellulose-based pellicle, which
resembles mammal skin, has high biocompatibility and water
holding capacity, and contains valuable metabolites, was used as a
matrix for skin regeneration and healing (Barbanchik, 1954).
Highly acidic solutions obtained by long fermentation times were
used to disinfect wounds or household items during epidemics
(Danielian, 2005). Such uses were largely abandoned with the rise
of the pharmaceutical industry.

In the 90s, kombucha grew as a commercial product and
rapidly regained popularity (Kim and Adhikari, 2020), which
drew scrutiny on its putative health properties. Reconstructions
from kombucha metagenomes (Arıkan et al., 2020; Villarreal-
Soto et al., 2020; Góes-Neto et al., 2021) predicted the production
of various health-supporting components, such as short-chain
fatty acids (SCFA), which influence the gut-brain communication
(Silva et al., 2020); polyunsaturated fatty acids, which are essential
for brain activity and reduce the risk of heart disease (Freitas et al.,

2018); glutamate, a neurotransmitter known for its role in mental
health (Zhou and Danbolt, 2014); glucosamine, an amino sugar
known to support the function of healthy joints (Leal et al., 2018);
and a variety of vitamins (B1, B2, B3, B6, B12, C, K2). Several
organic acids, including detoxifying glucuronic acid (Martínez-
Leal et al., 2020), sugars, polyols, kombucha-specific
theobromine, rutin, quercetin and chlorogenic acid, were
detected experimentally (Tran et al., 2020; Villarreal-Soto
et al., 2020; Barbosa et al., 2021). In vitro assays and model
experiments on animals demonstrated antioxidant, anticancer,
antiviral, and anti-inflammatory activities (Mousavi et al., 2020).
Nonetheless, in vivo assays remain scarce, and clinical trials are
lacking to ascertain the health benefits of drinking kombucha
(Morales, 2020). Given the fast-increasing interest in this
beverage, one may expect more conclusive evidence in the
near future.

Kombucha Multimicrobial Community Are
Highly Resilient Under Martian Conditions
Simulated Beyond Earth
A common pitfall in BLSS modules or other microbial cultures
foreseen for biotechnologies in space is an expected lack of
stability under the unusual culture conditions found (or

FIGURE 1 | Kombucha’s cellulose-based pellicle as a three-dimensional hub for microbial community-member cells and raw material for fermented food and
consumer goods fabrication. Background image credits: ESA.
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anticipated) in facilities beyond Earth. The resilience of KMCwas
put to an extreme test in the Biology and Mars Experiment
(BIOMEX): biofilm samples of the KMC ecotype IMBG-1
(Ukraine) were exposed at the outer surface of the
International Space Station (ISS) to simulated Mars-like
conditions for 18 months (de Vera et al., 2019; Podolich et al.,
2019). KMC IMBG-1 tolerated those conditions; however,
shotgun metagenomic analyses showed that the community
was altered with an overall decrease in diversity and richness
(the number of species in a community) of microorganisms
(Góes-Neto et al., 2021). Among others, the relative diversity
of dominant Komagataeibacter spp. increased, suggesting that
stress exposure had fostered the development of bacterial species
usually found below detection levels. The most striking changes
were found in the Komagataeibacter representatives after
exposure to the Mars-like UV spectrum: the relative
abundance of K. saccharivorans (which is normally dominant)
decreased while that of K. hansenii increased. Viral species in
KMCs also increased after the exposure experiment. On the other
hand, the diversity of the yeast component was not affected
significantly by space exposure; however, the dominant genus
Schizosaccharomyces was replaced with other yeast genera (Góes-
Neto et al., 2021). Results of this metagenomic study will be used
for the design of robust, rationally assembled mini-kombuchas
composed of both core community members and purposely
selected microbial partners. The composition of extracellular
membrane vesicles (EMVs), which are thought to mediate
communication between cells within and across domains, was
altered in the post-flight KMC community members (Podolich
et al., 2020). The changed composition of membranes correlated
with changes in EMV fitness: the activity of membrane-associated
enzymes seemed to be increased by UV radiation.

In spite of those alterations, exposure in space did not lead to
significant differences in the community functions, suggesting
that kombucha samples were ecologically resilient (Góes-Neto
et al., 2021). It should also be noted that conditions outside the
ISS were far more challenging than those foreseen for KMC when
used in support of crewed missions, where it would be grown
mostly in crewed modules and, if cultivated outside, would be
contained in a bioreactor (and, thus, would not be exposed to
vacuum, UV, or extreme temperatures).

BIOSAFETY OF THE KOMBUCHA
MICROBIAL COMMUNITY
Biosafety Risks Associated With Microbial
Communities
Any crewed mission will be accompanied by microorganisms:
they are both necessary and inevitable (see, for instance, Guerrero
and Berlanga, 2009; Lloyd-Price et al., 2016). Around half of the
microorganisms on inner surfaces of crewed compartments is
expected to be represented by the crew’s microbiota (Singh et al.,
2018; Checinska et al., 2019; Avila-Herrera et al., 2020), the rest
coming from a variety of sources (e.g., imported consumables,
various environmental sources, BLSS). The resulting indoor
ecosystem should be well-understood: its mismanagement may

lead to the emergence of pathogens (or opportunistic pathogens)
which would threaten the crew’s health, as well as that of
technophiles which might damage equipment.

In order to avoid such a situation in the new indoor
environments that will be created by settlers, the philosophy of
the interdependence of humans and living microbial beings in the
context of co-becoming fates has to go beyond anthropocentrism.
The more diverse the microbiota, the better the balance of useful
and opportunistic/detrimental counterparts, and the healthier the
ecosystem from the standpoint of human health. A reasonable
approach to the maintenance of microbiome health is a
reconstruction of an Earth-like biosphere and
interrelationships with the surrounding biota through a BLSS,
as described by Hao et al. (2018) and Chen et al. (2020). The
contact with plants for several hours in a day and the
consumption of plant fiber diet would increase the relative
abundance of friendly microbiota and would reduce
proportions of potential pathogens in the crew.

More pragmatically, extensive efforts should be deployed to
characterize and, to some extent, design the microbial
communities that will accompany crews; in other words, to
diversify the microbiota in the indoor ecosystem to reduce the
risk of acquired overcompetitiveness. KMC, as a microecosystem
organized on metabolic symbiosis and which evolved alongside
humans, could contribute to the establishment of an environment
free of human pathogens.

Kombucha Microbial Community Biosafety:
What Is Known From Our Shared History on
Earth
The biosafety of KMC is known from its use over millennia as
well as from recent studies (Dutta and Paul, 2019; Martínez-Leal
et al., 2020), including some based on metagenomics (Arikan
et al., 2020; Villarreal-Soto et al., 2020; Góes-Neto et al., 2021).
While adverse health effects have been attributed to the
consumption of home-brewed kombucha (Murphy et al.,
2018), such cases have been reported very rarely and were
probably related to inappropriate cultivation processes, which
led to contamination of the product with pathogenic bacteria.
Nevertheless, the United States Food and Drug Administration
(FDA, 1995) states that kombucha is safe for human
consumption when properly prepared, and kombucha,
therefore, has been commercialized in a large number of
countries (e.g., Kim and Adhikari, 2020).

Komagataeibacter xylinus, a keystone species of KMC, is
recognized as a safe microorganism for human consumption.
The safety status of K. xylinus was determined by feeding rats
with doses of 1016 bacterial cells (Lavasani et al., 2019). Moreover,
the toxicological and dietetic aspects of BC have been assessed in a
rat model, which led to the conclusion that BC is safe for
applications in food technology (Dourado et al., 2017). From a
nutritional point of view, BC can be considered a promising low-
calorie fiber-rich ingredient or fat substitute. Cellulose generated
by Komagataeibacter spp. can be a valuable resource for the food
industry in compliance with the current legislation of some
countries, e.g., the FDA considers BC as GRAS (Vigentini
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et al., 2019). Nevertheless, the EFSA (European Food Safety
Authority) scientific panel has not decided yet on this issue, in
spite of the fact that the chemical structure of BC is well known
and identical to that of the vegetable cellulose. Furthermore, AAB
that synthesize it are recognized as GRAS, belong to the risk
group 1, and are components of fermented foods with a long
history of safe human consumption.

Kombucha Microbial Community Biosafety:
What Is Known From a Space Experiment
A recent shotgun metagenomic study on the microbial
community structure in kombucha exposed to open space and
Mars-like conditions on the ISS demonstrated a disturbing effect
of abiotic stressors on the KMC relative abundance and
taxonomic composition (Góes-Neto et al., 2021). Nonetheless,
KMC core microbial community members were preserved,
providing the community with needed gene sets for the
formation of a cellulose-based pellicle, which allowed for the
survival of the community. After 2 years of subculturing in lab
conditions on Earth, the returned KMCs displayed vulnerability
for contaminations that should be considered as a possible safety
risk. It is worth noting that the KMC was exposed to extremely
harsh conditions of real space and simulated Martian conditions
that never would occur at human habitation where KMC would
be cultured.

In addition to the risk of contamination, undesirable changes in
the fermentation process and activation of probable pathogenic
factors present in genomes of kombucha community inhabitants
must be investigated in detail in future studies. In our recent study,
despite alterations in membranes, kombucha’s EMVs did not
acquire endotoxicity, cytotoxicity, or neurotoxicity (Podolich
et al., 2020). Metagenome-assembled genomes did not show the
presence of pathogenic microorganisms in KMC IMBG-1, neither
before nor after the exposure experiment (Lee et al., 2021). We
were also interested in deciphering genomes of core community
members in order to analyze them on the presence of genes for
toxins and toxin transport systems, extracellular enzymes, genetic
mobile elements, and so on. Recently, two dominant bacterial
strains of K. oboediens isolated from the dehydrated KMC biofilms
(ESA BIOMEX), one maintained on Earth and another sent to
space/Mars-like conditions on the ISS, had their genomes
sequenced and extensively compared. Despite some differences
in phenotypic features (Podolich et al., 2020), the genomic analysis
revealed that their genomes were quite similar (de Carvalho et al.,
2021; personal communication), which made us consider
epigenetic events on the space-flown strain.

It is time to examine both the accumulated experience on
human coexistence with the KMC microecosystem and the
scientific evidence on its unique properties, and to rigorously
assess its value as a potential functional food/edible vaccine and
environmentally-friendly materials in the context of crewed
missions to other planets. The known advantages of KMC as a
companion to astronauts and settlers come from the fact that it is:
a self-organized system that can be purposively modified and is
resistant to contamination; tolerant to space/Mars-like stressors;
simple to cultivate; easy to transport; a multimicrobial

multifunctional community; ban immortal bank of probiotic
and cellulose-synthesizing bacteria and yeasts of
biotechnological importance; a multivariate functional food (as
a drink, smoothies, candies, vinegar, etc.); a prophylaxis and
healing agent; an indicator of local biosafety; a means of psycho-
emotional relaxation (taking care of mother culture, handicrafts,
and installations using bacterial cellulose, etc.).

The putative strategies for using KMCs, including purposively
upgraded variants, for space exploration are summarized in
Figure 2 and outlined below.

RATIONALLY ASSEMBLED KOMBUCHA
MICROBIAL COMMUNITY COULD
SUPPORT ASTRONAUT HEALTH
LONG-TERM SPACE MISSIONS

During Missions, the Improvement of
Human Health Will Be Profitable Under the
Assistance of Health-Promoting
Microorganisms
Among the physiological changes undergone by crewmembers in
space is a modification of the composition and functionality of
the gut microbiome (e.g., Voorhies et al., 2019). The highly
comprehensive analyses of the human microbiome using high-
throughput “omics”-based technologies evidenced a clear link
between gut microorganisms and health problems (Gilbert et al.,
2018; Parker et al., 2020). The human intestinal microbiota is
essential for microbial homeostasis, regulation of metabolism and
immune tolerance (Ahlawat et al., 2020), and a deficit in bacterial
products can deregulate brain function, leading to
neurobehavioral problems (Cryan et al., 2019). A decrease in
the richness of probiotic bacteria in the gut was observed in
spaceflight, notably in NASA’s Twins Study (Garrett-Bakelman
et al., 2019), alongside a reduction in the number of anti-
inflammatory bacteria (Voorhies et al., 2019). Altogether, these
results indicated that gut microbiome alterations predispose
astronauts to illnesses (reviewed in Turroni et al., 2020). Thus,
the maintenance of healthy gut microbiota during interplanetary
journeys to Mars or other celestial bodies will require means of
mitigation.

There are several countermeasures that might be investigated
for mitigating dysbiosis in crews: 1) modification in nutrient
supply (David et al., 2014; Fetissov, 2017); 2) non-selective
modification of the gut microbiome using fecal microbiota
transplantation (Cheng et al., 2019; Guo et al., 2020); 3) semi-
selective modification of the gut microbiome using antibiotics
(Bajaj et al., 2018); and 4) biological modification of the intestinal
barrier. All the aforementioned approaches have pros and contra.
Prophylaxis and correction of dysbiosis with microbiome-
targeted therapeutics, such as probiotics/synbiotics/postbiotics
(Box 1), can reasonably be expected to be beneficial but have
not been used so far.

In spite of the interest in probiotics for astronauts’ diets
(Voorhies et al., 2019; Turroni et al., 2020), the in-flight safety
of probiotic microorganisms remains unclear. Currently,
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neither probiotic/synbiotic products nor its structural
components were evaluated on the potential risk for
astronauts, except for the first exposure of lactic acid
probiotic bacteria preparations during a 1-month trial on
the ISS (Sakai et al., 2018), which showed that this
probiotic had not lost basic therapeutic properties. Further
profound systemic studies will be required to determine the
safety and stability of probiotic microorganisms during space
missions. Criteria for the scientific substantiation of health
claims on foods and issues on probiotics, synbiotics,
postbiotics and prebiotics remain to be addressed (Vargas
et al., 2021).

Kombucha is a functional food (Dimidi et al., 2019) with
features of a probiotic product as it contains lactic acid bacteria
(LAB) and probably probiotic yeasts (Shizosaccharomyces,
Saccharomyces, and Lachancea), as mentioned above. The

main LAB strains isolated from kombucha are the well-known
Lactobacillus bulgagricus, Streptococcus thermophilus, and
Lactobacillus plantarum (Pei et al., 2020), as well as
Pediococcus pentosaceus (Matei et al., 2018). Marsh et al.
(2014) reported that Lactobacillus and Lactococcus are
dominant in kombucha pellicles, and the content of LAB
depends on the kombucha’s origin. LAB isolated from
kombucha are considered potential probiotics since they meet
most of the probiotics criteria, e.g., bacteriocin production and
bile salt tolerance, in according to the FAO/WHO Guidelines for
the Evaluation of Probiotics in Food (2002) (Matei et al., 2018; Pei
et al., 2020; Vargas et al., 2021). Incoming LAB easily become
community members (Zaets et al., 2016; Cvetković et al., 2019;
Bueno et al., 2021) and improve kombucha’s biological
properties, e.g., antibacterial and antioxidant activities (Nguyen
et al., 2015). Another approach is to design rationally assembled

FIGURE 2 | A model scheme of the kombucha’s travels from the laboratory to the International Space Station and extraterrestrial settlements.

BOX 1 | Probiotics, prebiotics, synbiotics, and postbiotics
Probiotics are viable microorganisms whose health effects are independent of the site of action and route of administration. The potential benefits of probiotics were first
proposed over a century ago by the 1908 Nobel Prize winner Elie Metchnikov (Metchnikoff, 1908), and because of him, fermented milk products entered the daily diet.
The term “probiotic” was introduced by Lilly and Stillwell (1965). Later, probiotics were officially defined by the FAO and WHO as “live microorganisms that, when
administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002; Hill et al., 2014). Probiotics are efficient in treating gut-associated disorders,
including allergic disorders and metabolic syndrome (Molina-Tijeras et al., 2019), and improving local immunity. Prebiotics are non-digestible food ingredients resistant
to destruction by mammalian body enzymes but metabolized by intestinal microbiota and that stimulate, therefore, the growth and/or activity of intestinal bacteria
associated with health (Gibson et al., 2017). This definition will continue to evolve in line with expanding knowledge about dietary fiber. Synbiotics are health-promoting
products, containing a combination of prebiotic and probiotic products. Postbiotics are overall cell-free metabolites or separate components, e.g., extracellular
membrane vesicles of probiotic bacteria.
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(upgraded) kombucha composed of the defined health-
promoting bacterial and yeast species capable of kombucha
fermentation (Savar et al., 2021).

Kombucha Dietary and Prophylaxis
Projects During Spaceflights
Whether Komagataeibacter spp. (and other dominant members
of the kombucha community) behavior as probiotics has not been
ascertained, these bacteria possess several characteristics which
suggest that research on their dietary properties could be fruitful.
First of all, their product, cellulose polymer, which is non-
digestible in the human gut but can be consumed by
cellulolytic bacteria in the distal gut, can be considered a
prebiotic (Holscher, 2017; Nsor-Atindana et al., 2020). Low-
fiber diets lead to slow gastro-intestinal transit and a
microbiome starving in crewmembers. Cellulose is useful for
digestion because it stimulates the work of intestines that
increases stool bulk and water absorption, and, thereby,
decreases the gastrointestinal transit time. Earlier, we proposed
KMC as a source of prebiotic for astronauts (Kozyrovska et al.,
2012), and most recently, kombucha fermentation was reported
to produce SCFAs (Utoiu et al., 2018; Annunziata et al., 2020) or
support a significant potential prebiotic effect (Lavefve et al.,
2021). The AAB, producing cellulose, are food-grade
(Alexandraki et al., 2013) or GRAS bacteria (Gorgieva and
Trček, 2019), which gives Komagataeibacter species potential
for pro/pre/postbiotic use. Among them, K. xylinus, one of the
dominant core kombucha bacteria, exhibited some probiotic
features: it was shown to survive in the conditions of a rat gut
tract, being resistant to acid, bile, low oxygen pressure, and rat
body temperature (Lavasani et al., 2019). Komagataeibacter cells
contain valuable antioxidants and lipids which can improve
cognitive functions (Fukami et al., 2009) and prevent stratum
corneum dryness (Tsuchiya et al., 2020).

During space missions, crewmembers experience nutrient
deficiency because of a reduced appetite compared to that on
Earth, for many reasons (Turroni et al., 2020). Correction of
nutrient and energy deficiency by live kombucha-related
products is a reasonable and facile way to enhance energy
level and crew’s appetite under specific conditions. Both
beverage and pellicle film possess inherently a great collection
of various essential and valuable dietary compounds highlighted
above, always available fresh and organic, which probably could
aid in prophylaxis of health problems in parallel with
pharmacological interventions, lowering doses of medicines.
Special attention should be given to kombucha’s energizing
capability: the formation of the iron and gluconic acid
chelating complex increases the level of hemoglobin and
stimulates ATP synthesis under the support of energy
regeneration by the vitamin B group that promotes enzymatic
activation of lipid and protein metabolism (Dufresne and
Farnworth, 2000).

In addition to both nutrient and energy deficiency, various
health risks (zero- and reduced-gravity effects, ionizing radiation,
etc.) affect several crewmembers’ organs and systems during
missions. Beyond Earth’s protective magnetosphere, the

exposure of astronauts to galactic cosmic radiation could
result in degenerative tissue diseases (Thirsk, 2020). A high
oxidant and low antioxidant level in the human body is
associated with the development of chronic inflammatory
diseases, such as cardiovascular and neurologic diseases
(Barcellos-Hoff et al., 2015; Vernice et al., 2020) and, thus,
lead to deregulation of the immune and metabolic systems
(Garrett-Bakelman et al., 2019). Intake of dietary antioxidants
may inhibit the formation of peroxides and their absorption in
the gastrointestinal tract (Xia et al., 2019). Kombucha-derived
products, such as beverage and pellicle-based products, exhibit
antioxidant capacity, which has been associated with the presence
of polyphenols and derived phenolic compounds, such as gallic
acid, caffeic acid, chlorogenic acid, p-coumaric acid, and ferulic
acid among many others (Villarreal-Soto et al., 2020).
Furthermore, kombucha modulates the immune system in
animals, inducing the production of anti-inflammatory
cytokines (e.g., IL-4 and TGF-β) and inhibiting the production
of pro-inflammatory cytokines, such as IFN-γ and IL-17
(Haghmorad et al., 2020). The microbiome shift is one of the
six fundamental changes in human bodies during spaceflights
(Afshinnekoo et al., 2020), and it is already known that kombucha
brew intake corrects changes in intestinal microbiota promoted
by non-alcoholic fatty liver disease (Jung et al., 2019).

An Alternative Approach to the Mitigation of
Crew’s Health Dysfunctions: In Situ
Biofabricated Acellular Postbiotics
Microorganisms may not be the only players in probiotic
products that affect the recipient’s biology and safety; their
extracellular membrane vesicles (Box 2) could contribute to
health effects under the changed conditions.

Several members of the KMC produce EMVs, which could
serve a range of health-related purposes. In this case, microbial
EMVs could act as a surrogate of probiotics, carrying the same
bioactive molecules but limiting the risks associated with the
administration of live bacteria (Kozyrovska et al., 2018; Podolich
et al., 2020), or act as living edible vaccines.

Hereafter, we report examples of such applications. Some
microbial EMVs carry surface immunomodulatory proteins
that could be used for protective mucosal immunization
through different routes (oral, nasal, rectal, vaginal), to
facilitate the restoration of normal immune responses
(Gorreja, 2019; Kuhn et al., 2020). The probiotic
Propionibacterium freudenreichii produces EMVs that export
proteins (e.g., the surface-layer protein B), which interact with
the host proteins and attenuate inflammation (Rodovalho et al.,
2020). EMVs from various bacteria regulate brain functions by
interacting with the peripheral nervous system and delivering
neurotransmitters to the central nervous system, which may lead
to novel therapeutic approaches to neurodevelopmental and
mood disorders (Haas-Neill and Forsythe, 2020). Furthermore,
EMVs may also be used to alleviate metabolic dysfunctions
(Ashrafian et al., 2019). As the last example, bacterial EMVs
are emerging as nanodrugs (Jahromi and Fuhrmann, 2021) and
platforms for drug delivery (Li et al., 2020).
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Rather than being sent from Earth, EMVs could be produced
on-site, which would circumvent issues related to long-term
conservation. This could be facilitated by the fact that bacterial
EMV production seems to be intensified in space (Zea et al., 2017;
Ott et al., 2020). EMVs from ground control and space-flown
KMC samples did not exhibit signs of cyto-, endo- or
neurotoxicity (Podolich et al., 2019), and neither did EMVs of
the dominant kombucha community member Komagataeibacter
oboediens (Podolich et al., 2020): membrane alterations occurred
but did not lead to toxicity for eukaryotic cells in vitro. This
experience suggests that EMVs, originating from carefully
selected, non-pathogenic Gram-negative bacteria such as K.
oboediens, can be considered as candidates for postbiotics or
edible mucosal vaccines produced in situ, beyond Earth.

Kombucha Microbial Community Could Be
a Practical Element of the ISRU-Based
Bioregenerative Life Support System on
Mars and the Moon
The KMC could find application in ISRU-based BLSS, either as a
primary goal or via satellite products from other programs (health
support, cellulose production, etc.) (Figure 3).

Kombucha for Growing Plants in BLSS
The lunar and Martian regoliths are expected to contain all the
mineral nutrients required for plant growth (Helmke and Corey,
1989). However, whether either could support plant growth has
not been fully demonstrated. The biological tests performed with

BOX 2 | Extracellular membrane vesicles
EMVs are spherical, nanosized (20–400 nm) bilayered proteolipids that contain different molecular cargo from the cytosol, periplasm, and cellular membranes. EMVs
are released by cells of all the three domains of life represented in the KMC, however, depending on their origin, vesicles differ in unicellular and multicellular organisms,
but all the EMVs facilitate intercellular communication by shuffling molecular cargo between cells. Proteomic and biochemical analyses have shown that EMVs of
Gram-negative bacteria contain a variety of bacterial components from the outer membrane (like lipopolysaccharide and lipoproteins), periplasmic proteins, DNA, and
RNA species, which have been suggested tomodulate biological processes, such as biofilm formation, survival, competition, defense, etc. Moreover, EMVs of probiotic
bacteria mediate communications with the host via molecular pattern molecules, interacting with innate immune receptors (reviewed in Nagakubo et al., 2020). Nano-
sized bacterial EMVs withstand long-time circulation through body organs and fluids and are able to penetrate the blood-brain barrier. Eventually, their effect on living
systems is comparable to that of the gut microbiota (Muraca et al., 2015; Tulkens et al., 2018).

FIGURE 3 | A schematic presentation of different approaches for manipulation of the kombucha microbial community to enhance life-support efficacy in
extraterrestrial settlements.
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Moon regolith during and shortly after the Apollo years
(reviewed in Ferl and Paul, 2010) mostly aimed at ensuring
that the regolith did not present any risk to the Earth’s
biosphere. As for Mars, no regolith sample has been brought
back so far. Plants were successfully germinated and grown in
Mars regolith simulants (Wamelink et al., 2014; Duri et al., 2020),
but those differ from the regolith they mimick in ways that are
critical to biological experiments. Generally speaking, it is
thought that regolith from both bodies would require some
physical, chemical, and/or biological modifications (e.g., Ming
and Henninger 1994; Maggi and Pallud, 2010; Fackrell et al.,
2021) before use as a substrate for plant growth, due to, for
instance, poor water retention, low availability (or release up to
toxic concentrations) of mineral nutrients, toxins, root damage by
abrasive particles, and/or lack of metabolizable nitrogen. These
limitations may be addressed by using microorganisms (e.g.,
Ehrlich, 1989; Ming and Henninger, 1994; Zaets et al., 2011):
some may coat the sharp edges of grains, thereby mitigating
damage to plant roots (Slenzka and Kempf, 2010); their biomass
would enrich the soil in organic compounds, improving both
fertility and water retention; and microorganisms capable of
bioleaching could foster the release of essential elements
(Wamelink et al., 2014). Associated to plant roots in
anorthosite, microbial communities were shown to help
balance levels of mineral nutrients, favoring release while
preventing accumulation to toxic levels (Zaets et al., 2011).
Thus, microbial communities, possibly planktonic KMC, could
have a positive impact on plant growth, either as an inoculant or
by pre-processing the regolith. For the case where such a
treatment would not suffice for growing plants of high
interest, an approach has been proposed where “first-
generation plants” (i.e., plants with higher fitness in such an
environment, such as Tagetes patula or Kalanhoe
daigremontiana) would be grown first, supported by microbial
communities, and composted to enrich a protosoil itself used for
plants of direct interest such as calorie-dense crops (e.g.,
Lytvynenko et al., 2006; Zaets et al., 2011). In line with this,
Duri et al. (2020) suggested planting leafy vegetables on Martian
regolith ameliorated with organic materials produced in situ. A
composted kombucha mat could be an additional source of
nutrients and other plant-supporting biologicals.

Another approach may lie in using such communities to
mobilize ions from regolith beforehand, for the production of
fertilizers. It was shown that in a tea infusion, supplementation
with anorthosite led to an accumulation of inorganic ions in a
KMC cellulose biofilm matrix: metals concentrations exceeded
that in the anorthosite-free matrix by, for instance, 10 times for
Ca, and 43–51 times for Mn andMg (Zaets et al., 2014). Inorganic
ions accumulated in the film can readily be extracted. The
presence of KMC also increased the concentration of ions in
the anorthosite-supplemented tea: after 1.5 months, for instance,
the concentrations of Mn, Cu, and Zn increased 5–7 times, and
Mg and Fe 12–22 times, compared to a medium with anorthosite
but without KMC. The extensive growth of the SiO2 group of
secondary minerals on the bottom surface of the pellicle
evidenced the primary dissolution of the silica-rich minerals in
the anorthosite rock, and its accumulation on and around the

pellicle (Podolich et al., 2017a). Kombucha’s leaching activity
presumably stems from metabolites (organic acids, siderophores,
enzymes) and a proton excess (Hopfe et al., 2017). Increased
levels of EMVs production were also noted in the KMC grown
with anorthosite, which correlated with the alteration of the
ionome in the pellicle. Furthermore, Al and Fe were found in
the pure preparations of EMVs isolated from KMC grown in the
presence of anorthosite (Podolich et al., 2017a), consistently with
observations by Matlakowska et al. (2012), suggesting a role for
EMVs in biomineralization reactions during bioweathering of
aluminosilicate rocks.

The use of cyanobacteria for the development of ISRU-based
BLSS has been under investigation for several years (e.g., Brown
et al., 2008; Olsson-Francis and Cockell, 2010; Rothschild, 2016;
Verseux et al., 2016). Extremophilic desert strains of
Chroococcidiopsis spp. that have been exposed in space and
were tested for resistance to high doses of ionizing and
ultraviolet radiation (see Billi et al., 2020), as well as nitrogen-
fixing, rock-weathering cyanobacteria of the genus Anabaena (or
related genera) were shown to be suitable as a source of nutrients
for heterotrophic microorganisms (Verseux, 2018; Billi et al.,
2021; Verseux et al., 2021). As a proof-of-concept, a desert strain
of the cyanobacterium Chroococcidiopsis was grown in a Mars-
relevant perchlorate concentration, i.e., 2.4 mM (Billi et al., 2021);
perchlorate ions and the cyanobacterial lysate successfully
utilized to feed Escherichia coli. Dual
cyanobacterium—kombucha cultures are under consideration
for processing locally available regolith to make rock-extracted
nutrients available for plants of interest. The cyanobacteria-
kombucha mat will form a protosoil, also making rock-
extracted nutrients available for growing plants.

A challenge for growing KMC in space is the carbon and
energy sources. The traditional substrate for KMC, Camellia
sinensis or Chinese tea, is a limited resource for space travels,
therefore, tea must be replaced by alternative components,
considering a self-sustainable production based on green
ecology (Kołodziejczyk, 2018). One such possibility is the use
of photosynthetic microorganisms, for example, common
Chlorella algae, which can grow in bioreactors onboard
habitats or spaceships (Suchan, 2020). KMC cultures set on
naturally basic Chlorella extract must be reduced to pH ! 6.
Bacterial nanocellulose produced in green solutions is white,
delicate, and glossy (Figure 4A). Other types of algae tested in
order to optimize KMC growth in space are extremophilic
microorganisms such as endolythic Galdieria sulphuraria and
Cyanidioschyzon merolae. These algae are easy to cultivate, and
they do not create protective biofilms. Instead of sucrose, there
are few options such as using starch or cellulose digested by
bacteria and fungi within the BLSS loop. It is important to note
that adding a new organism to the consortium takes time and
sometimes it is not possible for KMC to accept a new partner and
alternatively, yeasts will be modified with genetic
engineering tools.

Kombucha for Biomining
Biomining describes a process of dissolving ingredients and
removing them out by biological agent, e.g., metals of
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economic interest from rock ores or mine waste (Rawlings and
Silver, 1995; Johnson, 2014). When the metal of interest is directly
dissolved, the biomining process is called “bioleaching”. The
bioleaching of elements occurs directly by electron supply
based on the pH difference between the environment and the
microbial cytoplasm, which generates a natural proton motive
force across the cellular membrane. Another type is indirect
leaching by metabolic products of the microorganisms
(organic acids, siderophores, enzymes, etc.) (Potysz et al.,
2018). Biological technologies offer obvious advantages over
the traditional mining procedures due to their low cost and
eco-friendliness, and they do not require high amounts of
energy. A biomining is also of great advantage since microbes
can discard low-grade ores. Moreover, in some cases, bioleaching
is significantly more efficient using bacteria when compared to
abiotic technology (Auerbach et al., 2019). Microorganisms are
increasingly used for metal extraction worldwide, primarily for
copper and gold but for other metals as well (see Schippers et al.,
2013).

The use of biomining for missions beyond Earth has been
considered for over a decade (Dalton and Roberto, 2008; Cockell,
2010; Cockell et al., 2020). Although estimates of the effectiveness
and efficiency of such processes onMars or the Moon can only be
tentative, a few assays based on basalts, anorthosite, or slightly
more sophisticated simulants were performed for such purposes
(e.g., Volger et al., 2020; Olsson-Francis and Cockell, 2010;
Navarrete et al., 2012; Castelein et al., 2020), giving insights
into the rates of metal release in the liquid phase, metal
assimilation in the biomass, and bacterial growth. Besides, an
experiment on the ISS showed that microgravity or Martian
gravity did not impair biomining (Cockell et al., 2020).

Kombucha’s bioleaching abilities could be used for the mining
of metals for applications beyond BLSS. KMC has shown to foster
the release of the rare earth elements (REEs) from fluorescent
tubes (Hopfe et al., 2017) and, as described above, that of various
metals from anorthosite. Their use on the Moon on Mars may,
thus, be worth considering for leaching small amounts of iron,
REEs, and other elements from regolith or waste (Zaets et al.,
2011).

BACTERIAL CELLULOSE IS A
MULTIPURPOSE BIODEGRADABLE
ROBUST NANOMATERIAL FOR
EXTRATERRESTRIAL BASES

Since economic and environmental issues will be critical in the
early beginning of extraterrestrial settlements, sustainable bio-
based products will be desired. BC is an example of biofabricated
multipurpose products, valuable for sustainable eco-friendly
extraterrestrial economies.

Bacterial Cellulose Fibrils Are Synthesized
by Acetic Acid Bacteria
BC is secreted out of cells as linear polysaccharide polymer, where
D-glucose units are linked by β-1,4-glycosidic linkages, similar to
plant-derived cellulose (Ross et al., 1991). Nonetheless, in
contrast, BC generates structural hydrogel with interconnected
ribbons of around 100 µm in length and 100 nm diameter
composed of a three-dimensional nanofibrous network (Wang

FIGURE 4 | Bacterial nanocellulose can be used for clothes in space. (A) The traditional substrate for KMC, a tea, must be replaced by alternative components,
e.g., photosynthetic algae, for biofabrication of cellulose. The comparison between two types of KMC cultures: (left) grown on tea, and (right) grown on algae. Hydrogel
bacterial cellulose is similar in chemical composition but physical properties are slightly different. Nanocellulose grown on algae extract is much softer and more prone for
damage. Scanning electron microscope images reveal the ultrastructure of nanocellulose filaments. Scale bar 50microns (modified after Suchan, 2020). (B) KMC’s
material absorbs odours. It can be easily cleaned and sterilised. It folds gently to very compact volumes. Folding does not implicate changes in structure of the material.
Kombucha’s cellulose does not generate allergic responses in direct contact with human skin. It makes skin softer and visibly healthier (Kołodziejczyk, 2018; Kamiński
et al., 2020).
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et al., 2020), which is free of both lignin and pectin. Such a
peculiar supramolecular structure engineered by nature makes
BC stable and robust. The crystallinity of BC is higher than
cellulose produced by plants, and this results in higher thermal
stability. Being one hundred times thinner than cellulose fibrils
obtained from plants, BC possesses high tensile strength. The
highly porous structure of the cellulose nanonetwork and
controlled shape are attractive for the manufacture of new
ultra-light and stable nanomaterials, and various possibilities
of the BC-polymer modifications open up the unrestricted
development of new cellulose-based nanocomposites.

Bacterial Cellulose has the Potential to Be
Used in the Extraterrestrial Economy
The robust cellulose properties, such as high crystallinity, water
holding capacity, thermo- and radiation resistance, mechanical
properties, biocompatibility with the human body offer a wide
range of applications in different fields, including optics,
electronics, biomedical and food industry (Blanco Parte et al.,
2020; Choi and Shin, 2020; Sriplai and Pinitsoontorn, 2021). The
worldwide market for bacterial cellulose is valued at 324.5 million
USD in 2020 and is expected to reach 785.1 million USD by the
end of 2026 (Global microbial and bacterial cellulose market
research report, 2020). Therefore, BC has a high sustainable value
and a great potential to be used in the extraterrestrial economy for
providing biodegradable and reusable goods and materials. BC’s
exceptional bioaffinity will promote the development of BC-
based biomedical products for outposts, such as tissue-
engineered scaffolds, wound-dressing materials, dental
implants, artificial blood vessels and nerves, surgical mesh,
bone fillings, heart valve, meniscus, artificial cartilage, etc.
(Swingler et al., 2021). When bacterial cellulose is modified
with conductive compounds, such as metal nanoparticles or
graphite, it naturally becomes conductive of electricity and,
therefore, promising in developing materials for electrical
applications (Andriani et al., 2020). KMC living cellulose-
based materials can sense and respond to their environment.
Synthetic biology methods provide tools to create hybrid cellulose
materials with predictable novel or enhanced characteristics
matching the special purposes of the developing settlements,
which cannot be achieved by conventional tools. For example,
engineered to secrete enzymes into bacterial cellulose, yeast
strains can be taught to sense and respond to chemical and
optical stimuli. This means that the modified KMC can be
biosensors for many purposes (Mustafa and Andreescu, 2020;
Gilbert et al., 2021). Moreover, another especially potential use
will be intelligent packaging for foods with short shelf-life, as well
as biosensors of microbial contamination and mycotoxins.

Bacterial Cellulose for Clothes in Space
Astronauts must take all clothes for the time of their mission
because the supply of water on board is too limited to permit
clothes being washed by hand, let alone by a washing machine.
The price for each lifted kilogram into space ranges from $10 000
to $25 000, which means that clothes in space are an expensive
issue regarding long-term missions (https://www.nasa.gov/

vision/space/livinginspace/Astronaut_Laundry.html). There
were many discussions about solving the clothing problem in
space. One option was proposed to clean dirty clothes using
physical methods such as radiation, UV light, or vacuum. Other
options suggested using smell-free clothes, for example, Wakata’s
clothes developed by Yoshiko Taya designed to be flame-
resistant, anti-static, anti-bacterial, to absorb water, insulate
the body, and dry quickly, not to mention comfortable and
stylish. The last option was to reuse dirty clothing for
nourishing plants and bacteria cultivation (Space.com, 2021).
Interestingly, KMC-derived bacterial nanocellulose may be easily
and ecologically processed to obtain material similar to animal
leather (Kołodziejczyk, 2018; Kamiński et al., 2020). It has similar
properties to Wakata’s clothes and it is fully biodegradable. The
whole process from setting the KMC culture to obtaining material
of the desired shape takes around 3 weeks. Transformation of a
raw kombucha hydrogel cellulose into a dry and strong anti-
flammable material takes another 3 days (Kołodziejczyk, 2018)
(Figure 4B). In addition to indoor clothing, e.g., T-shirts shown
in Figure 4, the potential use of kombucha nanocellulose as a
component of spacesuits is currently being investigated in the
Analog Astronaut Training Center (Poland) in collaboration with
Jagiellonian University (Krakow, Poland). In particular, post-
processed kombucha material reveals new features such as
resistance to damage, friction or fire (Kamiński et al., 2020).
In support of the fact of cellulose robustness under extreme
conditions, Orlovska et al. (2021) provided the first data on the
cellulose polymer resilience after exposure of live cellulose-based
pellicle films to the simulated Martian environment on the ISS.
The ATR-FTIR absorption spectra analysis showed the
preservation of its characteristic vibrations. In addition, the
characteristic hydroxyl bonding in cellulose structure due to
preservation of an Iα crystalline phase may serve as the
evidence of structural integrity of cellulose polymer in the
space-exposed samples. Notably, after a long-term exposure
experiment, the mechanical properties of the de novo
synthesized cellulose were slightly changed in the BC-
producers, especially, in unprotected KMCs, which exhibited
reduced cellulose yield, compared to ground control KMC
pellicles. After a long period of permanent culturing, the
mechanical properties of cellulose produced by KMCs improved.

Kombucha Microbial Community Is a Hub
for the Cellulose-Synthesizing Bacteria
Increasing attention is paid to the cellulose-producing organisms
and their appropriate genetic modification as candidates for
cellulose biofabrication in earthly and extraterrestrial
conditions. For example, the reprogrammed bacterial strains
that are capable to produce a high yield of BC in low-cost
media with precise control of heterologous cellulose
biosynthesis gene expression or metabolic pathway modulation
have been designed (Florea et al., 2016; Teh et al., 2019; Ryngajłło
et al., 2020; Singh et al., 2020). Our results show that cellulose-
producing bacteria of the Komagataeibacter genus are tolerant to
spaceflight and Mars-like stressors (Podolich et al., 2019).
Nonetheless, the rate of tolerance may depend on the
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genotype of the species. Among the species of K. saccharivorans,
K. hansenii, K. rhaeticus, K. oboediens, K. intermedius and K.
europaeus detected in the IMBG-1-ecotype, the relative
abundance of K. hansenii was substantially increased in the
KMC exposed to Mars-like UV compared to the initial KMC,
where K. saccharivorans was dominant. Similarly, K. oboediens,
K. intermedius and K. europaeus were enriched in the exposed
KMCs. We observed that the Mars-like stressors did not alter the
topology or induced mutations in any of the bacterial cellulose
synthesis (bcs) genes of K. oboediens, reisolated from the returned
KMC (Góes-Neto et al., 2021). Nevertheless, in the revived K.
oboediens, the cellulose synthase gene bscA was down-regulated,
in spite of the full homology/topology of the bcsABCD to wild
type gene cluster, supporting the observation of the lower
cellulose output by revived bacteria compared to the ground
reference (Orlovska et al., 2021). Since komagataeibacters show a
significant potential of survival in extraterrestrial conditions,
these bacteria have a chance to be safely delivered within a
cellulose-based pellicle matrix to far destinations.

In addition to Komagataeibacter spp., KMC pellicle is a matrix
for safe delivery of a miniature collection of microbial organisms,
which could later be developed into a real microbial collection
hosted by a local research unit. KMCmembers are co-existed on a
principle of cooperation and competition to produce public
goods with the endless biotechnological value and myriads of
applications. For example, Gluconobacter oxydans could be a
candidate for biofabrication of goods for application in
pharmaceutical and food industries (vitamin C, a sweetener,
co-enzyme Q10, biosensors, etc.) (Moghadami et al., 2019). In
extraterrestrial bases, Saccharomyces cerevisiae is of great
importance for various biotechnological applications,
especially, in such vitally important industries as bread and
biofuel production (Parapouli et al., 2020).
Schizosaccharomyces pombe is a promising yeast species for
the laccase production needed for degrading and detoxifying
various synthetic compounds, which inevitably will be
accumulated in crewed bases, or CoQ10 as an antioxidant
food supplement (Nishida et al., 2019). Moreover, lactic acid
bacteria could be an inexhaustible source of probiotics from the
kombucha ecosystem (Zaets et al., 2016).

Kombucha and the Zero-Waste Production
Philosophy
KMC culturing for the biofabrication of cellulose for industrial
purposes lies in the context of eco-friendly, zero-waste
production. Importantly, the kombucha-related industry is to
operate without wastes and side products. For example, residues
of cellulose pellicle in the manufacture of clothes can be used in
formation of protosoil in BLSS gardens (Camargo et al., 2020) or
as animal feed (Afsharmanesh and Sadaghi, 2014). A sour
kombucha drink left could be transformed into vinegar and
balms, as well as used in the production of disinfectants
(Ryssel et al., 2009). Notably, acetic acid is a cheap and
effective measure to eradicate biofilms (Halstead et al., 2015),
which would be of great importance in fighting against biofilm-
forming bacteria usually competitive in confined systems of crew

habitations. Komagataeibacter cells, as a by-product of the BC
production, may be reasonably used as a biologically active
additive, containing valuable antioxidants and lipids for
improving cognitive function (Fukami et al., 2009) and as a
product preventing skin dryness (Tsuchiya et al., 2020).

Perspectives
Kombucha culture has evolved over significant periods of time in
various artificial environments. An upgraded, rationally assembled,
well-defined version could benefit crews, living in the confined space,
in long-term missions. It is known as a health-promoting functional
food and could provide a wide range of nutrients and other
metabolites (including nutraceuticals for prophylaxis, either
synbiotic or postbiotic) for crewmembers, animals, and plants. It
is also a producer of cellulosic materials, which could find a wide
range of applications in human communities beyond Earth, be they
small habitats or outposts possessing their own economic systems. A
significant advantage of KMC is the zero-waste production in
systems ranging from small-scale, ISRU-based BLSS to large-scale
cellulose biofabrication. Its organization as a microecosystem
provides strong advantages over most microorganisms of biotech
value: resistance to contamination, ease of cultivation, and high
versatility. As kombucha is a complex microecosystem, it probably
complicates operation and its control, especially in alien conditions.
The improvement of an advanced toolbox of genetic metabarcoding
and shotgun metagenomic technologies (to monitor accurately the
microbial populations), would be highly valuable. On the other
hand, alternative low-resource tools and novel biological sensing
platforms for pathogen monitoring should be designed for easy use
by crews. Relying on a combination of systems biology and Meta-
Omics methodologies, it is suggested to compose and study different
ecotypes of the kombucha microbiota (or related communities) to
select an operational, minimal rationally assembled (upgraded)
community with defined essential community members for
different purposes (health promotion, biosensing, biomining, etc.)
(Savar et al., 2021). Our results showed that the diversity within a
KMC was not affected significantly by space exposure, suggesting
that keystone tolerant species will be maintained and controlled.
Minor metagenomes can be customized by including specific
transcripts or sequence variants serving specific purposes.
Synthetic metagenomics could be used to gather metabolic
networks from various members into a single yeast species, then
used as a chassis (Belda et al., 2021). Systems and synthetic biology
could be used to enhance KMC’s biotechnological features. For
example, metabolic engineering could lead to more efficient
pathways of carbohydrate utilization from waste plant material
produced on-site (rather than imported sugars) by some KMC
members (e.g., yeasts).

Even though KMC is quite resistant to contaminating biota,
some of the remaining challenges pertain to safety, most
importantly with regards to the consumption of fermented
products. Studies of the safety of a well-defined yeast-bacterial
community, under normal and stressed conditions, as well as the
improvement of an advanced toolbox of genetic metabarcoding
and shotgun metagenomic technologies (to monitor accurately
the microbial populations), would be highly valuable. On the
other hand, alternative low-resource tools and novel biological
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sensing platforms for pathogen monitoring should be designed
for easy use by crews. A set of criteria for the scientific
substantiation of health claims on foods for consumption
beyond Earth are being elaborated, but issues on fermented
food, probiotics, synbiotics, postbiotics remain to be addressed
(Vargas et al., 2021).

Significant research and development efforts are required to fulfil
the potential of KMC beyond Earth. However, those can be provided
progressively: from the simplest applications in orbital stations to
industrial manufacturing in planetary settlements, incremental
developments will reap incremental benefits. Humankind seems
to be in the process of expanding its presence beyond Earth: after
2 decades of permanent presence in low Earth orbit, a permanent
presence on the Moon is expected to start this decade, followed by
crewed missions to Mars. In a more distant future we may, as many
have claimed, become a multiplanetary species. KMC-based
processes could develop alongside human activities in the Solar
System. In any case, the idea of fermentation in space is gaining
popularity among scientists from academia, industry, research
institutes, and public interest groups, creating—it seems—the
required momentum. The evolution of space-related regulations,
which may be relaxed as new safety-related knowledge is obtained,
could support this initiative.

In short, we argue that KMC applications beyond Earth should
be investigated: biotechnological processes may result which
could largely benefit human activities, from orbital stations to

planetary settlements. On a less tangible side (but nonetheless
worthy of consideration), we suggest that the acceptance of
microorganisms—such as upgraded KMC—as partners, and of
the principle of co-existence, would greatly benefit the creation of
a healthy biosphere in alien worlds.
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