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Project Scheduling with Generalized Precedence Relations: a

New Method to Analyze Criticalities and Flexibilities

Lucio Bianco ∗ Massimiliano Caramia † Stefano Giordani ‡

Abstract

In this paper, we illustrate a new method to overcome the failures of the theory pro-

posed by Elmaghraby and Kamburowski (1992) and De Reyck (1998) for the analysis

of activity criticalities and flexibilities in non-preemptive project scheduling with gen-

eralized precedence relations under unlimited resources. These failures, discussed in

detail in this paper, call for a new approach to study this problem. We provide new

definitions of criticalities and consequently new tools for their identification within a

more general framework without ambiguities.

Keywords: Project Scheduling; Critical Path; Flexibility Analysis; Generalized Precedence Rela-

tions.

1 Introduction

This paper concerns the method of determining the activity criticalities and flexibilities

in non-preemptive project scheduling with Generalized Precedence Relations (GPRs), in

the presence of minimum and maximum times lags, under unlimited resources.

It is well known that a critical path on a project network is the longest path from

the source (dummy) node to the sink (dummy) node. If the project network comprises

only finish-to-start precedence relations, i.e., the Standard Precedence Relations (SPRs)

assumed in the traditional Critical Path Method (CPM), a critical path is always elemen-

tary, i.e., it visits a node at most once, since the network cannot contain cycles. When a

project network comes with GPRs with minimum and maximum times lags, the network

may contain cycles and then a critical path may not be elementary, that is, traversing a

node more than once and, hence, containing a cycle (see, e.g., De Reyck, 1998, Demeule-

meester and Herroelen, 2002, p. 123).
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The first systematic formalism of GPRs, based on a previous work of Roy (1962),

was introduced by Kerbosch and Shell (1975). Successively, GPRs have been discussed

by Elmaghraby (1977) and in the book by Moder et al. (1983), where the results of

Crandall (1973) and Wiest (1981) are also summarized. In the more general case with

GPRs, differently from project networks with SPRs where an increase of the duration of a

critical activity always results in an increase of the project duration of the same amount,

it may happen that the project duration increases when the duration of a critical activity

is shortened and viceversa. This phenomenon, apparently anomalous, was firstly studied

by Wiest (1981), who proposed a first classification of critical activities in four types of

criticalities (normal, neutral, reverse, perverse). Analog classification appears in Moder

et al. (1983), Moder and Crandall (1985), and Hajdu (1997), where the term bicritical is

adopted in place of perverse.

In another seminal paper, Elmaghraby and Kamburowski (1992) further studied the

anomaly occurring under GPRs also in the presence of maximun time lags, and described

two phenomena: one refers to the reduction (increase) of project duration as a conse-

quence of prolonging (shortening) an activity, and the other one occurs when diminishing

(increasing) the duration of an activity results in a time-infeasibility for the project, since

the length of a cycle becomes positive. To formalize these scenarios they introduced five

distinct criticality types (start-critical, finish-critical, backward-critical, forward-critical,

and bi-critical), different from those introduced by Wiest (1981), and the new concept

of flexibility. All these concepts were introduced on an Event On Nodes (EON) project

network representation and were defined looking at the network topology and considering

networks admitting only elementary critical paths. Later, De Reyck (1998) in his Ph.D.

thesis revisited these concepts, adapting them for Activity On Nodes (AON) project net-

works. De Reyck associated these definitions to durations, start times, and finish times

of the critical activities, and extended their validity also to non-elementary critical paths,

i.e., to critical paths containing also cycles. The same author proposed a method for

recognizing the criticalities and flexibilities of a critical activity, based on the types of its

ingoing and outgoing precedence relations. Since De Reyck’s Ph.D. thesis appears not to

be available in the open literature, the reader may find the above mentioned analysis in

the book by Demeulemeester and Herroelen (2002).

After 1998, many authors have studied project scheduling with GPRs under different

scenarios (e.g., type of time lags, maximum activity durations, imprecision or lack of

information on future events, and so on). Here, we only recall the papers that mainly focus

on the problem of identifying the types of criticalities and flexibilities of critical activities.

Valls and Lino (2001) present a systematic study of the critical nature of the activities.

They show that the classification of Wiest (1981) is not complete and propose an extension

from four to six types of criticalities (adding increasing-normal and decreasing-reverse

types), along with a related characterization valid only for GPRs project network with

minimum time lags. Hajdu (2015) and Hajdu et al. (2016) propose to study the criticalities
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extending the modeling capabilities of the Precedence Diagramming Method (PDM) with

minimum time lags by introducing different types of precedence relations (point-to-point

relations, continuous relations, and non-linear activity (production-time) functions). Nisar

and Halim (2018) start from the criticality definitions given by Wiest (1981) and extend

his classification by introducing further types of criticalities. Surprisingly, they ignore the

previous work by Valls and Lino (2001), who have firstly proposed the same classification.

More recently, Kong and Li (2020) propose a network model where a combination of two

types of GPRs, called hybrid precedence relations and maximum activity duration, are

considered.

However, to the best of our knowledge, the analysis made by De Reyck (1998) is the

only one that considers the most general case of GPRs with minimum and maximum time

lags. It is widely accepted and not revised from 1998 to nowadays.

Since the method proposed by De Reyck (1998), as well as that one by Elmaghraby

and Kamburowski (1992), fails in the general context of GPRs, as shown further on,

in this work we give new definitions of activity criticalities and develop a new general

methodology able to determine the correct activity criticalities and flexibilities in project

scheduling with GPRs with minimum and maximum time lags under unlimited resources.

The remainder of the paper is organized as follows. Section 2 provides some definitions

and notations. In Section 3, by means of some examples, we show potential failures

of the method proposed by De Reyck (1998). In Section 4, after having redefined and

discussed the different types of criticalities, we provide our new method. In Section 5, we

show that its application on the same examples of Section 3 overcomes the failures of the

methods so far utilized. Finally, we close the paper with some conclusions in Section 6.

A supplemental document containing four appendices is also available, where the proofs

of some results and additional examples show the correctness of the proposed method.

Moreover, potential failures of the method proposed by Elmaghraby and Kamburowski

(1992) are also discussed. In addition, it is shown that our criticality characterization also

includes and extends that of Valls and Lino (2001) to the more general case of GPRs with

both minimum and maximum time lags.

2 Definitions and notations

Accordingly to De Reyck (1998) and to Demeulemeester and Herroelen (2002), hereafter

we assume that a project is modeled by means of an AON network N = (V,A; d, δ). Node

set V , with V = V r ∪{1, n}, represents the set V r = {2, . . . , n− 1} of n− 2 real activities,

that are to be performed without preemption, and two additional dummy activities 1 and

n, with duration equal to zero, representing project beginning and completion, respectively.

Vector d represents the set of activity durations di, with i ∈ V r, and δ is the generic time

lag of the precedence relation between a pair of activities. Without loss of generality,

we assume that the real activity durations are positive integers and the time lags are
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integers. Arc set A represents GPRs between pairs of activities. An arc may model a

start-to-start (SS), a start-to-finish (SF), a finish-to-start (FS) and a finish-to-finish (FF)

precedence relation with minimum or maximum time lags. A GPR with minimum time lag

(SSmin
ij (δ), SFmin

ij (δ), FSmin
ij (δ), FFmin

ij (δ)) specifies that activity j can start (finish) only if

its predecessor i has started (finished) at least δ time units before. Analogously, a GPR

with maximum time lag (SSmax
ij (δ), SFmax

ij (δ), FSmax
ij (δ), FFmax

ij (δ)) imposes that activity j

can be started (finished) at most δ time units beyond the start (finish) time of activity i. It

is well known (see, e.g., Demeulemeester and Herroelen, 2002) that a GPR with maximum

time lag is equivalent to a GPR with minimum time lag with opposite direction and

opposite time lag. Hence, we can always model the project activities and their relationships

with a GPRs AON network with only minimum time lags, but the resulting network may

contain cycles. Dummy nodes 1 and n, representing dummy activities 1 and n, respectively,

are added in order to have a project network with exactly one source (i.e., node 1) and one

sink (i.e., node n). Therefore, arc set A includes all arcs SSmin
1i (0) and FSmin

in (0) necessary

to obtain this result.

It is also well known that with the transformations of Bartush et al. (1988) we can

represent the project network in a so called standardized form where only one type of

GPRs is considered. In particular, we consider SSmin
ij (`), with time lags ` = δ, ` = δ − dj ,

` = δ + di, ` = δ + di − dj , in place of the GPRs of type SSmin
ij (δ), SFmin

ij (δ), FSmin
ij (δ),

FFmin
ij (δ), respectively. This standardized network represents the time constraints among

the activity starting events due to the GPRs. Therefore, assuming the project starting at

time zero, i.e., the initial dummy activity earliest start time ES1 = 0, it is well known

that, in the case of unlimited resources, the earliest start time ESi of activity i is equal to

the length of the longest path from source node 1 to node i in the standardized network,

and the (minimum) project duration T is equal to the length of the longest path from

source node 1 to sink node n, i.e., T = ESn. It is also well known that the latest start

time LSi of activity i is equal to the difference between T and the length of the longest

path from node i to sink node n. Finally, the earliest finish time EFi of activity i is equal

to ESi + di, and the latest finish time LFi of activity i is equal to LSi + di. Activities

having equal earliest and latest start (finish) times are critical, and longest paths from

source node 1 to sink node n traverse only critical activities and are called critical paths.

Since the network may contain cycles, critical paths may be non-elementary, that is, they

may contain critical cycles whose lengths are clearly equal to zero.

To assure that dummy activities 1 and n actually represent the project start and end,

respectively, it is assumed that in the standardized network there is at least a path from

node 1 to node i of non-negative length, and there is at least a path from node i to node

n of length at least equal to di, for each real activity i. If these paths do not exist, De

Reyck (1998) suggests to add to the standardized network arc (1, i) of length `1i = 0, i.e.,

precedence relation SSmin
1i (0) between activities 1 and i on the original GPRs network, and

to add arc (i, n) of length `in = di, i.e., precedence relation FSmin
in (0) between activities i
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and n on the original GPRs network, respectively.

3 Potential failures of De Reyck’s method

In this section, we analyze through two project network examples some potential failures of

the method proposed by De Reyck (1998) in determining activity criticalities. Some analog

failures can also be shown on the approach proposed by Elmaghraby and Kamburowski

(1992) and are discussed in Appendix B of the paper supplemental document, where also

additional examples can be found.

For ease of presentation, we firstly recall the critical definitions adopted by De Reyck

(1998) (as reported at page 124 of the book of Demeulemeester and Herroelen, 2002). An

activity is classified:

• critical, if it lays on a critical path of the standardized network;

• start-critical (finish-critical), if it is critical and the project duration increases when

the activity start (finish) time is delayed;

• forward-critical (backward-critical), if it is start-critical (finish-critical) and the project

duration increases when the activity duration is increased (decreased);

• bi-critical, if it is start- and finish-critical and the project duration increases when

the activity duration is either increased or decreased.

In particular, De Reyck identifies the type of criticalities of a critical activity i on the

basis of the types of critical precedence relations preceding and succeeding the activity,

according to the following scheme (see Table 6 at page 124 of the book of Demeulemeester

and Herroelen, 2002), where X is indifferently S or F :

• start-critical (finish-critical), if there is a critical precedence relation of type XSmin
hi

(XFmin
hi ) preceding the activity and a critical precedence relation of type SXmin

ij

(FXmin
ij ) succeeding the activity;

• forward-critical (backward-critical), if there is a critical precedence relation of type

XSmin
hi (XFmin

hi ) preceding the activity and a critical precedence relation of type

FXmin
ij (SXmin

ij ) succeeding the activity;

• bi-critical, if there are critical precedence relations of type XSmin
hi and XFmin

h′i pre-

ceding the activity, and critical precedence relations of type FXmin
ij and SXmin

ij′

succeeding the activity.

As for activity flexibilities, De Reyck (1998) adopts the definitions proposed by El-

maghraby and Kamburowski (1992), that is, an activity is said forward-inflexible (backward-

inflexible) if an increase (decrease) of its duration by 1 increases the project duration by the
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same amount or makes the project time-infeasible (with respect to precedence relations). It

is useful to recall that project time-infeasibility follows from the existence of positive length

cycles on the standardized network, i.e., directed cycles whose total arc length is positive.

An activity is said bi-inflexible if it is both forward- and backward-inflexible; finally, it is

said bi-flexible if it is not forward-inflexible and not backward-inflexible. Consequently, a

forward-critical (backward-critical) activity is forward-inflexible (backward-inflexible), a

bi-critical activity is bi-inflexible, and a start-critical (finish-critical) activity is bi-flexible.

3.1 The case of more than one criticality associated with an activity

Example 1. Let us consider the GPRs project network, with minimum time lags, shown

in Figure 1, where arc attributes represent GPRs and node weights are activity durations.
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Figure 1: The project network with GPRs of Example 1

Figure 2: The standardized network associated with the project network in Figure 1

The standardized network is shown in Figure 2, where arc weights are time lags ` and

node weights are activity durations. On this network, let us consider the critical path

(1 2 3 4 3 5 6) of length 20: this path is non-elementary and contains

the critical cycle (3 4 3) whose length is obviously equal to zero. All the activities

belong to the critical path, and, hence, are critical.

Let us examine first the criticality type of activity 3 following the scheme proposed

by De Reyck (1998). It is easy to verify that according to the critical relations involving

activity 3, this activity should be bi-critical and, therefore, bi-inflexible. Unfortunately,

the flexibility analysis does not confirm this result. In fact, if the activity duration was
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decreased by 1, i.e., it was d3 = 4, the arcs lengths of cycle (3 4 3) would change,

but the cycle length would remain equal to zero and the critical path length would not

change. Therefore, activity 3 is backward-flexible. If, on the contrary, the duration of

activity 3 was increased by 1, i.e., if it was d3 = 6, the lengths of the arcs of that cycle

would change, although the cycle length would remain equal to zero. However, the longest

path from node 1 to node 4 would increase by 1, while the longest path from node 4 to node

6 would decrease by the same amount and would have length 4 < d4 = 5. Consequently,

the finish time of activity 4 should be 21, while the length of the critical path, i.e., the

project completion time, would remain unchanged and equal to 20. Since this cannot

happen, in order to overcome this anomaly, we have to correct the standardized network

by adding arc (4, 6) of length `46 = d4, as shown in Figure 3. In doing so, the length of

the longest path from node 4 to node 6 continues to be (at least) equal to d4. Note that

this correction would imply the correction of the original GPRs project network too, with

the addition of precedence relation FSmin
46 (0) from activity 4 to dummy final activity 6.

The critical path on the standardized network would be (1 2 3 4 6) of length

Figure 3: The standardized network of the project network in Figure 1, with d3 = 6, after

its correction with the addition of arc (4, 6) of length `46 = d4 (in bold the critical path)

21. Therefore, activity 3 (with the original duration d3 = 5) is only forward-inflexible.

Hence, the conclusion is that activity 3 cannot be bi-critical. In addition, it is simple to

verify that also a delay on the starting time of activity 3 implies an increase on the project

duration even if we decrease the activity duration; therefore, activity 3, according to De

Reyck’s definition, should be forward-critical.

3.2 The case of a critical path from a critical activity with length equal

to the activity duration

Let us continue the analysis of Example 1 by examining the criticality type of activity 4,

again following the scheme proposed by De Reyck (1998). The critical relations involving

activity 4 would imply that this activity is start-critical. Also in this case the conclusion

is not true, because activity 4 is not bi-flexible as it should be if it was only start-critical.

In fact, if we decrease by 1 the activity duration and, hence, assume d4 = 4, nothing will
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change on the standardized network and then the critical path will remain the same with

the same length equal to 20. If, on the contrary, we increase by 1 the duration of activity

4 and, hence, consider d4 = 6, the length of the longest path from node 4 to node 6 will be

5 < d4 = 6. Consequently, the finish time of activity 4 should be 21, while the length of

the critical path would remain unchanged and equal to 20. Since this cannot happen, in

order to overcome this contradiction arc (4, 6) of length d4 = 6 must be added to exactly

compute the completion time of the project (see Figure 4). In doing so, the length of the

longest path from node 4 to node 6 continues to be equal to d4, even if the duration of

activity 4 increases. Note that this corresponds to add precedence relation FSmin
46 (0) from

activity 4 to dummy final activity 6. The project completion time would increase since

Figure 4: The standardized network of the project network in Figure 1, with d4 = 6, and

the addition of arc (4, 6) of length `46 = d4 for its correction (in bold the critical path)

the critical path would be (1 2 3 4 6) of length 21. This leads to observe that

activity 4 cannot be only start-critical since it is backward-flexible and forward-inflexible.

Therefore, the length of the critical path increases if both the starting time of activity

4 and/or its duration are increased. Consequently, according to De Reyck’s definition,

activity 4 should be forward-critical.

Finally, according to the analysis of De Reyck, activities 2 and 5 are forward-critical

and finish-critical, respectively, and the flexibility analysis confirms these criticalities.

3.3 The case of a zero length critical path from node 1 to a critical node

Example 2. Let us consider now the network of Figure 5. The corresponding standard-

ized network is shown in Figure 6.

Figure 5: The GPRs project network of Example 2

Clearly, all the activities are critical and the critical path is (1 2 3 4 5 6)

of length 10. The earliest start ES3 of activity 3 is equal to 0, because the length of the
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Figure 6: The standardized network associated with the project network of Figure 5

longest path from node 1 to node 3 is equal to 0. On the basis of De Reyck’s scheme,

activity 3 should be finish-critical, because the ingoing critical precedence of activity 3 is of

type SF and its outgoing critical precedence is of type FS. Consequently, activity 3 should

be bi-flexible. However, this is not true. In fact, if the duration of activity 3 increases by

1, then time lag `23 becomes equal to −1. This would imply that ES3 becomes equal to

−1, that is, less than the project start time (assumed to be equal to 0), but this clearly

cannot occur. To avoid this anomaly and force activity 3 to start not before the beginning

of the project, we have to add arc (1, 3) with length `13 = 0 to the standardized network

(see Figure 7). In doing so, the length of the longest path from node 1 to node 3 continues

to be equal to 0, even if the duration of activity 3 increases. The new arc (1, 3) corre-

sponds to consider the additional precedence relation SSmin
13 (0) from the dummy initial

activity 1 to activity 3 on the project network with GPRs of Figure 5. The consequence is

that we have two critical paths (1 2 3 4 5 6) and (1 3 4 5 6).

According to the first path, activity 3 is finish-critical and according to the second path is

forward-critical, and, hence, forward-inflexible and not bi-flexible. It is easy to verify also

that activity 2 is start-critical and activity 4 is backward-critical. In fact, if we modify the

value of d2 the project duration will not change, and, hence, activity 2 is bi-flexible. If we

reduce by 1 the duration of activity 4, and, hence, assuming d4 = 4, we will get `34 = 5

and an increase of the project duration to 11; on the contrary, if the duration of activity

4 is increased by 1 the critical path length will decrease by the same amount. Therefore,

activity 4 is only backward-inflexible. The conclusion is that, also in this case, the method

proposed by De Reyck fails, with reference to activity 3, and it is necessary to correct the

network to find the actual criticality.

Figure 7: The correction of the standardized network of Figure 6

3.4 List of failures

Examples 1 and 2 of this section, together with other examples discussed in Appendix B of

the paper supplemental document, show that it may be necessary to add further corrections

9

                  



to both standardized and GPRs networks, in addition to those already proposed by De

Reyck (1998). Moreover, Example 1 shows that the method proposed by De Reyck for

analyzing activity criticalities may fail also when the critical paths are not elementary.

In the case when the method fails, e.g., when there are critical cycles involving a critical

activity with many different precedence relations, nothing is said about how to establish

which are the dominating criticalities of that activity.

Summing up, we may notice that:

1. The definitions of forward-critical and backward-critical present ambiguities with

respect to the definitions of start- and finish-critical, respectively (see Section 4.2).

2. Both the standardized network and the original network (with minimum time lags)

may need further appropriate corrections with respect to those suggested by De

Reyck.

3. The rules proposed by De Reyck for the identification of the type of criticality work

correctly when on the network (modified as prescribed in the previous point) there

are only elementary critical paths. When there are non-elementary critical paths,

the proposed rules may fail (see previous examples).

4. When a critical cycle is included in a (non-elementary) critical path, we should

resort to the flexibility analysis in order to identify the correct activity dominating

criticalities (see previous examples).

4 Our proposal

First of all, we start by giving additional corrections to the standardized network, and,

consequently, on the GPRs network with minimum time lag, which may be required as

shown, for example, by the analysis of Examples 1 and 2 of Section 3.

4.1 Additional network corrections

The same corrections reported at the end of Section 2 are also required when the conditions

of the following propositions occur (see Appendix A of the paper supplemental document

for their proofs).

Proposition 4.1 Given a critical activity i such that the longest path in the standardized

network from node 1 to node i is equal to 0, if the ingoing critical precedence relations of

activity i are only of type XFmin
hi then we need to add (critical) precedence relation SSmin

1i (0)

between dummy activity 1 and activity i in order to correctly analyze what happens when

the duration of i increases.
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Proposition 4.2 Given a critical activity i whose duration is equal to the longest path

from node i to the sink node n in the standardized network, if the outgoing critical prece-

dence relations of activity i are only of type SXmin
ij then we need to add (critical) precedence

relation FSmin
in (0) between activity i and dummy activity n in order to correctly analyze

what happens when the duration of i increases.

4.2 Redefinition of criticalities

Before illustrating a new method for analyzing criticalities and flexibilities of the activities,

we redefine, in a quite different way, the activity criticalities, in comparison with those

given by De Reyck (1998), and reported in Demeulemeester and Herroelen (2002), and

those given by Elmaghraby and Kamburowski (1992). Moreover, we propose additional

types of criticalities. In particular, all our definitions are abstract and, therefore, indepen-

dent from the project network representation. As for activity flexibilities, we adopt the

same definitions introduced by Elmaghraby and Kamburowski (1992) and also adopted by

De Reyck (1998).

With GPRs, we have to distinguish among different types of criticality, because, dif-

ferently from the project networks with SPRs, the phenomenon firstly studied by Wiest

(1981) and recalled in Section 1 may occur (see, e.g., activity 4 of Example 2). Moreover,

it may happen that varying the duration of an activity does not imply any increase on

the project duration, while delaying only its start (finish) time does (see, e.g., activity

2 of Example 2). In addition, the presence of cycles may have an effect on the project

time-feasibility, as said in Section 3. We underline that the concept of activity criticality

below defined is strictly related to a possible finite project duration increase. Therefore,

in the following, we characterize the different types of criticality of a real activity, apart

from the project time-infeasibility.

Definition 4.3 An activity is start-critical (finish-critical) if it is critical and the project

duration increases only if we delay the activity start (finish) time.

Apart from the project time-infeasibility, the previous definition implies that, given

a start-critical (finish-critical) activity, if we fix its start (finish) time and increase or

decrease its duration, and, hence, either increase or decrease its finish (start) time, the

project duration does not change. Therefore, the finish (start) time of a start-critical

(finish-critical) activity is not constrained.

Since, by definition, we have in both cases the freedom to increase or decrease the

activity duration without incurring a project duration increase, we conclude that start-

critical activities and finish-critical activities are bi-flexible (apart from the project time-

infeasibility).

Definition 4.4 An activity is forward-critical (backward-critical) if it is critical and the

project duration increases whether we delay its start (finish) time, while maintaining fixed
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its duration, or we increase (decrease) its duration while maintaining fixed its start (finish)

time (apart from the project time-infeasibility).

The consequence is that, in anyone of the above two cases, also the activity finish (start)

time increases, meaning that the forward-criticality (backward-criticality) dominates the

finish-criticality (start-criticality).

In general, given a forward-critical (backward-critical) activity, we have the oppor-

tunity to decrease (increase) its duration without increasing the project duration. Note

that if we decrease (increase) the duration of a forward-critical (backward-critical) activity

we have the chance of delaying the start (finish) time of the activity, without increasing

its finish (start) time, or to finish (start) the activity earlier. In the first case, we have

an increase of the activity start (finish) time without causing an increase of the project

duration; therefore, in general, there is no dominance relation between forward-criticality

and start-criticality (backward-criticality and finish-criticality). Note that this is in con-

trast with the definition of forward-critical given by De Reyck (1998), and reported at

page 124 of the book of Demeulemeester and Herroelen (2002), where a forward-critical

(backward-critical) activity is said to be start-critical (finish-critical) and such that an

increase (decrease) of its duration implies an increase of the project duration.

Moreover, apart from the project time-infeasibility, since, by definition, an increase

(decrease) of the duration of a forward-critical (backward-critical) activity increases the

project duration, a forward-critical (backward-critical) activity is forward-inflexible (backward-

inflexible).

Definition 4.5 An activity is bi-critical if it is both forward-critical and backward-critical.

Therefore, by Definition 4.4 and apart from the project time-infeasibility, both length-

ening and shortening such an activity increases the project duration, meaning that a

bi-critical activity is bi-inflexible. Clearly, also by delaying the start time or the finish

time of such an activity we get an increase of the project duration.

The dominances established on the basis of the previous definitions call for additional

new types of criticalities.

Definition 4.6 An activity is start-&-forward-critical (finish-&-backward-critical) if it

is critical and the project duration increases whether we increase (decrease) the activity

duration or we delay its start (finish) time despite decreasing (increasing) its duration.

Therefore, although we can decrease (increase) the duration of a start-&-forward-

critical (finish-&-backward-critical) activity without lengthening the project (assuming

that the activity is not also backward-critical (forward-critical)), we can accomplish this

only by finishing (starting) the activity earlier and not by delaying its start (finish) time.

Moreover, we cannot delay the finish (start) time of a start-&-forward-critical (finish-&-

backward-critical) activity because the forward-criticality (backward-criticality) dominates
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the finish-criticality (start-criticality). Of course, apart from the project time-infeasibility,

a start-&-forward-critical (finish-&-backward-critical) activity is forward-inflexible (backward-

inflexible) due to the forward-criticality (backward-criticality).

Obviously, if an activity is start-&-forward-critical or forward-critical, and also finish-

&-backward-critical or backward-critical, then it is bi-critical and, hence, bi-inflexible.

Definition 4.7 An activity is start-&-finish-critical if it is critical and the project duration

increases when we delay the activity start time or its finish time, even if the activity

duration changes.

The criticality analysis provided in Section 5 for Example 3 shows that such an activity

may exist. Moreover, in Appendix A of the paper supplemental document, we show that

this activity cannot be bi-flexible because either an increase or a decrease of its duration

will make the project time-infeasible.

Finally, at the end of Appendix A, a comparison with the activity criticality classifi-

cation by Valls and Lino (2001) shows that our criticality definitions include that of these

authors, and allow a more detailed identification of the activity parameters responsible for

the criticality.

4.3 Establishing the criticality and flexibility of a critical activity

The proposed method for identifying the criticality and flexibility of a critical activity i is

based on the analysis of the structure of critical paths and cycles traversing node i.

4.3.1 Critical paths and critical cycles related to a critical activity

On the GPRs project network (with minimum time lags), let us denote with P s
1i =

(1 · · · XS i) and with P f
1i = (1 · · · XF i) two generic possible longest paths from source

node 1 to node i, with intermediate nodes distinct from the path extreme nodes: in the

first path the ingoing arc of node i is of type XS, while it is of type XF in the latter.

Analogously, let P s
in = (i SX · · ·n) and P f

in = (i FX · · ·n) be two generic possible longest

paths from node i to sink node n, with intermediate nodes distinct from the path extreme

nodes, and where the outgoing arcs of node i are of types SX and FX, respectively.

According to the transformations of Bartush et al. (1988), the length of P s
1i is inde-

pendent from duration di of activity i, while the length of P f
1i is a decreasing function of

di that decreases as much as di increases. Likewise, the length of P s
in is independent from

di, while the length of P f
in is an increasing function of di that increases as much as di does.

Moreover, since we are interested in analyzing only the criticality and the flexibility

of activity i, we may assume, without loss of generality, that paths P s
1i, P

s
in, P f

1i, and P f
in

are elementary. In fact, if they contain a cycle, the latter will pass only through nodes

distinct from i and of course the cycle would be of length zero. Therefore, we can always

neglect such a cycle in our analysis.
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By definition, it follows that a real activity i is critical if and only if it lays on a

critical path of the standardized network, that is, there is a longest (i.e., critical) path

P yz
1n;i from node 1 to node n passing through node i, formed by the concatenation of paths

P y
1i and P z

in, i.e., P yz
1n;i = P y

1i

⊕
P z
in, with y, z ∈ {s, f}. For a critical activity i, besides

the elementary critical paths of type P y
1i and P z

in, node i may belong to additional pi zero

length (i.e., critical) cycles Ck
i = (i · · · jk · · · i), with k = 1, . . . , pi. Analogously, without

loss of generality, we may assume that also these cycles are elementary (i.e., no node of the

cycle but the first and last appears twice). Therefore, denoting with Ci the concatenation

of these cycles (with the exception of the cycle already contained in path P yz
1n;i if this is not

elementary), let P̂ yz
1n;i = P y

1i

⊕ Ci
⊕
P z
in be the generic structure of a critical path passing

through node i.

Figure 8: The two possible structures of a critical path P̂ yz
1n;i = P y

1i

⊕ Ci
⊕
P z
in traversing

critical real activity i

14

                  



We have to distinguish two alternative cases, shown in Figure 8:

(a) There is no other non-dummy node h 6= i traversed by both P y
1i and P z

in, and, hence,

critical path P yz
1n;i = P y

1i

⊕
P z
in = (1 · · · i · · ·n) is elementary.

(b) There is at least a common intermediate non-dummy node h 6= i of P y
1i and of P z

in.

Hence, critical path P yz
1n;i = P y

1i

⊕
P z
in = (1 · · ·h · · · i · · ·h · · ·n) is not elementary and

contains the zero length elementary cycle C̃yz
h;i = (h · · · i · · ·h), where, without loss

of generality, h is the first common intermediate node traversed by P y
1i if there were

more than one.

As for case (a), critical path P̂ yz
1n;i is formed by elementary path P yz

1n;i = (1 · · · i · · ·n) and

pi ≥ 0 elementary cycles Ck
i = (i · · · jk · · · i), with k = 1, . . . , pi. As for case (b), critical

path P̂ yz
1n;i is formed by non-elementary path P yz

1n;i = (1 · · ·h · · · i · · ·h · · ·n), containing

exactly one elementary cycle C̃yz
h;i = (h · · · i · · ·h) corresponding, e.g., to C1

i , and pi−1 ≥ 0

elementary cycles Ck
i = (i · · · jk · · · i), with k = 2, . . . , pi.

The following example clarifies the previous formalism and the two different cases.

Example 3. Let us consider the project network with GPRs of Figure 9 with n = 6.
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Figure 9: The project network with GPRs of Example 3

It is easy to verify that all the activities are critical and that the critical network

coincides with the given network which contains some distinct cycles. Let us consider

critical activity 3. We have two critical elementary paths from source node 1 to node 3, i.e.,

paths P f
13(1) = (1 2 SF 3) and P f

13(2) = (1 2 5 4 SF 3). We have two critical

elementary paths from node 3 to sink node 6, i.e., paths P s
36(1) = (3 SS 2 5 4 6)

and P f
36(2) = (3 FS 4 6). Moreover, we have p3 = 3 critical elementary cycles passing

through node 3, i.e., cycles C1
3 = (3 SS 2 SF 3), C2

3 = (3 SS 2 5 4 SF 3), and C3
3 =

(3 FS 4 SF 3).

Therefore, we have four critical paths of type P yz
16;3 = P y

13

⊕
P z
36, i.e., paths P fs

16;3(1) =

(1 [2 SF 3 SS 2] 5 4 6), P ff
16;3(2) = (1 2 SF 3 FS 4 6), P fs

16;3(3) = (1 [2

5 4 SF 3 SS 2] 5 4 6), and P ff
16;3(4) = (1 2 5 [4 SF 3 FS 4] 6).

Path P ff
16;3(2) is elementary, while paths P fs

16;3(1), P fs
16;3(3), and P ff

16;3(4) are not elemen-

tary and contain cycles C̃fs
2;3(1) = (2 SF 3 SS 2), C̃fs

2;3(3) = (2 5 4 SF 3 SS 2), and
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C̃ff
4;3(4) = (4 SF 3 FS 4), respectively; in particular, C̃fs

2;3(1) ≡ C1
3 , C̃fs

2;3(3) ≡ C2
3 , and

C̃ff
4;3(4) ≡ C3

3 .

Finally, we have four critical paths P̂ fs
16;3(1), P̂ ff

16;3(2), P̂ fs
16;3(3), P̂ ff

16;3(4) of type P̂ yz
16;3 =

P y
13

⊕ C3
⊕
P z
36, each one obtained by inserting the concatenation C3 of the critical ele-

mentary cycles Ck
3 , k = 1, 2, 3 (with the exception of the cycle already contained in P yz

16;3

if non-elementary), between P y
13 and P z

36. An analog analysis can be done for the other

(critical) activities.

4.3.2 Identifying criticalities

In Appendix A of the paper supplemental document, we show that for identifying the

criticality of a given critical activity i, we may restrict the analysis to the critical paths

P yz
1n;i only, while the critical elementary cycles Ck

i = (i · · · jk · · · i), with k = 1, . . . , pi, are

responsible for any project time-infeasibility due to a variation of the activity duration.

In addition, the proofs of the following results are provided.

Let us denote with P ∗s1n;i = (1 · · ·h · · · XX i SX · · ·h · · ·n) (P ∗f1n;i = (1 · · ·h · · · XX i FX · · ·
h · · ·n)) a generic critical non-elementary path passing through node i, containing elemen-

tary cycle C̃∗si;h = (h · · · XX i SX · · ·h) (C̃∗fi;h = (h · · · XX i FX · · ·h)).

Proposition 4.8 Activity i is start-critical if it belongs only to critical elementary paths

of type P ss
1n;i = (1 · · · XS i SX · · ·n), or only to critical non-elementary paths of type P ∗s1n;i

containing the elementary cycle of type C̃∗si;h = (h · · · XX i SX · · ·h), or only to paths of

both types.

Proposition 4.9 Activity i is finish-critical if it belongs only to critical elementary paths

of type P ff
1n;i = (1 · · · XF i FX · · ·n), or only to critical non-elementary paths of type P ∗f1n;i

containing the elementary cycle of type C̃∗fi;h = (h · · · XX i FX · · ·h), or only to paths of

both types.

Proposition 4.10 Activity i is forward-critical if it belongs to a critical elementary path

of type P sf
1n;i = (1 · · · XS i FX · · ·n) and does not belong to any critical elementary path of

type P ss
1n;i = (1 · · · XS i SX · · ·n) or of type P fs

1n;i = (1 · · · XF i SX · · ·n), nor to any critical

non-elementary path of type P ∗s1n;i containing the elementary cycle of type C̃∗si;h = (h · · ·
XX i SX · · ·h).

Proposition 4.11 Activity i is backward-critical if it belongs to a critical elementary

path of type P fs
1n;i = (1 · · · XF i SX · · ·n) and does not belong to any critical elementary

path of type P ff
1n;i = (1 · · · XF i FX · · ·n) or of type P sf

1n;i = (1 · · · XS i FX · · ·n), nor to

any critical non-elementary path of type P ∗f1n;i containing the elementary cycle of type

C̃∗fi;h = (h · · · XX i FX · · ·h).
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Proposition 4.12 Activity i is bi-critical if it belongs to a critical elementary path of type

P sf
1n;i = (1 · · · XS i FX · · ·n) and to a critical elementary path of type P fs

1n;i = (1 · · · XF i SX

· · ·n).

Proposition 4.13 Activity i is start-&forward-critical if it belongs to a critical elemen-

tary path of type P sf
1n;i = (1 · · · XS i FX · · ·n) and, in addition, to a critical elementary

path of type P ss
1n;i = (1 · · · XS i SX · · ·n) and/or to a critical non-elementary path of type

P ∗s1n;i containing the elementary cycle of type C̃∗si;h = (h · · · XX i SX · · ·h), but not to any

critical elementary path of type P fs
1n;i = (1 · · · XF i SX · · ·n).

Proposition 4.14 Activity i is finish-&-backward-critical if it belongs to a critical ele-

mentary path of type P fs
1n;i = (1 · · · XF i SX · · ·n) and, in addition, to a critical elementary

path of type P ff
1n;i = (1 · · · XF i FX · · ·n) and/or to a critical non-elementary path of type

P ∗f1n;i containing the elementary cycle of type C̃∗fi;h = (h · · · XX i FX · · ·h), but not to any

critical elementary path of type P sf
1n;i = (1 · · · XS i FX · · ·n).

Proposition 4.15 Activity i is start-&-finish-critical if all the following three conditions

hold:

1. Activity i belongs to a critical elementary path of type P ss
1n;i = (1 · · · XS i SX · · ·n)

and/or to a critical non-elementary path of type P ∗s1n;i containing the elementary

cycle of type C̃∗si;h1
= (h1 · · · XX i SX · · ·h1);

2. Activity i belongs to a critical elementary path of type P ff
1n;i = (1 · · · XF i FX · · ·n)

and/or to a critical non-elementary path of type P ∗f1n;i containing the elementary

cycle of type C̃∗fi;h2
= (h2 · · · XX i FX · · ·h2);

3. Activity i does not belong to any critical elementary path of type P sf
1n;i = (1 · · · XS i FX

· · ·n) or P fs
1n;i = (1 · · · XF i SX · · ·n).

4.3.3 Identifying inflexibilities in terms of project time-infeasibility due to

variations of a critical activity duration

We say that an activity is forward-time-infeasible (backward-time-infeasible) if an increase

(decrease) of its duration causes a project time-infeasibility; moreover, if it is both forward-

time-infeasible and backward-time-infeasible, we say that it is bi-time-infeasible; finally, if

neither an increase nor a decrease of the activity duration cause a project time-infeasibility,

we say that the activity is bi-time-feasible.

Let us consider the GPRs critical sub-network (with minimum time lags), and let us

show how to identify, from this network, a possible project time-infeasibility due to a

variation of the duration of a critical real activity i.

It is clear that the forward-time infeasibility (backward-time infeasibility) for a critical

activity i is related to the existence of a (zero length) critical elementary cycle containing
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node i whose length becomes positive if we increase (decrease) the activity duration.

Therefore, we may restrict the analysis by examining the set of pi ≥ 0 critical elementary

cycles Ck
i = (i YkX · · · jk · · · XZk i), with 1 ≤ k ≤ pi and Yk, Zk ∈ {S, F}.

It is straightforward to show that the length of cycle Ck
i = (i YkX · · · jk · · · XZk i) does

not depend on the duration di of activity i if Yk = Zk ∈ {S, F}, while it is an increasing

(decreasing) function of di if Yk = F and Zk = S (Yk = S and Zk = F ). Hence,

Proposition 4.16 Critical activity i is forward-time-infeasible if it belongs at least to one

critical cycle Ck
i of type (i FX · · · jk · · · XS i).

Proposition 4.17 Critical activity i is backward-time-infeasible if it belongs at least to

one critical cycle Ck
i of type (i SX · · · jk · · · XF i).

Clearly, if activity i is forward-time-infeasible (backward-time-infeasible) then it is

forward-inflexible (backward-inflexible), and if it both forward-time-infeasible and backward-

time-infeasible, and, hence, bi-time-infeasible, then it is bi-inflexible.

4.4 A new method for activity criticality and flexibility analysis

On the basis of what previously discussed, we propose the following approach to identify

activity criticalities and flexibilities:

1. Adopt the AON project network representation with minimum time lags, after hav-

ing converted the precedences with maximum time lags into the corresponding ones

with minimum time lags.

2. Convert the given network into the standardized network using the transformations

of Bartush et al. (1988), with only GPRs of type SSmin
ij (`), and, eventually, the

corrections suggested by De Reyck.

3. Find the project length on the standardized network, along with the earliest and

latest start (finish) times of the activities, which are useful to determine the critical

subnetwork composed by all the critical activities and all the critical arcs (i.e., critical

precedences among critical activities) on the standardized network.

4. Correct the GPRs network (and hence the standardized network), if necessary, with

the addition of new (critical) arcs outgoing from source node 1 and/or ingoing to

sink node n, according to Propositions 4.1 and 4.2.

5. Trace back the critical activities and the critical arcs on the (corrected) GPRs project

network (with minimum time lags) in order to consider only its critical subnetwork.

6. For each critical real activity i,

(a) Determine the criticality type of activity i, according to Propositions 4.8–4.15.
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(b) Determine possible project time-infeasibility of activity i, according to Propo-

sitions 4.16 and 4.17.

7. Analyze the flexibility of non-critical activities in order to detect possible project

time-infeasibility due to duration changing for these activities.

In the following, we describe in details some of the above steps.

4.4.1 Determining the critical subnetwork on the standardized network

As recalled before, finding the subcritical network of the standardized network requires to

determine the earliest start time ESi and the latest start time LSi of each activity i. The

ESi can be computed in O(nm) time, with m being the number of arcs of the standardized

network, with the Bellman-Ford algorithm (see, e.g., Bellman, 1958, Moore, 1959, and

Ford and Fulkerson, 1962) for the single origin-multiple destination longest path problem

(assuming the single origin in node 1). Let T = ESn be the project duration. Analogously,

LSi can be computed in O(nm) time by computing the length λi of the longest path from

node i to node n, with the reverse version of the Bellman-Ford algorithm for the multiple

origin-single destination longest path problem (assuming the single destination in node

n), and by calculating LSi = T − λi. The critical subnetwork is the subnetwork of the

standardized network containing all the (critical) nodes i (i.e., for which LSi = ESi) and

the (critical) arcs (i, j) of the network among critical nodes, such that the arc length

`ij = ESj − ESi.

4.4.2 Determining the criticality type of a critical activity

Given the critical sub-network N̂ = (V̂ , Â) with GPRs (with only minimum time lags),

next we show how to determine the criticality type of a (real) critical activity i, according

to Propositions 4.8–4.15. Even if, on the basis of these propositions, finding the criticalities

of i requires to analyze the structures of the paths of type P yz
1n;i = P y

1i

⊕
P z
in, with y, z ∈

{s, f}, it is not necessary to list all such paths. In fact, as proved in Appendix A of the

paper supplemental document, the criticalities of i depend on precedence type of the last

arc of any elementary path of type P y
1i and the precedence type of the first arc of any

elementary path of P z
in, composing a critical path of type P yz

1n;i = P y
1i

⊕
P z
in, and upon the

latter being elementary or not.

Therefore, the analysis can be done by considering ordered couples [(h, i), (i, j)] of arcs

incident to node i with arcs (h, i) and (i, j) belonging to the set of ingoing arcs Γ−
N̂

(i) and

outgoing arcs Γ+

N̂
(i) of node i, respectively, on the critical sub-network N̂ .

Indeed, we can exclude from the analysis the ordered arc couples with first arc (h, i) ∈
Γ−
N̂

(i) such that there is no elementary path of type P y
1i ending with arc (h, i), and analo-

gously we can exclude the analysis of ordered arc couples with the second arc (i, j) ∈ Γ+

N̂
(i)

such that there is no elementary path of type P z
in starting with arc (i, j). Ingoing arcs
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(h, i) ∈ Γ−
N̂

(i) to be excluded can be easily recognized by checking if there is no elementary

path from node 1 to node h without i as intermediate node (see, e.g., arc (4, 3) in Figure

1, assuming h = 4 and i = 3). The latter can be done by checking the reachability of

node h from node 1 on the subnetwork N̂ − i (obtained by removing node i and all its

ingoing and outgoing arcs from N̂), by performing a reverse visit on this subnetwork from

node h to node 1. Similarly, outgoing arcs (i, j) ∈ Γ+

N̂
(i) to be excluded can be easily

recognized by checking if there is no elementary path from node j to node n without i

as intermediate node (see, e.g., arc (3, 4) in Figure 1, assuming i = 3 and j = 4). The

latter can be done by checking the reachability of node n from node j on the subnetwork

N̂ − i, by performing a forward visit on this subnetwork from node j to node n. In both

cases, these network visits can be done in linear time with respect to the number of arcs

of N̂ − i.
Therefore, given network N̂ , let Γ̃−

N̂
(i) and Γ̃+

N̂
(i) be the subsets of ingoing and outgoing

arcs of node i, respectively, such that for each (h, i) ∈ Γ̃−
N̂

(i) there is an elementary path

from 1 to i ending with arc (h, i), and for each (i, j) ∈ Γ̃+

N̂
(i) there is an elementary path

from i to n starting with arc (i, j).

Table 1 shows the types of ordered couples [(h, i), (i, j)] of ingoing and outgoing arcs of

a given critical activity i, based on the related precedence types and the existence or not

of an elementary critical path P yz
1n;i = (1 · · ·h i j · · ·n) passing through these arcs.

Table 1: Types of ordered couples [(h, i), (i, j)] of ingoing and outgoing arcs of a given

critical activity i.

Type (h, i) ∈ Γ̃−
N̂

(i) (i, j) ∈ Γ̃+

N̂
(i) P yz

1n;i = (1 · · ·h i j · · ·n)

1 (h XS i) (i SX j) whatever

2 (h XF i) (i SX j) all non-elementary paths

3 (h XF i) (i SX j) there exists an elementary path

4 (h XF i) (i FX j) whatever

5 (h XS i) (i FX j) all non-elementary paths

6 (h XS i) (i FX j) there exists an elementary path

In order to distinguish ordered couples [(h, i), (i, j)] of type 2 (5) from those of type 3

(6), we need to check if there exists at least one elementary path P yz
1n;i = (1 · · ·h i j · · ·n)

in the critical subnetwork N̂ . Clearly, this is unnecessary when h ≡ 1 or j ≡ n, because in

this case path P yz
1n;i is always elementary. For the other cases, the complexity of this check

and a method for doing it are shown in Appendix D of the paper supplemental document.

According to Propositions 4.8–4.15, the combinations of types of ordered couples of

ingoing and outgoing arcs of activity i, according to the typology (elementary or not) of

critical paths traversing the couple of arcs, determine the type of criticality of i. Table 2

reports the criticality identification scheme for a generic critical activity i.
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4.4.3 Determining possible project time-infeasibility of a critical activity

Given the critical sub-network N̂ with GPRs (with only minimum time lags), let us show

how to determine possible project time-infeasibility of a (real) critical activity i, according

to Propositions 4.16 and 4.17. Although, on the basis of such propositions, this requires

the analysis of the structure of the critical elementary cycles Ck
i = (i · · · jk · · · i), with

k = 1, . . . pi, it is not necessary to list all such cycles. In fact, according to Proposition 4.16

(Proposition 4.17), we only need to check if there is an elementary cycle (i FX j · · ·h XS i)

(resp., (i SX j · · ·h XF i)) in the critical network N̂ . In particular, this check is required for

each ordered couple [(h XS i), (i FX j)] (resp. [(h XF i), (i SX j)]) of ingoing and outgoing

critical arcs of node i, and it can be done in linear time with respect to the number of arcs

of N̂ , by searching for an elementary path from node j to node h in N̂ with a network

visit.

4.4.4 Analyzing flexibility of non-critical activities

As for determining the flexibility (with respect to project time-infeasibility) of a non-

critical real activity i, we first consider the duration of i equal to di + 1 and then equal to

di−1, and for each one of these two cases we find the longest path from node 1 to i with the

Bellman-Ford algorithm with the positive length cycle halting condition. If the algorithm

halts it means that the network contains a positive length cycle involving activity i which is

therefore forward-time-infeasible and, hence, forward-inflexible (backward-time-infeasible

and, hence, backward-inflexible) if the test has been made assuming the duration of i equal

to di + 1 (di − 1). If this happens in both the two cases, the activity is bi-inflexible.

5 Examples of criticality and flexibility analysis with the

proposed approach

We reconsider here the examples of Section 3 and Section 4.3, adopting the proposed

criticality and flexibility analysis. Additional examples can be found in Appendix C of

the paper supplemental document.

Example 1. Let us consider the project network with GPRs (with minimum time lags)

of Figure 1, where n = 6, and its standardization shown in Figure 2.

The time analysis on the standardized network reveals that we need to correct the

original (and the standardized) network adding precedence FSmin
46 (0), because in the stan-

dardized network the length of the longest path from the node representing critical activity

4 to dummy node 6 has length equal to the activity duration and activity 4 has only out-

going critical precedences of type SX (see Proposition 4.2).

From the time analysis on the corrected standardized network, we find that the critical

subnetwork is the network itself. By tracing back the critical activities and the critical arcs
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on the corrected original GPRs project network, we get that also the critical subnetwork N̂

of this network coincides with the latter, with all the (real) activities being critical. Figure

10 shows the critical subnetwork N̂ , where the number associated to node i represents the

duration di of the activity represented by that node.
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Figure 10: The critical network of Example 1

Node 2 has only one couple of ingoing and outgoing arcs, that is [(1 SS 2), (2 FS 3)]

which is of type 3 because there exists an elementary path of type (1 SS 2 FS 3 · · · 6).

Therefore (see Table 2), activity 2 results to be forward-critical (and, hence, forward-

inflexible). Moreover, it is bi-time-feasible because there is no critical elementary cycle

containing node 2. Hence, activity 2 turns out to be forward-inflexible.

Node 3 has two couples of ingoing and outgoing arcs to be considered, i.e., [(2 FS 3),

(3 FS 4)] and [(2 FS 3), (3 SF 5)]. Note that ingoing arc (4, 3) should not be consid-

ered when looking at couples of ingoing and outgoing arcs of node 3 because there is

no elementary path of type (1 · · · 4 3). Arc couple [(2 FS 3), (3 FS 4)] is of type 6

because there exists an elementary path of type (1 · · · 2 FS 3 FS 4 · · · 6), while arc couple

[(2 FS 3), (3 SF 5)] is of type 1. Therefore, activity 3 results to be start-&-forward-critical

(and, hence, forward-inflexible). Moreover, on the basis of the critical elementary cycle

(3 FS 4 SF 3), it results to be bi-time-feasible. Hence, activity 3 turns out to be forward-

inflexible.

Node 4 has two couples of ingoing and outgoing arcs, i.e., [(3 FS 4), (4 SF 3)] and

[(3 FS 4), (4 FS 6)]. Arc couple [(3 FS 4), (4 SF 3)] is of type 1; arc couple [(3 FS 4),

(4 FS 6)] is of type 6 because there exists an elementary path of type (1 · · · 3 FS 4 FS 6).

Therefore, activity 4 results to be start-&-forward-critical (and, hence, forward-inflexible).

Moreover, on the basis of the critical elementary cycle (4 SF 3 FS 4), it results to be bi-

time-feasible. Hence, activity 4 turns out to be forward-inflexible.

Finally, node 5 has only one couple of ingoing and outgoing arcs, that is [(3 SF 5),

(5 FS 6)] which is of type 4. Therefore, activity 5 results to be finish-critical. Moreover, it

is bi-time-feasible because there is no critical elementary cycle containing node 5. Hence,

activity 5 turns out to be bi-flexible.

To better understand how a start-forward-critical activity works, let us analyze what

happens for activity 4. From the (corrected) standardized network, we have that ES4 = 15
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and then EF4 = 20, which is also equal to the project (minimum) duration T , since

T = ES6 = 20. If we delay by 1 the start time of activity 4 (with respect to its earliest

start time), assuming therefore that it starts at time 16, and decrease its duration to 4,

we have that its finish time remains equal to 20, but the earliest start time of activity 3

becomes equal to 6 and, consequently, the earliest finish time of activity 5 becomes equal

to 21, as well as the project duration. Note that the latter will therefore increase by 1

even if the duration of 4 is decreased by the same amount.

Example 2. Let us consider again the project network of Figure 5, where n = 6.

The time analysis on the standardized network shown in Figure 6 reveals that we need

to correct the original (and the standardized) network adding the GPR SSmin
13 (0), because

in the standardized network the length of the longest path from dummy node 1 to the

node representing critical activity 3 has length equal to 0 and the activity has only ingoing

critical precedences of type XF (see Proposition 4.1).

From the time analysis on the corrected standardized network shown in Figure 7, we

get that the critical subnetwork coincides with the network itself. By tracing back the

critical activities and the critical arcs on the original GPRs project network, we get that

also the critical subnetwork of the original project network coincides with the latter, with

all the (real) activities being critical. Figure 11 shows the critical subnetwork, where the

number associated to node i represents the duration di of the activity represented by that

node.

Figure 11: The critical network of Example 2

Node 2 has only one couple of ingoing and outgoing arcs, i.e., [(1 SS 2), (2 SF 3)],

which is of type 1. Therefore, activity 2 results to be start-critical. Moreover, it is

bi-time-feasible because there is no critical elementary cycle containing node 2. Hence,

activity 2 turns out to be also bi-flexible.

Node 3 has two couples of ingoing and outgoing arcs, i.e., [(1 SS 3), (3 FS 4)] and

[(2 SF 3), (3 FS 4)]. Arc couple [(1 SS 3), (3 FS 4)] is of type 6 because there exists an

elementary path of type (1 SS 3 FS 4 · · · 5), while arc couple [(2 SF 3), (3 FS 4)] is of type

4. Therefore (see Table 2), activity 3 results to be forward-critical (and, hence, forward-

inflexible). Moreover, it is bi-time-feasible because there is no critical elementary cycle

containing node 3. Hence, activity 3 turns out to be also forward-inflexible.

Node 4 has only one couple of ingoing and outgoing arcs, i.e., [(3 FF 4), (4 SS 5)],

which is of type 3. Therefore, activity 4 results to be backward-critical (and, hence,
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backward-inflexible). Moreover, it is bi-time-feasible because there is no critical elementary

cycle containing node 4. Hence, activity 4 turns out to be also backward-inflexible.

Finally, node 5 has only one couple of ingoing and outgoing arcs, i.e., [(4 SS 5), (5 FS 6)],

which is of type 6 because there exists an elementary path of type (1 · · · 4 SS 5 FS 6).

Therefore, activity 5 results to be forward-critical (and, hence, forward-inflexible). More-

over, it is bi-time-feasible because there is no critical elementary cycle containing node 5.

Hence, activity 5 turns out to be also forward-inflexible.

Example 3. Let us consider again the project network of Figure 9, where n = 6.

Figure 12: The standardized network of Example 3

Also in this case, the critical subnetwork is the network itself as revealed by the time

analysis on the standardized network shown in Figure 12, where the number associated to

node i represents the duration di of the corresponding activity.

Referring to the critical subnetwork (see Figure 9), we note that node 2 has two couples

of ingoing and outgoing arcs to be considered, i.e., [(1 SS 2), (2 SF 3)] and [(1 SS 2), (2 FS 5)].

In fact, even though node 2 has two ingoing arcs, arc (3, 2) should not be considered when

looking at couples of ingoing and outgoing arcs of node 2 because there is no elemen-

tary path of type (1 · · · 3 2). Arc couple [(1 SS 2), (2 SF 3)] is of type 1, while arc

couple [(1 SS 2), (2 FS 5)] is of type 6 because there exists an elementary path of type

(1 SS 2 FS 5 · · · 6). Therefore (see Table 2), activity 2 results to be start-&-forward-critical

(and, hence, forward-inflexible). Moreover, on the basis of the two critical elementary

cycles (2 SF 3 SS 2) and (2 FS 5 4 3 SS 2), with the length of the former being

independent from the duration of acitvity 2 and the length of the latter that increases

by lengthening the activity, it results that activity 2 is forward-time-infeasible. Hence,

activity 2 turns out to be also forward-inflexible.

Node 3 has four couples of ingoing and outgoing arcs, i.e., [(2 SF 3), (3 SS 2)], [(2 SF 3),

(3 FS 4)], [(4 SF 3), (3 SS 2)], and [(4 SF 3), (3 FS 4)]; the first couple of arcs is of type

2 since they form a cycle and, hence, there is no critical elementary path traversing them;

the second and fourth ones are of type 4; finally, the third one is of type 2 since there

is no critical elementary path of type (1 · · · 4 SF 3 SS 2 · · · 6). Therefore, activity 3 re-

sults to be start-&-finish-critical. However, on the basis of the critical elementary cycles
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(3 SS 2 SF 3) and (3 SS 2 5 4 SF 3), whose lengths increase over shortening activ-

ity 3, it results to be backward-time-infeasible; on the contrary, the other remaining critical

elementary cycle (3 FS 4 SF 3) does not add further time-infeasibility for activity 3 since

its length does not depend on the activity duration. Hence, activity 3 turns out to be also

backward-inflexible.

Node 4 has two couples of ingoing and outgoing arcs to be considered, i.e., [(3 FS 4),

(4 FS 6)] and [(5 SS 4), (4 FS 6)]. Note that outgoing arc (4, 3) should not be considered

when looking at couples of ingoing and outgoing arcs of node 4 because there is no ele-

mentary path of type (4 3 · · · 6). Both the two arc couples to be considered are of type

6 because there exist an elementary path of type (1 · · · 3 FS 4 FS 6) and an elementary

path of type (1 · · · 5 SS 4 FS 6). Therefore, activity 4 results to be forward-critical (and,

hence, forward-inflexible). Moreover, on the basis of the two critical elementary cycles

(4 SF 3 FS 4) and (4 SF 3 2 5 SS 4) whose lengths do not depend on the duration

of activity 4, it results that the latter is bi-time-feasible. Hence, activity 4 turns out to be

also forward-inflexible.

Finally, node 5 has only one couple of ingoing and outgoing arcs, that is [(2 FS 5), (5 SS 4)]

which is of type 1. Therefore, activity 5 results to be start-critical. Moreover, it is bi-time-

feasible because the unique elementary cycle involving node 5 is (5 SS 4 3 2 FS 5)

and its length that does not depend on the duration of activity 5. Hence, activity 5 turns

out to be also bi-flexible.

6 Conclusions

In this work, we showed that the definitions of activity criticalities and the method pro-

posed by De Reyck (1998) for their identification fail in the general context of project

networks with GPRs. Analog issues and limitations are also present in the method of

Elmaghraby and Kamburowski (1992). To fix these shortcomings, new definitions of the

criticality types and a new representation of the latter on GPRs networks were proposed.

In particular, we provided a new method for analyzing, without ambiguities, activity crit-

icalities and flexibilities, based on the analysis of the critical paths of the AON project

network representation. The correctness of this method has also been shown by means of

some examples.

References
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