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Abstract: Wound healing requires static epithelial cells to gradually assume a mobile phenotype
through a multi-step process termed epithelial-to-mesenchymal transition (EMT). Although it is
inherently transient and reversible, EMT perdures and is abnormally activated when the epithelium is
chronically exposed to pathogens: this event deeply alters the tissue and eventually contributes to the
development of diseases. Among the many of them is uterine cervical squamous cell carcinoma (SCC),
the most frequent malignancy of the female genital system. SCC, whose onset is associated with the
persistent infection of the uterine cervix by high-risk human papillomaviruses (HR-HPVs), often
relapses and/or metastasizes, being resistant to conventional chemo- or radiotherapy. Given that
these fearsome clinical features may stem, at least in part, from the exacerbated and long-lasting EMT
occurring in the HPV-infected cervix; here we have reviewed published studies concerning the impact
that HPV oncoproteins, cellular tumor suppressors, regulators of gene expression, inflammatory
cytokines or growth factors, and the interactions among these effectors have on EMT induction and
cervical carcinogenesis. It is predictable and desirable that a broader comprehension of the role that
EMT inducers play in SCC pathogenesis will provide indications to flourish new strategies directed
against this aggressive tumor.

Keywords: HPV; inflammation; p53; hypoxia; EMT; uterine SIL; cancer stem cells; uterine cervi-
cal carcinoma

1. Introduction

Epithelial cells lining human organs are tightly joined together by means of adherens
junctions, are connected to the extracellular matrix via membrane receptors, are oriented
according to an apical–basal polarity, and have a limited life span [1].

In multilayered epithelia, dead cells are replaced by young ones arising from the
differentiation of stem cells located in the basal layers [1]. This turnover is altered during
the repair of a damaged epithelium when epithelial cells died due to the action of harmful
agents are replaced in part by the differentiation of stem cells, and in part by the prolifera-
tion and migration of epithelial cells that are close to the site of damage [1,2]. Specifically,
cells that have survived the harm proliferate due to the ending of contact inhibition and,
at the same time, migrate to the site of damage [1,2]. For this to happen, epithelial cells
change their phenotype from static to mobile through the EMT process [1,3]. The latter
entails sequential events leading epithelial cells to gradually assume a mesenchymal phe-
notype [1,3]. This being so, in tissues undergoing development, remodeling, or repair, cells
that are in diverse states of differentiation, intermediate between the fully epithelial and
the fully mesenchymal phenotype, can be simultaneously present [4,5].
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The repair process of an epithelium results from an initial inflammatory phase, a midst
proliferative phase, and a final, tissue remodeling phase [2,6]. Ultimately, EMT is triggered
by inflammatory mediators and sustained by growth, chemotactic, or differentiation fac-
tors [1,3]. In epithelial cells, most of these molecules spark signaling pathways which, in
turn, activate transcription factors including zinc finger E-box-binding homeobox (Zeb)
1 or 2, basic helix-loop-helix twist homolog (Twist) 1 or 2, and zinc finger SNAI 1 (Snail) or
2 (Slug) proteins [7–11].

The above-mentioned transcriptional regulators act together with noncoding RNAs
and chromatin or histone modifiers at promoting the expression of mesenchymal markers
while repressing that of the epithelial ones [12–16]. Consequently, epithelial cells which
have undergone EMT display a reduced expression of epithelial adherens junction compo-
nents, such as the epithelial (E)-cadherin, that are replaced with mesenchymal adhesion
molecules, like neuronal (N)-cadherin [3]. Other changes in intercellular adhesiveness
involve the upregulation of claudin-1 [17], a tight junction molecule that mediates epithelial
cell invasion and migration [18]. Moreover, molecules of the epithelial cytoskeleton, such
as the cytokeratins, are replaced by components of the mesenchymal cytoskeleton (e.g.,
vimentin): accordingly, the shape of epithelial cells is converted from cobblestone-like
(typical of static epithelial cells) to spindle-like (characteristic of the highly mobile mes-
enchymal cells) [3,19]. In the meantime, trans-differentiated epithelial cells synthesize
enzymes actively digesting the interstitial or pericellular matrices [20].

Variations in the expression of intercellular adhesion or cytoskeletal molecules, as well
as the proteolytic degradation of the matrix, cause epithelial cells to separate from each
other, lose their apical–basal polarity, and acquire the migratory capabilities that render
possible the repair of the damaged epithelium [3].

When the tissue is repaired, cells stop proliferating and moving, and their phenotype
is reconverted from mesenchymal to epithelial, through a process termed mesenchymal-
to-epithelial transition (MET): the latter involves molecular changes such as N-cadherin
or vimentin replacement with E-cadherin and the keratins, respectively [21]. MET is
induced by transcription factors (e.g., ELF3/5, GRHL2, and OVOL1/2) or noncoding
regulatory RNAs which counteract the activity of the EMT-promoting transcriptional
regulators [22–32].

Thus, the EMT that accompanies tissue repair is a transient process, which is very
similar to the EMT that occurs during embryogenesis or body growth [3,21]. Precisely
because they are transitory and reversible, these types of EMT are physiological [3,21].

However, when the epithelium is subjected to the prolonged action of detrimental
agents, EMT persists, leading to severe tissue alterations which, in turn, may form the basis
for the development of various pathologies [3,5,6,21].

In particular, EMT participates in the onset, progression, and metastatic spread of
carcinomas. This is because EMT: (i) renders epithelial cells susceptible to malignant
transformation [33,34]; (ii) facilitates the detachment of transformed epithelial cells from the
primary tumor [5,35,36]; (iii) promotes epithelial cell invasion of the peri-tumor matrix and
the basement membrane [36–45]; (iv) favors the locomotion of transformed epithelial cells
and their spreading throughout the body [21,46–49]; (v) increases the survival of carcinoma
cells that have detached from the primary tumor and have reached the circulatory bed
or the new site of metastases [50–52]; (vi) reprograms the metabolism of carcinoma cells,
adapting it to the changed characteristics of the new microenvironment [53–56].

Among EMT-linked epithelial malignancies is SCC of the uterine cervix, which is the
most frequent cancer of the female genital system [57]. Although preventative screenings
have significantly decreased cervical SCC-related deaths [58], this malignancy is still a
major cause of mortality throughout the world because of its high rate of recurrence and/or
metastasization [57]. It is now widely accepted that the aggressive clinical behavior of SCC
is triggered by the abnormal and prolonged EMT occurring in its lesions [57].
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In view of these findings, the present review deals with the mechanisms by which EMT
is induced in uterine cervical SCC, favoring the clinical progression and metastasization of
this tumor.

2. The E5, E6, and E7 Proteins of HR-HPVs Trigger EMT in Cervical Epithelial Cells

The cervix is the lower end of the uterus and consists of two different areas: the endo-
cervix, which continues with the body of the uterus, and the ectocervix which projects into
the vaginal cavity [59]. While the endocervix is lined with a monostratified cylindrical ep-
ithelium, the ectocervix is covered by a multilayered non-keratinized squamous epithelium
that is continuously renewed via the migration of immature cells of the basal layers towards
the superficial layers, where cells differentiate until they undergo desquamation [60–62].

During puberty, the cylindrical epithelium that covers the area of the endocervix
next to the ectocervix is replaced by a multilayered squamous epithelium: this area,
which is termed the “transformation zone”, is the one in which SCC develops most fre-
quently [58,60–62].

The onset of SCC is for almost all cases associated with infection with DNA viruses
belonging to the HPV family, with HPV16 being the most prevalent HR-HPV type [62–64].

Once sexually transmitted, HR-HPVs reach the cells of the basal layer of the ectocer-
vical epithelium: there the viruses actively replicate, this implying the expression of the
viral genome and the synthesis of its products, the E5, E6, and E7 transforming proteins
included [62–69].

In the epithelial cells of the uterine cervix basal layer, E5 increases the protein levels
of the receptor for the highly mitogenic epidermal growth factor (EGF) via a block of its
degradation that normally follows its stimulation by EGF [68,69]. In addition, E5 enhances
the mitogenic activity of endothelin-1 and downregulates the expression of the cyclin-
dependent protein kinase inhibitors p21WAF/CIP1 and p27KIP1, thus promoting cell cycle
progression [69]. Furthermore, E5 hampers the adhesive interactions among epithelial
cells mediated by connexin 43: this reduces the contact inhibition, further contributing
to the proliferation of epithelial cells [68]. At the same time, E5 inhibits epithelial cell
differentiation by downregulating the expression of the fibroblast growth factor receptor
(FGFR)2b [68–70]. Because of all these activities, E5 favors the proliferation of immature
basal cells and, at the same time, hampers their differentiation (Table 1) [68–70].

Table 1. The HR-HPV-E5 protein: activities and biological effects with a role in cervical carcinogenesis.

E5 Activity Effect on HPV-Infected EC

Inhibition of EGFR degradation, enhancement of ET-1 growth effect, p21 and p27
downregulation, cx43 counteraction Proliferation

Downregulation of the expression of epithelial FGFR2b Lack of differentiation
Reduction in CD1d and MHC levels on the plasma membrane Impaired clearance by immune cells

Fas downregulation and Bax degradation Survival
Induction of the expression of mesenchymal FGFR2c, activation of AKT and MAPK EMT and tumorigenic behavior

The findings summarized herein are from references [68–70]. Abbreviations: AKT:
protein kinase B; Bax: B-cell lymphoma 2-associated X protein; CD: cluster of differentiation;
cx: connexin; EC: epithelial cells; EGFR: epidermal growth factor receptor; EMT: epithelial-
to-mesenchymal transition; ET: endothelin; Fas: tumor necrosis factor receptor superfamily
member 6; FGFR: fibroblast growth factor receptor; HPV: human papillomavirus; MAPK:
mitogen-activated protein kinase; MHC: major histocompatibility complex.

For its part, the HPV-E6 protein drives the degradation of the p53 oncosuppressor
cellular protein via the ubiquitin ligase-cellular proteasome system (Figure 1) [51,65]. This
event is followed by the upregulation of p53-repressed factors, such as the Bcl-2 protein
and the telomerase enzyme (Figure 1), leading to an alteration in the kinetic of cervical
epithelial cell renewal [50,51,66].
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Figure 1. The E6 and E7 proteins of high-risk HPVs exert activities that make them capable of directly converting
epithelial cells into mesenchymal, stem-like cells. Arrows symbolize directions of connections. Abbreviations: AKT:
protein kinase B; CS: cellular stemness; EC: epithelial cells; EGF: epidermal growth factor; EMT: epithelial-to-mesenchymal
transition; HPV: human papillomavirus; HDM2: human double minute 2; hTERT: human telomerase reverse transcriptase;
MAPK: mitogen-activated protein kinase; miR: microRNA; MMP: matrix metalloproteinase; pRb: retinoblastoma protein;
TD: trans-differentiated; TF: transcription factor; TGF: transforming growth factor.

Simultaneously with the effects promoted by E5 and E6, the HPV-E7 protein binds
and inactivates the retinoblastoma tumor suppressor cellular protein (pRb) (Figure 1),
thus synergizing with E5 and E6 in impeding infected cells to exit the cell cycle and
differentiate [66].

It is noteworthy that, while proliferating, HPV-infected basal epithelial cells migrate
towards the superficial layers of the cervical epithelium [62]. In the majority of cases, these
HPV-promoted phenomena are limited to causing a thickening of uterine ectocervical
epithelium or, at most, benign flat warts [62]. In a small percentage of cases, however,
the abnormal growth of immature basal cells and their migration towards the superficial
layers of the cervical epithelium lead to the development of hyperplastic and/or dysplastic
lesions termed squamous intraepithelial lesions (SILs) [62,71,72].

Two types of SILs are known: low-grade SIL (L-SIL) and high-grade SIL (H-SIL)
reference [61,71,72].

L-SIL, also defined as grade 1 cervical intraepithelial neoplasia, consists of proliferating
and keratinized immature basal cells whose nuclei are surrounded by vacuoles: these cells
represent the manifestation of a productive HPV infection and can constitute up to 1/3 of
the cervical epithelium [71,72]. L-SIL generally undergoes spontaneous involution until it
disappears, progressing into H-SIL only in 20–30% of cases [71–73].

H-SIL encompasses grade 2 and 3 cervical intraepithelial neoplasia. The former
is characterized by hyper-keratinized epithelial cells that colonize 2/3 of cervical basal
layers [71,72]; whereas grade 3 cervical intraepithelial neoplasia represents the early stages
of HPV-induced carcinogenesis, and it is made up of highly dysplastic cells that undergo
atypical mitosis and occupy the 2/3 of the entire epithelium, including the superficial
layers [71,72].
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When its DNA does not integrate into the genome of the host cell, HPV is generally
neutralized by the immune system: under this circumstance, the abnormal proliferation
of basal cells ceases, the warts and SILs regress and the cervical epithelium returns to
normal [62].

However, the E5, E6, and E7 oncoproteins actively counter host immune response
directed against the HR-HPVs. Specifically, E5 reduces the levels of the CD1d receptor on
the plasma membrane of HPV-infected epithelial cells, thereby impairing their recognition
by natural killer cells (Table 1) [69]. In addition, E5 can retain the major histocompatibility
complex/human leukocyte (MHC/HLA) class I antigens in the endoplasmic reticulum:
as a consequence, E5-expressing epithelial cells display low MHC/HLA-I antigen levels
on their surface (Table 1), and this jeopardizes their disruption by cytotoxic T cells [68,69].
In addition, E5 further hinders the clearance of HR-HPV-infected cervical epithelial cells
by downregulating the expression of MHC class II antigens induced by the inflammatory
mediator interferon (IFN)γ on the surface of these cells [68,69]. For their part, the E6 and
E7 proteins of the HR-HPVs halt IFN capability of reverting the inhibitory effect that E5 has
on MHC/HLA-I [68,69]. Moreover, E5 prolongs the survival of HR-HPV-infected epithelial
cells by downregulating the expression of the cell death Fas receptors and by promoting
the degradation of the proapoptotic Bax protein (Table 1) [68,69]. The inhibition of the
anti-HPV immune response and, in general, the reduction in the apoptosis of cervical cells
infected with these viruses, extends the duration and the intensity of HR-HPV infection,
thus increasing the likelihood of cellular transformation. In fact, when E5, E6, and E7
succeed at hindering the immune response and HR-HPV load is high, the viral DNA
integrates into the genome of host cells [74–77]: in such an eventuality the HPV-E5 gene is
lost, while the HPV-E6 and E7 proteins are overexpressed and their carcinogenic effects
are intensified [66–69,77]. As a consequence, the entire cervical epithelium is replaced
by poorly differentiated cells displaying abnormal nuclei and atypical mitoses [71,72].
In 20–50% of H-SIL cases, these cells may degrade the epithelial basement membrane
via the synthesis of proteolytic enzymes, thus initiating the development of an invasive
SCC [73,78].

Of importance, results from clinical studies indicate that, as compared to normal
cervical epithelium, the expression of the EMT-promoting Zeb 1, Twist 1 or 2, and Snail
transcription factors is progressively increased during the onset of uterine cervical SIL and
its progression to SCC [79–86]. Consequently, the level of both claudin-1 and vimentin
increases, while that of E-cadherin is reduced [17,87]. These phenomena parallel L-SIL
progression to H-SIL and finally to SCC, and are predictive of SCC metastasis to lymph
nodes [17,87].

As for physiological EMT, that also accompanies SCC onset or progression occurs
gradually, explaining why cells with intermediate phenotypes between the fully epithelial
and the decidedly mesenchymal ones can be found in the squamous lesions of the uterine
cervix [88–97]. Such a variety of phenotypes could depend on the multitude of EMT
promoters that may be present in the cervix of HPV-infected women, and on the temporal
sequence according to which cervical epithelial cells are exposed to these factors.

In this context, it has to be highlighted that, while downregulating the epithelial
FGFR2b, HPV-E5 drives the expression of the mesenchymal FGFR2c variant, whose signal-
ing leads to EMT, cellular invasiveness, and tumorigenic behavior (Table 1) [70].

Still in this regard, in vitro studies performed with SCC cell lines have shown that
the E6 and E7 proteins of HR-HPVs can directly trigger EMT via the induction of Twist2,
Zeb, Slug, or Snail expression and nuclear translocation [83,98–100]. This is because
both the E6 and E7 proteins of HR-HPVs can turn on the mitogen-activated protein ki-
nases (MAPK)/extracellular-regulated kinases (ERK) and/or the phosphoinositide 3 ki-
nase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways
(Figure 1) [101–104]. Triggering of these signaling pathways actuate the expression of Snail,
Slug, Twist, and Zeb, as well as other EMT-promoting transcription factors (Figure 1),
including STAT3 and nuclear factor-κB (NF-κB) [7–11].
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On its part, also E5 can turn on both PI3K/AKT and MAPK/ERK (Table 1), either
directly or via EGFR activation [68,69]: this explains why in cervical L-SILs the expression
of HPV-E5 parallels that of the Snail, Slug or Zeb transcription factors [70].

Moreover, E5, E6, and E7 enhance the activity, and/or upregulate the expression,
of EMT promoters such as EGF and transforming growth factor (TGF)-β1 (Table 1 and
Figure 1) [68,69,100,105].

Undoubtedly, however, the induction of EMT in HPV-infected cervical epithelial
cells strongly depends on E6’s capability of driving p53 degradation [51]. In fact, this
event causes p53 to no longer activate the transcription of microRNAs (miRs) that oth-
erwise would have blocked Zeb, Slug, or Twist expression (Figure 1), thereby hindering
EMT [34,106–109].

miR-34 and miR-203, together with the miR-200 family members, are among the
p53-transcribed miRs which are reduced in HPV-infected epithelial cells: downregulation
of these miRs follows E6-promoted p53 degradation, and it is paralleled by an increase in
Snail or Zeb levels, EMT and cell invasion (Figure 1) [34,51,107]. Since the p53-transcribed
miRs repress not only the phenotypic plasticity, but also the survival, growth, invasion, and
migration of SCC cells, a reduction in their expression influences not only the phenotype
of SCC cells but also the clinical course of SCC [106,110–113]. For instance, miR-34 levels
are significantly lower in L-SIL than in normal cervical epithelium, even lower in H-SIL,
and extremely low in invasive SCC [51]. Worthy of interest is the fact that given the pro-
apoptosis effect and growth suppressive activities of miR-34, its downregulation in cervical
SIL or SCC correlates with the increased survival and replicative capacity of HPV-infected
cervical epithelial cells (Figure 1) [51].

These phenomena are amplified in cells where E6-induced p53 loss is accompanied by
the functional impairment of pRB caused by the HPV-E7 oncoprotein. In fact, the simulta-
neous inactivation of p53 and pRB strongly upregulates Snail, Slug, and Zeb1 expression,
and readily converts epithelial cells from static to motile and invasive (Figure 1) [114,115].

On the other hand, when overexpressed and/or hyperactivated, Snail, Slug, and Zeb1
can directly counteract p53 and pRb activity, further downregulating tumor suppressive
miRs, and rendering epithelial cells susceptible to malignant transformation [33,34]. In
agreement with these findings, the concurrent inactivation of p53 and pRB has been shown
to give rise to mesenchymal-like tumors in animal models [116].

Taken together, all these findings indicate that the E5, E6, and E7 oncoproteins of
the HR-HPVs cooperate in inducing the proliferation and trans-differentiation of cervical
epithelial cells. However, it has to be highlighted that while in L-SIL lesions the DNA of HR-
HPVs is found in the epithelial cytosol, most of HSILs and the very vast majority of SCCs
are associated with viral DNA integration into the host cell genome [68–70]. In agreement
with the fact that this event causes the loss of the E5 gene [68,69,77], the latter is expressed
in cervical L-SILs [70] but not in cervical carcinomas [68]: this underlies the established
belief that E5 plays a role mostly in the early stages of cervical carcinogenesis [63,66–69,77].

3. Inflammation Cooperates with the E6 and E7 Proteins of HR-HPVs at Promoting
EMT in Normal or Neoplastic Uterine Cervical Epithelial Cells

As with many other types of dysplastic or neoplastic lesions [117], the development
of uterine cervical SILs and their progression to SCC are respectively preceded and accom-
panied by an inflammatory reaction [118–121]. The latter often follows the infection of the
uterine cervix with HPV (Figure 2) as well as other microbial agents, and it accompanies
the immune response directed against these pathogens and/or the reparation of the tissue
damage caused by them [122,123].
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Inflammation of the uterine cervix involves its infiltration by activated leukocytes
releasing a variety of cytokines among which tumor necrosis factor (TNF)α, interleukin
(IL)-1, or IL-6 are detected in most uterine SILs or SCCs [120,124–127]. Of interest, as with
activated leukocytes, SCC cells also constitutively produce IL-1, IL-6, and TNFα [128–130],
thereby contributing to an increase in the intratumoral concentration of these cytokines.
In this context, it is significant that TNFα promotes the gene expression of HPV-E6 and
HPV-E7, and that the latter protein upregulates TNFα expression in a reciprocal fashion
(Figure 2) [131,132].

Noteworthy, IL-1, IL-6, or TNF tissue levels correlate positively with the stage of
progression of cervical disease, from healthy epithelium to L-SIL, and from this to H-SIL
and SCC [118–122,124,126,127,133].

At variance with IL-1, IL-6, or TNF, the concentrations of inflammatory IFNγ decrease
in uterine cervical SILs or SCC, as compared to normal cervical epithelium [134–136]. It
is worthy of note that SCC regresses in patients treated with IFNγ [137]. Despite this
clinical evidence, however, IFNγ is known to synergize with IL-1 and TNF at promoting
EMT and cellular invasion [138,139]. In fact, exposure of either normal or tumor epithe-
lial cells to IL-1, TNFα, or IFNγ upregulates the expression of the EGF receptor (EGFR)
(Figure 2) [140–146]. Specifically concerning cervical epithelial cells, when EGF is released
by tissue-infiltrating inflammatory cells [147], it binds to EGFR driving glycogen synthase
kinase 3β inactivation, and the consequent upregulation and nuclear accumulation of
EMT-promoting transcription factors (Figure 2) [148,149].
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As for inflammatory cytokines, the expression of EGFR increases from L-SIL to H-SIL
and from the latter to SCC, as compared with the healthy cervical epithelium [148,150,151].
This phenomenon coincides with the fact that, while in healthy cervical epithelium EGFR
is expressed almost exclusively in the basal layer, in SIL and especially in SCC the EGFR
is present in all layers, these being infiltrated with migrating and proliferating basal
cells [62,71,72]. In this regard, it has to be highlighted that, besides directly upregulat-
ing EGFR, the inflammatory IL-1, IL-6, TNFα, or IFNγ promotes epithelial cell migra-
tion [152–155]. Taken together, these results describe one of the many cases in which
inflammation favors cancer onset or progression, rather than counteracting them [117].

Still about this, it is noteworthy that in addition to EGFR, the TNFα, IL-1, and/or
IFNγ upregulate also the expression of TGF-β1 and its type I and II receptors (Figure 2) ref-
erence [139,156–159]. In this regard, one should consider that TGF-β1 is arguably the most
powerful inducer of EMT in both normal and transformed epithelial cells [3,13,148,160–166].
In particular, following its release by inflammatory leukocytes, TGF-β1 binds to, and phos-
phorylates, the TGF-β receptor II expressed on the surface of either normal or tumor
epithelial cells [166,167]. Upon its activation, the TGF-β receptor II phosphorylates the
TGF-β receptor I, this leading to the aggregation of the Smad 2, 3, and 4 cytoplasmic
proteins into a trimeric complex which enters the nucleus, thereby promoting Snail, Zeb1,
Zeb2, or Twist gene expression (Figure 2) [166,167].

Similar to what happens for inflammatory cytokines and EGFR, an increase in TGF-
β1 expression in the uterine cervix has been shown to accompany L-SIL progression to
H-SIL [168,169]. Some authors have reported that the upregulation of TGF-β1 is transient
since its levels in the lesions are reduced when H-SIL evolves into SCC [168,169]. In
contrast, other studies have found that TGF-β1 protein levels also augment during SIL
progression to SCC and that this parallels the upregulation of HPV-E7 [170] which, as
specified already, can promote TGF-β1 expression [105].

It is worthy of the greatest interest that, HPV-E5, E6, and E7, as well as IL-1, IL-6,
TNFα, IFNγ, EGF, and TGF-β1, are capable of triggering the MAPK/ERK and/or the
PI3K/AKT/mTOR pathways, leading to the activation of EMT-promoting transcription
factors (Figure 2) [7,9,11,14,68,69,123,146,161,171–184].

Therefore, the aberrant activation of the PI3K/AKT/mTOR and/or MAPK/ERK
pathways observed in uterine SIL or SCC [185,186] is most likely due to the concurrent
activities of inflammatory mediators, growth factors, and HR-HPV oncoproteins.

The strong activation of AKT and MAPK, and the cross-talks between these signaling
pathways, rapidly induce the EMT pro-invasive phenotype in cervical epithelial cells,
thereby promoting SIL and its progression to invasive SCC [9,17,79–85,87,185–187]. In
addition, activated AKT and MAPK effectively sustain the survival and proliferation of
the epithelial–mesenchymal hybrids (Figure 2) [188,189]. These phenomena are magnified
when HPV-E6 nullifies p53 ability to arrest the growth or promote the death of cells whose
genomic integrity has been compromised by carcinogens, HR-HPVs included: in such an
eventuality, epithelial–mesenchymal hybrids with damaged DNA survive and proliferate
uncontrollably [107,109,190,191].

4. Cyclic Hypoxia Exacerbates EMT and Favors the Appearance of Stem-Like Cells in
Cervical Squamous Lesions

During tumor progression, the proliferating cancer cells at the beginning infiltrate the
tissue area where they developed, and then move towards its periphery, hence increasing
the size of the neoplastic mass: at this point, local vessels cannot satisfy the strong demand
that the growing tumor has for oxygen and nutrients [192,193]. As a consequence, an
acidified and hypoxic microenvironment is produced leading to the activation of the
hypoxia-inducible factor (HIF)-1 (Figure 3) [192,193].
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HIF-1 is a transcription factor consisting of a constitutively expressed subunit HIF-1β
and an oxygen-regulated subunit HIF-1α [193]. Under normal oxygen tension (normoxia),
post-translational modifications of the HIF-1α subunit trigger its degradation via the
ubiquitin–proteasome pathway [193]. In hypoxia, HIF-1α is stabilized and interacts with
transcriptional coactivators to promote the expression of target genes such as that coding for
vascular endothelial growth factor (VEGF)-A: the latter, in turn, stimulates angiogenesis,
that is the formation of new blood vessels directed at nourishing the growing tumor
(Figure 3) [182,190,192,193].

In the proliferating lesions of the uterine cervix, the expression of HIF is highest in
areas that are distant from the pre-existing vessels and close to necrotic zones [194]. Of
interest, hypoxic tumor areas are often infiltrated by inflammatory macrophages secreting
TNFα, IL-1, and IL-6 which, as cited earlier, are effective inducers of EMT [182].

Between HIF-1 and inflammatory mediators, reciprocal interactions occur, some of
which are started or mediated by AKT signaling [195,196]. In particular, HIF-1 directly
activates the expression of IL-1, IL-6, or TNF (Figure 3) [196–198], as well as that of chemo-
tactic factors recruiting inflammatory cytokine-releasing macrophages [199]. On the other
hand, TNFα or IL-6 upregulates HIF-1α gene expression [200,201], while IL-1β increases
HIF-1α protein levels by acting post-transcriptionally (Figure 3) [195]. In the HPV-infected
cervix, HIF-1α is also stabilized by the E6 and E7 proteins, which block the degradation of
HIF-1α protein by the cellular proteasome (Figure 3) [101–104,202–204]. This effect, which
again is mediated by E6 or E7 capability of activating the ERK1/2 and PI3K/AKT signaling
pathways, leads to an increase in VEGF-mediated tumor angiogenesis (Figure 3), this being
particularly evident during H-SIL evolution into invasive SCC [205–207]. Lately, the newly
formed vessels will provide the tumor with additional metastatic routes [190,192,193].
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However, tumor-associated new vessels are highly dysfunctional and, as such, they
are not capable of satisfying in full or constantly the great oxygen request by the growing
neoplasm [190,192]. As a consequence, phases of hypoxia and normoxia are interspersed in
the tumor tissues [190]. During the hypoxic phase, HIF-1 drives EMT in carcinoma cells by
activating Snail, Twist, or Zeb expression (Figure 3), either directly or by recruiting the NF-
kB transcription factor and/or the TGFβ/Smad signaling pathways [182,190]. When the
oxygen level in the tumor tissue returns to normal, HIF is inactivated, and EMT gradually
and/or partially converts into MET via ELF3/5, GRHL2, and OVOL1/2 transcriptional
activity [190]. This condition, which is termed “cyclic hypoxia”, frequently occurs in
SCC tissues [208]: there, the continuous interchange of the epithelial and mesenchymal
phenotypes favors the appearance in the lesions, and the persistence therein, of poorly
differentiated cells, which resemble stem cells [209,210].

Here it has to be highlighted that in post-natal life stem cells normally reside in
specifically dedicated body areas, the basal layer of the multilayered epithelia included:
there, stem cells continuously differentiate into mature cells, and self-renew in order to
keep their number constant [107,191]. In particular, during physiologic tissue growth or
renewal, stem cells replicate each giving rise to two cells of which one remains stem and
one differentiates: such a peculiar replication is defined as “asymmetric division”, and it
also occurs in the repair of lesions of limited extension [107,191]. In contrast, when the
tissue injury is extensive, resident stem cells initially proliferate, each of them eventually
giving rise to two stem cells (symmetric division), and so on until some of the numerous
stem cells that have been produced differentiate into two mature cells [191].

The balance between pro-differentiation and antidifferentiation stimuli that a stem
cell receives from the microenvironment is modulated by a variety of transcription fac-
tors. Among them, HIF-1 is very effective as it promptly stimulates the Oct4 and Sox2
transcription factors at inducing the stem cell phenotype (Figure 3) [107]; at the same time,
HIF-1 favors stem cell survival by promoting lactate production via glycolysis (Figure 3), a
metabolic program which is exacerbated in both stem and cancer cells, rendering them less
dependent on oxygen supply than non-transformed, well-differentiated cells [54,211].

In addition to HIF-1 activation promoted by local hypoxia, the expression of stemness
markers in cervical squamous lesions could result from the degradation of p53 driven by
the E6 protein of HR-HPVs [51]. This is because functional p53 represses the expression of
stem cell factors including Oct4, KLF4, LIN28A, Sox2, and c-myc by acting on them directly
or through the activity of miRs, such as miR-34a and miR-145 (Figure 1) [34,191,212,213].
Furthermore, inhibitory interactions exist between p53 and other stemness-related genes
such as STAT3 and Piwi-l [214,215].

Additionally, the inflammatory mediators or growth factors with a role in cervical car-
cinogenesis may contribute to the induction of stemness by activating PI3K/AKT/mTOR
or MAPK-ERK and, consequently, Zeb, Snail, and Twist transcriptional activity, which
includes the expression of stemness markers (Figures 1–3) [34,107,109,191]. In addition, ac-
tivated AKT or MAPK upregulates the human/murine double minute (H/MDM) 2 protein
(Figure 1) which, by hindering p53 transactivation activity, induces stemness and/or causes
stem cells to exit quiescence and progress through the cell cycle, thereby triggering stem
cell expansion [107]. However, H/MDM2 is also capable of driving Slug degradation [109].
Therefore, because of this dual effect, H/MDM2 is likely to have an important role in the
modulation of epithelial cell plasticity.

In view of the impact that HIF-1, p53, Zeb, Snail, and Twist have on EMT, it is easy to
understand why cells displaying EMT features together with stem cell markers including
nestin, aldehyde dehydrogenase 1, the cholesterol-binding CD133, and the glycosamino-
glycan receptor CD44 are present in uterine cervical SCC lesions [88–90,92,96,97].

When a malignant transformation is achieved, carcinoma cells may lose any index of
differentiation and acquire decidedly stem characteristics (Figures 1–3) [216,217]. These
cells, termed cancer stem cells (CSCs), are very invasive and vital, being capable of self-
renewal like normal stem cells [94,107,191,216,218,219]. Of interest, CSCs are found in
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uterine SCC from its early stage of development (i.e., H-SIL or SCC in situ), so much
so that they have been proposed as markers for the preventive diagnosis of this tu-
mor [90–92,94,95,220,221].

The CSCs, whose number in the SCC lesions directly parallels the tumor grade ref-
erence [91,92,94,95,222] are believed to arise from the dedifferentiation of mutated so-
matic cells and/or the transformation of stem cells [107]: both of these events are largely
attributable to the loss of p53 which is undoubtedly one of the key steps in HR-HPV-
promoted cervical carcinogenesis. In fact, given that functional p53 guarantees stem cells
differentiation and prevent the reconversion of differentiated cells into stem cells, p53 loss
causes terminally differentiated somatic cells to revert to stem-like and proliferate; likewise,
the functional impairment of p53 triggers adult stem cells to acquire pluripotency and to
undergo symmetric divisions [107,191].

In this context, one should consider that markers of EMT and stemness characterize
not only uterine CSCs but also the stem cells residing in the basal layer of the cervical
epithelium [91,93–95,218]. This has suggested that uterine SCC could be initiated by the
transformation or the abnormal activation of basal stem cells [223,224]. Such a hypothesis
is supported by the finding that the “transformation zone”, that is the area of the cervix in
which SCC develops more frequently is particularly rich in stem cells [58,60–62].

5. EMT and Cellular Stemness Not Only Facilitate SCC Cells Invasion and Spreading,
but also Increase SCC Cells Resistance to Anticancer Chemo- or Radiotherapy

Invasive uterine SCC is started when carcinoma cells degrade the basement mem-
brane of the cervical epithelium and penetrate into the underlying stroma [78]. Tissue-
infiltrating abilities are especially evident in carcinoma cells that have undergone EMT
reference [187,209,210,225]. In this context, one should consider that Twist, Snail, and
other EMT-promoting transcription factors activate the expression of basement membrane-
degrading proteolytic enzymes [226–229]. Among them, the matrix metalloproteinases
(MMPs) are pivotal to SCC cell invasion (Figures 1–3) [230]. It is worth noting that two
members of the MMP family, MMP-2 and MMP-9, are considered as SCC prognostic mark-
ers since their expression level positively correlates with the progression of L-SIL to H-SIL,
pre-invasive SCC, and, finally, invasive SCC [230].

It has to be highlighted that the EMT transcription factors can promote MMP ex-
pression also in an indirect fashion, that is by downregulating E-cadherin and thereby
disassembling the intercellular junctions constituted by E-cadherin/cytoplasmic β-catenin
complexes: this event, in turn, causes the translocation of cytoplasmic β-catenin to the
nucleus where it cooperates with NF-kB at activating MMPs expression [20,231].

The β-catenin is the fundamental component of the wingless-type mouse mammary
tumor virus integration site (Wnt) pathway, a signaling axis important to tissue homeostasis
because of its impact on cell survival, proliferation, differentiation, and locomotion [232].
It is noteworthy that a deregulated activity of Wnt/β-catenin participates in the onset and
progression of uterine cervical SCC where it associates with EMT [233,234]. This is easily
predictable given that β-catenin transcriptional activity is stimulated by signaling pathways
that are strongly activated by EMT-promoting factors with a role in cervical carcinogenesis,
including IL-1, IL-6, TNFα, EGF, and TGF-β1 (Figure 2) [235–248]. Specifically regarding
TGF-β1, the most powerful promoter of EMT in uterine epithelial cells, an increase in its
levels such that occurring in cervical squamous lesions causes in epithelial cells an abnormal
activation of the Smad proteins and PI3K/AKT/mTOR or MAPK/ERK signaling, which
synergize at promoting β-catenin nuclear translocation, MMP expression and cellular
invasion (Figure 2) [13,160–165,171,179,183,249–253]. For its part, EGF cooperates with
TGF-β1 at promoting MMP expression and cellular invasiveness (Figure 2) [254]. These
molecular events, which confer a pro-oncogenic phenotype to the epithelial–mesenchymal
hybrids [171,179,183,251,253], are particularly stressed in HR-HPV-infected cells, where
the E6 and E7 proteins downregulate Wnt/β-catenin inhibitors such as the miR-34a and
the Na+/H+ exchanger tegulatory factor 1 protein [255,256].
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As for the EMT canonical transcription factors and the Wnt/β-catenin axis, HIF is
also capable of inducing the expression of MMPs (Figure 3), as well as further extracellular
matrix-degrading enzymes [182,257]. Indeed, hypoxia is deeply involved in tumor evolu-
tion from the pre-invasive to the invasive phase [258]. In particular, when compared with
well-oxygenated SCCs, the SCCs undergoing cyclic hypoxia show a high probability of
metastasizing, this being due to their richness in epithelial–mesenchymal hybrids [209,210].

Upon basement membrane degradation, cancer cells reach the stroma driven by
growth factors or nutrients [190]. When cells from the primary tumor invade the surround-
ing stroma, cellular hybrids in which the mesenchymal characters are more expressed
than the epithelial ones are present in carcinoma invasive front, where they act as “leader”
cells [190]. In contrast, hybrids in which epithelial markers are more abundant than the
mesenchymal ones aggregate to each other and follow the leading cells in the invasion
path [190]. In accordance with their EMT phenotype, invading leader cells synthesize a
new matrix rich in fibronectin and other non-collagenous glycoproteins [259]: such a “soft”
matrix does not hinder cellular locomotion but, on the contrary, favors it by providing the
cells with mechanical support [21,260].

Cancer cells move through the tissues via the use of long protrusions of the cell
membrane and cytosol which result from the polymerization of actin and the maturation
of an actin-myosin contractile apparatus [261]. Such phenotypic changes are triggered by
Twist 1 or other EMT transcription factors upon their activation by EGF and/or TGF [261].
The rearrangement of the cytoskeleton is followed by the recruitment of MMPs and CD44,
both expressed by the uterine cervical SCC cells [88,230], to the forming protrusions: there,
CD44 and the MMPs may aggregate, giving rise to macromolecular complexes which on
one side mediate cancer cell adhesion to the extracellular matrix, and on the other induce
matrix degradation [261].

Migrating leader cells need a lot of energy, which they obtain from glycolysis [190]: as
discussed before, glycolysis is strongly stimulated in cellular hybrids upon HIF-1 activation
(Figure 3) [54,211]. Once more, the phenotypic plasticity of the epithelial–mesenchymal
hybrids favors their locomotion. In fact, a leader cell that has consumed all the available
energy is replaced by a follower cell, full of energy, which then takes on more decidedly
mesenchymal characteristics [190].

When they reach lymphatic or blood vessels, tumor cells adhere to the vascular
wall and, again because of the activity of MMPs and other proteolytic enzymes, degrade
it and intravasate [258]. Indeed, SCC cells can be isolated from the blood of patients
with advanced cervical cancer [262–264]. It is noteworthy that the number of circulating
SCC cells is predictive of tumor metastases and/or it inversely correlates with patients’
disease-free survival [263,264]. However, only a small percentage of the tumor cells
that circulate in the blood or lymph can resist the apoptosis resulting from the lack of
the solid support provided by the extracellular matrix, which epithelial cells, including
carcinoma cells, need to survive [21,190]. It is relevant that most of the surviving cells
are epithelial–mesenchymal hybrids or CSCs: this is because both phenotypes imply the
strong activation of pro-survival signaling pathways including PI3K/AKT, NF-kB, and
Wnt/β-catenin, and the inactivation of the pro-apoptosis proteins, such as p53 [21,190,258].
In this regard, it is interesting to note that many of the circulating trans-differentiated tumor
cells overexpress EGFR, the activation of which is known to strongly support epithelial cell
survival [265,266]. Moreover, because of their ability to aggregate with platelets, circulating
cellular hybrids and CSCs are protected from either the stress generated by blood flow
turbulence or from the attack by immunocompetent cells [190,267].

When circulating tumor cells reach a vessel whose caliber is smaller than the diam-
eter of the metastatic embolus, they stop, adhere to endothelial cells, degrade the vessel
wall, and pass into the extravascular territory which may eventually become the site of
metastasis [190,268]. The new environment can be hostile to metastasized cells, as it of-
ten differs from the one in which the tumor has originated; nonetheless, the phenotypic
plasticity of metastasized cells favors their survival [190]. In fact, once the cancerous
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epithelial–mesenchymal hybrids have arrived in the secondary site, some of them undergo
a MET, returning to assume the original epithelial phenotype [190,258]. While EMT is asso-
ciated with SCC initiation, invasion, and spreading, MET favors the anchorage-dependent
growth of carcinoma cells [269].

However, the EMT to MET switch occurs slowly and often incompletely, causing
tumor epithelial–mesenchymal hybrids and CSCs to persist in cervical SCC metastases:
this is particularly evident in hypoxic areas where activated HIF-1 stimulates glycolysis at
levels that guarantee the tumor cell hybrids and CSCs a certain independence from the
vessels of the metastatic site [88,209,210,222,270,271].

From a medical point of view, it is of concern that CSCs are inherently protected from
apoptosis triggered by the DNA-damaging chemotherapeutic or radiations [88,222,272].
Once again, this results from the constitutive activation of AKT or Wnt signaling, or from
E6-promoted p53 degradation leading to the upregulation of p53-repressed survival factors,
such as Bcl-2 [21,51,94,107,190,216,218,219,258].

Indeed, clinical data indicate a poor prognosis for patients affected by uterine cervical
SCC rich in epithelial–mesenchymal hybrids and CSCs [92,271–273]. This is particularly
evident in scarcely oxygenated uterine SCCs where HIF-1 is activated to promote EMT and
stemness [209,210,270]. Most disappointingly, radiotherapy worsens the situation. In fact,
the proportion of CSCs over total cancer cell number in cervical SCC tissues increases after
radiation therapy [97], likely because of the radiations-induced vessel damage, and the
resultant hypoxia [274].

6. Concluding Remarks and Future Directions

SCC of the uterine cervix is a leading cause of death among women worldwide,
although its onset can be prevented in the first instance by anti-HPV vaccination [275] and,
in the second instance, through screening programs for the detection and surveillance of
squamous precancerous lesions [58,276]. If H-SIL is present, its surgical removal will be
advisable which, however, does not cancel the possibility of relapse [276].

Concerning the treatment of advanced cervical SCC, the failure of conventional an-
tineoplastic therapy invokes the design and evaluation of novel therapeutic approaches.
Given the role that EMT plays in the onset, progression, or metastatization of SCC, and in
its resistance to anti-tumor chemotherapy or radiations, particular attention should be paid
to drugs countering the EMT process and possibly eradicating CSCs within cervical SCC.

In this regard, it has to be highlighted that switching off the PI3K/AKT/mTOR,
MAPK/ERK, or Wnt/β-catenin signaling pathways can revert EMT to MET and halt
tumor cell invasion [107,232,234,277–280]. In addition, antagonists of hypoxia-responsive
genes have been shown to inhibit SCC cell invasion [281]. Moreover, H/MDM2 inhibitors
can promote the differentiation of CSCs and, at the same time, augment their sensitivity
to conventional cytotoxic drugs [107]. Similarly, a restored expression of p53-transcribed
miRs, such as miR-34a and miR-203, diminishes cancer cell resistance to chemotherapeutic
agents [34,51].

Definitely, a deeper understanding of the interplay among the HR-HPV proteins,
oncosuppressor genes, cellular regulators of gene expression, inflammatory mediators, and
growth factors involved in cervical carcinogenesis could provide clues to developing new
strategies hindering the onset, growth, metastatization, or recurrence of uterine SCC.
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Abbreviations
AKT protein kinase B
CSC cancer stem cell
E-cadherin epithelial-cadherin
EGF epidermal growth factor
EGFR epidermal growth factor receptor
EMT epithelial-to-mesenchymal transition
ERK extracellular-regulated kinase
FGFR fibroblast growth factor receptor
HIF hypoxia-inducible factor
HLA human leukocyte antigen
H/MDM2 human/murine double minute 2
HR-HPV high-risk human papillomavirus
H-SIL high-grade squamous intraepithelial lesion
IFN interferon
IL interleukin
L-SIL low-grade squamous intraepithelial lesion
MAPK mitogen-activated protein kinase
MET mesenchymal-to-epithelial transition
MHC major histocompatibility complex
miR microRNA
MMP matrix metalloproteinase
mTOR mammalian target of rapamycin
N-cadherin neuronal-cadherin
NF-kB nuclear factor-kappa B
PI3K phosphoinositide-3-kinase
pRb retinoblastoma protein
SCC squamous cell carcinoma
SIL squamous intraepithelial lesion
TGF transforming growth factor
TNF tumor necrosis factor
VEGF vascular endothelial growth factor
Wnt wingless-type mouse mammary tumor virus integration site
Zeb zinc finger E-box-binding homeobox
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