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Abstract
We prove a best possible transversality theorem for maps frommanifolds to orbifolds,
and, more generally arbitrary differentiable Deligne–Mumford classifying champs,
0.1, of groupoids R ⇒ U in separated, 0.2, manifolds. En passant, the essentially
finite dimensional linear algebra nature of jet transversality is isolated.
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0 Avant propos

This is a paper in differential geometry employing a certain amount of category theory
developed by Grothendieck in the context of algebraic geometry, and, unsurprisingly,
different words are sometimes employed for the same idea according to the discipline,
while, albeit less frequently, the same words can mean different things. As such,
before the introductionproperly said, let us clarify some terminology,which, invariably
favours Grothendieck’s choices wherein the natural sense of the word is closest to the
idea, to wit:

0.1 Champmeans what it means in [5, Exposé VI], i.e. stack in English. I’m told the
intention of the translator (Mumford) was that stack should serve as an abbreviation of
haystack, which is certainly the sense of champ (more accurately gerbe) in this context,
but, in my experience, the abbreviation to stack is problematic because, independently,
it has its own meaning and so creates a misleading idea.

0.2 Separated space, manifold, etc. means Hausdorff space, manifold, etc..
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1210 M. McQuillan

0.3 Netmap of spaces, manifolds, etc. means a local homeomorphism, or diffeomor-
phism according to the context, onto the image, i.e. the idea which is usually expressed
in differential geometry written in English by the word immersed (and, as it happens,
the translation of immersion as employed in EGA is embedding, which is another
reason for preferring net).

0.4 Differentiableor infinitely differentiable if there is danger of confusion,manifold,
orbifold, etc. means a smooth (as opposed to PL or whatever) manifold, orbifold,
etc.. Since almost all the manifolds, orbifolds, etc. which occur will be infinitely
differentiable, and the risk of confusionwill be negligible,we’ll often just saymanifold,
orbifold, etc., rather than (infinitely) differentiable manifold, orbifold, etc..

0.5 Smoothmap, including the structure map to the final object is a map with smooth
fibres, i.e. a submersion, so, tautologically a smooth space is one whose structure map
is smooth. By definition all infinitely differentiable, 0.4, manifolds, orbifolds, and even
champs, 0.1, have a smooth structure map. It is therefore a tautology to say smooth
(infinitely) differentiable manifold, orbifold, etc.. Nevertheless, we’ll often be making
constructions whose essence is to identify fibres which are smooth, and whence, for
emphasis, and uniquely for emphasis, we may say smooth (infinitely) differentiable
manifolds, orbifolds, etc..

0.6 Étalemap means a smooth map with discrete fibres, or, what is the same thing, a
local diffeomorphism. As such, we’re employing it in the sense of a local isomorphism
in the category of interest, rather than the pre-Grothendieck sense of local homeomor-
phism. Consequently, the English distinction between local diffeomorphism and local
homeomorphism is more precise, but “topology of local diffeomorphism” would have
mean a mouthful, while, since the occurences are more frequent than the correspond-
ing problem for net, 0.3, albeit Fact/Definition 2.4.(a) is always the cause, usages of
local homeomorphism will be spelt out.

1 Introduction

Not unreasonably orbifold transversality is said to be false. Indeed ifO → � were an
orbifold distinct from the underlying space � then already for � a Riemann surface
and E = �m

O , m �2 copies of its co-tangent bundle, then although the zero section
[0] ↪→ E is an embedded (smooth) sub-orbifold of co-dimension 2m, no matter the
section s of E , s−1[0], while it may be supported on a sub-orbifold ofO , will not only
contain every point of the signature (and so be of co-dimension 2 rather than 2m) but
if z = 0 were a complex orbifold coordinate at a point where the signature is n then
the ideal of differentiable complex functions defined by s−1[0] is always, Fact A.1
with a = 1, contained in (zi z̄ j | j = 1 + i(n)). On the other hand, [8] or Remark
4.11, orbifolds have plenty of Morse functions, and the principle is that orbifold
transversality valeat quantum potest valere, i.e. there is a certain local obstruction
posed by whether some naturally defined vector bundle has sufficient sections, cf.
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Orbifold transversality 1211

Lemma 4.1–Lemma 4.2, to establish the said transversality locally, and, once this is
true it follows, rather generally and wholly formally, globally.

Nevertheless, even in the absence of local obstructions, the formal aspect is not
without its pitfalls, albeit, much less serious, since avoiding them is simply a matter
of good formalism, i.e. a functorial use of language. For example, consider the basic
case of transversality,

f −1(Z) −−−−→ Z
⏐
⏐
�

⏐
⏐
�

Y
f−−−−→ X

(1)

where X ,Y , Z are separated manifolds and f is infinitely differentiable, then, for
Z ↪→ X a sub-manifold, after a small perturbation of f , the fibre is either empty or
a sub-manifold of Y of the same co-dimension. Now, the right way to think of this is
two fold, to wit:

(a) There is a property (P), e.g. closed embedding in the case in point, of maps
between topological spaces which is stable under base change, i.e. if the right vertical
in (1) has property (P) then the left vertical does too for any continuous map f .

(b) How to guarantee that the fibre in (1) is a (smooth) manifold, rather than just
a topological space, and, preferably with the same co-dimension, which is a notion
which has sense not just for embeddings but any net, 0.3, map?

Plainly, therefore, already for manifolds, we can pose slightly more general trans-
versality problems by the simple expedient of replacing “closed embedding” by net
together with any property, (P), stable under base change.

At the same time, the unique way, Definition 2.6, consistent with the rest of mathe-
matics, to ask that a mapZ → Y of orbifolds, or better, differentiable champs, has a
property (P) is in terms of atlases and fibres. Consequently item (a) in the above schema
will continue to be a tautology. As such the pitfall is not the formalism itself, but apply-
ing it. The example par excellence, which one may very well wish to use in practice to
describe generic double points, and which is spelt out in Example/Definition/Warning
2.8, and Example A.8 et seq., is the diagonal map,

Y
�−→ Y ×Y (2)

which, already for Y an orbifold, and more generally a differentiable champs, is a
closed embedding iff Y is a separated manifold, Example/Definition/Warning 2.8.
As such, in general, the properties stable under base change for an orbifold, with
underlying space separated, which one can assign to the diagonal, (2), are, net, and
proper. Related to this is both the need toworkwith, and the naturality, of differentiable
champs for posing transversality questions. Indeed, already for orbifolds, the locus
Z ↪→ Y where an orbifold fails to be a manifold is very often an embedded (smooth)
differentiable sub-champs but it is never a sub-orbifold, (13), and plainly even if one
were only interested in orbifolds, transversality to Z is, invariably, of importance.

Concentrating, therefore, on the pleasing, since it has no local obstruction, case of
maps from separated manifolds to differentiable champs we have,
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Proposition 1.1 (Proposition 4.5, Extra Fact 4.8–Extra Fact 4.10) Let f : X → Y be
a map from a separated manifold to a differentiable champ admitting an exponential
map, Definition 3.8, from a neighbourhood of the zero section of the pull-back of the
tangent space, e.g. the classifying champof a groupoid R ⇒ U in separatedmanifolds,
Proposition 1.2, so, inter alia no separability condition onY , andm ∈ Z>0, r ∈ Z � 0
then for any closed subspace V of H0(X , f ∗TY ) (in its usual Fréchet topology if X is
compact, and slightly adjusted, Set Up 4.9 & Set Up 4.4, otherwise) separating m, r
multi-jets there is a residual subset, K , of an open ball about 0 ∈ V parametrising (via
the exponential) deformations g of f such that ifZ → Jmr (X ,Y ) is a representable
separated net map from a (smooth) differentiable champ of co-dimension q to the
space of multi-jets, Sect. 3, enjoying a property (P) stable under base change, e.g.
closed embedding, proper, discrete fibres, etc., then for g ∈ K, the left hand vertical
of the fibre square,

Zg −−−−→ Z
⏐
⏐
�

⏐
⏐
�

X (m)
jmr (g)−−−−→ Jmr (X ,Y )

(3)

is empty or a net map from a separated manifold of co-dimension q enjoying property
(P), whence, in particular, empty if q exceeds the dimension of X.

Here a champ in differentiable manifolds is exactly as in [5, Exposé VI], i.e. the 2-
sheaf, (7) et seq., associated to the action R ⇒ U of a groupoid in (not necessarily
separated) manifolds, with étale, 0.6, source and sink, (7), albeit manifold is to be
understood in the sense of the more general notion of B-manifold, Revision 2.2.
As such, the condition that the right vertical in (3) is separated is non-empty. It is
however unlikely to fail in practice, e.g. any representable map in separated manifolds
is separated, Definition 2.6, and even then, its only role, Remark 4.6, is to permit the
intervention of Sard’s theorem, so, although it’s a mild condition, cf. Remark 2.3,
it is (if one is happy with a fibre which is a possibly non-separated manifold in the
text book sense, Fact/Definition 2.4.(a)) overkill. In any case, and plainly, whenever
Hom(X ,Y ) is known to exist, e.g., [15], under the hypothesis of Proposition 1.2 (or
even just as a corollary of it) and the topology has a countable basis, the deformations
g ∈ Hom(X ,Y ) satisfying the transversality statement Proposition 1.1 are residual,
i.e. a countable intersection of open dense sets.

As such, the only substantive hypothesis of the theorem on Y is that it should
admit an exponential map, Definition 3.8. Certainly, therefore, for identically the
same reason which guarantees the usual exponential on manifolds the existence of
a Riemann metric on Y would suffice. However, in the test case of the classifying
champ of an arbitrary action,

R = U ×� ⇒ U (4)

by a discrete group on a manifold this means a � invariant Riemannian metric, which,
amongst all group actions, e.g. already on the sphere, is a rather strong condition,
whereas an exponential map Definition 3.8, exists in considerable generality, to wit:

Proposition 1.2 (Fact 3.9) Let f : X → Y be a map from a separated manifold to a
differentiable champ,Y , which is a classifying champ, (7), of the action of a groupoid
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R ⇒ U in separated manifolds, i.e. U, R separated, with étale, 0.6, source and sink,
then f admits an exponential. In particular, therefore, the transversality statement
Proposition 1.1 holds unconditionally for any map f : X → [U/R] when all of X ,U
and R are separated.

Now R in (4) is separated iff U is separated, so

Example 1.3 Suppose a discrete group � acts on a separated manifold Y (so in par-
ticular no separation condition on the topological quotient Y/�) then if Z ↪→ Y is a
�-equivariant sub-manifold of co-dimension q and f : E → Y a �-equivariant map
from a � torsor E → X over another separated manifold X then for almost all �

equivariant deformations g of f , i.e. all in some residual subset, g−1(Z) is empty or
the fibre of E over a co-dimension q sub-manifold of X . Thus the only real caveat
in this example is that the more complicated the action the less likely that there are
non-trivial sub-objects, Z , to which it applies.

The paper is organised by way of a brief tour, Sect. 2, of the differential geomet-
ric manifestation of the general categorical considerations of [5] and [6]. Its contents
while entirely well-known to experts, e.g. [1] or [7], are rarely employed in differ-
entiable geometry. As such, its primary purpose is to explain, cf. Fact/Definition 2.4,
Fact/Definition 2.7, and Example/Definition/Warning 2.8, why the language of [5,
Exposé VI] is a necessity even if all one wants to talk about is transversality for orb-
ifolds. The next section, Sect. 3, discusses the difference between jets in the sense of
Grothendieck versus the sense of Thom, and culminates in the proof of Proposition 1.2.
The final section, Sect. 4, applies this to the aforesaid transversality Proposition 1.1 by
way of Thom’s incidence correspondence, which is the type of thing one encounters
more often in algebraic rather than differential geometry. As such it seemed appro-
priate to emphasise that when the subspace V of Proposition 1.1 is finite dimensional
(or an inverse limit thereof, Set Up 4.4, if X isn’t compact) the proof is straight out of
the algebraic geometry playbook, albeit “generic smoothness” as encountered alge-
braically gets replaced by Sard’s theorem, so that as soon as V is infinite dimensional
one has to use Smale’s residual set formulation, Scholion 4.7, which, following, [16,
1.2 et seq.], we prefer to call almost all. All of which, at the eminently reasonable
suggestion of the referee, is supplemented by an appendix, Sect. A, illustrating the
properties of 1-dimensional champ such as R/Q, along with some examples of the
main theorem. In particular, the very limited, if any, contribution of this note is the
functoriality of the discussion about jets and, perhaps, a little cleaning of the role
of the exponential map and the resulting linear analysis which, even in the infinite
dimensional case, is little more, Scholion 4.7.(a)–(e), than finite dimensional linear
algebra. Furthermore, no attempt is made to formulate Proposition 1.1 for maps from
a champ/orbifold rather than a manifold even though it has already merited notable
attention (albeit with the emphasis on PL rather than infinitely differentiable) in the
specific case, e.g. [14] & [12], of equivariant transversality since, as we’ve already
shown by our initial example, short of an unrealistic hypothesis such as the absence
of local obstructions what one can achieve is highly dependent on the local structure
of what one might like to be transverse.
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1214 M. McQuillan

2 The need for precision

Confusion about orbifold transversality tends to be the result of misuse of language.
As such, we’ll gather together some definitions from [5] & [6] in the context of
differentiable geometry and review perhaps the main source of confusion, Exam-
ple/Definition/Warning 2.8, the diagonal map. To begin with we need a site, i.e.

Definition 2.1 By B is to be understood the category whose objects are disjoint unions
of copies of open subsets of R

n, with infinitely differentiable maps between them,
where n may vary throughout the union, which has a priori arbitrary cardinality, but
in practice countable is invariably sufficient, and should be supposed if one prefers
one’s categories small. In any case the site B Ét is B equipped with the étale topology,
i.e. the topology on B generated, [6, II.1.3.1], by arrows of B which are étale, which,
by the definition, 0.6, of étale, is the same as that generated by disjoint unions of open
embeddings by infinitely differentiable maps.

This quickly leads to the main protagonists,

Revision 2.2 A B-manifold, or just manifold if there is no danger of confusion, X ..=
U/R, is the B Ét sheaf associated, [6, II.3], to the pre-sheaf,

Bop → Ens : T �→ U (T )/R(T ) (5)

where

R
t

⇒
s
U (6)

is an equivalence relation in B in which the source, s, and sink, t , are étale, and, as is
usual, we confuse objects of B with their functors of points via the Yoneda embedding

B → Hom(Bop,Ens) : V �→ hV , where: hV (T ) ..= Hom(T , V ) =.. V (T ).

Consequently we have a site B′
Ét

where the underlying category B′ has objects B-
manifolds with infinitely differentiablemaps between them (seeDefinition 2.6 below),
and the topology is that generated by surjective étale maps (again see Definition 2.6).
In particular if (6) were only a groupoid in B, or even more generally, if probably not
in practice, B′, cf. Remark 2.3, with étale source and sink, a (differentiable) champ,
X ..= [U/R], is the 2 sheaf associated, [11, 3.2], to the 2 pre-sheaf

B → Grpd : T �→ (R(T )⇒U (T )) (7)

where Grpd is the 2-category of groupoids in sets. As such if by points of [U/R] we
understand the objects in [U/R](pt) modulo isomorphism, then the space like points
are those with trivial stabiliser.

Allowing the groupoid in (7) to belong to B′ rather than just B merits,

Remark 2.3 Restricting (7) to groupoids in B is more than adequate for any imaginable
application, and is in the same vein as typical hypothesis in algebraic geometry for
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avoiding pathology such as separated diagonal, [11, 4.1]. Consequently, the principal
reason for allowing it is to illustrate that there is almost no restriction, albeit cf. Remark
4.6 for further details, on the generality in which transversality holds.

In any case, plainly there are many more manifolds according to Revision 2.2 than
those one finds in text books, so it’s useful to observe

Fact/Definition 2.4 By definition a relation R
t

⇒
s
U in B, with étale source and sink,

(a) Defines a manifold in the text book sense if for Q its quotient in the category of
topological spaces, Top, U → Q is a local homeomorphism.

(b) Conversely if Q ∈ Top equipped with the atlas U is a manifold in the text book
sense then the sub-sheaf of the restriction to B of HomTop(•, Q) of differentiable
mappings in the text book sense is the sheaf U/R of Revision 2.2.

(c) Consequently, the category of differentiable manifolds in the text book sense is a
full sub-category of manifolds in the sense of Revision 2.2.

(d) There are, however, more manifolds in the latter sense than there are in the text
book sense, e.g. R/Q is a manifold.

(e)Nevertheless if aB-manifold is separated, i.e. R
s× t−−→ U ×U is a closed embedding,

then it is a manifold in the text book sense, i.e. belongs to the image of the aforesaid
fully faithful functor, with, in addition Q separated.

Proof Logically items (a) and (b) are definitions, so don’t need proof. However, if one
were to consult a text book on differentiable geometry one would find (a) and (b), so
(c) is immediate, whileR/Q is clearly a B-manifold. If, however, this were a manifold
in the text book sense then we’d have a fibre square in Top,

R
p1←−−−− R

⏐
⏐
�

⏐
⏐
�p2

(R/Q)Top ←−−−− R

(8)

with the left vertical and bottom horizontal local homeomorphisms. Consequently all
the arrows in (8) are local homeomorphisms. On the other hand, Top quotients qua
naked sets are also Ens quotients, so there is a continuous set bijection,

∐

q∈Q
R×q → R (9)

whose composition with, say, p1 is the supposed étale map s, and since p1 is a local
homeomorphism, (9) is also open, and whence a homeomorphism. At the same time
R is homeomorphic to

{

(x, x + q) | x ∈ R, q ∈ Q
} ⊂ R×R
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with the sub-space topology, so, if, for example, qn → 0 then (0, qn) → (0, 0) in R
from which the absurdity that this happens in the coproduct

∐

q∈Q
R×q.

Finally, by (a)–(c), separated manifolds in the text book sense are separated manifolds,
so it remains to check the converse, i.e.

Claim 2.5 If R
t

⇒
s

U is a relation in B with étale source and sink such that R
s×t−−→

U ×U is a closed embedding, then U → (U/R)Top is a local homeomorphism and
(U/R)Top is separated.

Proof of Claim 2.5 Fix x ∈ U and a sequence of balls Bn 	 x centred on it of radius
collapsing to zero. On each ball there is an induced relation given by the fibre product,

Bn × Bn
sn×tn←−−−− Rn

⏐
⏐
�

⏐
⏐
�

U ×U ←−−−−
s×t

R

(10)

Now suppose for all n, Rn contains a component other than the identity, i.e. there are
non-identity arrows

fn : xn → yn ∈ Rn . (11)

On the other hand the bottom, whence either, horizontal in (10) is a closed embedding,
and fn converges to the identity idx . By the same token, or better because the identity
map is continuous, the identities idxn of the source of (11) also converge to idx , and
sn is étale, so eventually fn is the identity. Consequently, for n 
 0, Rn ⇒ Bn is the
identity relation,while by construction (Bn/Rn)Top embeds in (U/R)Top, so eventually
Bn → (Bn/Rn)Top is a homeomorphism. Finally being a closed embedding is local in
Top, so the diagonal of (U/R)Top is a closed embedding iff s× t : R → U ×U is. ��
which in turn completes the proof of Fact/Definition 2.4. ��

Plainlymapswhether in our enlarged category ofmanifolds, or 2-category of differ-
entiable champs, are just functors or 2-functors as appropriate. The pertinent question
is, therefore when are such maps open, closed, étale, etc., or more generally

Definition 2.6 A property, (P), of maps in B is said to be étale local if it is closed
under base change and U → V in B has property (P) iff there is a surjective étale
map V ′ → V such that the base change U ′ ..= U ×V V ′ → V has property (P).
For such properties one says that a map of B-manifolds or differentiable champs has
property (P) exactly as encountered in [11, 4.14] et seq. on replacing,mutatismutandis,
algébriques by differentiable. In particular it makes sense to say that V → Y is an
étale map from an element of B, and we say that f : X → Y is representable in a
full sub-category, E, of B-manifolds (e.g. separated ones), if the fibre fV of V → Y
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Orbifold transversality 1217

of any étale map from an object of B belongs to E. Thus, for example, the diagonal
map of a manifold, resp. champ, is representable in B, resp. B′, by (6), resp. (7), and,
more pertinently, f has property (P) iff every such fibre has. In particular if E is any
sub-category of separated manifolds then any map representable in E is, a fortiori,
separated.

To apply this to maps and properties of orbifolds requires an analogue of Fact/
Definition 2.4.(e), i.e.

Fact/Definition 2.7 Orbifolds with underlying space separated are (by definition and
up to 2-equivalence) classifying champs such that s× t : R → U ×U is proper with
the set of non-space like points nowhere dense. More precisely if s× t : R → U ×U
is proper, then for every x ∈ U there is a basis of neighbourhoods U ⊃ Ux 	 x
such that the induced groupoid Rx ⇒ Ux (defined exactly as in (10)) is isomorphic
to an (independent of Ux ) Ax

..= AutR(x) (which by properness is finite) action
Ax×Ux ⇒ Ux , while the topological quotient (U/R)Top (or equivalently sheaf quo-
tientU/R albeit, in general, as a Top-sheaf in the topology, TopÉt, generated by local
homeomorphisms rather than a BÉt-sheaf) is a separated space with a basis of open
neighbourhoods (Ux/Ax )Top. In particular, the map μ : [U/R] → (U/R)Top is uni-
versal amongst maps of the classifier to topological spaces (or better TopÉt-sheaves)
and μ, resp. (U/R)Top, is called the moduli map, respectively space.

Proof For a ∈ Ax choose neighbourhoods Na 	 a such that the source affords a
diffeomorphism, sa , with some (independent of a) neighbourhood N 	 x . Now re-
take the notations of the proof ofClaim2.5, albeitwith a groupoid rather than a relation,
and suppose that Rn isn’t eventually contained in the union of the Na . Consequently
we’d have the arrows fn of (11) in the complement of the Na with source and sink
converging to x . By hypothesis, however, s× t is proper, so the fn converge to some
a ∈ Ax , whence the absurdity that fn is eventually equal to (sa)−1(xn) ∈ Na . As such
for n 
 0, Rn decomposes as a topological sum,

∐

a∈Ax

Ra
n

..= Na ∩ Rn .

Similarly, we can, for some possibly large n, conclude from s× t proper, and the
continuity of the groupoid structure:

Ra
n t ×s R

b
n → Rab

n , along with, (Ra
n )

−1⊆ Ra−1

n , (12)

so, in particular, the latter inclusion, by symmetry is actually an identity. Consequently
if for n 
 0, we define,

Ux
..= ⋂

a s
a(Ra

n ) then from (12), Ax×Ux : (a, u) �→ t((sa)−1(u))

defines an Ax -action on Ux whose groupoid Ax×Ux ⇒ Ux is exactly that induced
by R on Ux . There is, therefore, an open embedding,

(Ux/Ax )Top ↪→ (U/R)Top
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1218 M. McQuillan

and the resulting open sets are plainly a basis of the topology of (U/R)Top. Better
still, althoughU → (U/R)Top may no longer be a local homeomorphism it is at least
open, while the fibre of the diagonal of (U/R)Top is the closed set (s× t)(R), so the
diagonal of (U/R)Top is closed. Finally since (U/R)Top is a co-equaliser in Top, μ is
universal by definition. ��
Thus, for example, it follows that the definition of an open, respectively closed, sub-
champ of a classifying champ X = [U/R] of an étale groupoid R ⇒ U is,

an open, respectively closed, embedding representable in B, Definition 2.6, (13)

which can, even in natural examples, easily fail as illustrated by

Example/Definition/Warning 2.8 A champ X is said to be separated if its diagonal
is proper, equivalently, as encountered in Fact/Definition 2.7, s× t : R → U ×U
is proper. According to the rules for functorial assignation of properties to the map
X → pt of Definition 2.6 this is unquestionably an abus de language, and even a
serious one. Nevertheless its usage is (perhaps regrettably) standard since the more
functorial statement, consistent with Definition 2.6, that X → pt is separated iff the
diagonal embeds is equivalent toX a separatedmanifold.Worse, this abus de language
has consequences. Indeed, consider first the non-separated manifold, M = U/R,
where U is the union of two pointed circles, (S, ∗), and R is the relation where by
we identify them off the points. Consequently the circles in U afford distinct maps
fi : S → M , 1� i �2, and the fibre

S× S ←−−−−
diagonal

S\{∗}

f1× f2

⏐
⏐
�

⏐
⏐
�

M×M
diagonal←−−−− M

(14)

may be a manifold, but no amount of perturbing the fi will ever make it closed. Now
while the problem here is that M isn’t separated this is per accidens rather than per
se since if the diagonal in M×M were replaced by an honest closed sub-manifold in
the sense of (13) the fibre in (14) after at worst a perturbation of the fi would be a
closed sub-manifold. Now say a finite group � acts on a separated manifold X with
fixed points, but not generically, e.g. the orientation reversing involution on the circle,
then the classifier, [X/�], of this action is an orbifold, and, or course, we have a fibre
square,

X × X ←−−−− X ×�

π

⏐
⏐
�

⏐
⏐
�

[X/�]×[X/�] diagonal←−−−− [X/�]
(15)

so that again, the fibre, although a manifold, is not a sub-manifold of X × X and no
amount of perturbing π will ever result in a better fibre than (15). Nevertheless, as
before, if wewere to replace the diagonal in (15) by an actual sub-manifold in the sense
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of (13), then, Proposition 4.5, the fibre, possibly after perturbation, is a sub-manifold
of X × X . In neither (14) nor (15), however, does the main theorem fail, but, rather
its possible conclusions, which are spelt out in Example A.8, resp. Example A.9, are
circumscribed by exactly the aforesaid optimality of the fibre in (14), resp. (15).

3 Jets

Google doesn’t immediately reveal a reference for a functorial construction of Thom,
rather thanGrothendieck, jets. Nevertheless the latter may be used to define the former.
Specifically if X is a separated manifold there is an r th thickening of the diagonal,

X [r ] ↪→ X × X (16)

which is a differentiable space in the sense of [13]. Specifically if I� is the sheaf of
ideals of infinitely differentiable functions,AX×X , vanishing on� then I r+1

� is closed
in the (natural) Fréchet topology of infinitely differentiable functions, since, locally:

f ∈ I r+1
� iff ∂

a1
1 · · · ∂ann ( f ) = 0, a1 + · · · + an � r

for a choice of vector fields ∂i normal to the diagonal. Similarly if t : T → X is a
differentiable space over X , then the graph of t has an r th thickening, T [r ], defined
via the fibre square,

T [r ] −−−−→
t[r ] X [r ]

⏐
⏐
�

⏐
⏐
�

T × X
t×idX−−−−→ X × X

(17)

of differentiable spaces, and we observe,

Fact/Definition 3.1 For any separated (albeit, Fact/Definition 3.2, this is pro tem-
pore and simply to avoid notational confusion by way of Fact/Definition 2.4.(e)),
differentiable manifold Y the Thom jets, Jr (X ,Y ), [10, 2.4], represent the functor on
X -differentiable spaces,

T /X �→ HomX (T [r ], X ×Y ) (18)

or, indeed, cf. (25), the functor (18) restricted to B provided the Hom set in (18) is
understood in differentiable spaces, and, in any case, the structure of T [r ] as a X -space
is given by the second projection in (17), so that (18) is equally,

T /X �→ Hom(T [r ],Y ) (19)

while the structure map (as an X -space) p : Jr (X ,Y ) → X is referred to as the source,
and the (universal) evaluation map q : Jr (X ,Y ) → Y as the sink. In particular the
Grothendieck jets, V((Pr

X )∨) → X , [4, 16.7], viewed (EGA convention of [3]) as a
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1220 M. McQuillan

vector bundle over X with sheaf of section Pr
X (rather than the infinitesimal space

X [r ], whence this is the sheaf dual to the sheaf of differential operators of order � −r )
are the Thom jets Jr (X , Ga).

Proof By definition, [10, p. 60], the fibre Jr (X ,Y )x of the Thom jets over a point x is
the equivalence class, [ f ], amongst local germs of maps f from a neighbourhood of
x to Y under the relation,

f ∼ g iff f ∗ = g∗ mod m(x)r+1. (20)

On the other hand if we have a map F : T [r ] → Y then there is no local obstruction
in lifting this to a map from X to Y . In particular, if t : T → X were a point x ∈ X
then there is a lifting of F to a germ f of a map from an open neighbourhood of x
to Y , and two such liftings define the same F iff they are related by (20). As such the
functor (18) and the Thom jets have the same closed points, while a general T -point is
just a smoothly varying family Ft of jets of order r which is precisely the (infinitely)
differentiable structure on Jr (X ,Y ) defined on [10, p. 61]. ��
From which it follows,

Fact/Definition 3.2 Let f : U → U ′, g : V → V ′ be maps in B, then there are natural
maps (more accurately natural transformations of functors)

f ∗ : U f ×U ′,p Jr (U
′, V ′) → Jr (U , V ′), resp.

g∗ : Jr (U ′, V ) → Vg×U ′,q Jr (U
′, V ′)

(21)

which are isomorphisms if f , resp. g, is étale. In particular if both f and g are étale
then we have a natural isomorphism,

( f ∗)−1×g∗ : Jr (U , V )
∼−→ (U ×V ) f ×g ×U ′×V ′,p×q Jr (U

′, V ′). (22)

Consequently if X = U/A, respectively Y = V /B, are B-manifolds in the sense of
(5) et seq. defined by relations with source and sink pi , respectively qi , i = 1 or 2,
then (22) defines a relation

Jr (A, B) ⇒ Jr (U , V ) (23)

with source (p∗
1)

−1×q1 and sink (p∗
2)

−1×q2 whose quotient (wholly compatibly
with Fact/Definition 3.1 via Yoneda) is by definition the Thom jets Jr (X ,Y ).

Proof That we have the maps (21) is just a diagram chase, while f ∗, resp. g∗, is an iso-
morphism because the thickening of the graph (17), resp. an infinitesimal deformation,
is unchanged by an étale map. ��
To profit from the formulation (18) observe that because their construction is étale
local then in a way which is both analogous and simpler the Grothendieck jets Pr

X
continue to have perfect sense for a differentiable champ X wholly irrespectively of
the fact that Example/Definition/Warning 2.8 prevents (16) et seq. from generalising
as stated. As such, if t : T → X is a map (from a space) then the r th thickening, T [r ]
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Orbifold transversality 1221

of (17), of the graph of t is given by a formula which does generalise, i.e. the ringed
space,

T [r ] ..= (T , t∗Pr
X ) (24)

which in turn renders evident,

Fact/Definition 3.3 IfX ,Y are differentiable champs (resp. separated) then for T [r ]
as in (24), Thom jets define a differentiable champ (resp. separated) Jr (X ,Y ) →
X ×Y , representing the 2-functor,

T /X �→ Hom(T [r ],Y ) ∈ Grpd, T ∈ B. (25)

More precisely if [U/A], resp. [V /B], are presentations of X , resp. Y , as classi-
fiers of étale groupoids in B-manifolds then X ×Y is equivalent to the classifier
[U ×V /A× B], while the sense of the Hom set in (25) is via the same 2-sheafication
procedure prior to (7), albeit with the caveat, cf. (18), that the basic Hom sets on man-
ifolds, e.g. (19), must be understood in differentiable spaces, so that just as in (23) the
natural fibred squares of maps,

Jr (A, B)
−−−→−−−−→ Jr (U , V )

⏐
⏐
�

⏐
⏐
�

A× B
−−−→−−−−→ U ×V

(26)

afforded by (21)–(22) define (top horizontals in (26)) an étale groupoid represent-
ing Jr (X ,Y ) mapping by the (jet) source and sink (verticals in (26) ) to X ×Y .
Ultimately therefore, Jr (X ,Y ) is the classifier of a groupoid in B-manifolds, cf.
Fact/Definition 3.1, which could have been defined in terms of charts and patching,
so the infinitesimal formulation (25) results from the conceptual simplification that it
affords.

Proof Since the isomorphisms (21) are actually natural transformations of functors
there’s nothing to do. ��
From which we have the tautology,

Definition 3.4 Let f : X → Y be a map then from the composition

f [r ] : X [r ] → X ×X
id× f−−−→ X ×Y

wherein the left hand side is understood as the classifying champ in differentiable
spaces (i.e. replace B in Revision 2.2 by differentiable spaces) of the groupoid (in
differentiable spaces with étale source and sink), implied by (24), i.e. X [r ] of (16) if
X were the separated manifold X of op. cit., then from the functorial definition (25),
there is a map, the r th jet,

jr ( f ) : X → Jr (X ,Y ) (27)
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such that the diagram,

X [r ] X ×Y

Jr (X ,Y )

jr ( f ) p×q

id× f

η

2-commutes by way of a unique natural transformation η.

In applying this in a relative fashion, i.e. just a smooth fibration Y → X rather than
a product Y ×X , there is need for caution. For example, in respect of our immediate
interest, vector bundles, an isomorphism between the two pull backs of X [2] ⇒ X
is a connection, which is necessarily non-canonical as soon as the bundle fails to be
locally constant. As such, the correct definition is,

Definition 3.5 Let ε : E → X be a vector bundle, and (p1, p2) : X [r ] → X the
projections, then the r th space of Thom jets, εr : Jr (E) → X , is the 2-functor,

(T
t−→ X ) �→ HomT [r ](T [r ], p∗

2E), T ∈ B, T [r ] as in (24), (28)

which is, in fact, a vector bundle overX . Indeed, if (cf. post (19) for our conventions)
we identify E with its sheaf of sections, i.e. E = V(E ∨), for a locally free sheaf E of
AX modules, then the right hand side of (28) is,

H0(T [r ], p∗
2E )

viewed as an AT module by way of p∗
1 , i.e. (p1)∗ p∗

2E , and V(((p1)∗ p∗
2E )∨) → X

(wherein duals don’t commute with push-forward) represents (28). In particular, for
any section, s, there is a tautological r -jet,

jr (s) ..= p∗
2s : X → Jr (E). (29)

Before proceeding let us make a clarifying,

Remark 3.6 Modulo duality issues in the notation, the Thom jetswith values in a vector
bundle of 3.5 are bundle valued Grothendieck jets. Indeed for E a quasi-coherent sheaf
the notation of [4, 16.7.2.1] is,

Pr
X (E ) ..= (p1)∗ p∗

2E

while the notation for the jet map of (29) is, op. cit. 16.7.5.1, drX ,E (s) or drX (s). As
such these definitions are not to be confused with E ⊗Pr

X , or equivalently (p1)∗ p∗
1E

the existence of a jet map for which, in the holomorphic case, is, already for r = 1,
globally obstructed by the Atiyah class.

The jets (27) and (29) may be related in the obvious way,
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Orbifold transversality 1223

Construction 3.7 Suppose a differentiable champY admits a Riemannian metric, e.g.,
but, cf. Fact/Definition 2.4.(d) & Example/Definition/Warning 2.8, certainly not nec-
essarily,Y separated [8, 5.4], then étale locally at a geometric point y : pt → Y there
is an exponential map expy : By → Y from a sufficiently small ball By ⊂ y∗TY ,
which is étale, but an embedding only if Y is a space at y. These glue together to a
map

TY ⊃ N −−−−→
exp

Y

p1

⏐
⏐
�

Y

(30)

for a sufficiently small neighbourhood, N , of the zero section. As such if f : X → Y
is given, then we equally have

f ∗TY ⊃ f ∗N −−−−→
exp

Y

p1

⏐
⏐
�

X

(31)

wherein, as we’ve already indicated, p1× exp always fails to be an embedding when
Y is not a space, although it’s always étale. In any case by way of the obvious variant,

Jr ( f
∗N ) = (T

t−→ X ) �→ HomT [r ](T [r ], p∗
2 f

∗TY )

of (28), combined with (25) and (31), we have a map,

jr (exp) : Jr ( f ∗N ) → Jr (X ,Y ). (32)

Similarly if a section, s, of f ∗TY takes values in f ∗N , then we not only have jr (s)
given by (29), but also jr (exp(s)) from (27), which, via another diagram chase, are
related by,

jr (exp(s)) = jr (exp) jr (s). (33)

The linearisation of the study of deformations of f implicit in (31) merits a definition
which isolates the key point,

Definition 3.8 Let f : X → Y be a map of differentiable champs then we say that
f admits an exponential if there is an open neighbourhood M of the zero section, [0],
of f ∗TY and a map,

f ∗TY ⊃ M −−−−→
exp

Y

p1

⏐
⏐
�

X

(34)

such that f = exp |[0] and p1× exp is étale.
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Now, as we’ve said, the existence of a Riemannian metric guarantees, Construction
3.7, the existence of an exponential in the strong form (30)–(31), but much more
generally,

Fact 3.9 Suppose a differentiable champ, Y , is the classifying champ, (7), of a
groupoid R ⇒ U with étale source and sink, U ∈ B and R a separated manifold
then any map f : X → Y from a separated manifold, Fact/Definition 2.4.(e), admits
an exponential.

Proof Since X is separated, there is a countable locally finite refinement,

V ..=
∐

α∈A

Vα

of the cover f −1U in which not just every Vα is an (embedded) open subset of X
diffeomorphic to R

n but so too is every finite intersection of the Vα’s. In particular,
therefore, we can identify f with a functor,

F : G ..= V ×X V =
∐

αβ

Vαβ (..= Vα ∩ Vβ) → R (35)

albeit we continue to use f for the map on objects. In any case let,

T0 ..=
∐

α

Tα

be an (eventually sufficiently small, whence variable) neighbourhood of the graph,

� f : V id× f−−−→ V ×U (36)

and T the connected components of the fibre,

G× R ←−−−− (s× t)−1(T0)

s×t

⏐
⏐
�

⏐
⏐
�

(V ×U )×(V ×U ) ←−−−− T0

(37)

which contain the graph �F of F of (35), where here, and elsewhere, we indiscrim-
inantly employ s, t for the source and sink of any groupoid that we may encounter,
then we assert,

Claim 3.10 If the neighbourhood T0 is sufficiently small then the source s, respectively
the sink t restricted to any connected component of T is injective.

Proof of Claim 3.10 Fix a compact set,

K =
∐

α

Kα ⊂⊂ Vα, (38)
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so, inter alia, all but finitely many Kα empty, then it will suffice to prove that all suffi-
ciently small neighbourhoods of � f (K ) satisfy the proposition. As such, suppose that
no neighbourhood of � f (K ) satisfies the proposition, then, without loss of generality
there are distinct sequences of arrows,

vn ×un
an×An−−−−→ v′

n ×u′
n, vn ×un

bn×Bn−−−−→ v′′
n ×u′′

n ∈ V ×U (39)

belonging to a connected component of Tn associated to a decreasing sequence of
neighbourhoods T0(n), collapsing to the graph of K , according to the recipe of (37)
et seq.. Now from the inclusions of connected open sets,

Va ←↩ Vαβ ↪→ Vβ

we have v′
n = v′′

n in (39), while, after sub-sequencing, vn , resp. v
′
n , converge to v, resp.

v′ in K . On the other hand X is separated, so an = bn converges to a ∈ G, and both
of U and R are separated so,

un → f (v), u′
n, u

′′
n → f (v′), An, Bn → F(a).

We can, however, take an open neighbourhood � 	 a×F(a) on which s is a homeo-
morphism, while for n 
 0,

vn ×un ∈ s(�), An, Bn ∈ �

so, contrary to hypothesis, An = Bn for n 
 0. ��
In a similar vein we further assert,

Claim 3.11 Suppose the conclusion of Claim 3.10 and for any α, β ∈ A, let Tαβ ↪→ T
be the connected component of the graph of Vαβ then it’s also a connected component
of the fibre,

G× R ←−−−− s−1s(Tαβ)

s

⏐
⏐
�

⏐
⏐
�

V ×U ←−−−− s(Tαβ)

(40)

Proof of Claim 3.11 Say xn ∈ Tαβ converge to x ′ in the fibre of (40), then s(xn) →
s(x ′). On the other hand, by definition, there is a x ∈ Tαβ such that s(x) = s(x ′),
so under the hypothesis of Claim 3.10 and since R is separated, xn → x , i.e. Tαβ is
closed in the fibre. ��
The final such assertion that we’ll require is,

Claim 3.12 Again let T0 satisfy the conclusion of Claim 3.10 then for any sufficiently
small neighbourhood T ′

0 of the graph of f , (36), with T ′ ↪→ G× R associated to T ′
0

according to the recipe of (37) et seq. the image under composition of the composable
arrows,

T ′
t ×s T

′ (41)

123



1226 M. McQuillan

is contained in T , i.e. neighbourhood of (37) et seq. associated to the given T0.

Proof of Claim 3.12 For each triple index the graph of the connected open Vαβγ =
Va ∩ Vβ ∩ Vγ affords a unique connected component,

Tαβγ ↪→ Tαβ t ×s Tβγ (42)

which, by connectedness, must certainly map to Tαγ . As such we need only take T ′
sufficiently small so that (41) is contained in the left hand side of (42). Similarly to the
proof ofClaim3.10,with K as in (38), suppose this is false for all open neighbourhoods
of K , then there is a triple of indices α, β, γ and composable arrows,

vn ×un
an×An−−−−→ v′

n ×u′
n

bn×Bn−−−−→ v′′
n ×u′′

n

with vn ×un , resp. v′
n ×u′

n , resp. v′′
n ×u′′

n , in increasingly small neighbourhoods of
Kα , Kβ , Kγ which fail to lie in Tαβγ . Now with much the same logic as the proof
of Claim 3.10, and modulo sub-sequencing: vn , resp. v′

n , resp. v′′
n converge to v,

resp. v′, resp. v′′, so from X separated, an , resp. bn , converges to a, resp. b, and,
whence, since R is separated, An , resp. Bn converges to F(a), resp. F(b), while
(a×F(a))×(b×F(b)) ∈ Tαβγ , which is absurd. ��
Now we can return to the proof of Fact 3.9. Plausibly T isn’t a groupoid, but it
contains a subset which is as soon as the conclusions of Claims 3.10–3.12 hold, to wit
if j : T → G is the projection, we have a sub-groupoid of G× R defined by,

TG ..= {

f ∈ T | T ∩ t−1(s( f )) � t−1(s( j f )),

and, T ∩ s−1(t( f )) � s−1(t( j f ))
}

.
(43)

Indeed if f ∈ TG then whenever Claim 3.11 holds the only arrows in T projecting to
identities in G are themselves identities in G× R, so, by definition, (43), TG contains
identities, while by the symmetry in (43) it also contains inverses. Finally if g, f ∈ TG
lying over a composition in Va×X Vβ ×X Vγ are composable then under the conclusion
of Claim 3.12 the result of the composition, although it may not belong to Tαγ , does
belong to a slightly larger open set on which the source is injective provided that Claim
3.10 holds too. On the other hand the unique—in the presence of Claim 3.10—arrow
in Tαγ which can be composed with f is already in TG by construction.

Possibly TG ↪→ T isn’t open, but the interior of a groupoid is a groupoid, and the
interior of TG contains the graph of the functor F , as will emerge in the proof of,

Claim 3.13 If T0 is sufficiently small, then the interior of TG is a separated groupoid.

Proof of Claim 3.13 Again fix a compact set K as in (38) in the proof of Claim 3.10,
and suppose that for a sequence of open neighbourhoods T n

0 collapsing to the graph
of K , with associated T n as in (37) et seq. resulting in T n

G defined by (43), that for
I n0 ↪→ T n

0 the objects of the interior there is a sequence of arrows gnm which converge to
gn ∈ I n0 × I n0 but not in the interior of T n

G as m → ∞. Consequently, sub-sequencing
in n, for each n we can take m(n) 
 0 such that the image of gnm(n) converge to a
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point in K ×K , and whence, since X is separated, their images j(gnm(n)) converge to
an arrow g ∈ G, so that, finally, gnm(n) converge to g×F(g). Now provided we chose
m(n) sufficiently large, this is equally the limit of the gn . It therefore remains to analyse
the structure of TG around g. To this end we can choose a sequence of neighbourhoods
Nn

α , resp. N
n
β , of the source, resp. the sink, of g which via the sink, resp. the source,

are isomorphic to some neighbourhood Nn
αβ 	 g in Vα × XVβ . Moreover, since the

cover V is locally finite, if an arrow gγα ∈ Vγ × XVα , resp. gβγ ∈ Vβ × XVγ , can be
composed with g then there is an inverse, t−1, of the sink, resp. s−1 of the source, over
Nn

α , resp. N
n
β . Similarly we can suppose that �γα , resp. �αβ , resp. �βγ , is an open

neighbourhood of F(gγα), resp. F(g), resp. F(gβγ ) around which the source and sink
of R are homeomorphisms, and t−1Nα ⊆ F−1(�γα), resp. s−1Nα ⊆ F−1(�αβ), resp.
t−1Nβ ⊆ F−1(�αβ), resp. s−1Nβ ⊆ F−1(�βγ ). It therefore follows that, without
loss of generality, Nn

α ×s(�αβ), resp. Nn
β × t(�αβ) are open neighbourhoods of the

source, resp. sink, of g in I n0 which via the source, resp. the sink, are isomorphic to
Nn

αβ ×�αβ . In particular, if gnm converge, m → ∞, in I n0 × I n0 then they converge in
Nn

αβ ×�αβ . ��

Now we can complete the proof in the obvious way. Specifically choose T suffi-
ciently small that (3.13) holds, so that in the notation of the proof of op. cit. we have
a separated groupoid,

int(TG) ⇒ I0 ↪→ T0. (44)

As such the classifier of (44) is a separated manifold, M , which by construction is an
open sub-groupoid of G× R containing the graph of F , so we get maps,

M −−−−→
e

Y

p
⏐
⏐
�

X

together with a section σ of p such that eσ = f and p×e is étale. To conclude,
therefore, we need only observe that by construction, the normal bundle to σ(X) is
isomorphic to f ∗TY . ��

The most useful applications of transversality are to multi-jets, which is a minor
variation, i.e.

Definition 3.14 Let X be a differentiable champ and m ∈ Z>0, then we denote by
X (m) the complement in X m of the image of all diagonals, be they big or small,
which, as we’ve already seen, (15), is a bit bigger than one might think, i.e. for the
classifier [U/G] of a group action, [U/G](2) is locally in U 2 the complement of all
of {(u, ug) : g ∈ G}. In any case j : X (m) → X m is an open embedding, and for Y
another differentiable champ we define,

Jmr (X ,Y ) ..= Jr (X ,Y )m ×X m X (m), r ∈ Z � 0.
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Similarly if E → X is a vector bundle, and Ei → X (m) is the pull-back along the
inclusion j followed by the projection to the i th-factor,

Jmr (E) ..= Jr

(
∐

1� i �m

Ei

)

.

4 Transversality

To apply this to transversality via finite dimensional linear algebra we need the well
known,

Lemma 4.1 Let U ⊆ X be a relatively compact open subset of a separated manifold
X, and E → X a vector bundle on the same, then there is a finite dimensional vector
space V ⊂ H0(U , E) of sections which separate (m, r) multi-jets over U, i.e.

V →
∏

1� i �m

E/m(xi )
(r+1), is surjective ∀x = (xi ) ∈ U (m), (45)

where U (m) is as per Definition 3.14.

Proof We can suppose thatU is covered by finitely many open setsUα � R
n . Further-

more if E were functions on R
n then the proposition is true for a space of polynomials

of sufficiently large degree since any coherent sheaf on a projective space is generated
by sections after twisting by a sufficiently large power of the tautological bundle, and
we can reduce the general case to this case since by way of appropriate bump func-
tions the evaluation maps in (45) can be considered independently overUmα(x)

α , where
mα(x) is the number of xi contained in Uα . ��
The generalisation of this to champ is, in a sense unsatisfactory, but at the same time
it’s best possible, to wit:

Lemma 4.2 Let U ⊆ X be a relatively compact open subset of a differentiable
separated champ X , and E → X a vector bundle on the same, then there is a finite
dimensional vector space V ⊂ H0(U , E) of sections which separate (m, r)multi-jets
over U quantum potest, i.e.

V →
∏

1� i �m

(E/m(xi )
(r+1))Axi , is surjective ∀x = (xi ) ∈ U (m) (46)

where Ax = AutX (x) is the local monodromy of a point.

Proof As before we coverU by finitelymany things that we understand, i.e. classifiers
[Uα/Gα] of finite group actions where Uα � R

n and Gα ⊂ GL(n, R) acts linearly.
In particular there is an embedding [Uα/Gα] ↪→ [Pn

R
/Ga] in a projective algebraic

champ, P . Now ample bundles, H , on projective champ in characteristic zero need
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not separate jets, but they are co-homologically ample, i.e. for every coherent sheaf
F ,

Hq(P,F ⊗Hn) = 0, ∀n 
 0, q > 0

which implies (46) for [Rn/Gα], while partitions of unity exist, [8, 3.9], so we may
conclude exactly as in Lemma 4.1. ��

The relevance of this is,

Fact 4.3 If V is a finite dimensional vector space of sections of a vector bundle E on
a differentiable champX which separates (m, r) multi-jets then the evaluation map,

e : V ×X (m) → Jmr (E) : s �→ jr (s)
m (47)

is smooth, 0.5.

Proof By construction, (29), e of (47) is just a map of vector bundles, and the surjec-
tivity condition (45) guarantees that the sheaf kernel of (47) is in fact an injection of
vector bundles, which is what we need for a submersion. ��

Before proceeding to some transversality statements it remains to address the possi-
bility that X is non-compact by way of the following set up, which may be ignored
at a first reading.

Set Up 4.4 Let Un ⊆ Un+1 ⊆ X be an exhaustion of a separable and separated
differential champ X by an ascending chain of countably many relatively compact
opens. As such if E → X is a vector bundle then we may suppose,

(a) ∃ Vn ⊂ H0(Un, E), a finite dimensional vector space satisfying (46) over Un .
(b) The image under restriction of Vn+1 is exactly Vn .

Indeed if ρ is identically 1 on Un with compact support in a slightly bigger open U ′
n

over which the Vn still satisfies (46) then we need to find a finite dimensional space
of section W of some slightly bigger U ′

n+1 ⊃ Un+1 such that sections of the form,

(1 − ρ)w + ρv, w ∈ W , v ∈ Vn (48)

satisfy (46) over Un+1. The condition is however open in (U ′
n+1)

m , so if we couldn’t
do (b) it would be because there would be a point where (46) failed for every finite
dimensional W which by the finite dimensionality of the right hand side of (46) and
the existence of partitions of unity is absurd. This said observe that the sheaf condition
gives a natural embedding,

lim←−
n

Vn ↪→ H0(X , E)
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and we’re interested in properties Pn(x, s) of s ∈ Kn ⊂ Vn at x ∈ Un where Kn+1 �
Kn is a surjective chain of compacts such that,

(1)Pn(x, s) ⇒ Pl(x, s|Ul ) whenever x ∈ Ul , l �n.

(2) The set Zn
..= {s ∈ Kn | Pn(x, s) fails ∀x ∈ Un} has zero Lebesgue measure.

Now K = lim←−n
Kn is compact, so after appropriate scaling of Lebesguemeasure on the

kernel of Vn+1 → Vn we can suppose K is a probability space, while if pn : K → Zn

is the projection then p−1
n (Zn) has zero measure, and whence

K\
⋃

n

p−1
n (Zn)

has measure 1.
In practice E will be the pull-back of the tangent bundle from another differentiable

champ, and the definition of Kn will be the closure of,

K ′
n

..= {s ∈ Vn : s factors through M in (34)}. (49)

Plainly we’re free to suppose that the fibres of M (via the first projection in (34)) are
compact balls, so the Kn are certainly compact, albeit one might express a doubt as
to whether Kn+1 → Kn is surjective. However, from (48) there are extensions of any
section in Kn to Un+1 which are as small as we need.

Now the easiest way to distinguish the wood from the trees in Proposition 1.1, is
to first restrict attention to finite dimensional deformation spaces or limits thereof, via
Lemma 4.1 and the Set Up 4.4, to wit:

Proposition 4.5 Let f : X → Y be a map from a separated manifold to a differen-
tiable champ admitting an exponential map, Definition 3.8, from a neighbourhood of
the zero section of the pull-back of the tangent space, and m ∈ Z>0, r ∈ Z � 0 then
there is a compact probability space, K , of deformations of f (in fact just a ball in
a space of sections separating m, r multi-jets of f ∗TY if X is compact, or even just
finite type, and as per the Set Up 4.4 otherwise) such that ifZ → Jmr (X ,Y ) is a rep-
resentable separated net map from a (smooth) differentiable champ of co-dimension
q to the space of multi-jets, Sect. 3, enjoying a property (P) stable under base change,
then for almost all g ∈ K, the left hand vertical of the fibre square,

Zg −−−−→ Z
⏐
⏐
�

⏐
⏐
�

X (m)
jmr (g)−−−−→ Jmr (X ,Y )

(50)

is empty or a net map enjoying property (P) from a separated manifold, whence, in
particular, empty if q exceeds the dimension of X.
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Proof We do the case X compact since the Set Up 4.4 has been constructed so that
the general case just goes through mutatis mutandis. In any case by (32) and (33) we
can replaceZ by its fibre under jmr (exp), i.e. for M the domain of the exponential of
Definition 3.8, we have a diagram, of fibre squares,

Zg −−−−→ Z −−−−→ Z ′ −−−−→ Z
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

X (m)
g×idX(m)−−−−−→ K ′ × X (m) eK−−−−→ Mm jmr (exp)−−−−→ Jmr (X ,Y )

(51)

where, K ′ ⊂ K is as per (49) and whence evaluation factors through the domain of the
exponential. As such if the property (P) is stable under base change, all the verticals
in (51) have property (P). Furthermore the lower rightmost horizontals are, from the
right, étale, resp. smooth, whence idem for the top two so Z is certainly a differentiable
champ. By hypothesis, however, the rightmost vertical is also representable so Z is
a manifold. Our definitions, (7), however allow this to be understood in the broadest
sense, so, a priori, manifold here only means B-manifold. Nevertheless the rightmost
vertical in (51) is net, so there is a presentation in B,

R ⇒ U =
∐

α∈A

Uα

such that for every α, the aforesaid arrow maps Uα diffeomorphically to its image in
K ′ × X (m). Consequently, by the universal property ofU → (U/R)Top, its restriction
to Uα is a homeomorphism onto its image. Thus Z is a manifold in the text book
sense which is separated as soon as the right vertical of (51) is, since this ensures that
its fibres over the separated space K ′ × X (m) are, themselves, separated. Better the
projection,

Z → K ′

is a map of infinitely differentiable separated manifolds, so by Sard’s theorem almost
every fibre is smooth, but the fibre over g ∈ K ′ is exactly the pre-image of Z under
(50), which preserves the codimension by a special case of the 9-lemma, cf. (53). ��
Before adding the infinite dimensional gloss via Smale’s variant of Sard’s theorem,
let us observe,

Remark 4.6 The intervention of Sard’s theorem is the only point where we’re using
that the right vertical in (50) is separated. Equally, although Sard’s theorem is false
for non-separated manifolds, even those in the text book sense, it requires something
ridiculous for it to fail. Specifically, one could start from a holomorphic degeneration
X → � of a Riemann surface � parametrised by the disc with singular fibre a nodal
curve, then slice along an interval I ↪→ � through the origin 0 to get a 3-manifold
M → I whose fibre over I\{0} is a product with �. As such, for any j in another
interval J one can glue M to �× J by identifying I\{0} and J\{ j} to get a non-
separated manifold with a singular fibre over j , then just repeat this for j in a set of
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positive measure to get a counter example to Sard’s theorem. On the other hand, since
Sard’s theorem is locally true, this is also a typical counterexample, so the degree
of pathology required to make counterexamples is well beyond anything one might
meet in practice as explained in Definition 2.6, i.e. representable maps in separated
manifolds are a fortiori separated.

This said, let’s address the intervention of Smale’s variant of Sard, by way of,

Scholion 4.7 In the first place say X compact, to facilitate the initial discussion, then K
in Proposition 4.5 is a residual (countable intersection of open dense sets) subset of a
ball in any finite dimensional subspace, V , of H0(X , f ∗TY ) separatingm, r multi-jets
since the set of critical points is both of measure zero and a countable union of closed
sets. The residual statement is Smale’s formulation, [16, 1.3], of Sard’s theorem and
it allows the proof to work for any closed subspace V of H0(X , f ∗TY ), in the usual
(i.e. bounded C p-norm, p any, on compact sets) Fréchet space structure of infinitely
differentiable sections of bundles, separating m, r multi-jets. Indeed the only point of
caution is that things here are Fréchet rather than Banach, and while there are very
general theorems extending Smale from Banach to Fréchet, the situation here is so
simple that it’s just a diagram chase to check that Smale’s argument, [16, 1.5 et seq.],
works. Specifically we put ourselves at a point z = (v, x) ∈ Z , in the top, 2nd from
the left entry in (51), but with K ′ now an open neighbourhood in the possibly infinite
dimension space V , and, of course, the evaluation e (middle horizontal) is still smooth
by our multi-jet hypothesis. Now, the discussion is local about z and,

(a) We apply the finite dimensional implicit function theorem to the second vertical
from the right in (51) so as to suppose that it’s an inclusion of open neighbourhoods
of zero in finite dimensional vector spaces. In particular we identify the inclusion
{x} ↪→ X (m) with that of the origin in a finite dimensional vector space.

(b) Since it’s a fibre of a finite dimensional map, [9], it’s also true that Z around
z is isomorphic to an open neighbourhood of a closed linear subspace of V × X (m)

of finite co-dimension, or, better for our purposes, a quotient by a finite dimensional
subspace, cf. (52).

(c) The key point, (54), involves some choices, so it’s useful to make the isomor-
phism in (b) as clean as possible. The relevant diagram of tangent spaces at z is given
by (53) wherein T , Q, S,C are defined by the diagram. In particular a convenient
choice for the isomorphism (b) is to choose a section ν of the quotient in the middle
row of (53) so as to get a composition,

Z ↪→ V × X (m) p−→ V × X (m)/ν( f ∗NZ /Y ) (52)

in which the quotient p is understood according to the linearisation (a) of X (m).
(d) The section ν can be chosen to be compatible with the splitting in the middle

row of (53), i.e. a section of the rightmost entry of the bottom row equally gives a
splitting of the rightmost column, so a further choice of a section splitting the top row
gives identifications,

V × X (m) ∼−−→
(

S
∐

C
)

×
(

T
∐

Q
)

, and, Z = {(s, c(s, t))× (t, q(s, t))}
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for some infinitely differentiable functions c and q.

0 0 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ T −−−−→ TX (m) −−−−→ Q −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ TZ −−−−→ TV ×TX (m) −−−−→ f ∗NZ /Y −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ S −−−−→ TV −−−−→ C −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 0 0

(53)

(e) Finally therefore we get a commutative diagram,

Z
∼−−−−→ open subset ⊆ S×T

⏐
⏐
�

⏐
⏐
�idS×c(s,t)

V
∼−−−−→ S×C

(54)

with C, T finite dimensional, which is the key point, [16, proof of 1.3], in Smale’s
reduction of his infinite dimensional Sard theorem to the finite dimensional one.

As such, for X compact Proposition 4.5 is true as stated for

Extra Fact 4.8 K a residual subset of an open neighbourhood of the origin in a closed
subspace of H0(X , f ∗TY ) separating m, r multi-jets.

In the case that X isn’t compact then the only real change is that we can’t use the usual
Fréchet topology on H0(X , f ∗TY ). More specifically if say the vector spaces Vn in
Set Up 4.4 were now the image of global sections in H0(Un, f ∗TY ) and we define K ′

n
as in (49), then the pre-image of each K ′

n in H
0(X , f ∗TY ) is as near to an open K ′′

n (i.e.
same condition as (49) but on the closure of Un) as makes no difference. Ultimately,
however, we’ll need global sections which lie in every K ′′

n , and their intersection may
well fail to be open. Fortunately, the problem is no worse than this, while the only
functional analysis we used in (a)–(e) was the implicit function theorem for maps to
finite dimensional spaces, which is true, [9], even for locally convex spaces so all we
need to do is to take,

Set Up 4.9 The coarsest locally convex topology on H0(X , f ∗TY ) containing the
usual Fréchet topology in which the intersection of the pre-images of all of the above
K ′′
n is open.

Now (a)–(e) apply as stated but with the topology of Set Up 4.9, so that for X any
separated manifold,

123



1234 M. McQuillan

Extra Fact 4.10 For any closed subspace, V , of H0(X , f ∗TY ) in the topology of the
Set Up 4.9 which separates m, r multi-jets Proposition 4.5 is true for a space of
deformations parametrised by a residual subset of an open neighbourhood of the
origin in V .

Equally it can be possible to use Lemma 4.2, in the finite dimensional context, or
more generally, Extra Fact 4.10, and get results for maps from orbifolds, or, more
generally, separated champs. Invariably, however, such results are more ad hoc, e.g.,

Remark 4.11 If the domain of f in Proposition 4.5 is a differentiable separated champ
rather than a separated manifold then transversality valeat quantum potest valere, i.e.
as much as the difference between (45) and (46) allows. Specifically if the action of
the local monodromy on the right hand side of (46) is non-trivial then Fact 4.3 fails, so
eK in (51) won’t be smooth, and the entry Z in op. cit. will fail to be a differentiable
champ. The failure here is, however, far from catastrophic, and for best results one
should eschew the use of Sard’s theorem, cf. [2]. For example to do the case of Morse
functions without effort observe that if μ : X → X is the moduli, Fact/Definition
2.7, of a differentiable separated champ then for n ∈ Z � 0 the set

Xn = {x ∈ X | card(Ax )�n}, Ax
..= AutX (x).

is closed, and the pre-image, Zn , of Zn
..= Xn\Xn+1 is a differentiable champ while

Zn itself is a manifold. In particular therefore, for z ∈ Zn there is an exact sequence

0 → TZn (z) → TX (z) → NZn/X (z) → 0 (55)

Now for convenience we again supposeX compact (and otherwise as per Set Up 4.4)
so we can take a finite dimensional space V of functions separating 2-jets in quantum
potest, i.e. (46) is valid. As such the conditions,

Fn ..= {( f , z) | d f |TZ n (z) = 0} ↪→ V ×Zn

define a sub-bundle of the restriction of V to Zn of co-dimension over a connected
component of Zn the dimension of the same. In consequence the dimension of Fn is
that of V and it may well surject onto the latter. On the other hand if ( f , z) ∈ Fn then
since the representation of the local monodromy on the normal bundle in (55) has no
fixed vectors, d f vanishes on all of TX (z) so there is a well defined Hessian,

H f (z) : m(z)/m(z)2×m(z)/m(z)2 → R

and we may consider
En

..= {( f , z) | H f (z) = 0} ↪→ Fn (56)

which is itself a sub-bundle since V satisfies (46) and the local monodromy represen-
tations are linearisable. Finally observe that at every point z ∈ Zn , there is a strict
inclusion

En(z) ⊂ Fn(z)
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of the fibres of (56) over z, since, inter alia, there are, locally about z, invariant squared
distance functions associated to Az invariant metrics. Consequently for every n�0 the
dimension of the bundles En of (56) is at most 1 less than the dimension of V , i.e. the
set of f ∈ V which have degenerate critical values on Zn for some n is not only of
measure 0 but the image of finitely (or countable if we hadn’t supposed compactness)
many differentiable maps from manifolds of strictly smaller dimension.

A Guide to the examples

We begin by expanding on the introduction, to wit,

Fact A.1 Let L
π−→ [�/μn] be a holomorphic line bundle over a disc with a non-

orbifold point of order n defined by a character χ , i.e. μn acts on � by a rotation of
order n, and, on (canonically) identifying χ with a ∈ Z/n, L is the classifier of the
diagonal action,

Ga ×� : (e, z) �→ (θae, θ z) θ ∈ μn,

then for any m ∈ Z>0, and any infinitely differentiable section s : [�/μn] → L⊕m

the pre-image of the ideal of (differentiable) functions vanishing on the zero section
is contained in the ideal,

(

zi z̄ j | j = i + a (n)
)

, i, j ∈ Z � 0. (57)

Proof The ideal (57) contains all asymptotically flat functions, i.e. those with trivial
Taylor expansion. As such it is sufficient to prove the statement after completing in
the origin, i.e. modulo flat functions. Consequently we can identify s with an m-tuple
of Taylor series,

( f1, . . . , fm) ∈ C[[z, z̄]]⊕m

which is invariant for the action of μn , i.e. for all 1� k �m,

( fk · e)θ = fk · e, which is iff θa fk(θ z, θ
−1 z̄) = fk(z, z̄).

Thus each fk , 1� k �m actually belongs to the ring,

C[[zi z̄ j | j = i + a (n)]] ⊂ C[[z, z̄]] (58)

while the ideal in question is that generated by the fk so (57) follows a fortiori from
(58). ��

Next, in order to distinguish the general from the particular it’s best to expand the
example of the B-manifold R/Q of Fact/Definition 2.4.(d) to any discrete group �

acting faithfully by translations on R, and to this end we’ll need,
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Lemma A.2 Suppose � acts faithfully on R by translations, and for ε > 0 let �ε be
the subgroup generated by elements of modulus at most ε then,

�ε =
{

0 if �
∼−→ Z, and ε is sufficiently small,

� otherwise.
(59)

Proof Suppose there exists β ∈ �\�ε , then,

�′ ..= {γ ∈ � | nγ ∈ Zβ, 0 �= n ∈ Z}

must be generated by some β/n, so, without loss of generality �′ = Zβ. On the other
hand �/�′ is torsion free, so, either its zero, and we’re done, or there is a rank 2
submodule of � containing �′, so it’ll suffice to prove the lemma for � = Z

2. Now by
Dirichlet’s application of the pigeon hole principle, �ε has rank 2, and is dense in R,
so there is a γ ∈ �ε such that,

|β − γ | < ε

so, a fortiori, β − γ ∈ �ε . ��
Now the failure, Fact/Definition 2.4.(d), of R/Q to be a manifold in the text book

sense, equally extends to R/� for any non-trivial group of translations other than Z

due to the crude intervention of point set topology in Fact/Definition 2.4.(a), which in
the first instance manifests itself by,

Lemma A.3 Suppose a discrete group � acts freely on a topological space U then
h : U → (U/�)Top is a local homeomorphism iff it’s a �-torsor, i.e. every point in
the quotient has a neighbourhood, V , whose fibre is topologically V ×�.

Proof Sufficiency is clear. Conversely choose a point u ∈ U above a given point in
the quotient, then there is an open neighbourhood V 	 u such that h|V is a homeo-
morphism. In particular, h|V is a set theoretic injection, so, for γ ∈ �

V ∩ V γ =
{

V , γ = id�,

∅, otherwise.

Thus the open subset
⋃

γ∈� V γ is both homeomorphic to h(V )×� and the fibre over
h(V ). ��
while in the case in point this is hopelessly false, to wit:

Fact A.4 For a discrete group � acting on R by translations the fundamental group of
the topological quotient (R/�)Top is, in the notation of (59), �/�ε , i.e. if � �= Z, any
torsor under a discrete groupG is trivial; whereas isomorphism classes ofG torsors on
the B-manifold R/� (or even the TopÉt sheaf R/�) are classified by the cohomology
set,

H1(�,G) ..= HomGrp(�,G)/{φ ∼ ψ | ∃g ∈ G, ψ = gφg−1} (60)
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and, indeed, R → R/� is the universal cover, i.e. if E → R/� is any connected
G-torsor, then G is a quotient of � by some sub-group �′, and E is the B manifold
R/�′ with �′ acting by translations.

Proof Let E → (R/�)Top be a right G-torsor, and consider the diagram of fibred
squares,

E ←−−−− E1 ←−−−− E2
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

(R/�)Top ←−−−− R

t←−−−←−−−−
s

R

(61)

where R is as in (9), i.e. the subset {(x, xγ ) | γ ∈ �} of R
2 in the induced topology

with s, t the projections. Now, E1 is the trivial G-torsor, thus we may choose a section
σ , which, in turn affords sections s∗σ and t∗σ of E2 over R. In particular for each
f ∈ R there is a unique T f ∈ G such that,

s∗σ( f ) = t∗σ( f )T f (62)

and since E2 → R is a G-torsor, the assignment T : f �→ T f is a continuous map of
R to G. Consequently, for γ ∈ �, the restriction,

Tγ
..= A∗

γ T , Aγ : R ↪→ R : x �→ (x, x + γ )

is constant, while Aβ Aγ = Aβ+γ , so from the uniqueness in (62),

TβTγ = Tβ+γ , (63)

and T0 = idG . However, T is continuous, so the set where it takes the value idG must
contain a ball, so, a fortiori, there is ε > 0 such that,

Tγ = idG, |γ | < ε (64)

and, by Lemma A.2, any such set generates � if � �= Z, so, in fact T = idG whenever
� �= Z.

This proves that the equivalence relation E2 ⇒ E1 afforded by the fibres in (61) is
(isomorphic) to the relation,

R×G ⇒ R×G : x×g ∼ (x + γ )×g, γ ∈ �

so, indeed, E is trivial. At the same time, one plainly sees that the cause of this
conclusion, (64), was the choice of topology on R, which is, of course, forced as soon
as one (needlessly) insists that R/� should be understood as a topological space.
If, however, we understand R/� as a B-manifold then for the same E1 in (57), the
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definition of a B-manifold, Revision 2.2, implies that although E2 in (57) remains the
same set, R, its topology is that of the co-product,

∐

γ

R×γ.

As such, (64) fails, but all of (62)-(63) are valid, and whence E2 ⇒ E1 is the relation,

R×G ⇒ R×G : x×g ∼ (x + γ )×Tγ ·g, γ ∈ � (65)

afforded by the diagonal action of the homomorphism defined by T of (63). It therefore
remains to observe the salient features of the definition of a B-manifold, to wit:

(a) The quotient of R×G by (65) is the B-manifold R×G/� for the diagonal
action of �.

(b) R×G/� → R/� is certainly a G-torsor because its fibre over R → R/� is
R×G, cf. Definition 2.6.

(c) There remains the question of when torsors defined by T ′, T ′′ in (65) are iso-
morphic, which by construction in (61) amounts to a G-map between two different
relations, i.e. a map φ : R → G such that,

T ′s∗φ = t∗φT ′′

and since any such φ must be constant, this is exactly (60).
(d) Finally let �′ be the kernel of T and G ′′ the image of T in G, then (65) defines

a relation on any left coset R×gG ′′, each of which is isomorphic to the same relation
on R×G ′′, so, as a B-manifold, E is a direct sum of G ′′-torsors indexed by G/G ′′.
Thus connectedness implies G = G ′′, while conversely, slicing

�×(R×G ′′) ⇒ R×G ′′

alongR× idG ′′ shows that it’s equivalent toR/�′, which is certainly connected because
R is. ��
At this juncture, it should be clear that the properties of theB-manifoldR/� are, as they
should be, exactly the �-equivariant properties of R, which, in turn, have absolutely
nothing to do with (R/�)Top unless �

∼−→ Z. Thus an instructive complement to Fact
A.4 is provided by,

Definition A.5 Let X be a B-manifold, or, more generally, a differentiable champ, of
dimension n then the De Rham cohomology, H•

DR(X), of X is the hyper-cohomology
of the complex,

A 0
X

d−→ A 1
X

d−→ · · · d−→ A n−1
X

d−→ A n
X (66)

where A p is the sheaf of differential p-forms, which is actually a sheaf on B Ét,
Definition 2.1, so a fortiori on X . In particular, (66) is quasi-isomorphic to the locally
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constant sheaf R, and whence there is a spectral sequence,

Ep,q
1 = Hq(X ,A p) ⇒ Hp+q

DR (X)
∼−−→ Hp+q(X , R). (67)

Now, since there are several things to observe, let’s gather them together in,

Scholion A.6 Evidently, this is not the usual definition of De Rham cohomology on
manifolds in the text book sense, to wit the cohomology of,

H0(X ,A 0
X )

d−→ H0(X ,A 1
X )

d−→ · · · d−→ H0(X ,A n−1
X )

d−→ H0(X ,A n
X ) (68)

but this is a mistake already on a non-separated manifold in the text book sense,
because it uses that (67) doesn’t just degenerate at E2 on separated manifolds, but
even satisfies,

Ep,q
1 = 0 if q > 0,

which is a consequence of the fact that separated manifolds admit partitions of unity,
andwhenceA 0-modules are acyclic. TheB-manifold, ormore generally differentiable
champ, situation is, however, more delicate. Specifically if a discrete group � acts on
a separated manifold, U , then a sheaf F on [U/�] is a sheaf on U with �-action,
and nowhere does the Höschild–Serre spectral sequence need thatU → (U/�)Top is
a local homeomorphism, so there is a spectral sequence,

Fp,q
2 = Hp(�,Hq(U ,F )) ⇒ Hp+q([U/�],F ).

Thus, if we further supposeU not just separated but also contractible, (67), simplifies
to,

Ep,q
1 = Hq(�,H0(U ,A

p
U )) ⇒ Hp+q

DR ([U/�]) = Hp+q(�, R). (69)

On the other hand if we put ourselves in the situation of Fact A.4, i.e. U = R and �

a group of translations, then (67) degenerates at E2 for dimension reasons, so (69) is
just the long exact sequence of � co-homology associated to the short exact sequence
of �-modules,

0 → R → H0(R,A 0
R )

d−→ H0(R,A 1
R ) → 0. (70)

Now if � �= Z, the only invariant functions are the constants, and the only invariant
differential is the derivative of the identity, so the long exact sequence associated to
(70) starts,

0 → R
=−−→ R

d=0−−−→ R
δ−→ Hom(�, R) → E0,1∞ = E0,1

2 → 0. (71)

We may therefore draw the following negative conclusions,
(a) The complex (68) does not, in general, compute H•

DR(R/�).

(b) Indeed E0,1∞ �= 0 in the spectral sequence (69) as soon as � has rational rank at
least 2, i.e. H1

DR(R/�) can be arbitrarily bigger than the space of closed differential
forms.
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(c) Consequently, R/�, can have non-trivial Ga-torsors, and,A 0-modules needn’t
be acyclic, e.g. whenever E0,1

2 = E0,1∞ �= 0.
On the positive side, albeit somewhat specific to the translation action, since in

general E1,0
2 = 0 in (69), one recovers the B-manifold from the aforesaid spec-

tral sequence since the image of the differential of the identity under the connecting
homomorphism δ in (71) is the inclusion of � by its action on 0.

Turning to how the main theorem, Proposition 1.1, applies to the examples of non-
separatedmanifolds and proper orbifolds encountered in Example/Definition/Warning
2.8 let us first recall,

Revision A.7 If Y is a manifold in the text book sense, then the diagonal � : Y →
Y ×Y is an embedded sub-manifold, i.e.� is a set embedding which is homeomorphic
to its image, albeit Y is separated iff � is also closed.

Proof The above definition of embedding is étale local, Definition 2.6, while from
the definition of manifold in the text book sense, Fact/Definition 2.4.(a), M admits a
presentation,

R ⇒ U =
∐

α∈A

Uα

where everyUα → (U/R)Top = Y is a homeomorphism onto its image. Now, plainly,
the diagonal is always a set embedding, so, what has to be checked is that for all
α, β ∈ A, the topology on Uα ∩ Uβ is that induced by its inclusion into the product
topology on Uα ×Uβ , which it is. ��
In particular, therefore, as a complement to the first example, (14), in Exam-
ple/Definition/Warning 2.8,

Example A.8 Let Y be a q-dimensional manifold in the text book sense, with f : X →
Y a map from a separated manifold then for almost any deformation g, i.e. belonging
to the residual subset of Proposition 1.1, the fibre,

Zg −−−−→ Y
⏐
⏐
�

⏐
⏐
��

X (2) g×g−−−−→ Y ×Y

is empty or an embedded sub-manifold in the sense of Revision A.7 of co-dimension
q, and, should Y be separated then it’s also closed.

Proof The diagonal map of a manifold in the text book sense, even a non-separated
one, is separated, so we apply Proposition 1.1, with r = 0, m = 2, and (P) the étale
local property: embedding in the sense of Revision A.7. ��
Now, the same example again, but this time as a complement to (15),
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Example A.9 LetY be a q-dimensional differentiable champ with separated diagonal,
e.g. the classifier [Y/�] of a discrete group action on a possibly non-separated man-
ifold in the text book sense, with f : X → Y a map from a separated manifold, then
for almost all deformations g of f , the fibre,

Zg −−−−→ Y

D

⏐
⏐
�

⏐
⏐
��

X (2) g×g−−−−→ Y ×Y

(72)

is either empty or a net map from a separated manifold of co-dimension q. Moreover
if, the diagonal of Y is proper, i.e. Y is separated, Example/Definition/Warning 2.8,
so, for example, the classifier [Y/G] of a finite group action on a separated manifold,
then D in (72) is proper.

Proof By definition, (7), Y is the classifier of an étale groupoid, so the diagonal is
always representable and net, while proper, is an an étale local property so we can
apply Proposition 1.1. ��
All of which may be wholly satisfactory for finite group actions, but it doesn’t cover
what should be a good case such as R/Q, or, more generally, Example 1.3, discrete
group actions on separated manifolds, to this end, let us introduce a topological variant
of the valuative criteria of properness that one encounters in algebraic geometry, to
wit:

Definition A.10 Let I ∗ be the semi-open interval [0, 1) and I the closed interval [0, 1],
then a continuous map f : X → Y of topological spaces is said to be path separated
if given a commutative diagram,

I ∗ −−−−→
x∗ X

⏐
⏐
�

⏐
⏐
� f

I
y−−−−→ Y

and maps a, b : I → X whose restriction to I ∗ is x∗, then a = b. Similarly, f is path
proper if it is path separated, and there exists x : I → X whose restriction to I ∗ is x∗.
In order to fix ideas, let us make,

Remark A.11 Plainly separated, resp. proper, implies path separated, resp. proper, but
the converse is certainly false, e.g. for � a discrete group acting on a separated space,

Y ×� → Y ×Y : (y, γ ) �→ (y, yγ )

is path proper, and, although it’s a separated map, it may well fail to be proper, e.g.
R/Q.

At the same time, under mild hypothesis separation and path separation of manifolds
in the text book sense are the same thing, for example:
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Fact A.12 A topological space, X , is path separated, i.e. X → pt is path separated, iff
its diagonal is path proper. Similarly if X is a path separated first countable, locally
path connected topological space for which around any two points x , y, there are
decreasing sequences of open neighbourhoods,

U0 ⊃ U1 ⊃ · · · ⊃ Un 	 x
⋂

n Un = x, n ∈ Z>0,

V0 ⊃ V1 ⊃ · · · ⊃ Vn 	 y
⋂

n Vn = y, n ∈ Z>0

affording a basis of the topology around x , and y such that for anyn ∈ Z>0,π0(Un∩Vn)
is finite, then X is separated.

Proof The first part is just the definitions. As to the second suppose a sequence zm
limits on both x , and y, then after subsequencing and re-indexing as necessary we
can suppose that form �n, every zm is contained in the same connected component of
Un ∩Vn . Consequently, there is a path γn from zn to zn+1 wholly contained inUn ∩Vn ,
and we can build a path,

I ∗ z−→ X : z1 γ1−−→ z2
γ2−−→ · · · etc.

which limits on both x , and y so, by our path separation hypothesis, x = y. ��
Consequently we have a reasonable, and more flexible, alternative to proper to which
we can apply the main theorem, Proposition 1.1, thanks to,

Fact A.13 Both path separated and path proper are, in the sense of Definition 2.6, étale
local properties.

Proof To verify that either property is closed under base change is a diagram chase,
i.e. consider the commutative diagram in which the rightmost square is fibred,

I ∗ −−−−→
x∗ X ′ −−−−→

s
X

⏐
⏐
� f ′

⏐
⏐
�

⏐
⏐
� f

I
y−−−−→ Y ′ t−−−−→ Y

(73)

then to give a, b : I → X ′ extending x∗ while lifting y is equivalent to giving sa,
sb extending sx∗ alone, since necessarily f ′a = f ′b = y, so if f is path separated
sa = sb, f ′a = f ′b and whence a = b by the definition of fibre products. Similarly
if f is path proper then there is a ξ : I → X extending sx∗ such that f ξ = t y, and
the couple (ξ, y) defines the extension of x∗, again, by the universal property.

Now suppose V → Y is an étale atlas such that the fibre XV → YV is path
separated, respectively proper, then by the first part we can suppose that V is an open
cover

∐

α Vα . As such, if we choose Vα to be a neighbourhood of y(1), and shrink I
to some [1 − ε, 1] then we have (73) with Y ′ = Vα an open embedding and f ′ path
separated, resp. proper, whence the same for f . ��
As such we may conclude our tour of separation by way of a final,
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Example A.14 Let everything be as in ExampleA.9 thenwemay replace proper by path
proper in item (b) of op. cit.. In particular, therefore, if Y = [Y/�] is the classifier
of a discrete group action on a separated manifold, the fibre in (72) is either empty or
a net path proper map from a separated manifold of co-dimension q.
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