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This mini-review focuses on the emergence of locomotor-related movements in early
infancy. In particular, we consider multiples precursor behaviors of locomotion as
a manifestation of the development of the neuronal networks and their link in the
establishment of precocious locomotor skills. Despite the large variability of motor
behavior observed in human babies, as in animals, afferent information is already
processed to shape the behavior to specific situations and environments. Specifically,
we argue that the closed-loop interaction between the neural output and the physical
dynamics of the mechanical system should be considered to explore the complexity and
flexibility of pattern generation in human and animal neonates.

Keywords: early development of locomotion, locomotor precursors, complexity and flexibility of CPGs, sensory
modulation of movement, early responsiveness

INTRODUCTION

Locomotor function bridges the entire life span but its development during fetal age and the first
post-natal years of life is crucial for the acquisition of mature behavior. Where does locomotor
behavior start? This question, suggesting a developmental continuity, is a central and long-standing
issue (Adolph et al., 2011). Continuity supports the idea that new skills grow from the seeds of
prior precursors. A line of evidence is the fact that primitive muscular control patterns observed
in neonates are highly preserved and recombined during development (Dominici et al., 2011;
Sylos-Labini et al., 2020). However, how the different locomotor precursors develop and to
what extent they depend on interactions among many subsystems, from individuals’ intrinsic
characteristics and their environment, remains, undoubtedly, incompletely understood.

Humans start to walk significantly later than most animals (Garwicz et al., 2009), and infants
discover an array of idiosyncratic solutions for mobility (Patrick et al., 2012; Figure 1C) before
having sufficient axial and limb muscles strength and balance control to walk (e.g., McGraw, 1945;
Thelen and Ulrich, 1991; Bril and Breniere, 1992; Guillaud et al., 2020). While strategies such as
crawling or cruising are still widely depicted in modern ‘‘milestone’’ and assessment charts (Piper
and Darrah, 1994; Adolph and Robinson, 2013; Adolph et al., 2018), infants often deviate from
common trajectories and develop individual differences in development (Adolph et al., 2011;
Atun-Einy et al., 2012). Conversely, in early infancy, precursory forms of spontaneous movements
(Figure 1C) appear as more obvious obligatory stages in the development of locomotion.
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FIGURE 1 | Early responsiveness to sensory or environmental changes in animal (A,B) and human (C,D) neonates. (A) Left: effect of ankle extension restraint,
imposed by a lightweight splint, on EMG activity in chicken embryos. During extension restraint, the ankle flexor (TA) was rhythmically active but bursts were longer in
duration and larger in amplitude. Also, knee extensor (FT) and ankle extensor (LG) activity dropped out (adapted from Bradley et al., 2014). Right: a greater number
of SMs of newborn rat pups in supine than in prone position (from Mendez-Gallardo et al., 2016). (B) A smaller number of alternated forelimbs steps induced by drug
treatment (quipazine) on a stiff substrate as compared to an elastic or no substrate (adapted from Brumley et al., 2012). (C) Left: video frames with examples of

(Continued)
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FIGURE 1 | Continued
different movements of neonates [spontaneous movements (adapted from
Hadders-Algra, 2004), stepping (adapted from Domellöf et al., 2007),
swimming (adapted from 3s Doodles., 2016), crawling (adapted from Forma
et al., 2019)]. Right: illustration of example crawling styles in infants of
10.4 ± 1.5 months old (adapted from Patrick et al., 2012). All sequences
start with initiation of stance in the left leg (from top to bottom: standard
crawling, hands-and-feet, crawling, step-crawl mix, creeping, and scooting
step-scoot mix). (D) Increase of air-stepping (adapted from Barbu-Roth et al.,
2014) and crawling (adapted from Forma et al., 2018) leg movements in
neonates exposed to an optic flow with a pattern moving away from the
neonate. (E) Effect of the absence (SM) and presence (stepping) of surface
contact on muscle coordination (determined using cluster analysis of basic
muscle modules). SMs are associated with four basic temporal activation
patterns without stable systematic muscle synergies. In contrast, stepping is
associated with fewer temporal basic patterns structured in stable synergies.
Single cycles of all subjects are plotted in gray, and corresponding weights in
color (average patterns in black; adapted from Sylos-Labini et al., 2020).

In neonates, it is commonly thought that human locomotor
development stems from single precursor behavior, consisting
of alternating flexor–extensor movements (Thelen and Fisher,
1982; Yang et al., 1998). However, Sylos-Labini et al. (2020)
recently challenged this view by showing that the neuromuscular
control of stepping and spontaneous air movements (also
called kicking), two movements displayed in neonates, differ
substantially. In particular, these authors suggested that the two
behaviors may depend on a dynamic reconfiguration of the
underlying neural circuits (Marder et al., 2014) as a function
of sensory and mechanical feedback (Duysens et al., 2000;
Pearson, 2004).

The major consideration of this mini-review is the
existence of multiples precursor behaviors of locomotion as
a manifestation of distinct locomotor antecedents, challenging
the widespread idea that neonate behaviors all emerge
from the same neuromuscular substrate (Thelen et al.,
1981). Besides, we also consider a recent interdisciplinary
approach to investigating the early plasticity of those motor
behaviors. In a final section, we discuss how maturation
and early motor experience may shape the control of motor
systems, stemming in part from a functional reorganization
of intraspinal locomotor circuits (Barbeau and Rossignol,
1987), in different environmental contexts and how it could
potentially lead to improved strategies for promoting locomotor
function recovery.

THE MANIFESTATION OF MULTIPLE
LOCOMOTOR-RELATED MOVEMENTS IN
NEONATES

Neonates also express a range of early locomotor-related
movements such as kicking, stepping, crawling, or swimming
(Figure 1C). These behaviors present striking similarity
with their mature forms observed during adulthood
(Andre-Thomas and Autgaerden, 1966; MacLellan et al.,
2012), which have fuelled speculation about the idea
that precursory forms are actually prerequisites of
adult locomotion.

The most studied locomotor-related movement and its
developmental continuity is stepping. Neonate babies step on
the ground if supported (Thelen and Fisher, 1982; Forssberg,
1985; Yang et al., 1998; Domellöf et al., 2007; Dominici et al.,
2011; Adolph and Robinson, 2013; Sylos-Labini et al., 2017,
2020), and stepping generally disappears a few weeks after
birth unless trained. The potential relationship between this
early behavior and adult walking gait was first suggested by
Andre-Thomas and Autgaerden (1966). More recent works
have supported the idea that muscle activation patterns of
stepping are preserved and recombined through development,
suggesting that gaits may be built starting from common
conserved elements (Dominici et al., 2011; Dewolf et al., 2020;
Sylos-Labini et al., 2020).

Potential other precursors of locomotion have received
far less attention than stepping, most likely because of
the commonly held view claiming that human locomotor
development stems from single precursor behavior, consisting
of alternating flexor–extensor movements (Thelen and Fisher,
1982; Domellöf et al., 2007; Barbu-Roth et al., 2014). Following
Thelen et al.’s (1981) suggestion, based on spatial and temporal
kinematic structure, other authors have speculated that early
crawling, swimming, or spontaneous movements are all identical
behaviors generated by the same neural mechanisms (Adolph
and Robinson, 2013; Barbu-Roth et al., 2014; Forma et al., 2018),
failing to depict the potential diversity of precursory forms.

Recently, Sylos-Labini et al. (2020) challenged this influential
idea, starting from the premise that the animal neonatal spinal
cord can generate a variety of different motor activities (Klein
et al., 2010; Hägglund et al., 2013; Machado et al., 2015), and
that human neonates can likely do the same. To address this
question, they compared the motor patterns of stepping and
spontaneous kicking in neonates. In contrast with stepping,
spontaneous kicking is produced thousands of times before
birth and persists over several months after birth (Thelen
and Fisher, 1982; de Vries et al., 1982). Sylos-Labini et al.
(2020) found that spontaneous kicking and stepping involved
neuromuscular modules with different flexibility and complexity.
The prevalence and complexity of spontaneous movements
suggest that they have a key role in the functional adaptation
of spinal sensorimotor circuits to the biomechanics and in
engraving an action-based body representation in the spinal
cord (Schouenborg, 2010). Besides, Sylos-Labini et al. (2020)
also showed that both behaviors anticipate a subset of features
that characterizes later development, supporting the idea that
theymay represent distinct locomotor precursors, both reflecting
preparation for adult mature locomotor movements.

The difference in muscle patterns between the two behaviors
might also reflect transient adaptations to the different
environmental contexts. Indeed, stepping is triggered by contact
with the support surface and limb load whereas sensory inputs
are not necessary for triggering spontaneous movements. In the
next section, we focus on the early responsiveness of multiple
precursors of locomotion to the environment and sensory
feedback. Understanding how such factors shape locomotor-
related movements may have important clinical implications in
infants with developmental neuromuscular disorders.
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EARLY MODULATION OF LOCOMOTOR
PRECURSORS

The rhythmic nature of locomotor precursors involves phasic
activation of muscles, resulting from the interplay between the
activity of spinal central pattern generators (CPGs), sensory
signals originating in the limbs, and supraspinal signals (Grillner,
1981; Büschges et al., 1995). The CPG is a remarkable
network of spinal interneurons responsible for producing the
fundamental neural commands underlying basic locomotion
(Kiehn, 2006; Guertin, 2009; Grillner and El Manira, 2019).
Early experiments on animals showed that the CPGs produce
basic, phasic locomotor activity, independent of sensory inputs
(Brown, 1911, 1914). However, the continuous process of
sensory input also plays an important role in modulating
spinal networks shortly before and after birth (Brocard et al.,
1999, 2003; Brumley et al., 2017), permitting early adaptation
to the environmental context. For example, Bradley et al.
(2014) analyzed the interactions between the environment and
movement experience before hatching in chicks, to determine
whether proprioception circuits can modulate leg muscle activity
during spontaneous limb movements. To this end, leg muscle
activity and kinematics were recorded in embryos without and
with an ankle extension restraint (Figure 1A). The extension
restraint produced excitation of the ankle flexor and inhibition
of the ankle extensor. Therefore, the authors proposed that
proprioceptive stimulation from muscle and Golgi tendon organ
receptors already contributes to regulatingmuscle activity during
precocious locomotor-related movements. Similar results were
already observed in spinal cats, where activation of group
Ia and group Ib afferents from ankle extensors prolongs
extensors bursts and inhibits flexor activity (Pearson et al., 1992;
Guertin et al., 1995).

During the early postnatal period, the locomotor-related
movements also exhibit remarkable plasticity (Altman and
Sudarshan, 1975). In rats, a series of studies demonstrated
how neonates adapt their locomotor behavior to environmental
context (Figures 1A,B). For example, Mendez-Gallardo et al.
(2016) explored the role of posture in the expression of
spontaneous limb movements and showed that rat pups
expressed more spontaneous activity while supine than prone
(Figure 1A). Contrarily, more stepping was observed in the
prone position, suggesting that posture affects the expression of
different behaviors during early development. Cutaneous and
proprioceptive feedback also modulates the stepping behavior
in neonate rats (Figure 1B). Indeed, pups made fewer steps
when their feet were in contact with a stiff substrate vs. an
elastic substrate (Brumley et al., 2012). Even olfactory sensory
inputs can impact locomotion development since locomotor-like
rhythmic movements in neonate rats can be also elicited using
an olfactory stimulus (Fady et al., 1998). Together, these studies
are suggestive of an important role for sensory afferent feedback
in the early development of the locomotor system, permitting
locomotor adaptations to environmental perturbations.

Based on the striking similarities in the early development
of locomotion across mammalian species (Garwicz et al., 2009;
Dominici et al., 2011; Grillner, 2011; Yang et al., 2015), similar

early modulation of locomotor precursors may be expected in
the early postnatal period. While several studies have reported
that infant stepping is surprisingly adaptable to a range of
different factors (Thelen et al., 1982; Thelen and Ulrich, 1991;
Jensen et al., 1994; Pang et al., 2003; Yang et al., 2005), the
responsiveness of neonates locomotor precursors has been hardly
considered. Recently, Hym et al. (2020) have demonstrated
that the circuitry underlying locomotor-related movements in
neonates is already adaptable to olfactory inputs, influencing
locomotor control centers. Two other studies have shown that
neonates are already responsive to visual optic flow (Barbu-Roth
et al., 2014; Forma et al., 2018). In particular, these authors
showed an increase in spontaneous leg movements during air
stepping and crawling when babies are exposed to optic flows
(Figure 1D), highlighting surprisingly precocious responsiveness
to visual stimulation.

More recently, Sylos-Labini et al. (2020) suggested that
the different set of fundamental patterns of muscle activation
they observed between spontaneous movements and stepping
may depend on the absence or presence of sensory feedback
from surface contact (Duysens et al., 2000; Pearson, 2004;
Musselman and Yang, 2007). In particular, they observed that
neonate spontaneous movement showed activation patterns with
a similar dimensionality and waveform as those of mature
locomotion, which lacked a stable association with systematic
muscle synergies across movements. In contrast, stepping was
associated with fewer temporal patterns all structured in stable
synergies whose fractionation could account for the synergies
of more mature walking (Figure 1E), consistent with the CPG
‘‘drive pulse’’ rhythmic elements in the spinal circuitry of
vertebrates (Rauscent et al., 2006; Giszter et al., 2010). Therefore,
the authors proposed that the sensory signals generated by
the contact with the support during stepping modify the
expression of neuromuscular modules, depending on a dynamic
reconfiguration of the underlying neural circuits.

To date, numerous experimental paradigms examine the
development and early plasticity of locomotion in vitro,
called fictive locomotion (e.g., Matsushima and Grillner, 1992;
Lafreniere-Roula and McCrea, 2005). The termed ‘‘fictive
locomotion’’ means that, although the pattern of activity
recorded is locomotor-like, it is not real locomotion due to the
absence of movement and peripheral sensory feedback. While
such an approach helped to identify cellular properties and
genetic regulation of CPGs, fictive locomotion cannot reveal
the interactions among factors that may influence ongoing
behavior, such as the movement-adaptability to sensory feedback
highlighted in this section (Figure 1). More behaviorally
relevant future studies on the developmental changes and
early plasticity of multiple locomotion precursors may open
new avenues for developmental improvements and pediatric
neurorehabilitation strategy.

Even if the afferent information is used to a limited extent
to adapt motor behavior to specific environmental contexts
in neonates (Hadders-Algra, 2018), early postnatal behavioral
modulation could already be used as a new form of quantitative
neuromotor assessment. Indeed, investigating the multiple
locomotor precursors during early infancy can help early
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diagnosis of infants with developmental disorders (Hadders-
Algra, 2004). Also, understanding what factors influence and
modulate the expression of neonate locomotor movements
may have important clinical implications because rehabilitation
is likely to yield large benefits when initiated as early as
possible. In the next section, the effect of age and experience
on the modulation of locomotor-related movements in infants
is discussed.

THE PIVOTAL ROLE OF EXPERIENCE AND
MATURATION ON THE DEVELOPMENTAL
PROCESS

The first years of life represent an important phase of maturation
of the central nervous system, processing of sensory information,
and posture control. Also, many constraints evolve during the
first year, such as the muscle-to-fat ratio in lower-limbs (Thelen
et al., 1984) or the relative size and weight of the head (Haywood
and Getchell, 2009). Figure 2A considers various findings of
maturation of the locomotor-related output in infants.

In particular, studies showed considerable changes in muscle
activity with age. For example, agonist-antagonist muscle
co-activation during stepping decreases as age increased from
1 to 12 months (Teulier et al., 2012; Figure 2A), suggesting
better control of limb movements with maturation. Also,
as infants grow, they used a more complex pattern of
torque component contribution during spontaneous movements
(Sargent et al., 2015). Between 6 and 15-weeks of age, older
infants decrease the influence of knee muscle torque and
better exploit passive dynamics in the coordination of hip
and knee motions (Figure 2A). Muscle tone, which is the
foundation upon which other locomotor movements are built,
also changes with age. Indirectly evaluated frommuscle reactions
to slow passive cyclic stretching, Solopova et al. (2019) observed
that the occurrence of muscle reaction to stretching and
shortening significantly decreased throughout the first year
of life (Figure 2A). Taken together, these results may reflect
the functional reorganization of the motor circuitry during
early development, with an important role in optimizing the
efficiency of movement (lower co-activation, smaller muscle
torque, reduction of muscle tone).

Such spatiotemporal reorganization of the locomotor output
has already been investigated during infancy, highlighting how
the rudimentary locomotor-related movements of neonates
evolve into mature sophisticated ones (Lacquaniti et al., 2012). In
adults, themuscle activity patterns of walking can be decomposed
into a set of four basic temporals (Ivanenko et al., 2004;
Dominici et al., 2011) whereas in neonates two basic patterns
were sufficient to accurately reproduce the muscle activity
profiles of stepping (Figure 2B). Similarly, during development,
the basic temporal patterns of running in pre-schoolers are
fractionated into units with fewer muscles in adults (Cheung
et al., 2020; Figure 2B). The discharge characteristics of neonates’
motoneurons (Del Vecchio et al., 2020) also suggest a simpler
and less flexible control with a significantly higher extent of
synchronous activation ofmotor units than in adults, presumably
to compensate for slower and weaker muscles of neonates.

The elements observed in infancy are not discarded
but instead become adapted, in parallel with changes in
locomotion biomechanics (Dominici et al., 2011; Cappellini
et al., 2020; Cheung et al., 2020; Dewolf et al., 2020) and
with the neural maturation of central pathways. Interestingly,
Sylos-Labini et al. (2020) showed that the spatiotemporal
organization of locomotor output observed during spontaneous
movements also anticipates some features of walking
development. To demonstrate this, the extent to which
the muscle activities of stepping could be reconstructed
starting from the basic temporal patterns of neonates’
spontaneous movements was quantified (Figure 2B). The
quality of the reconstruction improved with age, supporting a
developmental continuum of multiple precursors antecedent
to locomotion. Since features of stepping neonates are
also retained through development (Dominici et al., 2011;
Sylos-Labini et al., 2020), it is plausible that various early
locomotor behaviors anticipate a subset of features of mature
locomotor movements.

The fine-tuning and reshaping of activation patterns of
the multiple precursors in the first year of life stems in part
from a functional reorganization of interneuronal connectivity,
growing integration of supraspinal, intraspinal, and sensory
control (Forssberg, 1985; Thelen and Cooke, 1987; Yang et al.,
1998). Indeed, many structures of the central nervous system
are not mature at birth. For example, early locomotor behaviors
change in relation to the maturation of the vestibular system,
descending pathways to the spinal cord, or the morphology
of the motoneuron (Clarac et al., 1998; Kinney and Volpe,
2018). Besides, the continuous interactions with the environment
also play a causal role in driving development, since sensory
inputs arising during locomotor movements also guide the
organization of neural circuits at spinal and supraspinal levels
during development (Khazipov et al., 2004; Schouenborg,
2010). Early specific training may thus change the locomotor-
related output in infants and their experience may shape
the development and acquisition of skills. The progressive
reorganization of activation patterns with age is indeed malleable
in infants and turns out to be experience-dependent. Among
the variety of locomotor precursors, limb movements can
spontaneously be alternate or synchronous (Thelen et al.,
1983; Pang et al., 2003; Musselman and Yang, 2007). By
practicing for 4 weeks the form of coordination the infant
did not exhibit spontaneously, the great majority of them
changed their limb coordination to that practiced (Musselman
and Yang, 2008; Figure 2B). Balance training can also affect
the development of muscle activity patterns in sitting infants
(Hadders-Algra et al., 1996, 1997). Among the large repertoire
of early patterns are also the patterns later used by the
infants, and training facilitated the development of postural
adjustments to perturbation, accelerating the experience-based
selection of the most complete patterns of synergist activation
(Figure 2B). The processing of sensory information that
influences ongoing behavior is also experience-dependent. For
example, Anderson et al. (2019) showed that the way infants
use patterns of optic flow in the peripheral field of view to
regulate their postural sway is influenced by their crawling
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FIGURE 2 | Early development of locomotor-related movements: effect of age (A) and experience (B). (A) Upper panels—age-related changes in muscle activation
(from left to right): reduction of agonist-antagonist co-activation (adapted from Teulier et al., 2012); change in the differential cofntribution of distinct components
(muscle, inertial, or gravitational) of the net knee torque during SMs (adapted from Sargent et al., 2015); reduction of muscle responses in other joints (not being
rotated) during passive rhythmic movements (adapted from Solopova et al., 2019). (A) Lower panels—age-related changes in muscle coordination (from left to right):
increase of the number of basic muscles activation patterns (adapted from Dominici et al., 2011); reconstruction of stepping muscle activity from basic activation
patterns of neonate SMs increases with age (adapted from Sylos-Labini et al., 2020); fractionation of preschoolers muscle synergies of running to become multiple
synergies in adults (with no running experience; adapted from Cheung et al., 2020). (B) Experience-dependant stepping (left two panels) and postural (right two
panels) responses in infants. Left panel—the reversal of interlimb coordination in two groups of infants initially displaying distinct leg coordination (stepping and
hopping) after 4 weeks of reversed leg coordination training (adapted from Musselman and Yang, 2008). Second panel—occurrence of aftereffects (changes in the
hip and knee flexion during the swing) following removal of an additional weight on the ankle (adapted from Lam et al., 2003). Third panel—development of
stereotyped response patterns (block diagrams on the left indicate different initial response patterns) during slow forward surface translations in trained infants
(adapted from Hadders-Algra et al., 1997). Right panel—postural responsiveness to whole-room forward movement is greater in crawlers who experienced optic
flow, in comparison to pre-crawlers and belly crawlers who did not experience it. Responsiveness was evaluated as the max cross-correlation (xmax) between the
wall movement and the infant’s postural sway (adapted from Anderson et al., 2019). The * indicate significant differences.

experience (Figure 2B), with higher postural responsiveness in
an infant using the crawling style with greater demand on control
of balance.

Human infants also appear to be sensitive to transient
changes in sensory input and respond to it appropriately (Yang
et al., 1998; Pang and Yang, 2000). They can immediately

adjust their motor pattern in an organized fashion in response
to sustained changes to the mechanical disturbance, such
as a modification of leg weight or limb loading (Yang
et al., 1998; Lam et al., 2003; Musselman and Yang, 2007).
Furthermore, while all infants adapted to an additional
load on the leg during stepping, increasing the generation
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of hip and knee flexor muscle torques, some of them
(∼32% of infants) exhibited an after-effect (high stepping)
in the first step after removal of the weight (Figure 2B).
This after-effect was manifested by a greater hip and
knee flexion and may indicate that learning had occurred
inducing a recalibration of the motor commands. The factors
influencing the occurrence of learning are unknown, but their
investigation may also be potentially used as a quantitative
neuromotor assessment.

Less insight is available on the role of experience in
the developmental process in human neonates during the
postnatal period. In animals, motor experience during the
prenatal and postnatal period has consequent developmental
implications (Provine, 1993; Serradj and Jamon, 2016; Pollard
et al., 2017). Also in humans, evidence suggests that varied
input is conducive for learning. For example, neonates
undergoing daily stepping exercise exhibit an earlier onset of
an independent walk than untrained infants (Zelazo et al.,
1972). Similarly, usual daily training accelerates independent
standing (Sigmundsson et al., 2017) and facilitates gross
motor development during early infancy (Super, 1976; Hopkins
and Westra, 1988). Such impact of early experience suggests
that appropriate training could optimize the development of
locomotor behavior (Walton et al., 1992; Muir and Chu, 2002;
Serradj and Jamon, 2016).

CONCLUSION

In this mini-review article, we highlight the need to increase
our understanding of the fine-tuning and reshaping of multiple
precursors during the development of mature locomotor
movements. Since motor coordination in the neonate is already
punctuated by developmental plasticity, early responsiveness to
environmental context could potentially be used to diagnose
developmental disabilities, but also to design and test early
therapies. By calling attention to experience-dependent
development of themotor system, we hope this will inspire future
studies on the control of movement during early development.
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