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Abstract: This paper addresses the search for a run-based dynamic optimal travel strategy, to be
supplied through mobile devices (apps) to travelers on a stochastic multiservice transit network,
which includes a system forecasting of bus travel times and bus arrival times at stops. The run-
based optimal strategy is obtained as a heuristic solution to a Markovian decision problem. The
hallmarks of this paper are the proposals to use only traveler state spaces and estimates of dispersion
of forecast bus arrival times at stops in order to determine transition probabilities. The first part
of the paper analyses some existing line-based and run-based optimal strategy search methods. In
the second part, some aspects of dynamic transition probability computation in intelligent transit
systems are presented, and a new method for dynamic run-based optimal strategy search is proposed
and applied.

Keywords: transit trip planners; route guidance; dynamic transit travel strategy; dynamic transit
path choice; transport Markov decision problem; real-time information; travel time prediction

1. Introduction

The search for the best path on stochastic multiservice transit networks SMSTN
(defined below) is no simple task compared with the case of regular service networks. This
paper intends to contribute to solving this problem in the case of intelligent transit systems
(ITS), with automated vehicle location (AVL) and at-stop bus arrival time forecasting, where
apps (trip planners) are available on mobile devices, advising travelers of the best path to
their destination [1–4].

According to [3] and focusing on schedule-based services (as motivated below), dif-
ferent studies pointed out the role of real-time information on path choice. For example,
Reference [5] studied a case where the real-time information was relevant at the origin
of the trip. Reference [6] studied the global pre-trip information based on the previous
day and level of real-time information provided locally, but the effect of real-time informa-
tion has not been studied in-depth since then. References [7,8] applied advanced public
transport information systems with information on waiting times at stops and on-board
crowding. References [9,10] evaluated the impact of different level of real-time information
in Stockholm, while Reference [11] in Riviera (Uruguay). Reference [12] pointed out pre-
trip real-time information also considering disruptions. Reference [13] contributed to the
transit assignment literature by addressing personalization and bounded rationality. Thus,
the need to equip users/travelers with mobile transit route planners that provide personal
information [14,15] on origin–destination routes rather than to real-time information at
stops or pre-. It envisions the creation of a better transportation experience. However, the
framework presented in this paper can be applied both to the search for the best path in
SMSTN (to be suggested by transit trip planners), and in transit assignment modelling for
intelligent transit systems in which such a trip planner is used by travelers.

Given an origin–destination (O-D) pair on a transit service network N, let SGOD be
the subgraph that includes the available line paths connecting the O-D pair. If more than
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one line is available to reach the destination at some bus stops, the network is classified as
a multiservice transit network (MSTN). An example of a multiservice network is reported
in Figure 1, where at node F two lines are available to reach destination D. If some path
attributes X (e.g., waiting time, on-board time, on-board occupancy degree) are random
variables, and MSTN is classified as a stochastic multiservice network (SMSTN). In the
following, only ordinary randomness is taken into account. For example, effects due to
large service disruptions are not considered.
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In stochastic networks, actual bus arrival times may differ from those scheduled or
forecasted. Because of stochasticity, the outcome of any decision depends partly on the
agent’s decisions and partly on randomness. For example, in the network illustrated in
Figure 1, the final outcome of the choice of line 6 at stop B also depends on what will
happen when the traveler arrives at stop F and on the set of lines considered in that node.
Therefore, in an SMSTN, an optimal path from origin to destination, found at the origin
(a priori routing) on the basis of forecasted at-stop bus arrival times and suggested to a
traveler, may include links il at nodes i that could prove non-optimal when the traveler
arrives at the above nodes. An a priori optimal path, which includes line 7 at node F,
forecasted as the first arriving line, could be suggested in a priori routing, but when the
traveler arrives at F, line 8 could arrive first, thus becoming more convenient if it has
the same or less forecasted travel time to destination. See also [16] on this topic. Thus,
not a complete single O-D path should be suggested to travelers, but rather one optimal
travel strategy.

A trip from origin to destination on a stochastic multiservice network can be repre-
sented in the decision theory (DT) approach as a sequence of decisions (decision process-
DPs) at some diversion nodes (origin, first boarding stop, transfer stops) where sets of
stops and lines may be available to continue the trip as far as the destination. Travelling
from origin to destination, a traveler passes from a state St (a decision node) to another
state St+1, depending on the action chosen and on the stochastic occurrences in St. The
transition probabilities conditional upon an action “a” are the probabilities of going from a
state St to each of the following states St+1 if action “a” is applied. Thus a trip from origin
to destination on a stochastic network with diversion nodes is a stochastic decision process
(SDPs). If the transition probabilities and the expected rewards depend only on state S and
not on the previous transitions, the decision process is considered as decision-making in a
Markov decision process (MDPs), and the Markov decision problem (MDPm) approach [17]
can be used. MDPm problems can be more easily solved when the transition probabilities
and the expected rewards are known through Bellman’s algorithms [18,19].

In an optimal travel strategy search, different approaches can be used. A more
traditional approach, often reported as a line-based or frequency approach, considers bus
services in terms of lines, with their service frequencies and average travel times, both
assumed constant during a given time period.

Some recent papers on optimal strategies consider a run-based (also in the literature
bus-based or vehicle-based or schedule-based) approach with a service representation, in
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which each run of each line is explicitly considered through run-based or vehicle-based
graphs [20–25] In a run graph, the nodes have coordinates in space and time and the
services are defined in terms of single runs, with specific bus arrival and departure times
at each stop (see, for example, Figure 6 in Section 5). In this approach, within-day and
day-to-day time-dependent states of the stochastic service network and real-time forecasted
information on future network states are taken into account.

One of the main differences between line-based and run-based search for optimal
strategies is that, in the latter case, the number of possible states grows dramatically if all
the states of each traveler and of each bus are considered. Due to the large number of states,
the search methods inherit the curse of dimensionality, and therefore state–space reduction
through pre-processing has been proposed and applied (see for example [16]).

In the field of run-based optimal strategy searches, this paper proposes a new heuristic
search method, which seeks to limit the number of states and computes the transition
probabilities using a real-time error distribution of bus travel time forecasts and at-stop
bus arrival time forecasts. The method is suitable for intelligent transit systems as well
as to be implemented in apps for providing route guidance in SMSTN since it includes a
forecasting system for bus travel times and arrival times at stops.

In the following, using the notation described in Table 1, Section 2 considers the search
methods of optimal travel strategies for the line-based approach, while in Section 3 the
bus-based or run-based approach, presented in the literature, is recalled. An analysis
of the forecasting error of bus at-stop arrival times, used in the proposed method, is
reported in Section 4. The newly proposed search method is presented in Section 5, with
an example of its application in Section 6. Finally, Section 7 outlines some comments and
draws conclusions.

Table 1. Notation list.

A set of actions ai

As,t the set of possible actions a that can be taken at state s at time t

ATD
Ri the true value of arrival time at destination D by run Ri

J
Ri the error of arrival time forecast computed at downstream node J with variance

σ2
ε

Ri
J

using run Ri

I
Ri

the error of arrival time forecast computed at upstream node I with variance σ2
η

Ri
I

using run Ri

ϕi frequency of line i

FFATD
Ri arrival time at destination (D), forecasted in F, using run Ri

Σ dispersion matrix of dimension equal to the number of runs n available at stop Sy

f (ε) density probability of forecast error vector ε

FH forecasting horizon

FTT bus travel time forecast

p[SJYY/JY] transition probability of moving from node JY to SJYY

MSTN multiservice transit network

MVN (AT, Σ) multivariate normal random variable with mean vector AT and dispersion matrix Σ

p[RJYY/JY] probability of using run RJYY from node JY

raj[si, si−1] reward function of state si conditional upon the previous state si−1

Ri generic run

SMSTN stochastic multiservice transit network

SN stochastic network

Si last alighting stop
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2. The Line-Based Search of an Optimal Travel Strategy

In this section, the line-based search for optimal strategies is recalled, in order to
highlight the main differences with the run-based approach, as analyzed in Section 3.

User optimal path searches in stochastic multiservice transit networks have been
studied since the 1970s (see for example [26]) and the main research strand applies decision
theory [27], especially stochastic decision theory [17]. Because of the stochasticity of the
services, the choices entail decision-making without comprehensive knowledge of all
relevant factors and their possible future evolution. Thus, as reported in the Introduction,
no complete a priori single origin–destination path should be followed by travellers, but
rather one specific set of lines (an attractive set), in each decision node, has to be potentially
usable in order to optimize traveller choices in the long term. In relation to the outcomes
at the decision node, one of the above lines is chosen, applying a rule that minimizes
the expected travel time to destination. The sequence of attractive sets that minimizes
the decision maker’s expected travel time is the optimal decision policy, in our case, the
optimal travel policy or the optimal travel strategy. Each attractive line set is called an
action in decision theory and therefore, an optimal strategy is an optimal sequence of
actions, that is of attractive line sets.

2.1. State–Action Tree Representation of a Decision Process (DP)

A MDPm can be represented through a state–action tree of the decision process. At
every decision node, each possible action includes a set of outgoing links to the next
decision nodes. For example, for the service line graph in Figure 1, at decision node F three
different actions are possible, as represented in Figure 2a: (1) to use only line 7 (action a7);
(2) to use only line 8 (action a8); (3) to consider lines 7 and 8 (action a7+8), comparing the
expected travel time of each alternative action and then choosing the best one.
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state–action trees relative to the network in Figure 1 with action aB.
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Given a state–action tree, different combinations of action sequences are possible. For
the state–action trees in Figure 2a, examples of policies from node B, considering only
states with transition probabilities different from zero, are as follows:

• (B, a6); (F, a7); (G, a9); (D, a12);
• (B, a6); (F, a8); (E, a10); (D, a12);
• (B, a6); (F, a7+8); (G, a9); (E, a10); (D, a12).

The expected reward raj(si, si−1) of state si, conditional upon the previous state si−1
and action aj, is in our case the expected travel cost of arriving in si from si−1 with aj.

2.2. Line-Based Transition Probabilities

When only one state corresponds to an action, the result of the action is deterministic
and the transition probability to that state is 1, while to the other states, it is zero. When
more than one state can follow an action, with some transition probabilities different from 0,
the result of the action is stochastic. For example, in Figure 1, if at node F action a7 is applied,
only node G can follow, with a probability equal to 1. The same holds for deterministic
action a8 and node E. If at node F action a7+8 is applied, the transition probability of moving
onto node G is equal to the probability that, when the traveler observes the system state
and makes a decision at node F, the expected travel time of choosing line 7 is better than
that of line 8, and hence line 7 is chosen. In the same way, the transition probability of
moving onto node E is equal to the probability of line 8 being chosen. The transition
probabilities are represented through a matrix. For example, given the policy: (O, aB);
(B, a6); (F, a7+8); (G, a9); (E, a10); (D, a12), and its state–action tree (Figure 2b), the line-based
transition probability matrix is reported in Table 2.

Table 2. Example of transition probability matrix of the state–action tree in Figure 2b.

B F G E D

O [aB] 1 1 p[G/O] = p[G/F] p[E/O] = p[E/F] 1

B [a6] 0 1 p[G/B] = p[G/F] p[E/B] = p[E/F] 1

F [a7+8] 0 0 p[G/F] p[E/F] 1

G [a9] 0 0 0 0 1

E [a10] 0 0 0 0 1

D [a12] 0 0 0 0 1

2.3. Transition Probability Determination in the Line-Based Approach

As stated above, an MDPm can be more easily solved, if the transition probabilities
and the expected rewards are known, by applying Bellman algorithms [18]. Therefore,
in this section, some methods applied in the line-based (or frequency-based) approach to
obtain the transition probabilities are recalled and analyzed.

With a line-based representation of the service, the simplest way to obtain transition
probabilities directly or indirectly is to assume that transit services are completely irregular,
and the decision-maker has no information on current service states, but she/he only
knows the average line waiting and travel times, and no capacity constraint exists. Action
at each decision node consists of considering a subset of suitable lines for the destination,
boarding the first arriving one. Transition probabilities pi and average waiting times wi are
evaluated not in relation to single bus states, but directly in relation to the line frequencies
(ϕi): pi = ϕi/(Σj ϕj); wi = 1/(Σj ϕj).

To solve the relative MDPm, [28,29] used a linear programming approach. Refer-
ence [30] highlighted the underlying graph structure of Spiess’ basic strategy concept,
introducing a graph-theoretic framework and the concept of hyperpath and proposed
a shortest hyperpath algorithm, using the generalized Bellman equations to obtain the
optimal strategy. For example, using boarding stop B reported in Figure 1, the optimal hy-
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perpath in Figure 3 corresponds to the optimal policy, obtained with a Bellman’s backward
induction algorithm.
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An example of a transit trip planner which uses this approach is HYPERPATH [31].
A set of attractive lines is indicated for the following stops of the path and the traveller is
advised to board the first arriving line.

Systems with more complex functioning are also considered in the line-based ap-
proach, for example taking into account capacity restraints and information to users, as
in [1,32,33].

3. Optimal Travel Strategy Search in a Run-Based Approach

Run-based (or bus-based) search for an optimal travel strategy is quite a recent topic
of transit path choice, hence generating relatively few papers in the literature.

Reference [16] refer to the adaptive transit routing (ATR) problem, formally defined
as follows: “given a stochastic transit network (in which the transit travel times are time-
dependent and random with known distributions), the initial state of the system and a
destination D, an adaptive policy that minimizes the total expected travel time is sought,
subject to a constraint that D is reached within a threshold TH with probability 1”. They
present a method to solve an adaptive routing problem with link travel times that are
discrete random variables with known probability distributions. The authors consider the
bus state space and the traveller state space. Given a system–state space, the action space
is the set of actions available to a traveler at different stops and the possible alternatives
can be: board, wait, or walk to another stop. Because of the large number of states, the
method inherits the curse of dimensionality, and therefore state–space reduction through
pre-processing is proposed and applied.

In a transit route planner context, [34] apply time-dependent routing advice that
specifies a set of services at each location, from which the traveler is recommended to take
the one that arrives first. The authors show that an optimal policy may not always exist and
two heuristic solutions for finding a ‘good’ current time-dependent policy are proposed.

4. Analysis of the Forecasting Error of Bus At-Stop Arrival Times

This paper proposes a data-driven method to determine transition probabilities which
uses, as will be examined below, the probability distribution of run arrival time forecasting
error εSy:

εSy = FSx ATSy − ATSy

where ATsy is the actual run arrival time at stop Sy and FSx ATSy is the forecasted value
when the traveller is at stop Sx.

An experimental probability law of the forecasting errors can be estimated by collect-
ing a sample of forecasted run arrival times and of actual arrival times for each line of the
service network. Therefore, the method is suitable for intelligent transit systems including
a forecasting system of bus travel times and at-stop bus arrival times.
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In this section, based on an experimental survey, an analysis is performed of fore-
casting errors for bus travel times and arrival times at stops. The analysis considers the
probability law of the forecasting error and, for reasons that will be explored in the fol-
lowing sections, the relationship between the forecasting error standard deviation and
the forecast horizon, that is, the travel time from the node where the forecast is made to
the node for which the arrival time is forecasted. The analysis was carried out using data
collected from the bus service network of Rome, considering several sections of a line
operating in the city [35,36].

The forecasts of bus travel times (FTT) and arrival times at stop (FAT) can be obtained
through several methods [37]. In this analysis, a time series method was applied, especially
the STL—seasonal and trend decomposition using loess method [38], implemented in R
software [39]. In order to obtain the probability law of the forecasting errors, compar-
isons among observed and normal error distributions were carried out. Figure 4 reports,
as an example, the results obtained for one of the terminal-to-terminal sections, with a
length of 11 km and using 2705 travel time measurements on weekdays. According to the
Kolmogorov–Smirnov test (0.085; p-value = 0.14), there is probabilistic evidence that the
forecasting errors were drawn from a normal distribution with zero mean and standard
deviation equal to 263.80 s.
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Figure 4. Calibration results of error forecasting distribution.

Using a set of different stop-to-stop distances, the empirical relationship of Figure 5
between error standard deviation and forecasting horizon was obtained. It shows an almost
linear relation, with an increase in standard deviation when the forecasting horizon increases:

σε = 6.10
(2.98)

· FH R2 = 0.91 (1)

where:

• σε is the standard deviation (in seconds) of random forecasting error ε;
• FH is the forecasting horizon (in minutes).
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Such a result is consistent with similar empirical studies developed around the world
both for transit services and private transport [40–44]. Thus, the error vector εSy, with a
number of an element equal to the number of runs n at stop Sy, will be assumed below
to be distributed according to a multivariate normal (MVN) with zero mean, dispersion
matrix Σ and density probability given by:

f (ε) =
[
(2π)ndet(Σ)

]−1/2 exp
[
−1/2εTΣ−1ε

]
5. The Proposed Run-Based Search Method of Dynamic Optimal Strategies
5.1. General Description of the Method

The proposed run-based search method applies a procedure that starts with the
determination of a line-based feasible service network, that is a subnetwork of the original
one, in which a set of feasible line paths is determined through some feasibility rules, such
as: maximum number of line interchanges, maximum walking distance, maximum number
of first boarding stops and last alighting stops, arrival time to destination in relation to the
desired one. A line graph is thereby obtained with origin, some potential first boarding
stops, some potential transfer stops, some potential last alighting stops and the destination,
connected through pedestrian and transit links, as represented in Figure 1. The reduction
of the initial network to feasible network has several advantages, not only in terms of paths
actually used by travellers, but also in terms of reduction of problem dimension.

In this feasible network, decision nodes are the origin node and alighting stop nodes
where a decision can be taken whether to stay there to board a run serving the stop or to
walk to other boarding stops, choosing the alternative with the minimum expected travel
time (or in general minimum expected travel disutility) to destination.

The proposed method follows a quite common procedure in dynamic ATR (see, for
example [32]): at a decision node, the optimal strategy is searched with the information
available at that node and the chosen optimal strategy is followed to the decision node
downstream, where a new optimal strategy is searched using updated information.

At time t, when the traveler is at a decision node, a run-based (as stated above,
in the literature also bus-based, vehicle-based or schedule-based) representation of the
feasible network is generated from the decision node to the destination, using as temporal
coordinates of the stops, the forecasted bus arrival times in these nodes, in turn, derived
from stop-to-stop bus travel time forecasting. Hence, we can also refer to run-based travel
strategies, to run hyperpaths, and to run-based transition probabilities. An example of a
run-based representation of transit services relative to node B, when the traveler is at origin
O at time to and therefore, the forecasts are carried out at to, is shown in Figure 6.
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at downstream nodes.

The proposed method searches the optimal strategy as a solution to an MDPm, based
on the following criteria and assumptions:

• the traveller state space includes only decision nodes;
• when the traveller moves on the next decision node, a new optimal strategy is searched,

considering the new forecasts of at-stop bus arrival time (FATS) and at-destination
arrival times (FATD) available in real time. Therefore, each new optimal strategy is
conditional upon the forecasts available at the current decision node;

• the bus state space is not considered, as better analysed in the following part of the
paper, and hence the transition probabilities concern only transitions of the traveller
between decision nodes;

• as an expected reward, the forecasted travel time (or, in general, the forecasted travel
disutility) is used. Thus the optimal policy determines the combination of actions with
minimum forecasted travel time up to destination. Therefore forecasting methods
have to be used with expected value of FAT:

E[FAT] = AT;

• considering the analysis results reported in Section 4, the forecasted arrival times
FSxATSx at stop Sy forecasted when the traveler is at stop Sx can be expressed as follows:

FSx ATSy
= ATSy

+ εSy

where ATSy is the true value of the arrival time at Sy and εSy is the forecasting error
vector with known MVN probability density functions;
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• all the buses are assumed to have unlimited capacity.

5.2. Run-Based Transition Probabilities

As stated above, in order to obtain the optimal strategy at a decision node using the
MDPm approach, the method presented determines the traveller transition probabilities
at downstream diversion nodes in relation to possible outcomes of bus arrival times at
these downstream stops and to their forecasted arrival times at destination. For example,
suppose that the traveler is at origin O of the run-based network in Figure 6, and the
expected reward is searched deriving from the use of the policy including the stop B, the
run 6.1 and then at stop F the action including the use of run 7.1 or of run 8.1. The current
transition probabilities from node F to nodes E and G have to be determined in relation to
the possible outcomes of arrival times and forecasted at-destination arrival times of run 7.1
and run 8.1 at stop F.

The model is formulated below for the case of a feasible service network with paths
including at most only one interchanging stop JY (Figure 7). This is a very frequent case,
because, even if a higher number of interchanges could actually exist, in general a feasible
path with more than one interchanging stop is rarely used.
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In the following, the transition probabilities are determined by considering the most
complex case that the traveler is at node origin O at time to (see Figure 7). The optimal
travel strategy from a first boarding stop I up to destination D, at time to, is searched. From
stop I some runs RI1 . . . RIY . . . RIN lead to the decision stops J1, . . . JY, . . . JN, where some
runs RJ1, RJ2, . . . , RJY . . . , RJM lead to the last alighting stops SJ1, SJ2, . . . , SJY . . . , SJM. If
a larger number of lines is available between two stops, all their runs can be considered as
runs of one equivalent line connecting the two stops.

The generic transition probabilities p[SJYY/I] for the time to can be obtained as:

p
[
SJYY /I

]
= p

[
SJYY /JY

]
· p[JY/I] (2)

where p
[
SJYY /JY

]
is the transition probability of moving from the decision node JY to stop

SJYY, and p[JY/I] is the transition probability of moving from the decision node I to stop JY.
The transition probability p[SJYY/JY] is equal to the probability that, when the traveler

will be at JY, the run RJYY, which arrives downstream at stop SJYY, is chosen. Remember
that, as reported in Section 4, the forecasted at-stop arrival times are time-dependent
random variables. Therefore, the forecasted bus arrival times at destination provided at
stop JY could differ from those provided at origin O at to and the probability of boarding
each run RJY at stop JY has to be estimated. The probability of boarding run RJYY is equal
to the probability that, when the traveler is at boarding stop JY, the forecasted arrival time

FJY AT
RJYY
D , at destination D, using run RJYY and forecasted at JY, is less than or equal to the,
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also forecasted at JY, arrival time FJY AT
RJY
D at destination D, using one run RJY among the

other runs RJ1, . . . , RJYM .
Therefore, the transition probability, p

[
SJYY /JY

]
, is:

p
[
SJYY /JY

]
= p

[
RJYY /JY

]
(3)

where JCJY is the run choice set at stop JY, considered by the policy action in question.
As such transition probabilities are computed when the traveler is at origin O, the

arrival times at destination D forecasted in JY have to be expressed as functions of the
arrival times at destination forecasted at origin O. Let:

• AT
RJYY
D be the true value of the arrival time at destination D using run RJYY ;

• FJY AT
RJYY
D be the arrival time at destination D using RJYY , forecasted at JY:

FJY AT
RJYY
D = AT

RJYY
D + ε

RJYY
JY

(4)

where ε
RJYY
JY

is the forecasting error;

• FO AT
RJYY
D be the arrival time at destination D using run RJYY , forecasted at origin O:

FO AT
RJYY
D = AT

RJYY
D + η

RJYY
O (5)

where η
RJYY
O is the forecasting error.

From the two above Equations (4) and (5), it follows that:

FJY AT
RJYY
D = FO AT

RJYY
D +

(
ε

RJYY
JY
− η

RJYY
O

)
(6)

Similarly, the travel time at destination D forecasted at origin O by other runs RJY can
be obtained:

FJY AT
RJY
D = FO AT

RJY
D +

(
ε

RJY
JY
− η

RJY
O

)
(7)

Finally, Equation (3), which gives the probability of moving from JY to SJYY computed
when the traveller is at origin O, as the probability of choosing RJYY , is:

p
[
SJYY /JY

]
= p

[
RJYY /JY

]
= p

[
FJY AT

RJYY
D < FJY AT

RJY
D /JY

]
=

= p
[

FO AT
RJYY
D +

(
ε

RJYY
J − η

RJYY
O

)
< FO AT

RJY
D +

(
ε

RJY
JY
− η

RJY
O

)
/JY

]
=

= p
[

FO AT
RJYY
D − FO AT

RJY
D <

(
ε

RJY
JY
− η

RJY
O

)
−
(

ε
RJYY
JY
− η

RJYY
O

)]
∀RJY 6= RJYY , RJY ∈ JCJY

(8)

Considering also the results reported in the previous Section 4, the generic forecasting
errors υj (i.e., linear combination of ε and η) can be assumed Multivariate Normal (MVN)
random variables with zero mean (E

[
υj
]
= 0) and n× n dispersion matrix Σ, where n is the

number of alternative runs. Thus, forecasted arrival times FATj are also jointly distributed
according to a multivariate normal distribution with mean vector actual arrival times (AT)
and variances and co-variances equal to those of the residuals υj, FAT ~ MVN(AT, Σ).

The probability p
[
SJYY

]
that a traveler will move from stop JY to stop SJYY is given by:

p
[
SJYY

]
=

∫
FATj<FAT1

. . .
+∞∫

FATj=−∞

. . .
∫

FATj<FATn

exp
[
−1/2(FAT−AT)TΣ−1(FAT−AT)

]
[
(2π)ndet(Σ)

]1/2 dFAT1 . . . . . . dFATn (9)

There is no known closed-form solution of the integral (Equation (9)) and numerical
integration methods are to be applied. Besides, the MVN density probability of Equation (9)
is quite complex to obtain for a large transit network. In order to simplify, it can be assumed
that the forecasting errors are independently and identically distributed (i.i.d.) as a normal
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random variable with zero mean and variances σ2

ε
RJYY
JY

, σ2

ε
RJY
JY

, σ2

η
RJYY
O

, σ2

η
RJY
O

. Thus,

under such an assumption, the transition probabilities can be now computed as follows:

p
[
SJYY /JY

]
= p

[
RJYY /JY

]
= p

[
FO AT

RJYY
D − FO AT

RJY
D <

(
ε

RJY
JY
− η

RJY
O

)
−
(

ε
RJYY
JY
− η

RJYY
O

)]
(10)

where W =
(

ε
RJY
JY
− η

RJY
O

)
−
(

ε
RJYY
JY
− η

RJYY
O

)
is a normal random variable with zero mean

and variance equal to the sum of variances of the above random errors.
The transition probability p[JY/I] of moving from the decision node I to stop JY can be

computed in a very similar way, obtaining:

p[JY/I]= p
[
RIY /I

]
= p

[
FO AT

RIY
JY
− FO ATRI

JY
<
(

εRI
I − ηRI

O

)
−
(

ε
RIY
I − η

RIY
O

)]
∀RIY 6= RI , RIY ∈ JCI (11)

where:

• p
[
RIY /I

]
is the probability of boarding run RIY at node I for reaching stop JY;

• FO AT
RIY
JY

is the arrival time at node JY using run RIY at stop I forecasted at origin O;

• FO ATRJ
JY

is the arrival time at node JY using run RI at stop I forecasted at origin O;

• εRI
I , ηRI

O , ε
RIY
I , η

RIY
O are the forecasted errors.

Considering the approximations applied in the transition probabilities computation,
the proposed search method, as stated above, has to be considered a heuristic method, with
the advantages of strongly simplifying the real applications.

6. An Example of Dynamic Strategy Search Applying the Proposed Method

In this section, the proposed method is applied to the networking Figure 1 in a dynamic
run-based strategy search. Figure 8 synthesize the modelling steps as described in the
earlier sections.
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Figure 8. Procedure steps for searching dynamic optimal strategy.

At origin O, the optimal strategy using the first boarding stop B and the one using the
first boarding stop C can be determined with reference to the run-based graph of Figure 6,
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obtained with the forecasts bus arrival times at stop available at the traveler’s departure
time from the origin, and the corresponding state–action trees in Figure 9.
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Figure 9. State action tree for the first boarding stops B and C.

For the optimal strategy of boarding stop B the transition probabilities p[G/F] and
p[E/F] have to be determined. The probability of moving from F to G computed when the
traveler is at origin O can be calculated by applying Equation (8) and using the experimental
relation between standard deviation and forecasting horizon reported in Equation (1) in
Section 4 above. Thus, the estimates of the forecasting error variances, reported in Table 3,
can be used.

Table 3. Estimation of residual variance according to the forecasting horizon (refer to Figure 6).

Random Residual
Forecasted Arrival

Time at
Destination

When Choice Is
Made

Forecasting
Horizon

[minutes]

Estimated Standard
Deviation
[seconds]

Estimated
Variance

[minutes2]

ηr8.1
O 08:08 07:02 66 402.60 45

ηr7.1
O 08:03 07:02 61 372.10 38

εr8.1
F 08:08 07:35 33 201.30 11

εr7.1
F 08:03 07:35 28 170.80 8

TOTAL 103 (10.142)

From Equation (8), it follows that:

p[G/F] = p[r7/F] = p
[
FB ATr7.1

D − FB ATr8.1
D <

(
ε

r8.1
F − η

r8.1
B
)
−
(
εr7.1

F − ηr7.1
B
)]

= p[−5 < χ] =
= p[χ > −5] = p

[
Z > −5−0

10.14 = −0.49
]
= p[Z > −0.49] = 1− p[Z < −0.49] =

= 1− {1− p[Z < 0.49]} = 1− 1 + 0.6879 = 0.6879

with Z standard normal random variable. Hence, the transition probability p[G/F] from F
to G is about 0.69 and p[E/F] from F to E is about 0.31.

The numbers that in Figure 9 follow the action number aj are the forecasted transfer
times from a run to the interchanging run. In the case of actions including more than one
line, they are obtained as forecasted waiting time, weighted with the probabilities of use of
each interchanging run, in our case, given by the transition probabilities.

By applying a Bellman algorithm, the optimal policy using boarding stop B reported
in Figure 10 can be found.
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Figure 10. Optimal policies from the origin O, using boarding stop B and boarding stop C.

For the first boarding stop C, as there are no decision nodes downstream, only one
path is available, and the expected travel time to destination ca be directly determined by
using the forecasted arrival time at destination D.

The optimal strategies via the first boarding stop B and the first boarding stop C are
reported in Figure 10. It results that the absolute optimal strategy at origin is that related to
boarding stop B, which allows earlier at destination D.

When a traveler is at stop F, the run graph of Figure 11 has to be considered, with the
forecasted arrival times at destination via run 7.2 and run 8.2 (note that these times differ
from that forecasted at origin O, due to the stochasticity of the services). The arrival time at
destination of the first arriving run 7.2 is compared with the corresponding time of run 8.2,
which had not yet arrived. In this case, waiting for run 8.2 is the best choice to make.

Information 2021, 12, x FOR PEER REVIEW 15 of 18 
 

 

space

ti
m

e

08:14

08:07

08:08

07:55

07:54

07:52

07:51

08:13

08:22

08:18

07:45

11 min

destinationstop Estop F stop G

Stop arrival time

Boarding/alighting/departure time

Run arrival time

Decision node

Destination  arrival time

Running link

Walking link

 

Figure 11. Run-based representation of transit services from node F with forecasted bus arrival times at the following node. 

7. Conclusions 

A heuristic search method was proposed in the context of a run-based optimal strategy 

search for stochastic multiservice transit networks. The method determines the optimal 

strategy as a solution of a Markovian Decision Problem and, in order to reduce the course 

of dimensionality, explicitly considered only the traveler states. As expected rewards, the 

forecasted travel times were used and the transition probabilities were obtained considering 

an empirical probability distribution of bus travel time forecasts and an empirical relation-

ship between the forecasting horizon and its dispersion. The method is therefore suitable 

for intelligent transit systems, including a forecasting system of bus travel times and of ar-

rival times at stops. The method was applied with satisfying results to a small test network. 

The results indicate that personalized and predictive information, which is robust to 

varying data availability and can be provided with sufficient accuracy, can be useful to trav-

elers for improving their travel experiences. In fact, the use of mobile applications (apps) to 

acquire real-time and readily available journey planning information is becoming instinc-

tive behavior by public transport (PT) users. Through these mobile devices, the traveler does 

not only seek a path from origin to destination, but a satisfactory path that improve his/her 

travel experience. At the current stage of the telematics maturity and evolution, such a 

method can be implemented in available transit planners (apps) and could be a great lever 

for improving perception of effective services as well as to move people towards transit. 

However, some issues germinate from its complexity and the opportunity to update model 

parameters (e.g., travel time probability distribution). A preliminary desk comparison with 

other studies (e.g. [16]) allows us to assume that, as the presented method reduces the num-

ber states considering only feasible paths and traveler states, the computational complexity 

is largely reduced. However, such statements need to be validated in real and large transit 

networks. Then, it could be satisfactorily implemented into mobile transit route planners 

that provide information to travelers on origin–destination routes rather than to real-time 

information at stops, contributing as said to improve the attractivity of transit service. There-

fore, the method is of value for agencies and operators in order to increase the attractiveness 

and capacity utilization of public transport, as well as for travelers in order to improve their 

Figure 11. Run-based representation of transit services from node F with forecasted bus arrival times
at the following node.



Information 2021, 12, 281 15 of 17

7. Conclusions

A heuristic search method was proposed in the context of a run-based optimal strategy
search for stochastic multiservice transit networks. The method determines the optimal
strategy as a solution of a Markovian Decision Problem and, in order to reduce the course
of dimensionality, explicitly considered only the traveler states. As expected rewards, the
forecasted travel times were used and the transition probabilities were obtained consid-
ering an empirical probability distribution of bus travel time forecasts and an empirical
relationship between the forecasting horizon and its dispersion. The method is therefore
suitable for intelligent transit systems, including a forecasting system of bus travel times
and of arrival times at stops. The method was applied with satisfying results to a small
test network.

The results indicate that personalized and predictive information, which is robust to
varying data availability and can be provided with sufficient accuracy, can be useful to
travelers for improving their travel experiences. In fact, the use of mobile applications
(apps) to acquire real-time and readily available journey planning information is becoming
instinctive behavior by public transport (PT) users. Through these mobile devices, the
traveler does not only seek a path from origin to destination, but a satisfactory path that
improve his/her travel experience. At the current stage of the telematics maturity and
evolution, such a method can be implemented in available transit planners (apps) and
could be a great lever for improving perception of effective services as well as to move
people towards transit. However, some issues germinate from its complexity and the
opportunity to update model parameters (e.g., travel time probability distribution). A
preliminary desk comparison with other studies (e.g. [16]) allows us to assume that, as
the presented method reduces the number states considering only feasible paths and
traveler states, the computational complexity is largely reduced. However, such statements
need to be validated in real and large transit networks. Then, it could be satisfactorily
implemented into mobile transit route planners that provide information to travelers on
origin–destination routes rather than to real-time information at stops, contributing as
said to improve the attractivity of transit service. Therefore, the method is of value for
agencies and operators in order to increase the attractiveness and capacity utilization of
public transport, as well as for travelers in order to improve their travel experience limiting
the impact of stochasticity of travel times, in particular with services that share the way
and move on highly congested network.

The presented research can be extended in several directions. An area of further work
is to evaluate whether more elaborated prediction methods can increase performance as
well as how the probability distribution of travel time forecasts and an empirical relation-
ship between the forecasting horizon and its dispersion may be easy to obtain through
machine learning techniques. In particular, methods that can incorporate possible non-
linear effects as well as multivariate correlations between loads, possible alighting counts
at adjacent stops, and flows. Predictions under abnormal conditions such as special events,
disruptions etc., is a particular area where novel modelling approaches may be required.
Prediction accuracy for the probability of getting a seat upon boarding may be increased
by solving it by data-driven approaches.

Another direction for extension is to explore the potential of historical and real-time
data for personalized advising, which takes into consideration the users’ attitudes to
boarding particular services.

Finally, several research issues still need to be resolved. These include, as mentioned,
the application on larger test networks and real networks, and the development of methods
based on a decision theory approach within theories other than that of expected utility.
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