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ABSTRACT

We use mesoscale numerical simulations to investigate the unsteady dynamics of a single red blood
cell (RBC) subjected to an external mechanical load. We carry out a detailed comparison between
the loading (L) dynamics, following the imposition of the mechanical load on the RBC at rest, and
the relaxation (R) dynamics, allowing the RBC to relax to its original shape after the sudden arrest
of the mechanical load. Such a comparison is carried out by analyzing the characteristic times of
the two corresponding dynamics, i.e., tL and tR. When the intensity of the mechanical load is small
enough, the two kinds of dynamics are symmetrical (tL ≈ tR) and independent of the typology of
mechanical load (intrinsic dynamics); otherwise, in marked contrast, an asymmetry is found, wherein
the loading dynamics is typically faster than the relaxation one. This asymmetry manifests itself
with non-universal characteristics, e.g., dependency on the applied load and/or on the viscoelastic
properties of the RBC membrane. To deepen such a non-universal behaviour, we consider the
viscosity of the erythrocyte membrane as a variable parameter and focus on three different typologies
of mechanical load (mechanical stretching, shear flow, elongational flow): this allows to clarify how
non-universality builds up in terms of the deformation and rotational contributions induced by the
mechanical load on the membrane. Finally, we also investigate the effect of the elastic shear modulus
on the characteristic times tL and tR. Our results provide crucial and quantitative information on
the unsteady dynamics of RBC and its membrane response to the imposition/cessation of external
mechanical loads.

1 Introduction

Red blood cells (RBCs) are biological cells made of a vis-
coelastic membrane enclosing a viscous fluid (cytoplasm):

4† Electronic Supplementary Information (ESI) available: one
PDF containing further details regarding the simulations per-
formed; four videos showing the simulations performed. See
DOI: 10.1039/D1SM00246E

their main features are the biconcave shape and the absence
of a nucleus and most organelles, that allow them to carry
oxygen even inside the smallest capillaries [1, 2, 3]. In
fact, during circulation, RBCs deform multiple times,
rearranging their shape to adapt to the physiological
conditions of the blood flow. The mechanical properties
of RBC’s membrane have been deeply investigated,
both numerically [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
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and experimentally [15, 16, 17, 18, 19, 20, 21, 22, 23].
Research interest on the mechanical response of RBC’s
membrane was prompted by several reasons: among
the others, the link between its properties and the
erythrocyte’s health conditions [11, 16], or the role played
by the membrane dynamics in the design of biomedical
devices[24, 25, 26, 27]. A huge effort has been devoted to
the characterisation of the time-independent properties of
the membrane, for the study of the corresponding steady-
state configurations. In recent years, also the dynamical
behaviour of RBCs has been investigated in several
works, both numerically [28, 29, 30, 31, 8, 32, 33, 34]
and experimentally [17, 19, 20, 35]. When dealing with
time-dependent properties of biological cells (or capsules,
in general), the membrane viscosity plays a crucial
role [36, 37, 38, 33, 34, 39, 40, 41, 42, 43]. Evans [44]
showed that the RBC relaxation time is affected by
both the membrane viscosity and the dissipation in the
adjacent aqueous phases (i.e., cytoplasm and external
solution); neglecting the membrane viscosity, i.e.,
µm = 0, he predicted a relaxation time tR ≈ 1 × 10−3 s
(also confirmed by numerical simulations [33]), a
remarkably lower value compared to other works in the
literature [22, 19, 17, 45, 33]. Several works aimed at
the precise estimation of the value of the membrane
viscosity [46, 18, 45, 47, 22, 48, 49, 17, 19, 32], finding
that µm roughly ranges between 10−7 m Pa s and
10−6 m Pa s. Such variability may be ascribed to different
factors, e.g., the different theoretical models used to infer
µm [19, 46], the different experimental apparatuses (such
as micro-pipette aspiration [46, 18, 45, 17], microchannel
deformation [49], or other setups [47, 22, 48]), etc. As
a matter of fact, although µm is an essential parameter
to quantitatively characterise the time dynamics of
RBCs [34, 37], its precise value has not been accurately
determined so far, which warrants a parametric investi-
gation. Moreover, some earlier studies [50] proposed to
use an increased apparent viscosity ratio to account for
the energy dissipation due to the presence of a viscous
membrane: even though this assumption provides a
qualitative description of the effects of the membrane
viscosity, it does not account for a quantitative characteri-
sation, as shown by recent studies [51, 37, 34, 41, 40].
Our previous work [33] aimed to investigate the effect
of membrane viscosity µm on the relaxation dynamics
of a single RBC, and we found that increasing the value
of µm, as well as increasing the intensity of the loading
strength, leads to faster recovery dynamics. Moreover, we
simulated two experimental setups, i.e., the stretching with
optical tweezers and the deformation due to an imposed
shear flow, and we found a dependency on the kind of
mechanical load when the strengths of load are large
enough.
The relaxation dynamics, however, gives only a partial
characterisation of the time-dependent response of RBCs
to external forces: therefore, the loading process should
be considered as well, as already pointed out in earlier
literature papers. Chien et al. [18] experimentally studied
both the loading and the relaxation dynamics of RBC

membrane through micro-pipette aspiration, providing
evidence that the two dynamics are not symmetrical
in certain conditions; however, a systematic study
involving different stress values and different typologies
of mechanical loads was not performed. Diaz et al. [43]
studied the dynamics of a pure elastic capsule with a
hyperelastic membrane deformed by an elongational flow:
they focused on both loading and relaxation, finding
an asymmetry. However, their model did not take into
account the membrane viscosity and the asymmetry
was not studied for different typologies of mechanical
loads. Thus, although previous literature points to two
distinct dynamics for loading and relaxation [18, 43, 42],
a comprehensive parametric study on the effects of µm
for different typologies of mechanical loads and flow
conditions (such as simple shear flow or elongational flow)
has never been attempted, so far. This paper aims at filling
this gap with the help of mesoscale numerical simulations.
Indeed, for this kind of characterisation, numerical
simulations can be thought of as the appropriate tool of
analysis [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], due to the
obvious experimental difficulties in carrying out such
systematic investigation [17, 18, 19, 21, 23]. We provide
a quantitative characterisation of loading and relaxation
dynamics exploring three typologies of mechanical loads.
To do this, we built three different simulation setups:
the stretching simulation (STS), which simulates the
deformation with optical tweezers [16] (see Fig. 1, panel
(a)); the shear simulation (SHS), i.e., the deformation in
simple shear flow (see Fig. 1, panel (c)); the four-roll mill
simulation (FRMS), where the deformation is induced by
an elongational axisymmetric flow made by the rotation
of four cylinders (see Fig. 1, panel (e)). These three
numerical setups are chosen to inspect the different roles
that the membrane rotation and/or membrane deformation
have in the time-dependent dynamics. This information
is summarised in Tab. 1. First, we systematically study
the characteristic times of both the loading (tL) and the
relaxation (tR) processes and their ratio t̃ = tL/tR, as a
function of the load strength and membrane viscosity
µm. For small strengths, the two characteristic times are
essentially equal and set by the value of µm; however, for
strengths large enough, the loading dynamics is found
to be faster than the relaxation dynamics, leading to a
non-universal behaviour while changing the typology of
the mechanical load. Such non-universal contributions are
further characterised in terms of the importance of rotation
and deformation of the membrane, according to the
different load mechanisms. Some useful parametrizations
for both tR and tL as a function of the membrane viscosities
are also provided. Finally, since different pathologies
that cause the reduction of RBC membrane elasticity are
known [11, 16, 52, 53, 54, 55, 56, 57, 58, 59], we also
study the dependency of both the loading (tL) and the
relaxation (tR) times as well as their ratio t̃ on the elastic
shear modulus kS, for a fixed value of membrane viscosity.
The paper is organised in the following way: in Sec. 2

we provide some details on the numerical method used to
simulate both the fluid and the membrane of the RBC; in
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(a) STretching Simulation (STS) (b) Stretching simulation (STS): deformation.

(c) SHear Simulation (SHS) (d) Shear simulation (SHS): deformation.

(e) Four-Roll Mill Simulation (FRMS) (f) Four-roll mill simulation (FRMS): deformation.

Figure 1: Loading-relaxation (L-R) simulations for red blood cell (RBC) at changing the typology of mechanical
load. Left panels: the three different L-R simulations investigated in the paper are sketched: grey arrows refer to the
mechanical load, either an applied force F or an applied velocity Uw, while the RBC membrane forces (Fmem) are
sketched with green arrows. In all simulations, the deformation D(t), i.e., the ratio between the difference and the
sum of the axial and transversal diameters (see Eq. (11)), is used to fit the loading and relaxation times (tL and tR,
respectively; see Eqs. (12) (13) (14)). Right panels: we report the deformation D(t) (see Eq. (11)) as a function of time
for two values of membrane viscosity µm. Panels (a-b): we simulate the stretching with optical tweezers [16] (STS), in
which two forces with the same intensity and opposite direction stretch the membrane in two areas at the ends of the
RBC (see Sec. 3.1); the deformation D(t) is reported for F = 90× 10−12 N. Panels (c-d): deformation induced by
simple shear flow (SHS), with Uw = (±γ̇/2, 0, 0), where γ̇ is the shear rate (see Sec. 3.2); the deformation D(t) is
reported for γ̇ = 86 s−1. Panels (e-f): in the four-roll mill simulation (FRMS) we simulate four rotating cylinders to
reproduce an elongational flow that deforms the membrane [60] (see Sec. 3.3); the deformation D(t) is reported for
γ̇FRMS = 80 s−1. Four videos showing these simulations are available (see ESI†).
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Load Type Rotation Direct Forcing
STS NO YES
SHS YES NO

FRMS NO NO

Table 1: Summary of the main characteristics of the three
kinds of applied mechanical loads (see Fig. 1). For each
load type, we specify if the rotation is induced on the mem-
brane while loading and if the forcing is directly applied
on the nodes of the mesh used to discretise the membrane
(otherwise, the membrane is forced indirectly via hydrody-
namic flow).

Sec. 3 we analyse the three simulated loading mechanisms
(the stretching simulation, Sec. 3.1; the shear simulation,
Sec. 3.2; the four-roll mill simulation, Sec. 3.3); a detailed
discussion section with comparisons between the loading
mechanisms is provided in Sec. 4; finally, conclusions are
reported in Sec. 5.

2 Numerical method

We perform three-dimensional numerical simulations in
the framework of the Immersed Boundary – Lattice Boltz-
mann method (IB–LBM) [61, 62]. The methodology, as
well as the membrane model, are the same already used
and validated in [33]: here we report an essential summary.
The equation of motion for a fluid with viscosity µ is given
by the Navier-Stokes (NS) equations:

ρ

(
∂u

∂t
+ (u · ∇∇∇)u

)
= −∇∇∇p+ µ∇∇∇2u + F , (1)

where ρ and u are the density and the velocity of the fluid,
respectively; p is the isotropic pressure; F is an external
body force density. If the fluid is incompressible (as in the
present work) the condition∇∇∇ · u = 0 holds.
In the LBM, instead of directly solving the NS equations
by integrating Eq. (1), the fluid is represented by the so-
called populations fi(x, t), that stand for the density of
fluid molecules moving with velocity ci at position x and
time t. The populations evolve according to the Lattice
Boltzmann equation:

fi(x + ci∆t, t+ ∆t)− fi(x, t) =

= −∆t

τ

(
fi(x, t)− f (eq)

i (x, t)
)

+ f
(F )
i ,

(2)

in which ∆t is the discrete time step, τ is the relaxation
time, f (F )

i is the source term that takes into account the
force density (it has been implemented according to the
“Guo” scheme [63]), and f (eq)

i is the equilibrium distribu-
tion function (we refer back to [61, 62] for the details).

The fluid density ρ and the velocity u are given by:

ρ(x, t) =
∑
i

fi(x, t) ,

ρu(x, t) =
∑
i

cifi(x, t) .
(3)

The link between NS and LB equations (Eq. (1) and Eq. (2),
respectively) is given by the following relation:

µ = ρc2s

(
τ − ∆t

2

)
, (4)

where cs = ∆x/∆t
√

3 is the speed of sound. In the fol-
lowing, we considered both the lattice spacing ∆x and the
time interval ∆t equal to 1.
We simulate two fluids: one outside the membrane (the
plasma, with viscosity µout = 1.2 × 10−3 Pa s) and one
inside it (the cytosol, with viscosity µin = 6× 10−3 Pa s).
The viscosity ratio is given by

λ =
µin

µout
, (5)

providing λ = 5. We implement the parallel Hoshen-
Kopelman algorithm to recognise which lattice sites are
inside or outside the membrane (see [64] for details).
The RBC membrane is described as a 3D triangular mesh
of ≈ 4000 elements, whose shape at rest is given by [65]

z(x, y) = ±
√

1− x2 + y2

r2
·

·
(
C0 + C1

x2 + y2

r2
+ C2

(
x2 + y2

r2

)2
)
,

(6)

with C0 = 0.81 × 10−6 m, C1 = 7.83 × 10−6 m and
C2 = −4.39 × 10−6 m; r = 3.91 × 10−6 m is the large
radius.
The membrane is characterised by a resistance to shear
deformation, area dilation and bending; the viscoelastic be-
haviour is implemented, as well. The first two terms form
the strain energy WS are described by Skalak model [66]:

WS =
∑
j

Aj

[
kS

12

(
I21 + 2I1 − 2I2

)
+
kα
12
I22

]
, (7)

where kS = 5.3 × 10−6 N m−1 [16] and kα = 50kS [3]
are the surface elastic shear modulus and the area dilation
modulus, respectively; I1 = λ21+λ22−2 and I2 = λ21λ

2
2−1

are the strain invariants for the j-th element, while λ1 and
λ2 are the principal stretch ratios [66, 3]; Aj is the surface
are of the j-th element. We adopt the Helfrich formulation
to compute the free-energy WB related to the resistance
to bending [67]. Following [3], we discretise the bending
energy as:

WB =
kB
√

3

2

∑
〈i,j〉

(
θij − θ(0)ij

)2
, (8)

where kB = 2× 10−19 N m [68] is the bending modulus;
the sum runs over all the neighbouring triangular elements,
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and θij is the angle between the normals of the i-th and
j-th elements (θ(0)ij is the same angle in the unperturbed
configuration). Once we have the total free-energy W =
WS +WB, we compute the force acting on the i−th node
by performing the derivative of W with respect to the
coordinates of the node xi:

Fi = −∂W (xi)

∂xi
. (9)

Note that we are implementing neither area nor volume
conservation: in fact, as stated in [33], we checked that
both area and volume were conserved, even without an
explicit area or volume conservation law (see Electronic
Supplementary Information in [33]).
Regarding the viscoelastic term, we implement the Stan-
dard Linear Solid (SLS) model [69, 36]. The viscous stress
tensor is given by

τττν = µs

(
2Ė− tr(Ė)1

)
+ µdtr(Ė)1 , (10)

where E is the strain tensor (see [69, 33]); µs and µd are
the shear and dilatational membrane viscosity: in this work,
we assume µs = µd = µm [33]. We refer to [69, 33] for
the computation of the stress tensor τττν (Eq. (10)) as well
as for the nodal force Fi (Eq. (9)).
Finally, once we have the nodal force Fi for each node i of
the 3D mesh, we spread this force to the lattice nodes via
the IBM (see [61] for details). We adopt the same scheme
as in [33].

3 Loading and relaxation time

In this section, we quantitatively study the loading time
tL and the relaxation time tR with three different loading
mechanisms (see Fig. 1): the stretching with optical tweez-
ers (STS, see Sec. 3.1), the deformation in simple shear
flow (SHS, see Sec. 3.2) and the deformation in an elonga-
tional flow (FRMS, see Sec. 3.3). These three simulations
differ mainly for two aspects (summarised in Tab. 1): the
first one is that the membrane can be deformed by an ex-
ternal force that acts directly on the membrane (like in the
STS) or by the viscous friction with the fluid (SHS and
FRMS); moreover, the membrane can rotate (like in the
SHS) or not (STS and FRMS). The idea underlying the
choice of these three different setups is to catch which of
the aforementioned characteristics affects the loading and
relaxation dynamics.
To quantify the loading time tL and the relaxation time tR,
we define the deformation parameter

D(t) =
dA(t)− dT(t)

dA(t) + dT(t)
, (11)

where dA and dT represent the length of the axial and
transversal diameters, i.e., the greater and medium eigen-
values of the inertia tensor (see [33]). In our computational
domain, dA and dT lie in the x − y plane. We define the
average deformation Dav, i.e., the value of the deformation
D such that limt→∞D(t) = Dav in the loading simulation

and D(0) = Dav in the relaxation simulation.
Qualitatively, the loading time tL is the characteristic time
the deformation D(t) takes to reach Dav; the relaxation
time tR is the characteristic time needed to relax to the
initial shape, after the arrest of the mechanical load. Quan-
titatively, we can get tL and tR via a fit of D(t)/Dav with
the following functions:

L1(t) = 1− exp

{
−
(
t

tL

)δL
}
, (12)

L2(t) = 1− exp

{
−
(
t

tL

)δL
}

cos

(
t

tcos
L

)
, (13)

R(t) = exp

{
−
(
t

tR

)δR
}
, (14)

where L1 is used to fit the loading time for the STS and the
FRMS (see Sec. 3.1-3.3, respectively); L2 is used to fit the
loading time for the SHS (see Sec. 3.2); R is used to fit the
relaxation time tR for all three simulations; δL and δR are
parameters introduced to improve the fit [32] (see [33] for
some more details) and will be characterised in Sec. 4.
Note that we propose two different functions to fit data
during the loading (i.e., Eq. (12) and Eq. (13)); this is due
to the different deformation process of the RBC: in the STS
and FRMS, D(t) is a monotonic increasing function with
an asymptote in D = Dav (see Fig. 1, panels (b) and (f));
in the SHS, D(t) oscillates around Dav, and the amplitude
of the oscillations varies with the value of the membrane
viscosity µm (see Fig. 1, panel (d)). These oscillations have
been also observed for viscoelastic capsules[38, 69, 33, 70].
Before starting the relaxation, for the STS and FRMS, we
waited long enough to achieve the steady value of the
deformation Dav; for the SHS, we ensured the oscillations
were small enough if compared to Dav. Notice, however,
that depending on the importance of viscous effects with
respect to elastic ones, there may be cases where such
oscillations are damped on very long times [70, 71, 38].
Moreover, while the values of the external mechanical
loads we simulated are comparable to each other in terms
of stress (see Sec. 4), the values of Dav for the SHS are
much smaller than for the STS and FRMS (see Fig. 4,
panel (c)).
Since we want to compare the loading time tL and the
relaxation time tR, we define the ratio

t̃ =
tL

tR
. (15)

In all the following simulations, the membrane
viscosity ranges between µm ∈ [0, 3.18] ×
10−7 m Pa s [46, 18, 45, 47, 22, 48, 49, 17, 19, 32].
In the STS, the applied force is in the range
F ∈ [5, 70] × 10−12 N; in the SHS, we simulated
shear rates in the range γ̇ ∈ [1.23, 123] s−1; finally, in the
FRMS, we simulated γ̇FRMS ∈ [1, 120] s−1 (see Eq. (16)).
Values for all parameters used in the simulations in both
physical and lattice units are reported in Tab. 1 in ESI†.
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Figure 2: Characteristic times tL (first column of panels) and tR (second column of panels), as well as the ratio t̃ = tL/tR

(third column of panels) are reported for the three simulations performed, i.e., stretching simulation (STS, , panels
(a-c), Sec. 3.1), shear simulation (SHS, , panels (d-f), Sec. 3.2), four-roll mill simulation (FRMS, , panels (g-i),
Sec. 3.3), for different values of membrane viscosity µm (from lightest to darkest color): µm = 0 m Pa s ( , , ),
µm = 0.64× 10−7 m Pa s ( , , ), µm = 1.59× 10−7 m Pa s ( , , ), µm = 3.18× 10−7 m Pa s ( , , ). The red
dashed line represents the reference value for the symmetric case, i.e., t̃ = 1.

3.1 Stretching simulation (STS)

In order to simulate the stretching with optical tweezers,
we apply two forces with the same intensity F and opposite
directions at the ends of the RBC (see Fig. 1, panel (a)).
Simulations are performed in a 3D box Lx × Ly × Lz =
(28, 12, 12) × 10−6 m. In Fig. 2, we report the loading
time tL (panel (a)) and the relaxation time tR (panel (b)) as
a function of F , for different values of membrane viscosity
µm. In both cases, increasing the loading strength (as well
as decreasing the value of membrane viscosity µm) results

in faster dynamics. It is interesting to compare tL and tR:
in Fig. 2, panel (c), we report the ratio t̃ (see Eq. (15)).

3.2 Shear simulation (SHS)

In the shear simulation, the deformation is due to a linear
shear flow with intensity γ̇. We set the wall velocity Uw =
(±γ̇Lz/2, 0, 0) on the two plane walls at z = ±Lz/2, and
the RBC is oriented as reported in Fig. 1, panel (c). This
choice is surely the optimal one for the purpose of the
present study, since we can focus on the relaxation/loading

6



process without any further complication. In real-world
experiments, indeed, RBCs do not necessarily orient in the
shear plane and evolve into a complex dynamics with many
dynamical modes [72, 29]. In particular, for the values of
shear rate γ̇ we are interested in, a rolling dynamics is
expected if the RBC is not oriented in the shear plane [73].
Further complications can be introduced by polydispersity,
i.e., that RBCs may have different sizes and viscoelastic
properties [16, 74]. We have preferred to avoid all these
extra complications which could not allow us for a fair
assessment in the comparison between a pure relaxation
dynamics and a pure loading dynamics. Simulations are
performed in a 3D box Lx × Ly × Lz = (20, 32, 20) ×
10−6 m. In Fig. 2, the loading time tL (panel (d)) and the
relaxation time tR (panel (e)) as a function of γ̇ for different
values of membrane viscosity µm are reported, as well as
the ratio t̃ (panel (f)). While the relaxation time tR shows a
similar behaviour compared to the STS (see Fig. 2, panel
(b)), a few more words are needed regarding the loading
time tL. Unlike the STS, now we have two characteristic
times, that are tL and tcos

L (see Eq. (13)): tL measures the
time the membrane takes to reach the average deformation
Dav, while tcos

L measures the period of the oscillations. Data
for tcos

L are reported in ESI†, Fig. 1. In contrast to the STS,
the loading time tL first decreases, and then it does not
change much with the intensity of the mechanical load.

3.3 Four-roll mill simulation (FRMS)

In this case, we simulate the effect of four cylinders rotat-
ing [60], as shown in Fig. 1, panel (e), in order to create a
flow similar to a pure elongational one. Simulations are per-
formed in a 3D box Lx×Ly×Lz = (48, 48, 20)×10−6 m.
The idea is to simulate a loading mechanism that is a mix-
ture of stretching with optical tweezers and deformation
in simple shear flow (see Tab. 1): in fact, in this case, the
membrane does not rotate (like in the STS) and the defor-
mation is caused by the flow (like in the SHS).
To create such a flow, we impose a force density [60]

F(x, y) = 2kµγ̇FRMS

(
sin(kx) cos(ky)
− cos(kx) sin(ky)

0

)
, (16)

where k = 2π/Lx, µ is the local fluid viscosity, and γ̇FRMS

is used to tune the load strength. We multiplied Eq. (16)
by k to make the velocity gradient independent of the size
of the fluid domain5:
∂u

∂x
= γ̇FRMS

(
cos(kx) cos(ky) − sin(kx) sin(ky)
sin(kx) sin(ky) − cos(kx) cos(ky)

)
,

(17)
where we have reported only x and y components, i.e., the
components in the plane of the shear. Note that Eq. (16)
gives a pure elongational flow only in x = π/2, 3π/2 and
in y = π/2, 3π/2.
In Fig. 2 we report the loading time tL (panel (g)) and the
relaxation time tR (panel (h)) as a function of γ̇FRMS. As

5The following result is valid in a homogeneous fluid with
dynamics viscosity µ.

for the STS and the SHS, both tL and tR decrease when
the loading force increases or the membrane viscosity µm
decreases. In Fig. 2, panel (i), the ratio t̃ is reported.

4 Discussion

In our simulations, the intensity of the three kinds of me-
chanical loads is changed by varying different quantities,
i.e., F for the STS, γ̇ for the SHS and γ̇FRMS for the FRMS.
To facilitate a comparison between them, we first consider
the characteristic times tL and tR as well as the ratio t̃ as a
function of the characteristic simulation stress σ (Fig. 3).
To evaluate the stress σ for the STS, we computed the area
A at the end of the RBC where the force F is applied. Then,
the stress is given by σSTS = F/A; for the SHS, we wrote
the stress as σSHS = 2γ̇µout [3]. Finally, for the FRMS, the
stress is given by the stress-peak σFRMS = µoutγ̇FRMS. In all
three simulations, the loading and relaxation times (tL and
tR, respectively) show qualitatively the same behaviour,
i.e., they decrease when the loading strength increases or
when the membrane viscosity µm decreases (see Fig. 3,
panels (a) and (b)); the ratio t̃ = tL/tR is reported in Fig. 3,
panel (c). For small forces (σ → 0) we observe a clear
tendency towards symmetry between loading and relax-
ation (t̃(σ, µm)→ 1), meaning that the characteristic times
tL and tR tend to be equal. This is the limit where one
expects to recover the intrinsic dynamics of the membrane,
which depends only on the value of membrane viscosity
µm [33, 19].
On the other hand, for force strengths large enough, load-
ing and relaxation dynamics are asymmetrical, i.e., t̃ 6= 1.
As already noticed elsewhere [42], this asymmetry could
be explained by energetic considerations: in fact, during
the loading phase, the deformation is driven by the external
load (i.e., an external source of energy), while during the
relaxation, the membrane provides the whole energy. Be-
yond these qualitative considerations, results in Fig. 3 pro-
vide a systematic characterisation of the relaxation times,
as a function of either the stress σ or the membrane viscos-
ity µm: an important message conveyed by our analysis is
that the asymmetry is not universal, i.e., on equal values of
membrane viscosity µm, the ratio t̃ depends on the kind of
mechanical load. Just to give some numbers, the difference
between the values of t̃ for the STS and FRMS is roughly
constant (≈ 30%) and it goes to zero for small values of σ;
for the SHS the situation is a bit more complex because t̃
depends on µm. However, if we compare SHS against STS
for µm = 3.18× 10−7 m Pa s, we find a difference of less
then 30% for small values of σ (i.e., σ < 0.1 Pa), while
such a difference goes over the 50% for large values of σ
(i.e., σ > 0.1 Pa).
If we think that the asymmetry comes from the presence of
a mechanical load with load strength large enough [43, 42],
it comes natural to expect a non-universality and a depen-
dency on the details of the loading mechanism. Thanks
to our analysis, we are in a condition to further char-
acterise this non-universality: indeed, we observe that
while t̃ does not depend on µm for the STS and FRMS
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Figure 3: Comparison between the characteristic times tL (panel (a)), tR (panel (b)) and t̃ = tL/tR (panel (c)) as a
function of the stress σ (see Sec. 4) for the three simulations performed, i.e., stretching simulation (STS, , Sec. 3.1),
shear simulation (SHS, , Sec. 3.2), four-roll mill simulation (FRMS, , Sec. 3.3), for different values of membrane
viscosity µm (from lightest to darkest color): µm = 0 m Pa s ( , , ), µm = 0.64 × 10−7 m Pa s ( , , ),
µm = 1.59× 10−7 m Pa s ( , , ), µm = 3.18× 10−7 m Pa s ( , , ). The red dashed line represents the reference
value for the symmetric case, i.e., t̃ = 1.

(t̃STS = t̃STS(σ), t̃FRMS = t̃FRMS(σ)), it actually does in
the SHS (t̃SHS = t̃SHS(σ, µm)). The collapse shown by t̃
in the STS and FRMS (see Fig. 3, panel (c)) suggests a
factorisation of the loading and relaxation times in two
contributions: one depending on the membrane viscosity
µm and one on the load intensity σ:

tKL (σ, µm) ≈ t∗KL (σ)tK0 (µm) for K = STS, FRMS ,
(18)

tKR (σ, µm) ≈ t∗KR (σ)tK0 (µm) for K = STS, FRMS ,
(19)

where the superscript K stands for the kind of mechanical
load. Given this factorisation, we have

t̃K(σ) =
t∗KL (σ)

t∗KR (σ)
for K = STS, FRMS . (20)

To make progress, we investigated what is the physical in-
gredient at the core of the factorisation given in Eqs. (18)-
(19), or, alternatively, why the SHS does not factorize as in
Eqs. (18)-(19). We investigated if such non-factorisation
could be related to the oscillations ofD(t) that appear only
in the SHS (see Sec. 3): however, since t̃SHS does not fac-
torise even when the deformation D(t) does not oscillate
(e.g., for small values of the membrane viscosity µm and/or
the shear rate γ̇), we conclude that these oscillations cannot
be fully responsible for the non-factorisation. We rather
think that the difference between SHS and STS/FRMS is
mainly due to the different dynamics that are induced by
the mechanical load (see Tab. 1). In fact, regarding the
SHS, one can split the velocity gradient ∂u∂x in the symmet-
ric (rotational) and antisymmetric (elongational) parts:

∂u

∂x
=

(
0 γ̇
0 0

)
=

(
0 γ̇

2
γ̇
2 0

)
+

(
0 γ̇

2

− γ̇2 0

)
, (21)

where the only two components in the shear plane are re-
ported. The rotational part causes the rolling motion of
the membrane (see Fig. 4, panels (a) and (b)), while the
elongational one tends to deform the RBC and pushes the
main diameter to an angle of π/4 with respect to the shear
direction; an increase in the membrane viscosity causes
an increase in the time needed for the membrane to adapt
to the flow and to deform; meanwhile, the rotational com-
ponent promotes a rotation of the main diameter. Overall,
the increase in membrane viscosity µm leads to a decrease
of the average deformation Dav (see also Fig. 4, panel
(c)). To make these arguments clearer, we have made two
videos available in the ESI†: in one we show the simula-
tion with γ̇ = 123 s−1 and µm = 3.18 × 10−7 m Pa s,
while in the other one the simulation with γ̇ = 123
s−1 and µm = 0 m Pa s is reported. In both cases, the
tank-treading motion of the membrane appears, but, for
µm = 0 m Pa s, the membrane deforms more than in the
case with µm = 3.18× 10−7 m Pa s. In Fig. 4, panel (c),
we report the average deformation Dav as a function of
the stress σ for all three mechanical loads at changing the
membrane viscosity µm. As already observed in [33] for
the STS, we found that Dav is not sensitive to the value
of membrane viscosity µm. Moreover, in the FRMS we
found that Dav shows very little dependency on µm, at least
in the range of µm and σ analysed. Hence, for STS and
FRMS, we report only points for µm = 3.18×10−7 m Pa s.
It emerges that, in the SHS, the average deformation Dav

saturates at a constant value: an increase in the shear rate γ̇
causes an initial increase of the average deformation Dav;
then, Dav reaches a plateau and increasing the shear rate
γ̇ beyond a certain value does not result in an increased
deformation. The higher the membrane viscosity µm, the
lower is the value of γ̇ for which the plateau is reached.
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Figure 4: Panel (a): snapshots of RBC at selected times.
A point is selected on the membrane (green sphere) to
perform a Lagrangian tracking and determine the time
dependency of the angle φ that the point direction forms
with the y axis in the deformation plane. Panel (b): we
report the angle φ (see panel (a) above) as a function of
time for the stretching simulation (STS, , Sec. 3.1), shear
simulation (SHS, , Sec. 3.2), four-roll mill simulation
(FRMS, , Sec. 3.3), for µm = 3.18 × 10−7 m Pa s.
The red and blue shades represent loading and relax-
ation regions, respectively. Panel (c): average deforma-
tion Dav (see text for details) as a function of the stress
σ for the three simulations performed (STS, SHS and
FRMS). SHS data are displayed for different values of
membrane viscosity µm (from lightest to darkest color):
µm = 0 m Pa s ( ), µm = 0.64 × 10−7 m Pa s ( ),
µm = 1.59× 10−7 m Pa s ( ), µm = 3.18× 10−7 m Pa s
( ). STS data ( ) and FRMS data ( ) data are only reported
for µm = 3.18× 10−7 m Pa s.

Furthermore, when compared to the STS and FRMS, we
can see that on the same values of σ the average deforma-
tion Dav is much smaller in the SHS. Again, this is due
to the rotation of the membrane during the loading. In
both STS and FRMS, the membrane does not rotate, so
that the energy injected by the flow is used to deform the
membrane. These investigations reveal that it is impossible
to predict the loading and relaxation times if we only know
the deformation and have no information about the kind of
mechanical load.
In view of the above considerations on the deformation, it
appears also natural to study the characteristic times as a
function of the average deformation Dav. We performed
this analysis (see ESI†, Fig. 2), confirming the picture dis-
played in Fig. 3: again, t̃ shows a collapse for the STS
and the FRMS and does not depend on the value of the
membrane viscosity µm; for the SHS t̃ shows a depen-
dency on both Dav and the membrane viscosity µm. The
results on tL(Dav) and tR(Dav) (Fig. 2 in ESI†, panels (a)
and (b), respectively) further confirm that in general there
is no correlation between the degree of deformation of the
membrane and the characteristic times for different kinds
of mechanical loads.
In our previous work [33], we have already seen that, for
small forces, tR is linear in µm, in agreement with literature
predictions [19]. Now we can go further, and we study the
dependency of both tL and tR as a function of µm for differ-
ent values of σ. This will help further to determine to what
degree these two kinds of dynamics can be regarded as dif-
ferent dynamics [43, 42]. In Fig. 5, we report both tL(µm)
and tR(µm) (first and second row of panels, respectively)
for three values of σ spanning two orders of magnitude as
well as their linear fit (whose coefficients are reported in
ESI†, Tab. 2) for all three simulations (STS in panel (a) and
(d); SHS in panel (b) and (e); FRMS in panel (c) and (f)).
In all three simulations, for a fixed value of σ, the linear
approximation is reasonably good. For small values of σ
(e.g., σ = 0.001 Pa), both tL and tR are similar for all three
simulations; that is not surprising, since at small values
of stress σ the intrinsic properties of the membrane arise.
Regarding the sensitivity of the linear trend with respect to
a change in σ, we observe different behaviours in the two
dynamics. Regarding the loading dynamics, we observe
that for high values of σ, the three load mechanisms pro-
vide similar linear fits, while in the intermediate region of
σ, the SHS shows a different behaviour than the STS and
FRMS. Regarding the relaxation dynamics, the variability
of the linear trends with the value of the stress is more pro-
nounced in presence of hydrodynamical forces (i.e., SHS
and FRMS), while in the STS the linear behaviour of tR

with respect to µm is only slightly perturbed by a change
in the stress if compared to the others. These quantitative
observations are summarized in Tab. 2 in ESI†.
A dimensionless analysis could be performed to try to
gain a deeper insight into the problem; however, if we
try to make both the characteristic times tL and tR and
the shear rates γ̇ and γ̇FRMS dimensionless by using the
characteristic elastic time tel = µoutr/kS, as well as the
force F by using the characteristic elastic force Fel = rkS,
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Figure 5: Characteristic times tL (panels (a-c)) and tR (panels (d-f)) as a function of the membrane viscosity µm
(see Sec. 4) for the three performed simulations: stretching simulation (STS, , Sec. 3.1), shear simulation (SHS, ,
Sec. 3.2), four-roll mill simulation (FRMS, , Sec. 3.3), for different values of stress σ (from lightest to darkest color):
σ = 0.001 Pa ( , , ), σ = 0.01 Pa ( , , ), σ = 0.1 Pa ( , , ).

we get only a rescaling along the x and y axis. Mak-
ing the membrane viscosity µm dimensionless by intro-
ducing the Boussinesq number Bq = µm/rµout (see
also [69, 38, 33]) results again in a constant rescaling of all
the values, without giving a new insight into the problem.
In principle, one can look for some more refined non-
dimensionalisation procedure combining membrane vis-
cosity and rotational/deformation contributions: in the case
of the SHS, for example, this would mean to find a shear
time dependent on both Bq and Ca. This would anyhow re-
quire a more precise knowledge (e.g. a phenomenological
model [19]) on how the rotational/deformation contribu-
tions couple with the membrane viscosity effects.
Next, we discuss the parameters δL and δR used to improve
the fit (see Eqs. (12)-(13)-(14)). In all three setups, δL and
δR are close to one, especially in the STS and FRMS (see
Fig. 3 in ESI†). The biggest deviation can be found during
the loading in the SHS, where the parameter δL seems to
tend asymptotically to δL ≈ 0.6 at increasing values of
shear rate γ̇: this deviation from 1 reflects the effect of the
kind of mechanical load also on δL, showing that, during
the loading in the SHS, D(t) is not that close to an expo-
nential function, and then multiple time scales arise [33].
Indeed, having fitting parameters δL and δR different from

1 is symptomatic of the presence of multiple loading and
relaxation times, respectively. This issue has already been
investigated for both SHS and STS during the relaxation
dynamics in our earlier study [33]; here we go deeper with
the investigation during the loading dynamics. We have
monitored the time evolution of the deformation D(t)

Dav
in

log-lin scale (see Figs. 4-5-6 in ESI†). The initial stage
of the loading/relaxation process is well characterised by
a single "dominant" time scale, and only later, when the
difference of D(t) from Dav (during the loading) or from
0 (during the relaxation) is less (or even much less) than
about 10%, other time scales appear. As already pointed
out in [33], it is difficult to make quantitative assessments
on the "late" dynamics, because then the deformation is
close to its steady value (for the loading) and/or to the rest
value (for the relaxation), and in this situation, discretisa-
tion errors could have more influence. One could make a
deeper analysis of these multiple relaxation times and fit
data with two (or more) characteristic times, both during
loading and relaxation; however, we notice that the values
of tL and tR found by fitting with the stretched exponential
(i.e., by using δL, δR 6= 1) are in good agreement with the
"dominant" time scale (see Figs. 4-5-6 in ESI†). On the
other hand, the small difference between the fitted charac-
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Figure 6: Characteristic times tL (first column of panels) and tR (second column of panels) as well as the ratio t̃ = tL/tR

(third column of panels) are reported for the three simulations performed, i.e., stretching simulation (STS, , panels (a-c),
Sec. 3.1), shear simulation (SHS, , panels (d-f), Sec. 3.2), four-roll mill simulation (FRMS, , panels (g-i), Sec. 3.3),
for different values of surface elastic shear modulus kS (from lightest to darkest color): kS = 5.3× 10−6 N m−1 ( , ,

), kS = 53 × 10−6 N m−1 ( , , ), kS = 530 × 10−6 N m−1 ( , , ). The value of membrane viscosity µm was
kept fixed in all the simulations (µm = 1.59× 10−7 m Pa s). The red dashed line represents the reference value for the
symmetric case, i.e., t̃ = 1.

teristic times and the "dominant" characteristic times also
explains why the ratio t̃ becomes greater than 1 for one
case in the FRMS (see Fig. 2 panel (i) and Fig. 7 in ESI†).
Before closing this section, we also discuss the effect of
the surface elastic shear modulus kS (see Eq. (7)) on the
loading and relaxation times. As already stated in the in-
troduction, some pathologies can affect the value of mem-
brane elasticity [11, 16, 52, 53, 54, 55, 56, 57, 58, 59]:
for example, for RBCs infected with the malaria parasite
Plasmodium falciparum, experiments with optical tweez-

ers estimated values of elastic shear modulus ranging from
kS = 5.3 × 10−6 N m−1 (i.e., for the healthy RBC) to
kS = 100× 10−6 N m−1 [16]. For this purpose, we fixed
the value of membrane viscosity µm = 1.59×10−7 m Pa s
and we varied the elastic shear modulus kS in a range of
two orders of magnitude: from kS = 5.3 × 10−6 N m−1
to kS = 530× 10−6 N m−1. Results are reported in Fig. 6.
For all three kinds of mechanical loads simulated, increas-
ing the value of the elastic shear modulus by a factor 10
or 100 results in a reduction of the characteristic times by
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about the same factor, as expected [46, 19]. Moreover, we
analysed the ratio t̃, finding that it gets closer to 1 at in-
creasing values of kS. Mechanical balance at the interface
tells us that the relative importance of viscous to elastic
effects rescales as the ratio between the shear rate γ̇ devel-
oped in the fluid and the surface elastic modulus kS of the
membrane. The shear rate developed in the fluid during
both loading and relaxation is larger at increasing load
strength; thus, for a fixed γ̇, by increasing kS we should
have the same results observed for kS = 5.3×10−6 N m−1
at shear rates that are smaller by a factor given by the ratio
of the kS’s. In other words, we expect t̃ → 1 when kS
gets very large. This fact is confirmed by our results. We
hasten to remark that these are only preliminary results, for
at least two reasons: first, a proper dimensionless analysis
of the governing equations [38, 57] reveals that also the
importance of the bending modulus kB with respect to kS
needs to be taken into account via a suitable dimension-
less number k∗B. Since it is not known whether certain
blood-related pathologies, such as Plasmodium falciparum
malaria parasite infection, affect the value of the bending
modulus kB [56, 57, 58, 59], we have kept it fixed at the
value for the healthy RBC (see Sec. 2). Therefore, in our
simulations, at changing kS, the dimensionless number
k∗B =

kB
r2 kS

is changing: a more comprehensive analy-
sis on the effects of kS should be done by assessing also
the impact of a variation in k∗B separately. Second, the
SLS model we implemented to take into account the vis-
coelastic effects (see Sec. 2) contains an artificial elastic
contribution k′ that is proportional to kS and needs to be
tuned in order to recover physical results (see [33, 69] for
further details and validations). Varying the value of the
elastic shear modulus kS modifies also the value of k′: if
and how this affects the physical dynamics of the RBC at
the very large kS we considered requires a detailed compu-
tational analysis by its own, which is out of the scope of
the present paper. All these considerations surely warrant
dedicated studies in the future.

5 Conclusions

A comprehensive characterisation of the viscoelastic prop-
erties of the RBC membrane, as well as the way the mem-
brane responds to an external force, is of paramount inter-
est in different fields, from the detection of pathologies [11,
16, 19], to the design of biomedical devices [24, 25, 26, 27].
A paradigmatic example is provided by ventricular assist
devices [75] where RBCs evolve in a complex flow and
their fate is closely linked to their residence time inside
the device: if the residence time inside the impeller (that
is the region where the RBCs experience a wide range of
stress) is much shorter then the loading time, RBCs deform
without reaching a steady state configuration; on the con-
trary, a higher residence time leads to a deformation that
can cause hemolysis (that is, the release of the cytoplasm
into surrounding plasma due to damage or rupture of the
membrane).
In general, when an external force acts on a viscoelastic

membrane, two main kinds of dynamics arise: the load-
ing and the relaxation dynamics with associated times tL

and tR. Earlier investigations pointed to the fact that these
two kinds of dynamics are two distinct processes, since
during the relaxation there is no external force to drive
the membrane, in contrast to the loading [43, 42]. To
the best of our knowledge, however, an exhaustive com-
parative characterisation of these two kinds of dynamics
has never been conducted. This motivated our work to
investigate these two kinds of dynamics with different se-
tups that involve different typologies of mechanical loads
(whose main features are summarised in Tab. 1) while per-
forming a parametric study on the values of membrane
viscosity µm. The latter choice is motivated by the large
variability of membrane viscosity values reported in the
literature [46, 18, 45, 47, 22, 48, 49, 17, 19, 32].
The two kinds of dynamics are symmetrical (t̃ = tL/tR →
1) in the limit of small load strengths (σ → 0), i.e., in the
limit where the response function of the RBC is dominated
by the "intrinsic" properties of the membrane; in marked
contrast, we found an asymmetry in the two kinds of dy-
namics for load strengths large enough (t̃ = tL/tR 6= 1 for
σ > 0), meaning that the loading dynamics is always faster
than the relaxation one. We found that the asymmetry pro-
foundly depends on the kind of mechanical load and we
have demonstrated this non-universality via a quantitative
study in terms of the applied load strength σ and the value
of membrane viscosity µm. There are some realistic load
mechanisms, like shear flows, that make the membrane ro-
tate during loading while leaving the membrane relaxing to
the shape at rest without rotation: in this case, the contribu-
tion that the membrane viscosity gives to the characteristic
times tL and tR differs, and then the ratio t̃ is a function of
both the stress σ and the membrane viscosity µm. From
the other side, there are other realistic load mechanisms,
like the stretching with optical tweezers or the deformation
with an elongational flow, in which the membrane deforms
without rotating during both processes. In this case, the
contribution given by the membrane viscosity µm to the
characteristic times is the same during both loading and
relaxation, and as a consequence, the ratio t̃ is a function of
the stress σ only. Even though we showed that both load-
ing and relaxation dynamics are not universal, we found
that for a given value of the stress σ, a linear increase of
the characteristic times as a function of the membrane vis-
cosity µm is a fair approximation in all cases.
Finally, since some blood-related diseases [11, 16, 52, 53,
54, 55, 56, 57, 58, 59] can alter the values of the elastic
shear modulus kS, we also investigated the loading and
relaxation dynamics at changing kS for a fixed value of µm,
finding that larger values of kS promote symmetrization
(t̃→ 1) of the dynamics.
We argue our findings offer interesting physical and prac-
tical insights on the response function and the unsteady
dynamics of RBCs driven by realistic mechanical loads.
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