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Abstract

Collaborative recommending systems aim to predict a potential user-item rating
on the basis of remaining ones. Since, in several contexts, sharing of other users’
ratings may be prevented by confidentiality concerns, several works have effec-
tively addressed the design of privacy preserving recommenders. Still, most of
the proposed solutions rely on advanced cryptographic methodologies, whose may
conflict with the simplicity and viability requirements of real world deployments.
In contrast, we propose an approach which does not require any complex cryp-
tography. We show that whenever we can tolerate recommendations based on av-
erage values, we can transform the recommender into a privacy-preserving one,
by using two non colluding replicas of the same system, and by distributing ran-
domly “blinded” data to these replicas. To protecting each user’s rating, a key asset
of our approach is the ability to conceal which specific items are rated by which
users. Our proposal is secure under the honest-but-curious attacker’s assumption,
and we show how it can be extended to guarantee robustness also against mali-
cious adversaries. Finally, as a proof-of-concept, we present an implementation of
the proposed approach for our motivating use case - collaborative assessment of
computer/network vulnerabilities without revealing which of them affect one own
infrastructure.
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1. Introduction

Recommending systems play a pivotal role in the modern internet economy [1],

by assisting end users in taking decisions among an essentially very large number

of alternatives, and providing Decision Support Systems (DSS) with automated

intelligent support. With very few exceptions [2], the majority of recommending

systems suggest decisions to users on the basis of a large dataset comprising of

ratings (or preferences) given by other users.

Most of the recommended techniques addressed in scientific literature lever-

age quite sophisticated techniques, with regularized matrix factorization, arguably

the leading approach since the famous NetFlix context [3] [4]. These techniques

are indeed capable of infering users’ preferences/interests from their own rating

behavior, and consequently provide diversified recommendations to different user

profiles.

1.1. What about data privacy?

Recommender system engines are powerful machine-learning software fed by

data. As such, the bigger and the more accurate the data is, the more useful its

recommendations can be. However, in some contexts, sharing a large data-set of

historical data appears to run in stark contrast to users’ privacy or business confi-

dentiality needs.

What if the users do not trust the recommender system itself and do not want

to share their potentially sensible data with it? Would it be possible to obtain some

kind of collaborative service among users without a central trusted authority and

generally without anybody, except the user himself, knowing the data?

Even if it appears an apparently ill-posed question, solutions exist and must

be sought after in the field of data privacy and security. In that field/community,

privacy preserving personalized recommendation services have been studied in lit-

erature for a while [5], finding solutions based on sophisticated techniques such as

homomorphic encryption [6], garbled circuits [7] and secure multi-party compu-

tation [8]. However, despite the growing interest in privacy, the fact remains that

practical adoption of privacy preserving systems is still lagging behind.

We propose that the very limited real world deployment of such advanced cryp-

tographic technologies is due to three main reasons.
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First, such approaches often require specialized computation such as modular

operations on large prime fields which, according to [9], exhibit six orders of mag-

nitude of difference with respect to the time needed to perform regular arithmetic

operations in small (32 or 64-bit) fields.

Second, real world system operators are extremely reluctant to trade perfor-

mance for privacy, as some advanced cryptographic approaches unfortunately would

require. As pointed out in [10], practical implementation problems of Secure Multi

Party Computation techniques stand in the way of their wider adoption.

Third, most stakeholders may not be capable of digging into the quite technical

details of these constructions, and thus may be reluctant to “buy” them without

fully understanding their operation. Conversely, understanding technologies is a

viable solution to fight the “fear of change” which impairs companies’ innovation

[11].

Finally, it is worth noting that it is also very hard to incorporate advanced

cryptographic technologies into existing infrastructures and tools, as re-building

production-ready implementations is costly and error-prone, and generally not an

option for most companies in our fast-paced modern world [9].

1.2. Which scenarios?

Many domain-specific applications need privacy-preserving recommendations,

think for instance of healthcare, finance, and even day-to-day life [6].

One specific use case which was an original motivation for our work was the

opportunity to develop a collaborative risk management system [12], capable of

collecting information about other companies’ potential and current cyber-security

vulnerabilities, and to help an enterprise to evaluate the impact of such threats.

However, unless we rely on fully trusted centralized intermediaries, such a sys-

tem today may hardly exist. Not only are enterprises hardly willing to reveal to

other peer companies their evaluation of a given vulnerability, but to a greater ex-

tent companies are clearly unwilling to reveal the very existence of that specific

vulnerability in its domain. We dedicate section 6 specifically to this use case, im-

plementing the privacy preserving mechanism described above, to a collaborative

assessment of computer/network vulnerabilities.
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1.3. Our Contribution

In this paper, our motivating question was: can we design a privacy-preserving

collaborative recommending system which uses off-the-shelf arithmetic, performs

similarly to a non-protected system, and employs trivial-to-explain cryptographic

techniques which even a layman may understand? While this appears challeng-

ing when considering state of the art recommenders (e.g. based on matrix factor-

ization), in this paper we show that this goal can be met if we consider a basic

recommending system whose prediction approach relies on averaging the remain-

ing ratings. Interestingly, despite its simplicity, our proposed system exhibits an

excellent level of privacy with a very lightweight cryptographic complexity - our

encryption algorithm is merely based on adding a random value to the original data;

our implementation relies on (non-prime) small-module arithmetic fully compati-

ble with the word size of commodity CPUs (e.g. 32 or 64 bits), and can be easily

understood and mastered by anyone with basic computer science skills.

In terms of scientific contribution, our major challenge was the identification of

a solution which, while retaining the computational and deployment simplicity of a

trivial secret sharing approach (see section 3.2), could permit us to further conceal

which item was rated by whom. This is in fact an important requirement in several

scenarios, including the collaborative risk assessment use case presented in section

6. Indeed, hiding the specific vulnerabilities that affect a party (e.g. a company) is

arguably even more important than randomizing the score that said party has given

to the vulnerability itself.

We accomplish this goal by proposing a novel technical solution based on a

binary random matrix, which is used to hide information about the presence or

absence of a rating, meanwhile permitting (owing to its further random split be-

tween privacy peers) the number of ratings to be counted blindly as this informa-

tion is necessary for computing the average recommendation. In other words, while

a straightforward application of a literature secret-sharing based approach would

have only prevented the disclosure of the actual rating, our approach further avoids

revealing which item is rated by whom, with negligible supplementary computa-

tional complexity. Moreover, we also extend our construction and show how, at the

cost of extra computational complexity and with the addition of a tailored crypto-

graphic commitment, the provided solution can also cope with malicious/cheating
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parties. In summary:

1. we propose an approach which relies on a very easy and scalable anonymiza-

tion technique, based on a suitable adaptation of trivial secret sharing tech-

niques which, despite providing unconditional security (inherited from the

property of trivial secret sharing), does not require any prime field arith-

metic against honest-but-curious attackers - more cumbersome cryptography

becomes necessary only when the goal is also to protect against active/mali-

cious attackers;

2. besides hiding the ratings, our approach introduces a novel technique, namely

a ”presence matrix” to further hide the presence or absence of the rating it-

self. This is a crucial property in many contexts, such as the specific vul-

nerability assessment use case which originally motivated our work, where

the information about the existence of a vulnerability is arguably even more

important and sensible than its rating;

3. rather than requiring a redesign of existing systems, our approach fosters an

incremental deployment and can be applied on top of already implemented

systems with minimal adaptation, i.e., by duly randomizing the ratings be-

fore transmitting them to the backend servers. In this perspective, current

applications can be made “privacy aware” also by adding a proxy and sim-

ply duplicating the database on servers belonging to different non-colluding

domains, thus not requiring production-ready applications to be rebuilt.

The rest of the paper is organized as follows: section 2 presents the state of

the art, section 3 presents the problem definition and the related threat model, sec-

tion 4 describes the proposed solution, section 5 discusses some limitations of the

implemented solution, section 6 presents the case of the implementation of a col-

laborative cyber-risk assessment service, finally conclusions are drawn.

2. Related Work

A recommender system can be defined through four dimensions: real-world

application domains, application platforms, recommendation methods and recom-

mender systems software [13]. In the following sections, recommender systems
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are analysed not only according to these dimensions, but also considering how

they protect data.

2.1. Recommendation methods and recommender systems software

Recommender systems are based on two strategies [14]. The first is the content

filtering approach based on the construction of a profile for every user or product to

characterize its nature (this may require gathering external information that might

not be available). Another method is the use of past user behaviour (for example,

previous transactions or ratings) without requiring the creation of explicit profiles.

This approach is collaborative filtering. The two primary areas of collaborative

filtering are the neighbourhood methods and latent factor models [15]. The Matrix

Factorization algorithm is the most successful realization of the latent factor model

and has been applied to the Netflix problem [16, 17], a competition to motivate re-

searchers to improve the accuracy of a recommender system. Using this algorithm,

it is possible to calculate the most probable choice of a user starting from the other

users’ choices, without gathering external information on that user.

2.2. Privacy preserving recommending systems

Recommender Systems typically require users to reveal their ratings to a rec-

ommender service, which subsequently uses them to provide relevant recommen-

dations in terms of predictions [18]. From a privacy point of view, the recom-

mender service act as a trusted third party that collects all the data and then pro-

vides recommendations individually to each user. In many cases, however, such an

assumption can be criticised. For this reason there are many literature algorithms

to create a privacy preserving recommending system, i.e. systems that should pro-

vide good recommendations but that are not entrusted to understand all the data, at

least in a clear form.

The main adopted techniques can be categorized in the following families:

• Based on traditional secure multi-party computation techniques such as ho-

momorphic encryption, Garbled circuit, or special implementation of privacy

preserving operations, such as secure sums - representative works in the se-

cure multiparty area include for instance [19, 20, 21]
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• Based on a system that trades off privacy with accuracy (e.g. differential

privacy work [22] and the referenced papers therein, or through profile ob-

fuscation [23])

• Based on an ElGamal scheme of homomorphic encryption [24] which works

as follows: the multiplication of two cypher texts equals the encryption of

the multiplication of the plain texts

The key differences of this work with respect to the literature are:

• It is based on just one single communication round among client and server

(faster);

• We exploit the diversity of the actors, following an approach similar to SEPIA

[25], but all the servers need the same code-base (easy to maintain);

• It is easier to explain and to develop, especially with respect to complex

secure multiparty computation techniques such as [21];

• It allows for the easy adoption of existing systems, since it can work without

changing code on server side (for each servers) but only with modifications

on the client side;

• It implies simply algebraic logic with small non-prime modulus, so it is com-

putationally efficient

2.3. Motivations for privacy preserving recommending systems

The need for privacy preservation is very important for a recommending sys-

tem, because it needs to protect data shared by the users. Considering the medical

word, with the development of the ”Internet + Intelligent Medical”, where patients

can online diagnose some common diseases via the Internet there exist many se-

vere problems on privacy for medical sensitive data of patients. Many solutions

have been proposed to solve this problem such as privacy-preserving self-serviced

medical diagnosis scheme based on secure multi-party computation [26].

In a financial context, the wide diffusion of cloud computing has caused an

increase in the number of restrictions that financial firms apply to cloud appli-

cations [27]. To this aim, many solutions have been proposed and implemented

to protect financially sensitive data against unauthorized access[28, 29, 30]. One

of the most recent one is the developing of a cryptographic-based model sharing
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technique to securely outsource knowledge reflected in decision trees of multiple

parties, designing a secure computation mechanism to facilitate privacy-preserving

knowledge transfer [31].

The need for privacy preservation is very important also in the field of social

networks, where billions of users share their personal data with various devices

over the Internet on a daily basis [32, 33]. This need is a primary target not only

for the traditional and famous social networks (Facebook, Instagram, etc..) but also

for different types of social networks such as the Diaspora network [34], which was

a decentralized online social network with over 216000 users. It is a network of

independent, federated Diaspora servers that are administered by individual users

who allow Diaspora users’ profiles to be hosted on their servers.

The particular use case presented in this paper comes from the world of Cy-

ber Risk Management, where there is an important need of privacy or business

confidentiality.

2.4. Application domains and application platforms

Recommending systems use assistant mechanisms for decision-making. For

this reason, there are many fields where these types of systems are used, such as

movie or music recommendation [35, 36] or the prediction of Chronic Hepatitis B

(CHB) in patient clinical medication [37]. In the last years with a greater use of

devices connected to internet, recommending systems have increased their impor-

tance also in sectors such as e-government, e-business, e-commerce/e-shopping, e-

library, e-learning, e-tourism, e-resource services and e-group activities [13] with

the aim of providing users with personalized online recommendations to handle

the increasing information overload problem and improve customer relationship

management.

Moreover, a recommender system can provide a viable solution to the problem

of the exponential increase of available information (information overload). This is

done by helping users to find relevant information, for instance by using fuzzy lin-

guistic recommender systems to advise researching resources in university digital

libraries [38, 39]. This work, and in particular the use case presented in section 6,

can provide a practical solution to such a problem by suggesting users reasonable

values for an application-specific domain, and doing this in a privacy preserving
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form.

2.5. Literature summary

Considering the related works cited before, a summary with the most relevant

ones is presented in the comprehensive table 1:

Reference Cryptographic method Recommender method
[3] [4] No cryptography Matrix Factorization and neigh-

bor based algorithms
[6] Homomorphic encryption

(based on ElGamal scheme)
Content-based filtering and col-
laborative filtering recommen-
dations

[7] Garbled circuits Matrix Factorization
[8] Secure multi-party computation Decision trees
[15] No cryptography Collaborative Filtering (based

on Genetic algorithms)
[20] Data perturbation techniques Item-based collaborative filter-

ing algorithm
[24] Homomorphic encryption

(based on ElGamal scheme)
Scalar Product

Table 1: Comparative analysis of the cryptographic and recommending methods presented in the
related work

3. Problem statement and baseline approach

We consider a set of n users that rate a subset of m possible items (e.g. movies,

risks). Users want to receive a recommendation for the items they did not vote for

whilst keeping their own votes secret.

The conventional approach to address this problem is to use a Recommended

System (RecSys). As represented in figure 1.a, the RecSys usually is a centralized

entity and represents, from a security point of view, a Trusted Third Party (TTP)

for the whole system.

3.1. From TTP to Privacy Peers

Entirely relying on a Trusted Third Party is a strong assumption and represents

an important security bottleneck that should be avoided whenever possible, espe-

cially if we are dealing with multiple companies and very sensitive data. For this
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(a)

(b)

Figure 1: (a) presents the conventional architecture of a Recommending System, whereas (b) is an
example of a 2 peers distributed architecture

reason, starting from the approach pursued by works such Security through Private

Information Aggregation (Sepia) [25] and Peer for Peer (P4P) [40], alternative so-

lutions have been presented in literature to relax the trust assumption and replace

the need for a single Trusted Third Party with a “Simulated TTP” composed of a set

of non-colluding semi-honest servers that we call Privacy Peers. In this way, we

move the trust assumption from the full honesty of a single entity (TTP) to the non-

collusion assumption of a set of different entities (Privacy Peers) which is a more

reasonable requirement in systems operated by multiple independent entities. The

general architecture proposed is depicted in figure 1.b: users generate “blinded

data” from their original data and commit it to the privacy peers that recommend

over this randomized data. The peers then publish the aggregated results and a

public data reconciliation allows the peers to obtain the true recommendations.
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3.2. How to “blind data”: Trivial Secret Sharing

Suppose we want to store a secret number s on two privacy peers, namely peer

A and peer B, such that neither is able to independently infer any information on

this number, but s can be reconstructed only when both entities are involved. Un-

like Shamir’s classical (and more general) secret sharing problem [41], the above

described scenario does not require any specific cryptographic skills, and can be

addressed using a trivial approach - indeed the approach described in what follows

is often named “trivial secret sharing”.

The idea is to generate a random number r ∈ [0, N − 1] and then send r to

peer A and x = s − r mod N to peer B. Note that N can be a small non-prime

number: the only requirement is that N should be as large as the maximum possible

value of the secret s. Clearly, peer A, which received the random value r, has no

information about s. But the same holds for peer B, as the modular operation

x = s − r mod N is conceptually equivalent to an unconditionally secure one-

time pad encryption of the value s - in other words, it is straightforward to show

that an adversary who observes x has no advantage in guessing the secret s: since

r is a random quantity uniformly distributed in the range [0, N − 1], all possible

guesses for s in the range [0, N − 1] become now equally likely. However, the

secret s can be trivially reconstructed as long as peers A and B share their values.

Indeed, to reconstruct s, it suffices to sum (modulus N ) the “share” r provided by

peer A with the “share” x = s−r mod N provided by peer B, i.e., s = r+(s−r)
mod N . What is appealing about such an elementary technique is that operations

are performed using small non-prime modulus, see for instance the example shown

in figure 2 (s=2, N=5, r=3) which uses modulus N = 5.

A compelling property of trivial secret sharing (as well as many other more

general secret sharing techniques, including Shamir’s and mainstream secret-sharing-

based secure multiparty frameworks such as Sepia [25] and P4P [40]) is linearity

with respect to the sum operation. If we need to sum an arbitrary number of se-

crets (e.g. ratings), a share of such a total can also be computed by summing the

shares of each individual rating. This “homomorphic” property can be used to build

a private recommending system where the recommendation is based on a simple

average value of the scores.

In particular, if we consider n users, any one of which votes a set of m items,
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Figure 2: Trivial Secret Sharing with s=2, N=5, r=3

we just need to move from the single secret value s to a vector of secret values Si
which contains all the m scores given by the i-th user. We call sij the score given by

the i-th user to the j-th item. In the same way, we have to pass from a single random

variable r to a vector of random variablesRi containing m random values that the

i-th user will send to peer A. The random value sent by the i-th user is called rij ,

and it is associated with the j-th item. After users send their vectorsRi and Si−Ri,

each privacy peer builds a matrix by combining the received vectors: peer A has

R, a m×n matrix with all the random values sent by all the users and regarding all

the items, while peer B has Si −Ri, a m × n matrix with the differences modulo

N . Now, we can compute the sum of the ratings for each item by exploiting the

homomorphic property as follows. Peer A computes the column-wise sum of its

matrixR, while peer B computes the column-wise sum of its values S−R. If both

the peers advertise these sums, every user can easily obtain the overall sum of all

the secrets by simply computing sum(S) = sum(R) + sum(S −R).

3.3. Challenge: from sums to average ratings

The problem now is the following: how it is possible to pass from a sum of

ratings to the average of them, which is the aim of our simple recommender. If we

knew the number of rates per item, this would be trivially obtained by dividing the

sum by this number. However, the number of raters is not n (not all the users vote

for all the items). Moreover, we also want to avoid keeping track of whether a sin-

gle user voted or did not vote for a given item. Providing such information requires

12



special attention, since it can be very sensitive in many real-world application sce-

narios such as in the case of security assessment (described in section 6) where we

clearly do not want to share publicly the impact values of the single vulnerabilities

on our system, nor do we want to share which vulnerability is applicable to our

company.

This problem cannot be addressed by using a more general secret sharing

framework (e.g. Sepia [25] or P4P [40]), but requires a tailored solution. To this

aim we introduce a presence matrix, namely P , that is a binary n ×m matrix re-

vealing whether a user voted for an item or not. As for the case of the scores, we

protect this matrix too, extending the approach from S to P . The complete solution

is described in the following section.

3.4. Threat model

Users want to keep their data secret from: i) other users; ii) malicious rec-

ommender systems; iii) third party attackers able to violate recommender system

infrastructure.

The above threats can be compressed in two attack models:

• Honest-but-curious parties: all parties follow the protocol honestly.

• Malicious parties (dynamic adversary): not only malicious users (can

commit bogus data for the sake of revealing other users’ data) but also mali-

cious RecSys.

We do not assume the presence of a trusted third party. Conversely, we adopt

a distributed strategy assigning the recommending task to multiple independent

parties, called privacy peers, that can be physically hosted on different companies.

We require non-colluding privacy peers.

3.5. Security guarantees

The system, in its basic form, offers protection against honest-but-curious par-

ties: all parties learn nothing about users’ scores both in terms of presence and

in terms of actual value. With the addition of commitments (see section 4.3), we

offer the possibility for users to commit their data to detect data changes by peer
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nodes and thus to cope with malicious peers. The system will also continue offer-

ing information on theoretical security in the case of malicious users, but we did

not design the system to resist attacks aimed at corrupting data. Dedicated access

control or specific mechanisms to prevent Sybil attacks can be used for this purpose

[42].

4. Proposed solution

4.1. Dare-to-Share approach

We consider a set of n users and m items.

We describe the approach with reference to the i-th user holding a set of secret

scores for a subset of the m items described by a sparse vector Si ∈ Zm, and with

reference to two privacy peers, namely peer A and B. Each score is in the range 0

to MAX SCORE ITEMS.

The goal is to provide the user with suggestions about missing values according

to the average score given by the other users.

To this aim, the Dare-to-Share approach results in the following operations:

• Step 1 User 0 builds a secret vector Si ∈ {0,MAX SCORE ITEMS}m

and starting from that, the presence binary vector Pi ∈ {0, 1}m which spec-

ify whether the user voted for a given item.

• Step 2 User builds two vectorsRi ∈ {0,MAX SCORE ITEMS}m and

Qi ∈ {0, 1}m. Both vectors contain pure random numbers. Then the user

sendsRi andQi to peer A, and (Si−Ri) modMr and (Pi−Qi) mod 2

to peer B.

• Step 3 All the peers compute the column-wise sum of the received matrix (R
and Q for peer A, and S −R and P −Q for peer B) and publicly advertise

the resulting vectors.

• Step 4 Taking the vectors from the previous step, everybody can compute

the average values for all the scoring items as follows. Calling VX the vector

derived from the generic matrix X , we see that:
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Figure 3: Sequence diagram of the Dare-to-Share approach. Dashed lines represent advertised data
(from a privacy peer to everybody), solid lines represent private data transfers (from user to a privacy
peer).All calculations use modular arithmetic.

1) VR + VS−R modMs
1 representing a vector containing the sum of

all the scores that users give to a particular item.

2) VQ + VP−Q modMp
2 containing the number of users that have

voted for a particular item.

3) Their ratio is equal to the average value scores for all the items.

Figure 3 summarizes in a sequence diagram all the Dare-to-Share operations.

1Ms is an integer greater than m ×MAX SCORE ITEMS + 1
2Mp is an integer greater than m ×MAX SCORE PRESENCE + 1
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4.2. Numerical example

We provide a numerical example considering a system with 2 users, 2 peers

and 2 items with the secret matrix S shown in table 2:

Item1 Item2
User1 4 -
User2 2 3

Table 2: Example of matrix S

The associated presence matrix P is shown in table 3:

Item1 Item2
User1 1 0
User2 1 1

Table 3: Example of matrix P

We define the following values:

• m is the number of users (2 in this case);

• MAX SCORE ITEMS is the maximum value for the elements in S (in this

example, 5);

• MAX SCORE PRESENCE is the maximum value for the elements in P
(and equal to 1 by definition);

• Ms = 11;

• Mp = 3;

Then we generate the random matricesR (in table 4) and Q (in table 5) :

Item1 Item2
User1 3 1
User2 4 0

Table 4: Example of matrixR
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Item1 Item2
User1 2 1
User2 0 1

Table 5: Example of matrixQ

Figure 4: Example message exchange in the case of 3 users and 2 peers

Using the notation of Xy to indicate the y-th row of matrix X , each user pro-

ceeds to send their vectors to the privacy peers A and B as shown in figure 4.

At the end of this process, peer A will have tables R and Q, peer B will have

tables S −R and P −Q. Importantly, neither of them have information about the

original secret S. By combining the columns of these matrices, can we calculate

the average values for each rated item. For example, the average values of the first

item A1 is given by:

A1 =

[ m∑
j=1

Rj1 +
m∑
j=1

(S −R)j1
]
modMs[ m∑

j=1
Qj1 +

m∑
j=1

(P −Q)j1
]
modMp

(1)

Which corresponds in this example to:
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A1 =

[
(4 + 3) + (9 + 1)

]
mod11[

(2 + 0) + (2 + 1)
]
mod3

=
6

2
= 3 (2)

4.3. Extension against malicious party

So far we have described the basic approach that has the great advantage of be-

ing simple and, from a system requirement point of view, extremely efficient since

it uses ordinary arithmetic without adding extra complexity other than requiring

the involvement of multiple parties.

We will show in section 6.3 how that approach is extremely lightweight in

terms of resource consumption while guaranteeing excellent privacy coverage against

the honest-but-curious attacker model. However, if extra protection is needed to

cope with potential malicious parties, we can use modular prime cryptography to

make secret sharing verifiable, for instance leveraging conventional literature tech-

niques such the Pedersen commitment [43].

We remark that our particular application cannot afford any non-perfectly hid-

ing commitment (such as Feldman’s commitment scheme [44]). Since scores are

typically small integers, an enumeration attack would be disastrous.

In the following, we describe the commitment procedure with reference to the

secret matrix S. The same procedure must also be repeated for the presence matrix

P .

User side: Each user commits every single element of the matrix S, for instance

by sij , by computing htijgsij where g, h are (public) generators, tij is a (large)

random number, and all operations are done modulo p (large prime). The result is

publicly advertised. Then each user generates a random value kij and sends kij to

peer A and tij − kij to peer B.

Peer side: Each peer advertises the sum of the received data aggregating by

item. Thus peer A advertises VK whose i-th element is obtained by
∑m

j=1 kij ,

while peer B advertises VT−K whose i-th element is obtained by
∑m

j=1 tij − kij

Verification: The verification is based on the availability of the users’ commit-

ments and of the values of VK , VT−K together with VR and VR−S (the column-wise

sum vectors described in step 4 of section 4.1). The commitment verification pro-

cedure is the following: i) multiply all users’ commitments for a given item; ii)

compute gbha where a is the j-th element of vector VK + VT−K and b is the j-th

18



element of vector of VR + VS−R; iii) compare these two results. The commitment

is verified if the two values are the same.

This commitment is perfectly hidden, and computational binding can detect

any cheating by the parties, although it does not prevent users from committing

fake (out of range) data.

We remark that this solution, from a performance point of view, is totally reliant

on the clients, thus representing an extra (optional) protection that can be provided

on top of the basic approach.

5. Discussion

As discussed in previous sections, in this paper we present a mechanism to

guarantee data privacy that can be easily and effectively implemented in privacy-

preserving support systems. Our main goal is not to present a new recommender

system or a new decision support system, but we want to show how, by changing

the architecture and adopting easy-to-explain basic techniques, we can empower

legacy (and new) systems with data privacy, i.e. nobody (not even servers) knows

the data collected from the users of the system. Obviously, the consequences of

this simplicity are the two big limitations of this mechanism: the recommending

algorithm and the possibility of collecting data to test the algorithm.

The first limitation is that the recommending algorithm used is the average.

Notwithstanding its simplicity, it is fair to remark that many real world deploy-

ments rely on basic recommendation techniques, such as the one that we will

specifically discuss throughout this paper. For instance, customers of advisory

sites even for quite subjective choices (e.g. restaurants or hotels, including major

players such as TripAdvisor, Booking.com or even Google) are often provided at

least at the start of their selection process with a summary rating computed as the

average of all the received ratings per item. This average value is often further

represented in a more intuitive “star system”.

The second limitation is the availability of data to test the algorithm and its

performance strongly. For example, considering the use case presented in section

6, only about 25% of records saved in DBs come from real network scans, with

the remaining randomly calculated from the scanned data. In the future we plan
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to increase the amount of real data by using scans from different organizations’

networks, and enlarging the input fields in order not only to cover vulnerability

scans, but also other categories that can be found in a fully-fledged risk assessment

tool.

6. Use case: Risk Assessment

In this section we describe CYRVM (Cyber Risk Vulnerability Management),

a custom-made software platform devised to simplify and improve automation and

continuity in cyber-security assessment. This software helps network administra-

tors to perform collaborative risk assessment in a privacy preserving manner, using

the methodology previously described.

6.1. Problem description

In recent years, with an ever increasing use of online services and a greater

distribution of connected devices, the evaluation of cyber-security risks has gained

importance [45, 46]. This has been fuelled also by the many recent data breaches

hitting the headlines, such as Marriot, Quora, Cambridge Analytica, to name a few.

Risk assessment is also necessary for any organization to comply with the EU

General Data Protection Regulation (GDPR) which states that each data controller

must conduct risk checks on a regular basis.

Generally, we can define risk as a measurement of the extent to which some-

thing is threatened by an event. Risk is thus related to:

• The consequence of the event on that resource of the company (impact);

• The probability of the event (likelihood).

Traditionally, this problem has been analyzed by companies’ security officers

following the risk management procedure of the National Institute of Standards

and Technology (NIST) [47]. This implies the identification, evaluation and prior-

itization of risks followed by the application of instruments to minimize, monitor

and control the probability of unfortunate events.

This operation involves a great responsibility often demanded of single experts,

who might easily fail in under- or overestimating the importance of an asset, how

dangerous a data loss could be, or what type of cyber attack could affect them.
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For this reason, the last few years have seen an increase in the number of tools,

predictive modelling and machine learning techniques applied to risk analysis [48,

49] and cyber risk management [50, 51, 52] with the aim of predicting risk and

contrasting cyber crimes [53]. An idea to improve the quality of prediction is to

use a collaborative approach [54, 55, 56, 57, 58] with a Trusted Server where users

store their security assessment information in order for it to be used to calculate

the prediction.

Our idea goes in this direction, offering a solution for assessing the right risk

value for every asset and vulnerability by suggesting and predicting reasonable

values obtained from a collaborative but privacy preserving system. The main

difference of our approach is the capability of predicting user choices without the

need of a Trusted Server and of protecting users from revealing not only the actual

score values submitted to the system, but also which items are evaluated, which

would reveal information about the presence of a vulnerability on the system.

6.2. Implementation

We implemented the platform as a web application, which works as follows.

Users access to the service as a conventional web page, i.e. by downloading

a static web page and the related assets. A javascript code, acting on the client

side, performs the encryption logic and handle the communication with the privacy

peers. Figure 6 depicts this scenario with the case of two privacy peers, namely A

and B.

Privacy peers A and B host a database with two tables containing the Impact

and Likelihood information. In addition to these tables, we introduced two more

tables, namely presence Impact and presence Likelihood, which keep track of the

presence of a certain vulnerability on the host. Finally, there is also a public com-

mon table containing the list of all vulnerabilities. An excerpt of this table is shown

in figure 5.

The platform works as follows:

1. The user uploads a vulnerability scan. This file can be obtained from vulner-

ability scanning software such as OpenVAS [59] or OWASP Zap.

2. The system proposes, for each vulnerability, a rate in terms of impact and

likelihood, which is obtained from the average value given by the other users’
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Figure 5: Example of vulnerabilities table

choices for the same vulnerability.

3. The user may:

• Accept the prediction. In this case the user agrees with every pre-

dicted value and does not want to apply any change. The system sets 1

into the presence table.

• Follow the others. In this case the user wants to follow the recom-

mendation, e.g. because of a lack of knowledge about that specific

vulnerability impact assessment. This case is different from the pre-

vious ones, since the user passively accepts the calculated values but

does not want to vote for that item. The system sets 0 into the presence

table.

• Modify your values. In this case the user decides to change some val-

ues (typically affecting the element where they are more confident), and

leaving the other values to the default prediction given by the software.

The system sets 1 and 0 into the presence table accordingly.

The program interface is shown in figure 7 and an example of a result in figure

8.

In figure 9 a) we present the workflow of the algorithm implemented into the
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Figure 6: Risk Assessment Architecture: the secret sharing computation is performed on the client
side in the browser

CYRVM system. The first step is the upload of the OpenVAS scan result. This

scan contains all the vulnerabilities of the network and their severity and likelihood.

This data is “blinded” (as described in section 3) and sent to Privacy Peers A and

B together with the related presence matrices. Servers update their tables adding

an extra row to accommodate the new system, and expanding the previous tables

to fit the potential new vulnerabilities received.

Then, every privacy peer calculates the sum (in module) of every column of the

Impact, Likelihood, Presence Impact and Presence Likelihood tables, and commu-

nicates these values to the user. At this point the user has 8 values for every vulner-

ability. The user then performs the pairwise modular sums (ImpactA + ImpactB,

LikelihoodA + LikelihoodB, etc..) and calculates the difference between Impact

and Presence Impact and between Likelihood and Presence Likelihood. Once here,

the values of Impact and Likelihood are presented to the user, who can accept or

update them. The new values of Impact, Likelihood and Presence (1 or 0) are se-

cret. Starting from these values, the user generates the vectorsRi and S −Ri and

saves them into the servers A and B.

In figure 9 b) we present the case of a user who decides to read or update

their values. In this case, a request is sent to the privacy peers, which calculate,

as shown in figure 9 a), the values of the modular sum of every column of the

Impact, Likelihood, Presence Impact and Presence Likelihood tables. In addition

to these 8 values, rows of the requested system are sent. After that, the user has
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(a)

(b)

Figure 7: (a) presents all assets of a selected network. (b) presents the values of Impact and Likeli-
hood for every vulnerability of the network.

all the information needed to rebuild the secrets. Values of Impact and Likelihood

are presented to the user only if the corresponding bit of the presence tables are 1,

implementing a mask on the user interface.

6.3. Performance assessment

To analyse the performance of the system, we compared CYRVM with an

equivalent system without the privacy preserving mechanism, with the goal of as-

sessing the overhead in terms of resource required on the client side.

In the rest of the chapter we will refer to the privacy preserving algorithm as

Privacy Algorithm and the other as Clear Algorithm.

We ran our tests on a PC with the following features:
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Figure 8: CYRVM result for a particular vulnerability

• Intel Core i7-3632QM;

• CPU 2.20GHz 8;

• 8GB DDR3 Memory;

• Operating System: Ubuntu 16.04 LTS 64bit;

• Apache Server version 2.4.18;

We analyzed the performance of the algorithms in two different types of oper-

ations: the case of a new network (i.e. new data inside the system) and the case

of updating existing data. This is due to the number of operations to execute - far

more in the case of a new network. Figure 10.a presents percentages of use of CPU

and memory when inserting a new network. As we can see, the Privacy Algorithm

needs a higher yet contained amount of resources than the Clear Algorithm, with
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(a) (b)

Figure 9: In (a) Secret Sharing work flow. In (b) Secret Sharing work flow when a value is updated

a medium response time of 20 seconds compared to the 12 seconds of the Clear

Algorithm.

In figure 10.b we present percentages of use of CPU and memory in case of

updating an existing network. We used the same DB defined above, where for each

network we changed only two values. Also, in this case the Privacy Algorithm

needs more resources than the Clear Algorithm. What emerges from this analysis

is that the proposed privacy preserving algorithm, besides the presence of multiple

peers, only needs slightly more resources with respect to the clear algorithm on the

client side, making it a suitable solution also from a system requirements point of
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Figure 10: In (a) usage percentages when adding a new network, and (b) when updating an existing
network

view.

7. Conclusion

In this work we presented a simple architecture that fosters privacy preserv-

ing collaboration. We designed a system able to provide the average values of

ratings given by a different user to different items, without requiring any Trusted

Third Party. The system has the advantage of being very easy to explain and to

implement, other than being unconditionally secure, hiding the presence of both

the submitted elements and their values. We presented a practical use case together

with a working implementation, showing how the solution can be applied in the

field of risk assessment.

27



Acknowledgements

This work has been partially funded by the BPR4GDPR project from the Euro-

pean Union’s Horizon 2020 research and innovation programme under grant agree-

ment No 787149.

Data Availability

The data that support the findings of this study are available on request.

28



References

[1] I. MacKenzie, C. Meyer, and S. Noble, “How retailers can keep up with con-
sumers,” McKinsey & Company, 2013.

[2] M. Fleischman and E. Hovy, “Recommendations without user preferences: a
natural language processing approach,” in IUI, vol. 3. Citeseer, 2003, pp.
242–244.

[3] J. Bennett, S. Lanning et al., “The netflix prize,” in Proceedings of KDD cup
and workshop, vol. 2007. New York, NY, USA., 2007, p. 35.

[4] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk, “Matrix factorization and
neighbor based algorithms for the netflix prize problem,” in Proceedings of
the 2008 ACM conference on Recommender systems. ACM, 2008, pp. 267–
274.

[5] C. Wang, Y. Zheng, J. Jiang, and K. Ren, “Toward privacy-preserving
personalized recommendation services,” Engineering, vol. 4, no. 1, pp. 21 –
28, 2018, cybersecurity. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2095809917303855

[6] S. Badsha, X. Yi, and I. Khalil, “A practical privacy-preserving recommender
system,” Data Science and Engineering, vol. 1, no. 3, pp. 161–177, Sep
2016. [Online]. Available: https://doi.org/10.1007/s41019-016-0020-2

[7] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh,
“Privacy-preserving matrix factorization,” Nov 2013, pp. 801–812.

[8] H. Kaur, N. Kumar, and S. Batra, “An efficient multi-party scheme for pri-
vacy preserving collaborative filtering for healthcare recommender system,”
Future Generation Computer Systems, Mar 2018.

[9] N. Youdao, “P4p: practical large-scale privacy-preserving distributed compu-
tation robust against malicious users,” In Proc USENEX, 2010.

[10] D. Bachlechner, K. La Fors, and A. M. Sears, “The role of privacy-preserving
technologies in the age of big data,” in Proceedings of the 13th Pre-ICIS
Workshop on Information Security and Privacy, vol. 1, 2018.

[11] G. Macintosh and J. W. Gentry, “Decision making in personal selling: Testing
the kiss principle,” Psychology & Marketing, vol. 16, no. 5, pp. 393–408,
1999.

29



[12] R. Ross, “Managing enterprise security risk with nist standards,” Computer,
vol. 40, pp. 88–91, Aug 2007. [Online]. Available: doi.ieeecomputersociety.
org/10.1109/MC.2007.284

[13] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Recommender system
application developments: A survey,” Decision Support Systems, vol. 74, Apr
2015.

[14] D. Bokde, S. Girase, and D. Mukhopadhyay, “Matrix factorization model in
collaborative filtering algorithms: A survey,” vol. 49, Apr 2015.

[15] Y. Ar and E. Bostanci, “A genetic algorithm solution to the collaborative fil-
tering problem,” Expert Systems with Applications, vol. 61, May 2016.

[16] G. Takcs, I. Pilszy, B. Nmeth, and D. Tikk, “Matrix factorization and neighbor
based algorithms for the netflix prize problem,” Jan 2008, pp. 267–274.

[17] C. V. Yehuda Koren, Robert Bell, “Matrix factorization techniques for rec-
ommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug 2009.

[18] S. Liu, A. Liu, Z. Li, G. Liu, J. Xu, L. Zhao, and K. Zheng, “Privacy-
preserving collaborative web services qos prediction via differential privacy,”
Aug 2017, pp. 200–214.

[19] D. Li, Q. Lv, H. Xia, L. Shang, T. Lu, and N. Gu, “Pistis: A privacy-
preserving content recommender system for online social communities,” in
2011 IEEE/WIC/ACM International Conferences on Web Intelligence and In-
telligent Agent Technology, vol. 1, Aug 2011, pp. 79–86.

[20] D. Li, C. Chen, Q. Lv, l. Shang, Y. Zhao, T. Lu, and N. Gu, “An algorithm for
efficient privacy-preserving item-based collaborative filtering,” Future Gen-
eration Computer Systems, vol. 55, Dec 2014.

[21] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh,
“Privacy-preserving matrix factorization,” Nov 2013, pp. 801–812.

[22] J.-Y. Jiang, C.-T. Li, and S.-D. Lin, “Towards a more reliable privacy-
preserving recommender system,” Information Sciences, vol. 482, pp. 248
– 265, 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0020025518310429

[23] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec,
“Privacy-preserving distributed collaborative filtering,” Computing, vol. 98,
no. 8, pp. 827–846, Aug 2016. [Online]. Available: https://doi.org/10.1007/
s00607-015-0451-z

30



[24] J. Zhan, C. Hsieh, I. Wang, T. Hsu, C. Liau, and D. Wang, “Privacy-
preserving collaborative recommender systems based on the scalar product,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 4, pp. 472–476, Jul 2010.

[25] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “Sepia: Privacy-
preserving aggregation of multi-domain network events and statistics,” Net-
work, vol. 1, no. 101101, 2010.

[26] D. Li, X. Liao, T. Xiang, J. Wu, and J. Le, “Privacy-preserving self-serviced
medical diagnosis scheme based on secure multi-party computation,”
Computers Security, vol. 90, p. 101701, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016740481930238X

[27] H. Z. M. L. M Qiu, K. Gai, “Privacy - preserving smart data storage for
financial industry in cloud computing,” Concurrency Computat Pract Exper,
vol. 30, Mar 2018. [Online]. Available: https://doi.org/10.1002/cpe.4278

[28] V. S. Virupaksha and V. Bhramaramba, “Privacy preserving in banking sec-
tor,” in 2016 2nd International Conference on Applied and Theoretical Com-
puting and Communication Technology (iCATccT), Jul 2016, pp. 571–575.

[29] A. W.-C. F. P. S. Y. Benjamin C.M. Fung, Ke Wang, “Introduction to privacy-
preserving data publishing: Concepts and techniques,” Chapman Hall/CR,
2010.

[30] A. Kiayias, B. Yener, and M. Yung, “Privacy-preserving information markets
for computing statistical data,” in Financial Cryptography and Data Security,
ser. Lecture Notes in Computer Science, R. Dingledine and P. Golle, Eds.
Springer Berlin Heidelberg, 2009, pp. 32–50.

[31] Z. Ma, J. Ma, Y. Miao, K.-K. R. Choo, X. Liu, X. Wang, and T. Yang,
“Pmkt: Privacy-preserving multi-party knowledge transfer for financial
market forecasting,” Future Generation Computer Systems, vol. 106, pp.
545 – 558, 2020. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X19302596

[32] M. Kutylowski, Y. Wang, S. Xu, and L. Yang, “Special issue on social net-
work security and privacy: Foreword to the special issue on social network
security and privacy,” Concurrency and Computation: Practice and Experi-
ence, p. e4414, Jan 2018.

31



[33] Z. He, Z. Cai, and J. Yu, “Latent-data privacy preserving with customized data
utility for social network data,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 1, pp. 665–673, Jan 2018.

[34] A. Bielenberg, L. Helm, A. Gentilucci, and D. S. and, “The growth of dias-
pora - a decentralized online social network in the wild,” in 2012 Proceedings
IEEE INFOCOM Workshops, Mar 2012, pp. 13–18.

[35] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algo-
rithms, business value, and innovation,” ACM Trans. Management Inf. Syst.,
vol. 6, pp. 13:1–13:19, 2015.

[36] B.-A. Yrekli, A. and C. Kaleli, “Exploring playlist titles for cold-start music
recommendation: an effectiveness analysis,” Journal of Ambient Intelligence
and Humanized Computing, 2021.

[37] Y. Z. liang Ya, “Design and implementation of medication recommending
system for chronic hepatitis b,” Chinese Medical Equipment Journal, vol. 38,
no. 7, pp. 48 – 51, 2017.

[38] C. Porcel, J. M. Moreno, and E. Herrera-Viedma, “A multi-disciplinar
recommender system to advice research resources in university digital
libraries,” Expert Syst. Appl., vol. 36, no. 10, pp. 12 520–12 528, Dec. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.eswa.2009.04.038

[39] C. Porcel and E. Herrera-Viedma, “Dealing with incomplete information in a
fuzzy linguistic recommender system to disseminate information in university
digital libraries,” Knowl.-Based Syst., vol. 23, Sep 2009.

[40] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz, “P4p:
Provider portal for applications,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 351–362.

[41] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[42] N. Balachandran and S. Sanyal, “A review of techniques to mitigate sybil
attacks,” arXiv preprint arXiv:1207.2617, 2012.

[43] P. T.P., Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. Springer, Berlin, Heidelberg, 1992, vol. 576.

[44] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,”
in 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
IEEE, 1987, pp. 427–438.

32



[45] M. L. Baldoni R., Querzoni L., “Italian cybersecurity report - controlli essen-
ziali di cybersecurity,” Future Generation Computer Systems, 2017.

[46] P. M. C. Crovini, G. Ossola, “Cyber risk. the new enemy for risk management
in the age of globalisation,” Management Control, 2018.

[47] S. G. Feringa A., Goguen A., “Risk management guide for information tech-
nology systems nist special publication 800 30,” 2002.

[48] E. C. E. Biffis, “Satellite data and machine learning for weather risk man-
agement and food security,” Risk Anal, vol. 37, no. 8, pp. 1508–1521, Aug
2017.

[49] U. Makov and J. Weiss, Predictive Modeling for Usage-Based Auto Insur-
ance, ser. International Series on Actuarial Science. Cambridge University
Press, 2016, vol. 2, p. 290308.

[50] G. W. P., “Statistical machine learning and data analytic methods for risk and
insurance.” no. 8, 2017.

[51] D. M.-P. S. G. W. Peters, R. Cohen, “Understanding cyber risk and cyber in-
surance,” Macquarie University Faculty of Business and Economics Research
Paper, Jan 2018.

[52] C. Biener, M. Eling, and J. H. Wirfs, “Insurability of cyber risk: An
empirical analysis,” Geneva Papers on Risk and Insurance: Issues and
Practice, vol. 40, no. 1, pp. 131–158, Jan 2015. [Online]. Available:
https://www.alexandria.unisg.ch/238242/

[53] T. A. A. K. B. Geluvara, P. M. Satwik, “The future of cybersecurity: Ma-
jor role of artificial intelligence, machine learning, and deep learning in cy-
berspace,” in International Conference on Computer Networks and Commu-
nication Technologies, Jul 2017.

[54] D. Polemi, T. Ntouskas, E. Georgakakis, C. Douligeris, M. Theoharidou, and
D. Gritzalis, “S-port: Collaborative security management of port information
systems,” in IISA 2013, Jul 2013, pp. 1–6.

[55] D. Friday, S. Ryan, R. Sridharan, and D. Collins, “Collaborative risk
management: a systematic literature review,” International Journal of
Physical Distribution & Logistics Management, vol. 48, no. 3, pp. 231–253,
2018. [Online]. Available: https://doi.org/10.1108/IJPDLM-01-2017-0035

33



[56] D. K. Tosh, S. Shetty, S. Sengupta, J. P. Kesan, and C. A. Kamhoua, “Risk
management using cyber-threat information sharing and cyber-insurance,” in
Game Theory for Networks, L. Duan, A. Sanjab, H. Li, X. Chen, D. Mat-
erassi, and R. Elazouzi, Eds. Cham: Springer International Publishing,
2017, pp. 154–164.

[57] G. Settanni, F. Skopik, Y. Shovgenya, R. Fiedler, M. Carolan, D. Conroy,
K. Boettinger, M. Gall, G. Brost, C. Ponchel, M. Haustein, H. Kaufmann,
K. Theuerkauf, and P. Olli, “A collaborative cyber incident management sys-
tem for european interconnected critical infrastructures,” Journal of Informa-
tion Security and Applications, vol. 34, Jun 2016.

[58] R. F. F. Skopik, G. Settanni, “The importance of information sharing and
its numerous dimensions to circumvent incidents and mitigate cyber threats,”
Collaborative Cyber Threat Intelligence, vol. 4, 2017.

[59] OpenVAS - Open Vulnerability Assessment System. [Online]. Available:
http://openvas.org/

34


