
SafeSlice: A Model Slicing and Design Safety Inspection
Tool for SysML

Davide Falessi1,2 Shiva Nejati1 Mehrdad Sabetzadeh1 Lionel Briand1 Antonio Messina2

1Simula Research Laboratory
Oslo, Norway

2 University of Rome (Tor Vergata)
Rome, Italy

{falessi,shiva,mehrdad,briand}@simula.no ant.messina@gmail.com

ABSTRACT
Software safety certification involves checking that the software
design meets the (software) safety requirements. In practice, in-
spections are one of the primary vehicles for ensuring that safety
requirements are satisfied by the design. Unless the safety-related
aspects of the design are clearly delineated, the inspections con-
ducted by safety assessors would have to consider the entire de-
sign, although only small fragments of the design may be related to
safety. In a model-driven development context, this means that the
assessors have to browse through large models, understand them,
and identify the safety-related fragments. This is time-consuming
and error-prone, specially noting that the assessors are often third-
party regulatory bodies who were not involved in the design. To ad-
dress this problem, we describe in this paper a prototype tool called,
SafeSlice, that enables one to automatically extract the safety-related
slices (fragments) of design models. The main enabler for our slic-
ing technique is the traceability between the safety requirements
and the design, established by following a structured design method-
ology that we propose. Our work is grounded on SysML, which is
being increasingly used for expressing the design of safety-critical
systems. We have validated our work through two case studies and
a control experiment which we briefly outline in the paper.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Design, Verification

Keywords
Safety Certification, SysML, Traceability, Model Slicing

1. INTRODUCTION
Models have long been used for capturing the design of safety-

critical software in domains such as avionics, railways, maritime,
and automotive. In addition to being one of the main drivers of the
development process, models in these domains further serve as a
key source of information for third-party assessment activities, par-
ticularly certification, where an external professional or regulatory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

body needs to verify that a system does not pose unacceptable risks
to people or the environment. An important step in the certifica-
tion process is for the assessing body to review (inspect) the design
models and ensure that the design meets the safety requirements.

The tool we describe in this paper, SafeSlice, was motivated by
the difficulties we observed during third-party inspections of the
design of safety-critical software. The focus of our investigation
was on the inspections performed during the certification of inte-
grated control systems in the maritime and energy sector, but simi-
lar problems can be expected in other safety-critical domains, such
as the automotive sector, where (software) safety certification is an
emerging topic. In particular, we observed that the design models
could be large and their safety-related aspect not clearly identifi-
able. Subsequently, checking compliance between the safety re-
quirements and the design turned into a time-consuming endeavor,
often forcing the inspector to browse through large models and
manually analyzing a large numbers of dependencies before the
safety-related design aspects could be determined.

To address this problem, we have developed a model slicing
algorithm that enables inspectors to automatically extract model
slices (fragments) related to safety requirements. This reduces in-
spection effort, and further makes it less likely that safety issues
would be overlooked. Of course, this automation does not come for
free and requires the development team to follow certain guidelines
to link the safety requirements to the design. In [4], we elaborate
a design methodology which ensures that the traceability links re-
quired for automated slicing are properly established. The method-
ology and the slicing algorithm in [4] are the basis for the SafeSlice
tool that we describe in this paper.

Specifically, SafeSlice enables users to: 1) specify the traceabil-
ity links envisaged by our design methodology, 2) check the consis-
tency of the established links, and 3) automatically extract slices of
design with respect to requirements. These slices can then be used
for conducting inspections and ensuring that the design satisfies
the safety requirements. In addition to implementing our proposed
traceability mechanism and slicing algorithm, SafeSlice provides
facilities for managing inspections and report generation.

We ground our work on the Systems Modeling Language (SysML)
[7], as SysML is becoming the de-facto modeling standard for sys-
tems engineering [6]. Since safety is a system issue, and not just a
software issue, this was a natural choice to ease the adoption of our
approach in practice.

The rest of the paper describes the SafeSlice tool and summa-
rizes the evaluation we have done to validate the approach behind it.

2. TOOL OVERVIEW
Figure 1 shows a high-level view of the process implemented by

the SafeSlice tool. The process consists of three main steps: (1)
Establishing traceability between safety requirements and SysML

Establish
Traceability

Generate
Design
Slices

Inspect
Design
Slices

Figure 1: Method of use for SafeSlice.

Requirement Concepts
Design Concepts

 Block

1..*

MappingBlock
Operation

trace
Activity
Partition

Block State

allocate

Activity Node

Activity Edge

*
1 Block-Level

Safety
Requirement

Block-Level
Requirement

*

1

*

1

*

src trgt

Figure 2: A Fragment of SafeSlice’s traceability information model.

design diagrams, (2) Generating design slices based on the trace-
ability links, and (3) Inspection of design slices by assessors. We
require that the traceability links defined in the first step should con-
form to a traceability information model. This information model
(discussed later in this section) provides a SysML adaptation of the
traceability information requirements gleaned from observing ac-
tual certification meetings, consultation with certification experts,
and reviewing major safety standards (most notably IEC 61508
[2]). The traceability links between safety requirements and the
SysML design (defined in accordance with the information model)
are used in the second step to automatically extract minimized slices
for the safety requirements. These slices are then reviewed by the
assessors to ensure that the safety requirements are met by the de-
sign. In the rest of this section, we elaborate the three steps of the
process shown in Figure 1.

2.1 Establishing Traceability
SafeSlice is implemented as a plug-in for the Enterprise Archi-

tect tool (http://www.sparxsystems.com/ea) which, like
other tools with support for SysML, has an environment for build-
ing SysML models and creating SysML’s built-in traceability links.
However, as we argue in our earlier work [4], existing SysML
traceability mechanisms do not provide adequate support for ad-
dressing all the traceability information requirements mandated by
safety standards and asked for by the assessors during certification.
In [4], we provide methodological guidelines on how to extend and
use SysML traceability links for the purpose of safety certification.
These guidelines led to an information model, a small fragment
of which is shown in Figure 2 – see [4] for the complete model.
The fragment shown characterizes the links from requirements to
SysML blocks and activity diagrams (the diagram types used later
in the paper for illustration) along with the rationale for the links.

“Rule Assistant” is a feature of SafeSlice that enables guided
and validated application of our proposed traceability information
model. Our information model yields a set of 20 multiplicity and
compatibility relational constraints (rules). We encoded these rules
into a spreadsheet that can be easily edited by users to add new
rules or to modify/delete the existing ones. Rule Assistant loads
the entire set of rules in the spreadsheet at every invocation and
executes the rules using the EA built-in rule engine. If a violation
is detected, Rule Assistant provides diagnostic information about
the violated rule, the model element(s) involved, and the action(s)
to be taken to resolve the issue. As an example, in Figure 3, we
show the diagnostic information generated by the Rule Assistant
for the situation where a safety requirement has been defined but
it is unspecified whether the requirement is at the system level or

ERROR - RULEID: 1
 -> DESCRIPTION: "The 'Safety Relevant' or 'Non-Safety Relevant' requirement
 should have 'Level' tagged value specified ('System level' or 'Block level')"
 -> CATEGORY: Requirement tagged value unexpected/not specified
 -> HOW TO FIX: "Choose a value for selected Requirement's 'Level' tagged value"
 -> FIND THE ELEMENT (otElement): click here to select specified element
---- CHECK SUMMARY ---
Number of analyzed elements: 496
Number of checked rules: 177
Nymber of checked diagrams: 66
Elapsed scan time (sec): 22 (0 hours, 0 min, 22 sec).
----- Total Violations ----
Errors: 1
Warnings: 0

Figure 3: Example output from Rules Assistant.

at the block level. In this example, the user can read the “How to
fix” field and then click on “Find the element” to quickly navigate
to the element in question and apply the necessary fix.

Rule Assistant can check the information model rules in two
modes: investigator and listening. In the investigator mode, the
compliance of an entire project is checked. In this mode, the user
waits until the compliance checking process is finished and then
applies the suggested changes if violations are detected. In the lis-
tening mode, Rule Assistant is always active in the background and
monitors every change made by the user and checks that the change
is consistent with the information model. If a violation is detected,
feedback is immediately shown in the diagnostic window. The time
required by Rule Assistant to check all the rules is small. On a stan-
dard laptop, it took less than half a minute to check a SysML design
with about a thousand elements (blocks, relations, activities, tran-
sitions, states, attributes, and operations) against all the 20 rules.

2.2 Slice Generator
“Slice Generator” is an implementation of the slicing algorithm

proposed in [4]. A high-level overview of algorithm is shown in
Figure 4. Briefly, a system safety requirement is refined into safety
requirements at the level of blocks. If necessary, more detailed
safety-relevant requirements could be defined in order to satisfy
block-level safety requirements. In our tool, slices are constructed
for atomic requirements, i.e., requirements that are directly related
to design via traceability links. System-level requirements are never
related to the design directly, because even in the simplest case
where these requirements do not need to be decomposed, they still
need to be allocated to some block and restated as a block-level re-
quirement. If a block-level safety requirement is atomic, then our
tool will generate a slice directly for the block-level requirement;
otherwise, one slice will be generated for each of the atomic safety-
relevant requirements contributing to the satisfaction of a block-
level safety requirement. For example, Figure 5 shows a safety re-
quirement, the traces, and the generated slices in terms of block and
activity diagrams. The system underlying the example is a well-
known benchmark embedded system, named the Production Cell
System (PCS) [3], whose function is the transformation of metal
blanks into forged plates by means of a press and their transporta-
tion from a feed belt into a container. We use PCS as a benchmark
case study for our approach (see Section 3).

2.3 Inspection Assistant
The “Inspection Assistant” feature aims to help users in better

managing the inspection process. In particular, Inspection Assis-
tant can record the decisions made during (1) inspections of atomic
requirements (conducted over design slices), and (2) inspections
done to ensure that the atomic requirements together lead to the
satisfaction of higher-level requirements and ultimately the system-
level safety requirements.

Algorithm. GenerateSlice
 Input: Requirement R, and a set of SysML design diagrams conforming to the
 input traceability information model
 Output: Design slices related to R.
 Step 1. Find design elements (indirectly) related to R.
 Step 2. Extract block diagram slices:
 Step 2.1 Remove operations, and attributes that are not related to R.
 Step 2.2 Include relations between the blocks linked to R.

 Step 3. Extract activity diagram slices:
 Step 3.1 Identify activity partitions related to the blocks linked to R.
 Step 3.2 Remove activity nodes and edges not related to R from these partitions.
 Step 3.3 Add stuttering edges to maintain the connectivity between the diagram nodes.
 Step 3.4 Identify new initial activity nodes.

 Step 4. Extract state machine diagram slices:
 Step 4.1 Identify state machines related to the blocks linked to R.
 Step 4.2 Remove states and transitions not related to R.
 Step 4.3 Add stuttering transitions to maintain the connectivity between the states.

Figure 4: Overview slicing algorithm in SafeSlice

B
lo

ck
 D

ia
g

ra
m

S
li

ce

D
ia

g
ra

m
 S

li
ce

s

-initialize()
-pick_from_belt()
-load_in_container()

ipos
Crane

Rcrane.pick_from_belt() causes "the crane is
positioned above the deposit belt".

Requirement (R) = If the crane is positioned above the
deposit belt, it may only move towards the container.

T
ra

ce
a
b

il
it

y
 L

in
k
s

trace

-initialize()
-bring_past_end()

DepositBelt depositBelt
1

1
crane

-pick_from_belt()
-load_in_container()

-pos
Crane

A
ct

iv
it

y
 D

ia
g

ra
m

S
li

ce

crane:Crane

pick_from_belt

Bring_Past_End

Pick_From_Belt

load_in_container

DepositBelt
depositBelt

1

1
crane

load_in_container() causes "the crane moves
towards the container". Or crane is above the
container when "Crane.pos =
Crane_Position.above_container"

trace

Figure 5: A safety requirement (R), the traces, and resulting slices.

Figure 6 shows the various states an atomic requirement can go
through during the inspection process. The initial state is “Yet to
approve”. The user then reviews the design and marks the require-
ment as “Approved” or “Not approved”, depending on whether she
deems the design as satisfying the requirement or not. Because
the design evolves over time, it is important to check the impact
of design changes on safety requirements. Based on the traceabil-
ity information, Inspection Assistant detects the requirements that
need to be re-inspected due to changes. Specifically, if there is a
change made to any of the block operations or attributes to which
an atomic requirement is traced, then that requirement needs to be
re-inspected. The status of an atomic requirement that needs to be
re-inspected is set to “Out of date”; the status of the related higher-
level requirements is set to “Out of date” as well. In addition, any
change to the textual description of a requirement (at any level)
would render the state of that requirement “Out of date” and the
state will be propagated up to all the higher-level requirements.

To facilitate monitoring the progress of the inspection activities,
Inspection Assistant can generate pie charts to visualize the relative
proportion of requirements in different states. An example is shown
in Figure 7. This pie chart depicts the status of the safety-relevant
requirements that contribute to a selected system-level requirement
(intermediate block-level requirements were filtered in this chart).

Yet to approve

Not Approved

Out of date Not
Approved

Approved

Out of date approved

Approve?

[user analyses
the design slice]

[User deems the
design
consistent with
the requirement]

[User deems
the design
inconsistent
with the
requirement]

[User modifies design
elements related to the
requirement]

[User modifies design
elements related to the
requirement]

Figure 6: Inspection states for an atomic requirement.

Figure 7: Monitoring the inspection progress using pie charts.

The chart indicates that there are three safety-relevant requirements
for the given system-level requirement and of these, two have been
already approved and the third is awaiting inspection. To make re-
inspections more efficient, our tool keeps the previously-generated
slices and allows the user to compare the new slices against the old
ones. In this way, users can better investigate the differences.

2.3.1 Report Generator
Report generation is an important feature for supporting safety

inspections. Reports are useful, for example, when a printed docu-
ment needs to be signed off for legal obligations or simply for se-
quential reading of the inspection material. SafeSlice supports the
automated generation of reports in PDF format. In particular, the
tool allows the user to select the information to include in the report
(e.g. design slice, whole design, statistics, pie charts). For instance,
it is possible to generate a document reporting the inspection details
of a given requirement or one that reports all the inspection details
of all the requirements in a project.

2.3.2 Advanced Navigator
To make the inspection process more effective, SafeSlice sup-

ports advanced search and navigation of model elements. The Ad-
vanced Navigator feature allows the user to select an element x
(e.g., a requirement, class, block, etc.) and retrieve the elements of
given types (e.g., specific requirements, classes, blocks, etc.) that
have a given type of relationship with x (e.g., satisfy, trace, de-
rive, etc.). The user specifies the element/relation types to search
for from a pre-defined list. This list can be modified by the user if
needed, e.g., when a new SysML stereotype is defined for capturing
new types of elements.

3. EVALUATION
We have evaluated the traceability and slicing techniques imple-

mented in SafeSlice in several ways using a combination of formal
methods [4], benchmark and industrial case studies [4], and a con-
trolled experiment [1]. We outline our evaluation work below.

First, we provide a formal analysis of our slicing algorithm whereby
we show that the generated design slices are sound for temporal
safety properties [4]. That is, if a requirement holds over a design
slice, it holds over the original (non-sliced) design as well. This
ensures that the design slices will not be providing misleading in-
formation to the assessors.

Second, we have used SafeSlice in two case-studies [4]: the
first case study is a benchmark case, the Production Cell System
(PCS) [3], mentioned earlier in the paper (see Figure 5). The sec-
ond case study is a real-world industrial system from the maritime
and energy domain. The PCS design consisted of 58 diagrams with
479 elements, 419 relations, and 189 attributes. The industrial case
study included 23 diagrams, with 194 elements, 186 relations, and
57 attributes. In both case studies, SafeSlice was used for creating
traceability links, checking their compliance, and generating design
slices. Our case studies indicated that: (1) The cost of applying our
methodology, which mostly depends on the cost to establish trace-
ability links, was reasonable. In particular, this was confirmed in
the second case study by our industry partner. (2) Our slicing tech-
nique yields a substantial reduction in the amount of information
that needs to be inspected to check that a given safety requirement
is met by the design.

Lastly, we executed a controlled experiment to assess the im-
pact of our traceability and slicing mechanism on inspectors’ con-
formance decisions and effort [1]. Results clearly show benefits
in terms of increasing the correctness of conformance decisions
(from 50% to 63%), decreasing the proportion of uncertain deci-
sions (-45%), and reducing the effort of inspections (-27%).

In summary, our evaluation suggests that our approach is effec-
tive for improving design safety inspections and thus of value in
realistic settings for improving accuracy and reducing costs in soft-
ware safety certification.

4. DESIGN AND IMPLEMENTATION
As stated earlier, SafeSlice is implemented as a plugin for En-

terprise Architect (EA), which is a versatile and mature modeling
environment. This makes it possible to seamlessly introduce SafeS-
lice into real development settings and further simplifies tool evo-
lution and maintenance. Among the possible alternatives for mod-
eling environments, EA was chosen due to its usability, wide indus-
trial adoption (confirmed by our industrial partners), availability of
detailed guidelines for plugin construction, and built-in support for
storing and linking heterogeneous development artifacts (e.g., nat-
ural language requirements specifications, UML/SysML models,
Word documents, source code).

Figure 8 shows the architecture of the SafeSlice tool. It com-
municates asynchronously with EA via events. All the information
related to a development project is stored by EA in a database. The
plugin can read from and write to this database via EA’s API. In
particular, the additional traceability information required in our
methodology, previously-generated design slices and reports, and
the decisions made by users during inspections are all stored and
retrieved by the plugin via the API; this communication layer thus
simplifies the implementation by hiding the underlying database
technology.

SafeSlice builds on Microsoft ActiveX COM technology. We
used Microsoft .NET Framework 2.0 and Visual Studio 2008 as
the development platform. SafeSlice is written in Visual C# and is

SafeSlice

EA Core

EA Database

EA Events

EA API

Rule
Assistant

Inspection
Assistant

Slice
Generator

Report
Generator

Advanced
Navigator

PDF Report

Inspection
Status

Consistency Rules
(CSV File)

Diagnostic
Information

!
!

Inspection
Decisions

Search
Criteria

Search Results
(List of Elements)

Design
Slice

(via EA API)

Figure 8: SafeSlice tool architecture

roughly 10,000 lines of code excluding comments and third-party
libraries. SafeSlice was publicly released in May 2011. The tool is
available at: http://sites.google.com/a/simula.no/safeslice/

5. CONCLUSION
We presented a tool, SafeSlice, for extraction and inspection of

design slices (where the design is expressed in SysML) for use in
certification of safety-critical software systems. The tool enables
users to specify the traceability links envisaged by a given trace-
ability information model, check the consistency of the established
links, automatically extract slices of design with respect to safety
requirements, and manage the design inspection process. Our eval-
uation indicates that the use of design slices substantially reduces
the amount of information that needs to be inspected for ensuring
that a given safety requirement is met by a SysML design model.

In the future, we plan to conduct studies to more conclusively
quantify the gains in budget, time, and quality resulting from the
use of design slices in the software safety certification process.
Specifically, the quality of the slices generated by SafeSlice is re-
lated to the completeness and accuracy of the traceability informa-
tion available. In the future, we plan to investigate whether the
quality of the traceability information impacts the effectiveness of
the inspection process.

SafeSlice is implemented as part of a larger research effort to
build model-based support for software safety certification. A com-
plementary part is a project aimed at developing conceptual models
that precisely characterize the interpretation of dependability stan-
dards, such as IEC 61508, and recommended practices [5].

6. REFERENCES
[1] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue.

Traceability and SysML design slices to support safety inspections: A
controlled experiment. Tech repo, Simula Research Lab, January 2011.

[2] IEC 61508: Functional Safety of Electrical / Electronic /
Programmable Electronic Safety-related Systems, 2005. International
Electrotechnical Commission: International Electrotechnical
Commission.

[3] C. Lewerentz and T. Lindner, editors. Formal Development of Reactive
Systems - Case Study Production Cell, volume 891 of LNCS. Springer,
1995.

[4] S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, and T. Coq. A
SysML-based approach to traceability management and design slicing
in support of safety certification: Framework, tool support, and case
studies. Tech repo, Simula Research Lab, May 2011.

[5] R. K. Panesar-Walawege, M. Sabetzadeh, L. Briand, and T. Coq.
Characterizing the chain of evidence for software safety cases: A
conceptual model based on the IEC 61508 standard. In ICST, 2010.

[6] W. Schafer and H. Wehrheim. The challenges of building advanced
mechatronic systems. In FOSE ’07, pages 72–84, 2007.

[7] OMG Systems Modeling Language (OMG SysML). 2008. Object
Management Group (OMG), version 1.1.

