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A B S T R A C T   

Type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) represent the most common types of 
autoimmune diabetes and are characterized by different age of onset, degrees of immune-mediated destruction of 
pancreatic beta cells and rates of disease progression towards insulin dependence. Several immunotherapies 
aimed to counteract autoimmune responses against beta cells and preserve beta-cell function are currently being 
investigated, particularly in T1D. Preliminary findings suggest a potential role of combination therapy with 
vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors (VIDPP-4i) in preserving beta-cell function in autoim
mune diabetes. This manuscript aims to provide a comprehensive overview of the immunomodulatory properties 
of vitamin D and DPP-4 inhibitors, as well as the rationale for investigation of their combined use as an 
immunomodulation therapy for autoimmune diabetes.   

1. Introduction 

Autoimmune diabetes is a highly heterogeneous disease which can 
occur at any age [1]. Type 1 diabetes (T1D) and latent autoimmune 
diabetes in adults (LADA) represent the most common types of auto
immune diabetes, although other rare forms or subgroups of autoim
mune diabetes have also been described, such as fulminant T1D and 
checkpoint inhibitor-associated autoimmune diabetes [2,3]. 

1.1. Type 1 diabetes (T1D) 

T1D is an organ-specific autoimmune disease characterized by the 
immune-mediated destruction of insulin-secreting pancreatic beta cells, 
which ultimately results in lifelong dependence on exogenous insulin 
[4]. Even though beta-cell-targeted autoimmune responses are known to 
occur in T1D, the exact aetiology and pathological mechanisms are still 

not clear [5]. T1D is a complex multifactorial disease in which both 
genetic susceptibility and environmental factors promote the autoim
mune responses against beta cells [5]. Several environmental risk factors 
have been suggested as candidate triggers of islet autoimmunity, 
including certain viruses (particularly enteroviruses), higher birth
weight, infant weight gain, dysbiosis of the gut microbiota and various 
dietary factors (e.g., vitamin D deficiency, omega-3 fatty acid deficiency, 
high milk consumption) [6–10]. 

Although T1D onset usually occurs in children or young adults, the 
disease can occur at any age [5]. The process of pancreatic islet infil
tration by immune cells (also known as “insulitis”) represents the his
tological hallmark of the autoimmune destruction of beta cells within 
the pancreatic islets [11]. Even though CD8+ cytotoxic T lymphocytes 
are the most frequent amongst the islet infiltrating immune cells, CD4+
T lymphocytes (also known as T helper cells or Th cells), B lymphocytes 
and macrophages are also found, especially in young children [5,12]. 
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Autoreactive CD8+ T cells recognize major histocompatibility complex 
(MHC) class I-restricted islet autoantigens on beta-cell surface and exert 
cytotoxic effects through a number of effector mediators, particularly 
cytokines released by T helper type 1 (Th1) cells such as interferon 
(IFN)-γ [5,13]. Evidence also suggests an important role of Th17 cells 
and follicular helper T cells in T1D pathophysiology [14]. Furthermore, 
several studies demonstrated that patients with T1D exhibit defects in 
the ability of regulatory T cells (Tregs) to suppress the activity and 
proliferation of autoreactive CD4+ and CD8+ T cells [15–18]. 

The starting point in the natural history of T1D is represented by 
genetic susceptibility to the disease, which is subsequently followed by 
three distinct stages, namely:  

• stage 1 (islet autoimmunity): this stage is characterized by the 
development of beta-cell autoimmunity, as evidenced by the pres
ence of at least two islet autoantibodies among glutamic acid 
decarboxylase autoantibodies (GADA), zinc transporter 8 autoanti
bodies (ZnT8A), insulin autoantibodies (IAA), insulinoma-associated 
antigen-2 autoantibodies (IA-2A); during this stage, subjects remain 
normoglycemic and asymptomatic.  

• stage 2 (abnormal glucose tolerance): subjects maintain multiple 
islet autoantibody positivity and remain asymptomatic, but display 
dysglycemia, as evidenced by impaired fasting glucose levels, 
abnormal oral glucose tolerance test, or glycated hemoglobin 
(HbA1c) ≥ 5.7%  

• stage 3 (symptomatic disease): this stage is characterized by the 
onset of clinical T1D, which is often accompanied by symptoms such 
as polyuria, polydipsia, fatigue, weight loss, and diabetic ketoaci
dosis [19]. 

Shortly after the clinical onset of the disease and the initiation of 
insulin therapy, most subjects with T1D (approximately two-thirds) 
experience a transient and partial spontaneous remission phase (also 
referred to as “honeymoon phase”), which is accompanied by a marked 
reduction in exogenous insulin requirements and near-normal glycemic 
control [20–23]. Conversely, complete remission (characterized by 
near-normal glucose control without need for insulin therapy) seldom 
occurs, being described in approximately 2–12% of young T1D subjects 
in some population-based cohort studies [21]. Overall, duration of 
remission phase varies widely between individuals, with an average of 
approximately 7 months [24]. It has been suggested that both immune 
and metabolic factors contribute to the beta-cell recovery observed 
during the honeymoon phase, including transient development of 
antigen-specific adaptive immune tolerance, optimized glucose control, 
improved insulin sensitivity, as well as reduced glucotoxicity following 
the initiation of insulin therapy [20,25]. 

1.2. Latent autoimmune diabetes in adults (LADA) 

LADA is a distinct form of autoimmune diabetes characterized by an 
older age of onset, a less severe immune-mediated destruction and 
functional deterioration of beta cells, and a slower progression towards 
insulin dependence compared to T1D [1]. Assessment of the pathology 
of pancreata obtained from LADA patients revealed that this disease 
represents a milder and more slowly progressing form of autoimmune 
diabetes compared to T1D. This is strongly suggested by various find
ings, such as increased beta-cell proliferation capacity, increased anti- 
inflammatory capacity (as documented by the increase of interleukin 
[IL]-10 gene expression), reduced beta-cell proapoptotic signaling, and 
predominance of IL-1β in the immune cell infiltrate as compared to the 
predominance of tumor necrosis factor (TNF)-α observed in T1D pan
creata [26]. 

Current criteria for diagnosing LADA include: i) adult age of onset 
(greater than 30 years); ii) presence of any islet cell autoantibody; and 
iii) absence of insulin requirement for at least 6 months after diagnosis 
[1,27,28]. Compared to T1D, LADA displays a greater clinical 

heterogeneity and shares clinical and metabolic features with both T1D 
and type 2 diabetes (T2D). In fact, patients with LADA exhibit a 
remarkable variability in the rate of beta-cell destruction, different de
grees of insulin resistance and heterogeneous patterns of islet autoim
munity, probably due to differences in genetic and immune factors [1]. 
For these reasons, LADA is often diagnosed and treated as T2D, poten
tially resulting in a more rapid progression towards insulin dependence. 
This aspect has relevant clinical implications, since optimal glucose 
control is critical to preserve beta-cell function and reduce the risk of 
chronic diabetes complications [1,29]. 

2. Pathophysiology of autoimmune diabetes: Beyond the beta 
cell 

Although T1D has long been conceived as an autoimmune disease 
arising from the immune-mediated destruction of pancreatic beta cells, 
accumulating evidence over the last years has showed that T1D patho
physiology is more complex and involves also other relevant aspects, 
such as dysfunction of glucagon-secreting alpha cells and histological 
abnormalities of the exocrine pancreas. Notably, T1D patients often 
exhibit a dysregulated glucagon secretion by pancreatic alpha cells, 
consisting in: i) impaired ability of these cells to secrete glucagon in 
response to hypoglycemia, and/or ii) excessive postprandial glucagon 
secretion [30,31]. These alterations can substantially contribute to the 
occurrence of hyperglycemic and hypoglycemic episodes. Several fac
tors account for the alpha-cell dysfunction occurring in T1D, including 
lack of beta-cell signaling, sympathetic islet neuropathy, as well as al
terations in transcription factors constituting alpha-cell identity 
[30,32,33]. It has been shown that insulin-negative islets in subjects 
with T1D are dominated by glucagon-positive cells that often lack the 
alpha-cell transcription factor ARX, while instead expressing PDX1, 
which is normally only expressed in beta cells, suggesting a process of 
beta-cell dedifferentiation into alpha cells [34]. However, beta-cell 
neogenesis from alpha cells emanating from endocrine progenitor cells 
that reside within or adjacent to the ductal epithelium has also been 
suggested as a possible mechanism aimed to compensate for beta-cell 
loss in T1D. Therefore, it is challenging to establish whether the inter
mediate cell type (exhibiting some characteristics of alpha cells and 
some characteristics of beta cells) arises from beta-cell dedifferentiation 
or beta-cell neogenesis [34]. 

Histological abnormalities of the exocrine pancreas are common in 
patients with T1D. In particular, acinar atrophy, intralobular and 
interacinar fibrosis, leucocytic infiltration, fatty infiltration, pancreatic 
arteriosclerosis and focal lesions of acute pancreatitis are all frequently 
observed [35]. Vascular events and hemorrhages within pancreatic is
lets also occur in patients with T1D [36]. Periductal accumulation of 
leukocytes and fibrosis (the end stage of inflammation) might negatively 
affect islet neogenesis from endocrine progenitor cells residing within 
the periductal area [36]. Recently, it has been shown that patients with 
T1D exhibit a lower number of acinar cells and a greater degree of 
fibrosis within the pancreatic exocrine tissue [37]. The loss of pancreatic 
exocrine mass accounts for the smaller pancreas volume observed in 
patients with T1D compared to non-diabetic subjects [35,37]. Note
worthy, 25% to 75% of adult subjects with T1D show pancreatic 
exocrine dysfunction [35]. Various putative causal factors for such his
tological abnormalities have been proposed, such as: i) impaired 
secretion of insulin, glucagon, somatostatin and pancreatic polypeptide; 
ii) global pancreatic inflammation; iii) autoimmune responses targeting 
the exocrine pancreas; iv) vascular and neural abnormalities; and v) 
involvement of pancreatic stellate cells [35]. In light of these remarks, 
therapeutic strategies aimed to restore the disordered glucagon secre
tion and the histological abnormalities of the exocrine pancreas would 
be highly desirable interventions in the setting of autoimmune diabetes. 
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3. Heterogeneity of autoimmune diabetes 

The canonical notion that T1D results from the complete loss of beta 
cells leading to an absolute insulin deficiency [38] has recently been 
overcome. Indeed, emerging evidence shows that many patients with 
long-standing T1D exhibit the persistence of insulin-containing 
pancreatic islets and maintain some degree of endogenous insulin 
secretion even many decades after the diagnosis [39–42]. In this regard, 
it is worth considering that T1D is a highly heterogeneous disease in 
terms of immunopathological and clinical features [43]. Age at diag
nosis is one of the main variables associated with the heterogeneous rate 
of decline in insulin secretion among subjects with T1D. In particular, 
younger age at onset of T1D is accompanied by lower residual beta-cell 
function [44,45], greater decline in endogenous insulin secretion 
[46,47] and lower occurrence of the honeymoon phase [20,24]. 
Recently, Leete et al. [48] demonstrated the existence of two histolog
ically distinct endotypes of T1D that correlate with age at diagnosis. By 
using pancreas samples recovered soon after T1D onset (<2 years) from 
young people diagnosed at different ages (<7 years, 7–12 years and ≥
13 years), authors found that the younger group exhibited more pro
nounced aberrant proinsulin processing within insulin-containing islets, 
lower C-peptide levels and higher median proinsulin to C-peptide ratio 
compared to the group diagnosed at ≥ 13 years [48]. These distinct 
patterns of residual insulin secretion appear to align with the previously 
described immune phenotypes (immunotypes) of T1D [12,49]. Similar 
findings have also been observed in patients with LADA. In this context, 
the LADA China Study 8 investigated whether age of onset of LADA 
contributes to the clinical heterogeneity of the disease by comparing 
clinical, metabolic and immunogenetic characteristics between elderly 
and young patients [50]. Interestingly, the study found that elderly 
LADA group (age of onset ≥ 60 years) exhibited a better residual beta- 
cell function and a higher degree of insulin resistance compared to 
young LADA group (age of onset < 60 years). Elderly LADA patients 
showed more proportion of low titre GADA and lower GADA titres 
compared to young LADA patients aged < 40 years. Elderly LADA group 
also showed a clinical and genetic profile more similar to that of age- 
matched subjects with T2D [50]. 

All the aforementioned remarks have important implications in the 
setting of immune interventions for autoimmune diabetes. Retention of 
residual endogenous insulin secretion has been associated with 
improved glucose control, reduced risk of hypoglycemia, lower glucose 
variability and fewer chronic diabetes complications in T1D [51–54]. 
Therefore, protection against immune-mediated beta-cell destruction 
and preservation of residual beta-cell mass and function (as measured by 
C-peptide, which is secreted from beta cells at an equimolar ratio to 
insulin) represent critical goals of clinical trials investigating the efficacy 
of disease-modifying agents and immunotherapies for autoimmune 
diabetes, including T1D and LADA [1,55,56]. So far, several immuno
therapies have been investigated in new-onset T1D, although they have 
mostly showed no effect or only a transient beneficial effect in coun
teracting the progressive decline in beta-cell function [56]. Hence, the 
use of immunotherapeutic agents in a combination therapy approach is 
worth being tested in future clinical trials. Targeting multiple pathways 
involved in beta-cell loss and dysfunction (e.g. innate immunity, adap
tive immunity, regulatory immunity, glucotoxicity) may represent a 
successful immune intervention for autoimmune diabetes [57]. More
over, the clinical and immunopathological heterogeneity of autoim
mune diabetes accounts, at least in part, for the interindividual 
variability in the response to different immunotherapies [58]. This 
aspect should be taken into account in future studies to facilitate the 
selection of targeted immunotherapies aimed to halt beta-cell autoim
munity and disease progression in selected subsets of individuals with 
autoimmune diabetes. 

Over the last few years, our group and other authors showed a po
tential therapeutic role of dipeptidyl peptidase-4 inhibitors (DPP-4i) 
and/or vitamin D in prolonging the clinical remission phase and 

preserving the residual beta-cell function in patients with autoimmune 
diabetes [59–69]. This review aims to provide a comprehensive over
view of the anti-inflammatory and immunomodulatory properties of 
vitamin D and DPP-4i, as well as their potential synergistic effects in 
preserving residual beta-cell function in autoimmune diabetes, 
including both T1D and LADA. In the text, we will use the term VIDPP-4i 
when referring to the combination therapy with vitamin D and DPP-4i. 

4. Vitamin D and immune system 

Vitamin D is a term that refers to a group of fat-soluble secosteroids, 
namely: i) ergocalciferol (vitamin D2), which is produced in response to 
ultraviolet irradiation of the phytosterol ergosterol found in fungal 
sources such as mushrooms and yeast, and ii) cholecalciferol (vitamin 
D3), which is synthesized in the human skin upon ultraviolet-B (UVB) 
light irradiation of the precursor 7-dehydrocholesterol (7-DHC). 
Although vitamin D is primarily produced in the skin upon sunlight 
exposure, it can also be obtained from a few external sources, such as 
fungal sources or animal foods containing ergocalciferol and cholecal
ciferol, respectively [70,71]. Once produced in the skin or ingested and 
absorbed through foods or dietary supplements, vitamin D3 is trans
ported in the blood by vitamin D binding protein (DBP) to the liver, 
where it is converted into 25-hydroxyvitamin D3 [25(OH)D3, also 
known as calcifediol] by the action of vitamin D-25-hydroxylase 
enzyme. Then, 25(OH)D3 is transported to the kidneys, where 1-α-hy
droxylase enzyme catalyzes its conversion into 1,25-dihydroxyvitamin 
D3 [1,25(OH)2D3; also referred to as calcitriol], which is the biologi
cally active metabolite of vitamin D [70]. 25(OH)D is the major circu
lating form of vitamin D and its serum levels represent the most reliable 
biomarker of vitamin D status [72,73]. 

Over the last years, a growing body of evidence showed that vitamin 
D exerts pleiotropic effects [74–78] other than the well-known regula
tion of calcium and bone homeostasis [79,80]. Remarkably, several pre- 
clinical and experimental studies demonstrated that calcitriol plays an 
important role in the regulation of innate and adaptive immune re
sponses [74,77,81,82]. The first hint of the role of vitamin D in the 
maintenance of immune homeostasis came from the evidence that im
mune cells are both vitamin D targets and local producers of vitamin D. 
Vitamin D acts through a specific receptor known as vitamin D receptor 
(VDR), which is a member of the nuclear receptor/steroid hormone re
ceptor superfamily. The actions of vitamin D are classified into: i) 
genomic, through the VDR-mediated transcriptional effects in the cell 
nucleus, and ii) non-genomic, when the VDR located on the cell mem
brane and/or cytoplasm induces rapid signaling pathways [83]. Func
tional VDR has been identified in almost all immune cells, including 
neutrophils, T lymphocytes and antigen-presenting cells (APCs), such as 
dendritic cells (DCs) and macrophages [84,85]. On the other hand, it has 
been shown that several immune cells (e.g., macrophages, DCs, T- and B- 
lymphocytes) express the vitamin D-activating enzymes 25- and 1α- 
hydroxylase [86–90]. Therefore, inactive vitamin D metabolites can be 
converted into the active form calcitriol within a local immunological 
milieu [81]. Importantly, calcitriol has been shown to exert several ef
fects on innate and adaptive immune system, resulting in the activation 
of anti-inflammatory and immunomodulatory pathways and induction 
of immune tolerance. Calcitriol promotes monocyte and macrophage 
antimicrobial activity by inducing the production of antimicrobial 
peptides, such as cathelicidin and defensin β2 [91–93]. Indeed, obser
vational evidence suggests that vitamin D deficiency may be involved in 
the pathophysiology of various infectious diseases [81,94–96]. 

On the other hand, calcitriol reduces macrophage surface expression 
of MHC class II molecules, resulting in reduced macrophage antigen 
presentation ability and T-cell stimulatory capacity [88,97]. Calcitriol 
favours the shift of macrophage polarization from M1 phenotype (pro- 
inflammatory phenotype) towards M2 phenotype (anti-inflammatory 
phenotype) [98], resulting in the up-regulation of IL-10 and down- 
regulation of inflammatory stimuli (e.g., IL-1β, IL-6, TNF-α, RANKL, 
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COX-2) [82,99]. Calcitriol also modulates the morphology, differentia
tion and function of DCs, rendering them more adherent spindle-shaped, 
less mature and more tolerogenic, thereby reducing their antigen pre
sentation ability [82]. In DCs, calcitriol has been shown to downregulate 
IL-6 and IL-12, upregulate IL-10, and decrease the expression of MHC 
class II molecules and co-stimulatory molecules CD80 and CD86 [100]. 
With regard to vitamin D effects on adaptive immune system, it has been 
shown that calcitriol: i) inhibits the production of Th1 cytokines (e.g., IL- 
2, IFN-γ), Th9 cytokines (e.g., IL-9) and Th17 cytokines (e.g., IL-17, IL- 
21) [81,82,101], ii) upregulates Th2 cytokines (e.g., IL-4, IL-5) [82], iii) 
induces IL-10-producing Tregs [82,101], and iv) affects Th cell balance 
by increasing Th2 cells and inhibiting Th1 and Th17 cell differentiation, 
thus leading to a shift of T cells from an effector (pro-inflammatory) 
phenotype towards a regulatory (anti-inflammatory) phenotype 
[74,82,102,103]. A direct effect of calcitriol on CD8+ T cell hyper
activation has also been reported and consists in the calcitriol ability to 
reduce the secretion of IFN-γ and TNF-α and increase the synthesis of 
anti-inflammatory cytokines IL-5 and transforming growth factor beta 
(TGF-β) by these cells [104]. Notably, the effects of calcitriol on T cells 
are mediated by both direct actions and indirect actions on innate im
mune cells, such as DCs [82]. In human T cells, T-cell antigen receptor 
(TCR) signaling via p38 leads to subsequent induction of VDR and 
phospholipase C-gamma 1 (PLC-γ1), which are required steps for clas
sical TCR signaling and T-cell activation [105]. In another study con
ducted on human T cells, calcitriol was able to promote the 
differentiation of Tregs, inhibit Th17 cell proliferation, suppress IL-17 
production and significantly upregulate PLC-γ1 expression, which then 
induced the expression of the anti-inflammatory cytokine TGF-β1 [106]. 
These results suggest that calcitriol indirectly modulates the differenti
ation of human Treg/Th17 cells by affecting the VDR/PLC-γ1/TGF-β1 
pathway. Finally, calcitriol has been shown to exert a direct effect on B 
cells by inhibiting the generation of plasma cells and post-switch 
memory B cells, thus inhibiting the proliferation of activated B cells 
and inducing their apoptosis [90]. 

5. Role of vitamin D in autoimmune diabetes: T1D and LADA 

Over the last years, vitamin D deficiency has been increasingly 
suggested as a risk factor for several autoimmune diseases 
[74,107–111], including T1D [112–115]. Several studies showed that 
incidence of T1D is directly correlated with latitude and inversely 
correlated with ultraviolet radiation [116–120]. A number of observa
tional studies showed that subjects with new-onset and established T1D 
exhibited significantly lower levels of 25(OH)D compared to healthy 
controls [121–130]. Other studies documented the existence of a sig
nificant seasonality in the incidence of T1D, consisting of a higher per
centage of incident cases observed during winter, early spring and late 
autumn compared to late spring and summer months [131,132]. 

Since vitamin D deficiency is highly prevalent in autoimmune dis
eases, several studies have also investigated the therapeutic value of 
vitamin D supplementation in such diseases, including T1D [111]. It has 
been suggested that higher serum vitamin D levels and vitamin D intake 
during infancy and early childhood may have a role in reducing the risk 
of T1D later in life [112,133,134]. Moreover, pre-clinical evidence 
suggests a potential role of vitamin D in the regulation of beta-cell 
function and insulin synthesis and secretion [112,135]. Indeed, human 
pancreatic beta cells express both 1α-hydroxylase [136–138] and VDR 
[139], and a vitamin D response element (VDRE) has been found in the 
human insulin gene promoter [140]. In addition, vitamin D has been 
found to be capable of promoting beta-cell survival through a VDR- 
dependent transcriptional program enhancing anti-inflammatory re
sponses [141]. A number of studies conducted in non-obese diabetic 
(NOD) mice (an animal model of T1D) demonstrated that calcitriol and 
its analogs can prevent or halt the progression of autoimmune diabetes 
and insulitis [112]. Moreover, transgenic mice overexpressing VDR in 
beta cells are protected against streptozotocin-induced diabetes and 

exhibit preserved beta-cell mass, along with reduced islet inflammation 
[142]. Interestingly, a recent study [143] showed that DBP is highly 
expressed in murine and human alpha cells, and loss of DBP gives rise to 
alterations in alpha-cell number and size, electrical activity and 
glucagon secretion in vitro and in vivo. Additionally, authors found 
reduced expression levels of DBP in islets of donors with late-onset or 
long-standing T1D [143]. 

Studies conducted in subjects with T1D suggest that vitamin D can 
exert direct effects on T cells. Gabbay et al. [61] showed that vitamin D3 
administration in patients with new-onset T1D (at a dose of 2000 IU/day 
and in addition to insulin therapy) led to a significant increase in the 
percentage of Tregs at 12 months compared to placebo. Thereafter, 
Treiber et al. [144] showed that vitamin D3 supplementation for 12 
months in patients with new-onset T1D (at a dose of 70 IU/kg body 
weight/day) was associated with a significant improvement in Treg 
suppressor capacity compared to placebo. In a study conducted in 12 
children positive for islet autoantibodies, calcitriol administration (at a 
dose of 0.25 μg/day) led to negativization of GADA and IAA after a 
median time of 6 months [145]. 

However, intervention studies and randomized controlled trials 
investigating the efficacy of vitamin D as an adjuvant immunomodula
tory agent aimed to preserve residual beta-cell function and improve 
glucose control in recent-onset T1D have yielded inconclusive results 
[112]. Several reasons may underlie the discrepancies in results 
observed across these studies, including the heterogeneity of study 
duration, vitamin D formulations (e.g., cholecalciferol, calcifediol, cal
citriol, alfacalcidol) and vitamin D doses, timing and schedule of 
administration [112]. Thus, the heterogeneous study design across the 
studies limits, at least in part, the interpretation of these results. More
over, most studies only assessed fasting C-peptide level as a marker of 
residual beta-cell function, without evaluating stimulated C-peptide. In 
addition, clinical outcomes were mostly evaluated solely in relation to 
the administered vitamin D dose, whereas serum 25(OH)D levels at 
baseline and/or during follow-up were not reported. Indeed, individual 
serum response to a given vitamin D dose is markedly variable and de
pends upon multiple factors, such as baseline vitamin D status, body fat 
percentage, seasonal variations, ethnicity, genetics (e.g., gene poly
morphisms), use of certain medications and different types of vitamin D 
formulations [146,147]. This aspect is particularly relevant in the 
setting of autoimmune diseases. In fact, immunomodulatory effects of 
vitamin D may be achieved in vivo upon attainment of serum 25(OH)D 
concentrations above those required for bone health (e.g., 40–60 ng/mL 
vs. 30–40 ng/mL, respectively). It is also worth noting that achievement 
of serum 25(OH)D levels ≥ 40 ng/mL after vitamin D3 supplementation 
(at a dose of up to 10,000 IU/day) has proven to be safe over a short- 
term period in otherwise healthy vitamin D-deficient subjects [148]. 
High dose vitamin D supplementation has also proven to be safe in long- 
term hospitalized patients [149]. Interestingly, a small study investi
gated the immunomodulatory effects of calcifediol administered for 12 
months in children with new-onset T1D [150]. The study was designed 
to achieve and maintain serum 25(OH)D levels above 50 ng/mL during 
the follow-up period. Target serum 25(OH)D levels were safely reached 
and maintained. Peripheral blood mononuclear cell (PBMC) reactivity 
against GAD-65 and proinsulin decreased significantly upon 25(OH)D3 
replenishment, and this reduction was inversely correlated with serum 
25(OH)D concentrations. Fasting C-peptide levels remained stable after 
one year of calcifediol administration [150]. 

On the other hand, only a few studies have investigated the role of 
vitamin D in LADA. Du et al. [151] found a higher surface expression of 
CD14 and Toll-like receptor 4 (TLR4) on monocytes collected from 
LADA patients, as compared to controls. The authors showed that cal
citriol was able to modulate the increase in IL-1β and TNF-α production 
by monocytes in response to lipoteichoic acid and lipopolysaccharide 
[151]. A Swedish case-control study found that ≥ 1 serving per week 
consumption of fatty fish (a food source containing high amounts of 
vitamin D) may reduce the risk of LADA [152]. With regard to 
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intervention studies, Li et al. [68] showed that 12-month treatment with 
the vitamin D analog alfacalcidol (at a dose of 0.5 μg/day) in addition to 
insulin therapy resulted in a partial preservation of beta-cell function in 
patients with LADA. Notably, authors showed steady fasting and stim
ulated C-peptide levels in the alfacalcidol plus insulin group, whereas 
fasting C-peptide levels decreased in the insulin alone group during the 
12-month intervention period. Moreover, LADA patients with a shorter 
duration of the disease (<1 year) exhibited a better response to alfa
calcidol in terms of preservation of fasting- and stimulated C-peptide 
levels, as compared to patients who received insulin therapy alone [68]. 
Therefore, future prospective intervention studies investigating the ef
ficacy of vitamin D supplementation as an adjuvant immunomodulatory 
strategy in patients with T1D and LADA are warranted. 

6. DPP-4 and immune system 

Dipeptidyl peptidase-4 (DPP-4) - a serine exopeptidase also known as 
cluster of differentiation 26 (CD26) - is a cell surface antigen (DPP-4/ 
CD26) expressed ubiquitously in several cells and tissues including 
kidney, intestine, liver, lung, endothelia, pancreatic duct and islet cells, 
as well as in immune cells such as DCs, monocytes, macrophages, T cells, 
activated B cells and activated natural killer (NK) cells [153–155]. DPP- 
4/CD26 is a type II transmembrane, homodimeric glycoprotein 
anchored to the membrane by its signal peptide. However, CD26/DPP4 
also exists in a soluble form, which still maintains its enzymatic activity 
and is thought to be released from the cell membrane into the blood
stream [153]. 

Upon activation, approximately 50% of human B cells express DPP- 
4/CD26, and selective suppression of DPP-4 activity reduces B-cell 
activation and DNA synthesis in a dose-dependent manner [153]. DPP- 
4/CD26 plays important co-stimulatory T-cell functions: it is expressed 
only on a fraction of resting T cells, whereas it becomes markedly up- 
regulated upon T-cell activation [153]. As a lymphocyte cell surface 
protein, CD26 has three main functions, all of which can affect T-cell 
proliferation and chemotaxis, namely: (a) adenosine deaminase (ADA) 
binding, (b) peptidase activity, and (c) extracellular matrix binding 
[156]. 

Interaction of ADA-CD26 complexes on T-cell surface induces co- 
stimulatory effects on T-cell activation which are independent of 
dipeptidyl peptidase and deaminase activities [157]. This co- 
stimulatory signal results in a marked increase in the production of 
Th1 and pro-immflamatory cytokines IFN-γ, TNF-α and IL-6 [157]. Also, 
it has been demonstrated that caveolin-1 is a co-stimulatory ligand for 
CD26, and caveolin-1/CD26 interaction induces T-cell proliferation and 
nuclear factor kappa B (NF-kB) activation with subsequent co- 
stimulation of TCR/CD3 [158]. With regard to CD8+ T cells, CD26- 
mediated co-stimulation of CD8+ T cells appears to exert a cytotoxic 
effect mainly via granzyme B, TNF-α, IFN-γ and Fas ligand [159]. 
Moreover, CD26-costimulation pathways in CD8+ CD26high T lympho
cytes are mediated by EGR2 (early growth response 2) and IL-10, and are 
therefore distinct from those of CD8+ CD28high T cells [160]. 

In addition, it has been shown that DPP-4/CD26 is a negative se
lection marker for human Tregs [161,162], while human Th17 cells 
exhibit high levels of enzymatically active DPP-4/CD26 [163]. Pheno
typic analysis of human CD4+ T cells conducted by Bengsch et al. [163] 
showed that CD26 expression is highest on Th17 cells producing type 17 
cytokines (e.g., IL-22, IL-17, TNF) compared to Th1, Th2, and Tregs. In 
particular, the lowest CD26 expression levels identified for IL-10- 
producing CD4+ T cells and CD25hi CD127- FOXP3+ regulatory T cells 
suggest suppressive effects exerted by CD26 on these cells [163]. Similar 
findings have recently been observed by Zhao et al. [164], who inves
tigated the role of CD26 in T-cell differentiation in vitro by analyzing 
CD26 expression in different subsets of human peripheral blood T cells 
after solid-phase immobilized specific monoclonal anti-CD3 antibody 
stimulation. Authors found that the percentages of cells secreting Th1 
cytokines (IL-2 and IFN-γ) and Th17 cytokines (IL-6, IL-17, and IL-22) or 

expressing Th17 typical biomarkers (CD161, CD196, and IL-23 receptor) 
in the CD26high group were substantially higher compared to the 
CD26low group. Furthermore, fluorescence microscopy revealed a co- 
expression of CD26 with IL-2, IFN-γ, IL-17, IL-22, and IL-23R in lym
phocytes [164]. These findings provide evidence that the high expres
sion of CD26 is accompanied by the differentiation of T cells into Th1 
and Th17 subsets, further indicating that CD26 plays a pivotal role in the 
regulation of immune responses. 

CD26 binds to caveolin-1 on APCs and upregulates the co- 
stimulatory molecule CD86, resulting in the engagement with CD28 
on T cells and subsequent antigen-specific T cell activation [165]. CD26 
also acts as a binding protein for ADA, anchoring it to the cell surface 
and reducing the local concentrations of adenosine [166]. ADA is an 
enzyme which downregulates the biologic effects of adenosine in situ by 
catabolizing adenosine to its metabolite inosine. The surface-aligned 
CD26/ADA complex deaminates adenosine and prevents its binding to 
the adenosine receptor A2A on immune cells. As a result, effector T cells 
can escape from adenosine-mediated suppression, thus promoting 
inflammation [167]. Thus, blockade of surface-bound ADA activity fa
vours exogenous adenosine access to A2A receptors on effector T cells 
and promotes adenosine-mediated suppression in these cells. As previ
ously mentioned, CD26 expression is absent or negligible in Tregs; 
hence, Tregs cannot efficiently anchor ADA to their membranes, leading 
to reduced ADA activity and subsequent extracellular adenosine accu
mulation which ultimately results in suppressive effects on effector T 
cells. 

In keeping with the aforementioned findings, our group previously 
demonstrated that the DPP-4 inhibitor sitagliptin exerts immunomod
ulatory properties in human lymphocytes through several mechanisms, 
including: i) dose-dependent inhibition of PBMC proliferation and 
decreased PBMC CD26 expression; ii) decreased production of IL-6 and 
IFN-γ; iii) reduction in the percentage of CD4+/IL-17+ and CD4+/IFN-γ+

T cells, and iv) increase in TGF-β1 concentrations [168]. Altogether, 
these findings suggest DPP-4 inhibition as a valuable therapeutic option 
in chronic inflammatory and autoimmune diseases. 

7. Role of DPP-4 inhibitors in autoimmune diabetes: T1D and 
LADA 

DPP-4 substrates are polypeptides with an alanine or a proline at the 
second position from the N-terminal side. DPP-4 cleaves off amino- 
terminal dipeptides from several substrate hormones, neuropeptides, 
chemokines and growth factors, thus influencing the biological activity 
of such molecules [153]. In this regard, DPP-4 was identified as a 
therapeutic target in T2D due its ability to cleave and inactivate the gut 
hormones (incretins) known as gastric inhibitory polypeptide (GIP, also 
referred to as glucose-dependent insulinotropic polypeptide) and 
glucagon-like peptide-1 (GLP-1), which are secreted by enteroendocrine 
K and L cells, respectively [153]. GIP and GLP-1 are secreted from gut 
enteroendocrine cells upon meal ingestion and promote insulin secre
tion in a glucose-dependent manner [169,170]. DPP-4 inhibition blocks 
incretin degradation and increase endogenous levels of incretins by 
prolonging their half-life, thus extending the insulinotropic effect of 
such hormones, lowering fasting and postprandial glucose concentra
tion, suppressing glucagon secretion and reducing hepatic glucose pro
duction [171,172]. Recently, it has also been shown that DPP-4 
inhibition can modulate insulin secretion via GLP-1-independent 
mechanisms, such as the regulation of intra-islet peptide YY (PYY) 
[173]. 

DPP-4 inhibitors (DPP-4i), also known as gliptins, have proven to be 
effective in enhancing endogenous insulin secretion and impoving 
glucose control in patients with T2D [172]. Since 2006, several DPP-4i 
have become available as oral antihyperglycemic agents for the treat
ment of T2D, including sitagliptin, vildagliptin, linagliptin, saxagliptin 
and alogliptin [172]. Pre-clinical evidence and experimental studies also 
suggest that DPP-4i can exert pleiotropic effects beyond their glucose- 
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lowering properties, conferring protection against cardiovascular dis
ease and microvascular diabetes-related complications through both 
GLP-1-dependent and GLP-1-independent mechanisms [174,175]. In 
addition, several studies suggest that DPP-4i exert anti-inflammatory 
and immunomodulatory effects in vitro and in vivo [176–181]. In 
short-term randomized controlled trials conducted in patients with T2D, 
sitagliptin has been shown to increase the expression of IL-10 (an anti- 
inflammatory cytokine) and to reduce the expression of different 
markers of low-grade inflammation, pro-inflammatory cytokines and 
cell adhesion molecules, such as C-reactive protein, IL-6, IL-18, TNF-α, 
secreted phospholipase-A₂, serum amyloid A-LDL complex, soluble 
intercellular adhesion molecule-1 (sICAM-1) and E-selectin 
[176,177,181]. These effects may provide a further advantage in the 
prevention and management of diabetes-related proatherogenic 
comorbidities. Furthermore, a recent large retrospective cohort study 
involving more than 750,000 patients with T2D found that DPP-4i are 
associated with lower risk of autoimmune disorders, particularly for the 
younger patients and the lesser duration of diabetes diagnosed [182]. 

Given their anti-inflammatory/immunomodulatory properties and 
their ability to increase circulating levels of incretins, DPP-4i have the 
potential to exert multiple positive effects on pancreatic beta cells 
leading to the preservation of beta-cell mass and function, namely: i) 
improvement of glucose-stimulated insulin secretion (GSIS); ii) reduc
tion of gluco-, lipo- and cytokine-toxicity; iii) stimulation of insulin gene 
expression and biosynthesis; iv) suppression of beta-cell apoptosis; and 
v) stimulation of beta-cell proliferation, survival and neogenesis from 
endocrine progenitor cells within islet and extra-islet pancreas tissue, as 
it has been demonstrated in animal models of diabetes and isolated 
human islets [176,178,183–188]. 

Therefore, the use of DPP-4i has been suggested as a valid treatment 
option in patients with autoimmune diabetes [189]. Animal studies 
conducted in NOD mice showed that DPP-4i were able to prevent or 
delay the onset of diabetes and even reverse the established disease after 
the onset of overt hyperglycemia by modulating the inflammatory and 
autoimmune responses against pancreatic beta cells and thereby pro
tecting beta-cell mass [190–194]. In such animal models of autoimmune 
diabetes, DPP-4i: i) reduce insulitis, ii) stimulate beta-cell proliferation, 
iii) increase CD4+ CD25+ FOXP3+ regulatory T cells, and iv) reduce 
migration of splenic and lymph node CD4+ T-cells [190–194]. A recent 
animal study conducted in a streptozotocin-induced T1D experimental 
model demonstrated that treatment with sitagliptin was able to improve 
metabolic control, decrease pancreatic inflammatory profile and in
crease systemic regulatory T cell frequency [195]. 

Case reports and small pilot studies conducted in patients with 
autoimmune diabetes have found that DPP-4i, alone or in combination 
with other agents, significantly improved glucose control and reduced 
insulin requirements, with a favourable tolerability profile [189]. 
However, studies investigating the use of DPP-4i in T1D led to incon
clusive results in terms of improvement of glucose control, reduction of 
daily insulin requirements, as well as preservation or increase of 
endogenous insulin production [189,196–199]. The inconsistent find
ings observed across studies may be explained by a number of factors, 
such as the small sample size and the heterogeneous diabetes duration at 
enrollment. For instance, the inclusion of T1D subjects with long- 
standing disease and only marginal residual beta-cell function may 
reduce the potential benefits of DPP-4 inhibition in this population. The 
12-month randomized, placebo-controlled, phase 2 trial REPAIR-T1D 
showed lack of efficacy of combination therapy with sitagliptin plus 
the proton-pump inhibitor lansoprazole in preserving beta-cell function 
in patients with new-onset T1D [200]. These findings differ from those 
observed in NOD mice [201]. However, the use of a lower sitagliptin 
dose (50 mg/day) in patients younger than 18 years may have not been 
adequate to achieve the in vivo anti-inflammatory effects of sitagliptin. It 
is also worth noting that serum DPP-4 activity is higher in both children 
and adults with T1D compared to healthy controls [202–205] and sub
jects with T2D [205]. Duvnjak et al. [206] showed that LADA patients 

exhibited a significantly higher serum DPP-4 activity compared to sub
jects with T1D and T2D. In the multinomial regression analysis, DPP-4 
activity remained significantly associated with both LADA and T1D, 
whereas it did not show an association with T2D [206]. Interestingly, it 
has also been suggested that increased DPP-4 activity mediates the 
impairment in insulin sensitivity driven by TNF-α in T1D [207]. Addi
tionally, patients with T1D using bolus rapid-acting insulin analogues 
exhibit lower postprandial GLP-1 levels following ingestion of test meal 
[208]. Altogether, these findings may partly explain the inability of 
several participants to achieve adequate GLP-1 levels in the REPAIR- 
T1D study [200]. In fact, authors found a slight trend towards C-pep
tide preservation in a subgroup who produced increased concentrations 
of GLP-1 and gastrin while receiving the treatment [200]. These findings 
appear to suggest that the dose of DPP-4i administered in clinical studies 
may significantly affect the study outcomes. In this regard, our group 
previously showed that sitagliptin-mediated inhibition of human PBMC 
proliferation is dose-dependent [168]. Of note, sitagliptin was able to 
modulate the differentiation of Th1 and Th17 cells into TGF-β1-pro
ducing regulatory cells and to markedly reduce the expression of IFN-γ, 
IL-6 and IL-17 [168]. Similar findings have also been observed in animal 
models of diabetes [194,209]. Thus, future studies investigating the role 
of DPP-4i in preserving beta-cell mass and function in new-onset T1D 
should consider the administered dose and the disease duration as fac
tors able to significantly affect the study outcomes. Moreover, assessing 
serum DPP-4 activity and CD26 expression on lymphocytes may be 
useful in the attempt to establish a minimum DPP-4i dose able to 
effectively inhibit DPP-4 activity, increase GLP-1 levels and subse
quently modulate innate and adaptive immune responses in vivo. It 
would also be worth taking into account potential differences existing 
between distinct DPP-4i molecules in terms of pharmacokinetics and 
anti-inflammatory/immunomodulatory actions. Although it has been 
demonstrated that different DPP-4i have a similar safety and efficacy 
profile as oral antihyperglycemic agents for the treatment of T2D [210], 
the existence of differential effects on immune system exerted by distinct 
DPP-4i cannot be excluded due to the peculiarity of each molecule in 
terms of pharmacokinetic and pharmacodynamic characteristics, bind
ing modes of DPP4i in the active site of DPP-4 and ability to interfere 
with CD26 dimerization [211,212]. The use of DPP-4i as an adjuvant 
therapeutic strategy to preserve beta-cell function has also been inves
tigated in patients with LADA. An open-label, randomized controlled 
study first showed that 12-month treatment with sitagliptin (at a dose of 
100 mg/day) in addition to insulin preserved C-peptide secretion better 
than insulin alone in patients with recent-onset LADA (duration of dia
betes ≤ 3 years) [213]. Another open-label, prospective, randomized 
controlled trial conducted in patients with LADA in the stage of non- 
insulin-dependency suggested that sitagliptin (at a dose of 50 mg/day, 
titrated up to 100 mg/day to achieve the established target for glucose 
control) may be more effective in preserving beta-cell function 
compared to insulin therapy for at least 4 years [214]. A recent 24- 
month randomized controlled trial conducted in LADA patients (with 
a disease duration of ≤ 3 years) demonstrated that sitagliptin (at a dose 
of 100 mg/day) in addition to insulin led to significantly higher changes 
in the updated homeostatic model assessment of beta-cell function 
(HOMA2-B) from baseline, and significantly improved the first-phase 
insulin secretion (during the hyperglycemic clamp test) and insulin 
sensitivity (during the hyperinsulinemic euglycemic clamp test) as 
compared to insulin intervention alone [215]. A 1-year open-label 
randomized controlled trial conducted in LADA patients also found 
that sitagliptin (100 mg/day) in addition to insulin ameliorated glucose 
control and altered the phenotype of T cells by increasing the percentage 
of protective Th2 cells and reducing the percentage of pathogenic Th17 
cells [216]. However, a 21-month randomized trial conducted in LADA 
patients with < 3 years of known diabetes found that sitagliptin (at a 
dose of 100 mg/day) did not lead to significant differences in beta-cell 
function as compared to insulin therapy [217]. An exploratory anal
ysis of a 2-year double-blind, randomized controlled study conducted in 
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patients diagnosed with T2D and HbA1c values of 6.5%-10% while on 
metformin (who were randomized to additional once-daily linagliptin 5 
mg or glimepiride 1–4 mg) suggested that linagliptin may attenuate the 
rate of decline in C-peptide levels among patients with LADA [69]. A 
post hoc analysis of data pooled from five randomized, placebo- 
controlled studies found that saxagliptin was effective in reducing 
blood glucose levels and appeared to improve beta-cell function in 
GADA-positive patients [218]. In a recent consensus statement from an 
international expert panel providing recommendations for the man
agement of patients with LADA, DPP-4i have been suggested as oral 
antihyperglycemic agents able to improve glucose control and poten
tially preserve residual insulin secretory capacity in this population, 
although larger randomized studies are warranted to draw definitive 
conclusions in this direction [29]. 

8. VIDPP-4i combination therapy for treatment of autoimmune 
diabetes 

In light of the aforementioned findings and evidence deriving from 
studies conducted in other clinical settings [219,220], vitamin D and 
DPP-4i may exert synergistic effects on immune system by virtue of their 
anti-inflammatory and immunomodulatory properties. When vitamin D 
and DPP-4i are administered together, such combination therapy may 
exert anti-inflammatory and immunomodulatory actions to a greater 
extent than vitamin D or DPP-4i administered alone. Emerging evidence 
suggests that combination therapy with vitamin D plus DPP-4i (VIDPP- 
4i) has the potential ability to preserve beta-cell function in autoimmune 
diabetes [64]. Herein, we discuss the current evidence for the existence 
of synergistic effects of vitamin D and DPP-4i and the consequential 
implications for the treatment of autoimmune diabetes. 

8.1. Synergistic anti-inflammatory and immunomodulatory effects of 
vitamin D and DPP-4 inhibitors: Mechanistic evidence 

Evidence for synergistic anti-inflammatory and immunomodulatory 
effects of vitamin D and DPP-4i primarily comes from recent studies 
conducted in patients with T2D. A study conducted by Mahabadi- 
Ashtiyani et al. [221] on PBMCs collected from T2D patients and 
healthy controls revealed that the addition to the culture of sitagliptin 
plus vitamin D3 was more effective in reducing IL-6 and TNF-α pro
duction in both patients and controls, as compared to cultures treated 
with sitagliptin or vitamin D3 alone. The same group recently demon
strated the in vitro ability of sitagliptin and vitamin D3 to effectively 
suppress the increased T helper cell proliferation and inflammatory re
sponses in patients with T2D [222]. Of note, the addition of sitagliptin or 
vitamin D3 to the cultures led to decreased proliferation of CD4+ T cells 
and non-CD4+ cells isolated from both T2D patients and healthy con
trols. Sitagliptin in combination with vitamin D3 was also more effective 
in suppressing cell proliferation, decreasing IL-17 production and 
enhancing the expression of the anti-inflammatory cytokine IL-37 by 
PBMCs [222]. 

In a study conducted in 54 nephropathic and 57 non-nephropathic 
T2D patients, Telikani et al. [223] demonstrated that, as compared to 
healthy control, the production of IFN-γ and IL-17 was increased and 
FOXP3 expression was decreased in T2D subjects who did not receive 
sitagliptin and vitamin D3. On the other hand, VIDPP-4i (vitamin D3 
1000 IU/day plus sitagliptin 100 mg/day) was associated with 
decreased IFN-γ, IL-17 and IL-21 production, downregulated expression 
of RORγt (a marker for Th17 cells) and BCL6 (a marker for T follicular 
helper cells), along with upregulated expression of IL-37 and FOXP3, 
which are well-known markers for Tregs [223]. Similar results have 
been observed in another study from the same group, showing that 
treatment with sitagliptin plus vitamin D3 reduced the levels of IFN-γ 
and IL-17 in both non-nephropathic and nephropathic T2D patients 
compared to untreated patients [224]. IL-37 levels were enhanced in 
patients treated with sitagliptin or sitagliptin plus vitamin D3 compared 

to untreated patients. Moreover, treatment with sitagliptin plus vitamin 
D3 increased IL-4 levels in non-nephropathic T2D patients. Overall, 
these findings suggest that treatment with sitagliptin plus vitamin D3 is 
more effective in reducing the upregulation of the pro-inflammatory 
cytokines IFN-γ and IL-17 in patients with T2D [224]. According to 
the synergistic anti-inflammatory actions of vitamin D and DPP-4i, a 
recent study conducted in a rat model of fructose/salt-induced insulin 
resistance showed superadditive renoprotective effects evoked by the 
combined use of vitamin D3 and vildagliptin, which reversed hyperuri
cemia and exerted a plethora of renal anti-inflammatory, antioxidant, 
anti-apoptotic and anti-fibrotic effects [225]. 

Interestingly, studies conducted in transplant setting shed light on 
the rationale for combined use of vitamin D and DPP-4i. Vitamin D 
deficiency is highly prevalent following solid organ transplantation 
[226]. Pre-clinical studies showed that vitamin D and its analogs have 
beneficial effects in terms of islet graft survival and prevention of allo
graft rejection and recurrence of autoimmunity in animal models of 
syngeneic and allogeneic islet transplantation [227]. Therefore, vitamin 
D supplementation has been suggested as a valid therapeutic strategy to 
reduce opportunistic infections and prevent allograft rejection after 
solid organ and cell transplantation [226,227]. In this regard, Zhou et al. 
[228] found that vitamin D deficiency represents an independent risk 
factor for acute cellular rejection after liver transplantation. Accord
ingly, the incidence of acute cellular rejection and bacterial and fungal 
infections was reduced in patients receiving vitamin D supplementation. 
Moreover, vitamin D supplementation was associated with increased 
numbers of Tregs and decreased numbers of T naïve cells and CD8+
CD28+ T cells, suggesting that vitamin D may favour immune tolerance 
towards the liver allografts [228]. 

Likewise, DPP-4 inhibition before and after islet transplantation 
decreased the effect of beta-cell autoimmunity and led to prolongation 
of islet graft survival in NOD mice, partially by reducing the homing of 
CD4+ T-cells into pancreatic beta cells [191]. DPP-4 inhibition has 
recently been suggested as a potential strategy to prevent chronic allo
graft dysfunction following solid organ transplantation (such as lung 
transplantation) by inducing an anti-inflammatory cytokine profile 
[229]. Also, a recent study demonstrated that treatment with a murine 
anti-CD26 monoclonal antibody (begelomab) induced over 60% re
sponses in steroid refractory acute graft-versus-host disease (SR- 
aGVHD), thus suggesting a role of CD26+ T cells in tissue damage in the 
context of GVHD [230]. Accordingly, a recent phase 2 clinical trial 
showed that sitagliptin (administered orally at a dose of 600 mg every 
12 h starting the day before transplantation until day 14 after trans
plantation) in addition to a standard immunosuppressive regimen of 
sirolimus and tacrolimus resulted in a markedly low incidence of grade II 
to IV acute GVHD by day 100 after myeloablative allogeneic hemato
poietic stem-cell transplantation [231,232]. 

Overall, these findings suggest that the combined use of vitamin D 
and DPP-4 inhibition (through the use of gliptins or anti-CD26 mono
clonal antibodies) may represent a valuable therapeutic option worth 
being investigated in future studies involving transplant recipients. In 
fact, VIDPP-4i may modulate T-cell differentiation and promote immune 
tolerance by selectively inhibiting effector T cells and upregulating 
Tregs, potentially allowing for reduction of immunosuppressant dose 
and immunosuppression-related toxicity. In this context, the use of DPP- 
4i may also be advantageous in terms of reduced glucotoxicity and 
preservation of beta-cell function among patients with T1D who un
derwent kidney, pancreas or islet transplantation, and patients with 
post-transplant diabetes [233]. 

Finally, current mechanistic evidence suggests that vitamin D and 
DPP-4i exert synergistic anti-inflammatory and immunomodulatory ef
fects on immune system via shared signaling pathways, which result in: 
i) reduced antigen presentation ability and T-cell stimulatory capacity 
by APCs; ii) reduced differentiation and activation of Th1 and Th17 
cells; iii) enhanced differentiation of Th2 cells and Tregs; iv) reduced 
differentiation of CD8+ T cells; v) decreased expression of pro- 
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inflammatory cytokines, such as IFN-γ, TNF-α, IL-6 and IL-17; vi) 
increased expression of anti-inflammatory cytokines, such as TGF-β1, IL- 
4, IL-5, and IL-37; vii) decreased activation of B cells and reduced islet 
autoantibody titres. Fig. 1 illustrates the mechanisms underlying the 
synergistic anti-inflammatory and immunomodulatory effects exerted 
by vitamin D and DPP-4i, as well as their protective effects on pancreatic 
islets and beta cells. 

8.2. VIDPP-4i as an immunomodulation therapy for autoimmune 
diabetes: Clinical evidence 

Case reports and pilot studies conducted in patients with autoim
mune diabetes showed potential protective effects of VIDPP-4i on beta- 
cell function (Table 1). We first reported a markedly prolonged clinical 
remission phase (up to 4 years), accompanied by decreased GADA titres 
and preserved beta-cell function in two T1D patients who received 
VIDPP-4i with sitagliptin 100 mg/day plus vitamin D3 5000 IU/day 

[59]. In a subsequent study involving a larger sample size (n = 34; 17 
T1D patients and 17 controls), we showed that the same VIDPP-4i 
regimen in addition to insulin therapy was associated with a pro
longed clinical remission phase (from 1 to 5 years; mean: 27.1 ± 18.9 
months), accompanied by a significant reduction in CD8+ CD26+ T cell 
count compared to T1D patients treated with insulin alone [64,234]. In a 
study conducted on a cohort of 19 patients with new-onset T1D, we 
recently showed that this combination therapy was associated with re
sidual beta-cell function and a median remission phase (as assessed by 
an IDAA1c value of ≤ 9) of 10 months (ranging from 6 to 87 months) 
[65]. 

Similar findings have been observed in patients with LADA. Of note, 
Rapti et al. [67] first reported the case of a 31-year-old patient with 
LADA who received VIDPP-4i with sitagliptin 100 mg/day plus vitamin 
D3 2000 IU/day (in addition to metformin) shortly after the onset of the 
disease. The patient maintained insulin independence and exhibited 
normalization of GADA titre levels and HbA1c values over a 2-year 

Fig. 1. Mechanisms underlying the synergistic anti-inflammatory and immunomodulatory effects of vitamin D and DPP-4 inhibitors in autoimmune 
diabetes. Studies conducted in vitro and in animal models of autoimmune diabetes showed that vitamin D and DPP-4 inhibitors promote the activation of anti- 
inflammatory and immunomodulatory pathways, resulting in protective effects on pancreatic islets and beta cells. Notably, vitamin D and DPP-4 inhibitors 
(VIDPP-4i) exert synergistic effects on innate and adaptive immune system via shared signaling pathways, which primarily result in: i) reduced antigen presentation 
ability and T-cell stimulatory capacity by antigen-presenting cells; ii) reduced differentiation and activation of Th1 and Th17 cells; iii) enhanced differentiation of 
Th2 cells and Tregs; iv) reduced differentiation of CD8+ T cells; v) decreased expression of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-6, IL-17; vi) 
increased expression of anti-inflammatory cytokines, such as TGF-β1, IL-4, IL-5, and IL-37; vii) decreased activation of B cells and reduced islet autoantibody titres. In 
addition, DPP-4 inhibitors exert well-known GLP-1-mediated protective effects on beta cells, by promoting glucose-stimulated insulin secretion, suppressing glucagon 
secretion and reducing glucotoxicity. The term vitamin D refers to the active metabolite calcitriol. Abbreviations: DPP-4i, dipeptidyl peptidase-4 inhibitors; GLP-1, 
glucagon-like peptide-1; GSIS, glucose-stimulated insulin secretion; IFN-γ, interferon-gamma; IL, interleukin; MHC, major histocompatibility complex; NK cell, 
natural killer cell; TGF-β1, transforming growth factor beta 1; Th, T helper cell; TNF-α, tumor necrosis factor-alpha; Treg, regulatory T cell; VIDPP-4i: combination 
therapy with vitamin D and DPP-4 inhibitors. 
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Table 1 
Summary of the main studies on the use of combination therapy with vitamin D and DPP-4 inhibitors (VIDPP-4i) in patients with autoimmune diabetes (T1D and LADA).  

Study Design Study Population Study Treatment Main Findings References 

Case series N = 2 young adults with T1D 
Patient #1: 20-year-old woman  

Patient #2: 21-year-old woman  

T1D duration at VIDPP-4i initiation: 
patient#1, 1 month; 
patient #2, 10 months. 

Sitagliptin 100 mg/day plus vitamin D3 5000 IU/day, with or without 
insulin   

Both patients experienced clinical remission of T1D, as evidenced by a 
daily insulin requirement of < 0.5 IU/kg/day, HbA1c values below 6% 
and fasting C-peptide levels above 0.90 ng/mL. Both patients showed 
an early and significant decrease in GADA titres, which remained 
below the baseline levels 
throughout a 48-month follow-up period.  

Patient #1: complete clinical remission (without need for insulin 
therapy) maintained during a 4-year follow-up period.  

Patient #2: partial clinical remission maintained during a 4-year 
follow-up period.  

Both patients maintained normal serum levels of 
calcium and 25(OH)D. No side effects related to 
VIDPP-4i have been reported. 

Pinheiro et al. (2016) 
[Ref. [59]] 

Cross-sectional 
study 

N = 17 children and adults with T1D 
(receiving insulin in combination with 
sitagliptin and/or vitamin D3) vs. 17 
controls 

10 T1D subjects (age range: 16–43 years, 7F/3M) were treated with 
insulin alone; 5 T1D subjects (age range: 20–47 years, 3F/2M) were 
treated with insulin and sitagliptin 100 mg/day plus vitamin D3 5000 
IU/day; 2 subjects with new-onset T1D (13 and 15 years, 1F/1M) 
were treated with sitagliptin 100 mg/day and vitamin D3 5000 IU/ 
day.  

Eight healthy donors (age range: 19–34 years, 6F/2M) and 9 women 
(age range: 15–39 years) with Hashimoto’s thyroiditis served as 
control group. 

VIDPP-4i regimen in addition to insulin therapy was associated with a 
prolonged clinical remission phase (from 1 to 5 years; mean 27.1 ±
18.9 months), accompanied by a significant reduction in CD8+
CD26+ T cell count compared to T1D patients treated with insulin 
alone (p-value = 0.022).  

No side effects related to VIDPP-4i were reported. 

Pinheiro et al. (2017); 
Pinheiro et al. (2018) 
[Ref. [234,64]] 

Case series N = 19 children and adults (7F/12 M; 
median 
age 15 years [6–39]) with new-onset 
T1D 

Sitagliptin 100 mg/day plus vitamin D3 5000 IU/day (in addition to 
insulin therapy) 

The use of VIDPP-4i was associated with residual beta-cell function, 
along with a median remission phase (as assessed by an IDAA1c value 
of ≤ 9) of 10 months (ranging from 6 to 87 months).  

Mean fasting C-peptide levels at baseline were 0.86 ± 0.47 ng/mL, 
whereas last follow-up mean C-peptide levels were 0.89 ± 0.57 ng/mL.  

No side effects related to VIDPP-4i were reported. 

Pinheiro et al. (ATTD 
2020 Invited Speaker 
Abstracts, 2020) [Ref.  
[65]] 

Case report 31-year-old Caucasian male with LADA Sitagliptin 100 mg/day plus vitamin D3 2000 IU/day administered in 
addition to metformin (1700 mg/day) shortly after the onset of the 
disease 

2 years after the diagnosis of LADA, the patient showed normalization 
of HbA1c values (5.2% vs 9.6%), as well as negativization of GADA 
titres (4.1 U/mL vs 32 U/mL; normal 
values < 5 U/mL).  

VIDPP-4i was well tolerated. 

Rapti et al. (2016) [Ref.  
[67]] 

(continued on next page) 
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Table 1 (continued ) 

Study Design Study Population Study Treatment Main Findings References 

Multicenter, 
randomized- 
controlled study 

N = 60 patients with LADA  

Age: between 18 and 70 years  

Duration of diabetes: <4 years   

Participants were randomized to receive for 12 months: conventional 
therapy with metformin (1–1.7 g/day) and/or insulin treatment 
(group A, n = 21); 
saxagliptin (5 mg/day) plus conventional therapy (group B, n = 20); 
or vitamin 
D3 (2000 IU/day) plus saxagliptin and conventional therapy (group 
C, n = 19). 

During the 12 month-follow-up period, the levels of fasting C-peptide, 
2- 
hour postprandial C-peptide and C-peptide index were maintained in 
group C.  

In group B, fasting C-peptide levels at 12 months 
were significantly lower than those at baseline (p-value = 0.005), 
whereas no significant differences in postprandial C-peptide index 
levels were found during treatment.  

In group A, fasting C-peptide index levels were significantly reduced at 
12 months 
compared to baseline (p-value = 0.022), while they showed no 
significant differences in 
either group B or group C at 6 months and 12 months.  

The levels of postprandial C-peptide index 
decreased continually from 95.64 ± 72.21 pmol/L to 82.75 ± 74.03 
pmol/L at 6 months 
(p-value = 0.161) and 74.20 ± 56.84 pmol/L (p-value = 0.049) at 12 
months in group A. In contrast, 
postprandial C-peptide index levels in group C continued to increase 
from 91.31 ± 63.21 pmol/L to 
116.28 ± 97.09 pmol/L (p-value = 0.087) at 6 months and 118.14 ±
108.07 pmol/L (p-value = 0.213) at 
12 months.  

The levels of GADA titres in group C significantly decreased compared 
to those at baseline (p-value < 0.05), but no significant differences in 
levels of GADA titres were observed in group A and group B.  

No significant differences were observed among 
the three groups in levels of fasting C-peptide, postprandial C-peptide, 
C-peptide index or GADA titres.  

Insulin dose was significantly higher in group C than in group A or 
group B at baseline; however, the insulin dose showed no significant 
differences at 6- or 12-month follow-up.  

Insulin, metformin, saxagliptin and vitamin D3 were well tolerated. No 
severe hypercalciuria or hypercalcemia was observed in group C, and 
no severe hypoglycemic episodes, liver or renal dysfunction or other 
side effects were reported in any group. 

Zhang et al. (2020) [Ref.  
[66]] 

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; F, females; GADA, glutamic acid decarboxylase autoantibodies; HbA1c, glycated hemoglobin; IDAA1c, insulin-dose adjusted A1c; LADA, latent autoimmune diabetes in 
adults; M, males; T1D, type 1 diabetes; VIDPP-4i, combination therapy with vitamin D and DPP-4 inhibitors. 
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follow-up period [67]. Recently, Zhang et al. [66] conducted a 12-month 
multicenter, randomized controlled study in 60 LADA patients (disease 
duration < 4 years) to explore the protective effects on beta-cell function 
of VIDPP-4i with vitamin D3 and saxagliptin in addition to conventional 
therapy with metformin and/or insulin. Participants were randomized 
to receive: i) conventional therapy with metformin (1–1.7 g/day) and/or 
insulin treatment; ii) saxagliptin (5 mg/day) plus conventional therapy; 
or iii) vitamin D3 (2000 IU/day) plus saxagliptin and conventional 
therapy for 12 months. In participants who received VIDPP-4i, levels of 
fasting C-peptide and fasting C-peptide index (CPI, calculated as the 
ratio of serum C-peptide to plasma glucose) were not significantly 
different at 12 months compared to those at baseline, whereas post
prandial C-peptide index levels increased (although not significantly) 
during the follow-up period. However, insulin dose showed no signifi
cant differences at 6 and 12 months. On the other hand, postprandial C- 
peptide index levels declined significantly at 12 months in participants 
who received conventional therapy alone. Even more surprisingly, 
participants who received saxagliptin in addition to conventional ther
apy without vitamin D3 exhibited significantly decreased fasting C- 
peptide levels at 12 months compared to those at baseline [66]. Addi
tionally, patients on VIDPP-4i showed a significant reduction in the 
GADA titre levels at 12 months compared to those at baseline, whereas 
no significant changes in GADA titres were reported in the other two 
groups after 12 months of treatment. VIDPP-4i was safe and well 
tolerated, with no side effects reported throughout the follow-up period 
[66]. These findings seem to suggest that saxagliptin alone cannot fully 
reverse glucotoxicity and/or exert anti-inflammatory and immuno
modulatory effects to preserve and maintain beta-cell function in auto
immune diabetes. By contrast, adding vitamin D3 to saxagliptin might 
have the potential to better protect beta-cell function, as a likely 
consequence of the synergistic effects exerted by vitamin D and DPP-4i 
on immune system and inflammatory pathways. 

9. Discussion and conclusion 

Over the last years, several studies showed that vitamin D and DPP-4i 
can exert pleiotropic actions beyond their well-established role in the 
regulation of bone and glucose homeostatis, respectively. Emerging pre- 
clinical evidence supports the existence of synergistic anti-inflammatory 
and immunomodulatory properties of vitamin D and DPP-4i, which 
result in the reduction of pro-inflammatory and autoimmune responses 
against pancreatic beta cells in animal models of autoimmune diabetes. 
Preliminary findings also suggest that VIDPP-4i therapy has the poten
tial ability to preserve beta-cell function in patients with autoimmune 
diabetes, including T1D and LADA. 

To date, immunotherapies have mostly showed no effect or only a 
transient beneficial effect in reducing the decline in beta-cell function 
that occurs over time in autoimmune diabetes. Therefore, the use of 
immunotherapeutic agents in a combination therapy appears to be a 
valid approach to obtain better results in terms of preservation of beta- 
cell mass and function. In particular, targeting multiple pathways 
involved in beta-cell loss and dysfunction (e.g. innate immunity, adap
tive immunity, regulatory immunity, glucotoxicity) may represent a 
successful immune intervention for autoimmune diabetes. In this 
context, combination therapy with vitamin D and DPP-4i may be an 
attractive choice in the treatment of T1D, LADA, other forms of auto
immune diabetes or other autoimmune diseases. Indeed, vitamin D and 
DPP-4i co-administration may substantially enhance the efficacy of each 
of these compounds as immunomodulatory agents compared to their use 
as monotherapy (vitamin D alone or DPP-4i alone). Vitamin D may 
promote anti-inflammatory responses, exert immunomodulatory effects, 
induce immune tolerance and potentially stimulate insulin synthesis and 
secretion. On the other hand, DPP-4i have been shown to exert similar 
actions on innate and adaptive immune system. Moreover, DPP-4i are 
known to effectively improve glucose control and reduce glucotoxicity 
by suppressing glucagon secretion and promoting GSIS through GLP-1- 

dependent and GLP-1-independent mechanisms. Also, the use of 
vitamin D and DPP-4i has proven to be safe in the context of diabetes 
(including autoimmune diabetes) and both these agents are relatively 
inexpensive. 

In conclusion, large-scale, long-term, prospective randomized 
controlled trials are therefore required to confirm the aforementioned 
preliminary findings and determine the ability of VIDPP-4i to counteract 
beta-cell autoimmunity, improve glucose control, preserve beta-cell 
mass and function, prolong clinical remission phase, sustain insulin in
dependence stage, and slow down or delay the progression of autoim
mune diabetes. Randomized controlled trials are particularly warranted 
in the context of LADA, given the scarcity of studies investigating the 
efficacy of immune interventions in this population [29]. As a matter of 
fact, LADA represents an ideal model for exploring the combined effects 
of vitamin D and DPP-4i on autoimmunity and beta-cell function, 
because this disease is typically associated with a slower and less severe 
immune-mediated beta-cell destruction compared to T1D. Therefore, 
LADA offers a wider window to test immune interventions that may slow 
down beta-cell failure. 

Additionally, it would be interesting to investigate the use of VIDPP- 
4i as an immune intervention aimed to prevent the onset of clinical 
diabetes in subjects with genetic susceptibility to T1D or during the pre- 
symptomatic stages of the disease. Likewise, the use of VIDPP-4i may 
also be investigated in the context of solid organ or cell transplantation, 
particularly in T1D subjects who received kidney, pancreas or islet 
transplantation, in order to assess whether this combination therapy is 
able to reduce immunosuppressant dose and immunosuppression- 
related toxicity, reduce glucotoxicity, improve glucose control and 
prolong allograft survival or prevent graft dysfunction. However, several 
aspects still remain to be addressed, such as: i) the identification of 
optimal doses and target circulating levels of vitamin D and DPP-4i 
required to achieve and maintain the anti-inflammatory and immuno
modulatory effects of such molecules in vivo; and ii) the interindividual 
heterogeneity of response to vitamin D and DPP-4i, which can be related 
to a number of factors (e.g., genetic or environmental factors). Future 
mechanistic studies and clinical trials will certainly help to answer these 
questions. 
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[162] F.J. Salgado, A. Pérez-Díaz, N.M. Villanueva, O. Lamas, P. Arias, M. Nogueira, 
CD26: a negative selection marker for human Treg cells, Cytometry A. 81 (10) 
(2012) 843–855. 

[163] B. Bengsch, B. Seigel, T. Flecken, J. Wolanski, H.E. Blum, R. Thimme, Human 
Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV 
(CD26), J. Immunol. 188 (11) (2012) 5438–5447. 

[164] X. Zhao, W. Wang, K. Zhang, J. Yang, H. Fuchs, H. Fan, Involvement of CD26 in 
Differentiation and Functions of Th1 and Th17 Subpopulations of T Lymphocytes, 
J Immunol Res. 2021 (2021) 6671410. 

[165] K. Ohnuma, T. Yamochi, M. Uchiyama, K. Nishibashi, N. Yoshikawa, N. Shimizu, 
et al., CD26 up-regulates expression of CD86 on antigen-presenting cells by means 
of caveolin-1, Proc. Natl. Acad. Sci. U S A. 101 (39) (2004) 14186–14191. 

[166] R.P. Dong, J. Kameoka, M. Hegen, T. Tanaka, Y. Xu, S.F. Schlossman, et al., 
Characterization of adenosine deaminase binding to human CD26 on T cells and 
its biologic role in immune response, J. Immunol. 156 (4) (1996) 1349–1355. 

[167] C. Morimoto, S.F. Schlossman, The structure and function of CD26 in the T-cell 
immune response, Immunol. Rev. 161 (1998) 55–70. 

[168] M.M. Pinheiro, C.L. Stoppa, C.J. Valduga, C.E. Okuyama, R. Gorjão, R.M. Pereira, 
et al., Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 
differentiation in vitro, Eur. J. Pharm. Sci. 100 (2017) 17–24. 

[169] D.J. Drucker, Mechanisms of Action and Therapeutic Application of Glucagon-like 
Peptide-1, Cell Metab. 27 (4) (2018) 740–756. 

[170] Y. Seino, M. Fukushima, D. Yabe, GIP and GLP-1, the two incretin hormones: 
Similarities and differences, J. Diabet. Investig. 1 (1–2) (2010) 8–23. 

M.M. Pinheiro et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S1567-5769(21)00154-5/h0580
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0580
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0585
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0585
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0585
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0585
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0590
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0590
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0590
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0595
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0595
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0595
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0600
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0600
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0600
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0605
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0605
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0605
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0610
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0610
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0610
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0615
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0615
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0615
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0615
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0615
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0620
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0620
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0620
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0625
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0625
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0625
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0630
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0630
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0630
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0635
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0635
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0635
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0635
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0640
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0640
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0640
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0645
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0645
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0645
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0650
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0650
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0650
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0650
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0655
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0655
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0655
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0660
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0660
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0660
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0665
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0665
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0665
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0665
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0670
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0670
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0670
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0675
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0675
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0675
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0680
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0680
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0680
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0685
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0685
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0685
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0690
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0690
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0695
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0695
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0695
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0700
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0700
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0700
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0705
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0705
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0710
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0710
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0710
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0715
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0715
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0715
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0720
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0720
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0720
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0720
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0725
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0725
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0725
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0725
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0730
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0730
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0730
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0735
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0735
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0735
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0740
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0740
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0740
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0745
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0745
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0745
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0745
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0750
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0750
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0750
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0750
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0755
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0755
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0755
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0760
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0760
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0760
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0765
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0765
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0765
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0770
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0770
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0770
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0770
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0775
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0775
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0780
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0780
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0780
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0785
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0785
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0785
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0785
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0790
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0790
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0790
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0795
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0795
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0795
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0800
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0800
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0800
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0805
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0805
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0810
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0810
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0810
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0815
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0815
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0815
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0820
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0820
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0820
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0825
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0825
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0825
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0830
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0830
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0830
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0835
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0835
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0840
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0840
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0840
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0845
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0845
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0850
http://refhub.elsevier.com/S1567-5769(21)00154-5/h0850


International Immunopharmacology 95 (2021) 107518

15

[171] A. Vella, Mechanism of action of DPP-4 inhibitors–new insights, J. Clin. 
Endocrinol. Metab. 97 (8) (2012) 2626–2628. 

[172] D. Dicker, DPP-4 inhibitors: impact on glycemic control and cardiovascular risk 
factors, Diabetes Care 34 (Suppl 2) (2011) S276–S278. 

[173] C. Guida, L.J. McCulloch, M. Godazgar, S.D. Stephen, C. Baker, D. Basco, et al., 
Sitagliptin and Roux-en-Y gastric bypass modulate insulin secretion via regulation 
of intra-islet PYY, Diabetes Obes. Metab. 20 (3) (2018) 571–581. 

[174] A.R. Aroor, J.R. Sowers, G. Jia, V.G. DeMarco, Pleiotropic effects of the 
dipeptidylpeptidase-4 inhibitors on the cardiovascular system, Am. J. Physiol. 
Heart Circ. Physiol. 307 (4) (2014) H477–H492. 

[175] A. Avogaro, G.P. Fadini, The effects of dipeptidyl peptidase-4 inhibition on 
microvascular diabetes complications, Diabet. Care 37 (10) (2014) 2884–2894. 

[176] A. Makdissi, H. Ghanim, M. Vora, K. Green, S. Abuaysheh, A. Chaudhuri, et al., 
Sitagliptin exerts an antinflammatory action, J. Clin. Endocrinol. Metab. 97 (9) 
(2012) 3333–3341. 

[177] N. Satoh-Asahara, Y. Sasaki, H. Wada, M. Tochiya, A. Iguchi, R. Nakagawachi, et 
al., A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects 
in type 2 diabetic patients, Metabolism. 62 (3) (2013) 347–351. 

[178] P. Shah, A. Ardestani, G. Dharmadhikari, S. Laue, D.M. Schumann, J. Kerr-Conte, 
et al., The DPP-4 inhibitor linagliptin restores β-cell function and survival in 
human isolated islets through GLP-1 stabilization, J. Clin. Endocrinol. Metab. 98 
(7) (2013) E1163–E1172. 

[179] J. Újhelyi, Z. Újhelyi, A. Szalai, J.F. László, M. Cayasso, M. Vecsernyés, et al., 
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