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Abstract: We study the correlation between the codon usage bias of genetic sequences and the network 
features of protein-protein interaction (PPI) in bacterial species. We use PCA techniques in the space of codon 
bias indices to show that genes with similar patterns of codon usage have a significantly higher probability that 
their encoded proteins are functionally connected and interacting. Importantly, this signal emerges when 
multiple aspects of codon bias are taken into account at the same time. The present study extends our previous 
observations on E.Coli over a wide set of 34 bacteria. These findings could allow for future investigations on the 
possible effects of codon bias on the topology of the PPI network, with the aim of improving existing 
bioinformatics methods for predicting protein interactions. 

Keywords: codon usage bias, protein-protein interaction networks, bacterial genomes and interactomes 
 

 

1. Introduction 

The systematic analysis of protein-protein interaction (PPI) is key to understand the patterns of chemical 
reactions within the cell, as well as the role played by proteins in regulative processes [1]. On the applicative 
side, comparing the interactomes of different species may allow understanding disease-related processes that 
engage more than one species, such as host-pathogen relationships, to identify clinically relevant host-pathogen 
PPI, and consequently developing future therapeutic applications [2,3]. 
An important aspect to take into account when studying PPI is the degeneracy of the genetic code, due to the 
presence of synonymous codons at the genetic level that encode the same amino acid in the translated protein. 
Although synonymous codons are indistinguishable in the primary structure of a protein, they are not used 
randomly, but with different frequencies that may vary across species, across regions of the same genome, and 
even across regions of the same gene. This phenomenon, known as Codon Usage Bias (CUB) [4-6], is 
well-established in the literature, despite a general understanding of its biology still lacks [7]. It is known 
however that CUB is involved in many important cellular processes, including differential gene expression 
[8-10], translation efficiency and accuracy [11], gene function and dynamics of the ribosome [12,13], 
co-translational folding of the proteins [14], and deamination of tRNA anticodons [15]. CUB is believed to be 
maintained by a balance between mutation-selection (random variability in genetic sequences followed by 
fixation of the optimal codons) and genetic drift (allowing for the occurrence of non-optimal codons) [16]. 
Indeed, highly expressed genes feature a strong CUB by using a small subset of codons, optimized by 
translational selection, while the presence of non-optimal codons in less-expressed genes causes long breaks 
during protein synthesis that affect the folding process [17]. Furthermore, CUB is well structured along the 
genome, with neighbor genes having similar usage frequencies of synonymous codons [18].  
Considering that gene co-expression level and proximity between the positions of the genes in the genome are 
powerful predictors of protein-protein interaction [19,20], it would be interesting to analyze how the similarity 
in CUB of the genes is reflected into the likelihood that the corresponding proteins make physical contact in the 



  

 

cell. Given the above considerations, we would expect a more similar codon usage bias between interacting 
proteins than non-interacting ones. Recent evidence in this direction has been provided in some case studies for 
E. Coli and yeast. [21,22]. In [23] we showed that in E.Coli translational selection systematically favors optimal 
codons in proteins that have a large number of interactors and belong to the most representative communities in 
the PPI. In the present work our aim is precisely to understand whether the similarity of codon usage patterns 
between a pair of genes is related in general to the possible interaction of the corresponding proteins.  
By extending the analysis in [23] to a large set of unrelated bacterial species, here we provide basic observations 
of sufficient generality on the co-evolution of CUB and the connectivity features of bacterial interactomes. 
Specifically, our main result indicates that the functional structuring of the PPI network has interfered with the 
peculiar codon choice of the genes over evolution. Our findings point out that CUB should be a relevant 
parameter in the prediction of unknown protein-protein interactions from genomic information.  

 

2. Materials and Methods  

2.1 Genomic Sequences 
In this work, we select a set of 34 bacterial genomes with different behavior, environment and taxonomy (see 
Table 1 for details). Each bacterium represents a specific clade in the phylogenetic tree by Plata et al. [24]. 
Nucleotide sequences were downloaded from the FTP server of the National Center for Biotechnology 
Information (ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Bacteria/) [25].  

Table 1. Summary of the 34 bacterial datasets considered in this work. For each specie we report the organism 
name, abbreviation, RefSeq, STRING code, size of genome (number of genes n), and density of the PPI network 
¾ defined as ratio between the number of links in the real interactome and the maximum number of possible 

links, namely n(n-1)/2, where n is the number of proteins.  

Organisms Abbr. RefSeq STRING Size Density 
Agrobacterium fabrum str. C58 agtu NC_003062 176299 2765 0.008 

Anabaena variabilis ATCC 29413 anva NC_007413 240292 5043 0.005 

Aquifex aeolicus VF5 aqae NC_000918 224324 1497 0.009 

Bifidobacterium longum NCC2705 bilo NC_004307 216816 1726 0.004 

Bordetella bronchiseptica RB50 bobr NC_002927 257310 4994 0.005 

Bordetella parapertussis 12822 bopa NC_002928 360910 4185 0.008 

Brucella melitensis bv. 1 str. 16M brme NC_003317 224914 2059 0.006 

Buchnera aphidicola str. Bp buap NC_004545 224915 504 0.008 

Burkholderia pseudomallei K96243 bups NC_006350 272560 3398 0.002 

Buchnera aphidicola Sg uid57913 busg NC_004061 198804 546 0.002 

Burkholderia thailandensis E264 buth NC_007651 271848 3276 0.001 

Caulobacter crescentus cacr NC_011916 565050 3885 0.002 

Campylobacter jejuni  caje NC_002163 192222 1572 0.004 

Corynebacterium efficiens YS-314 coef NC_004369 196164 2938 0.006 

Corynebacterium glutamicum ATCC 13032 cogl NC_003450  2959 0.005 

Chlamydia trachomatis D/UW-3/CX chtr NC_000117.1 272561 894 0.008 

Clostridium acetobutylicum ATCC 824 clac NC_003030.1 272562 3602 0.005 

Francisella novicida U112 frno NC_008601 401614 1719 0.007 



  

 

Fusobacterium nucleatum ATCC 25586 funu NC_003454.1 190304 1983 0.002 

Haemophilus ducreyi 35000HP hadu NC_002940 233412 1717 0.004 

Klebsiella pneumoniae klpn NC_009648 272620 4775 0.005 

Listeria monocytogenes EGD limo NC_003210 169963 2867 0.003 

Mesorhizobium loti MAFF303099 melo NC_002678.2 266835 6743 0.0001 

Mycoplasma genitalium G37 myge NC_000908 243273 475 0.005 

Mycoplasma pneumoniae M129 mypn NC_000912.1 272634 648 0.006 

Mycobacterium tuberculosis H37Rv mytu NC_000962.3  83332 3936 0.006 

Porphyromonas gingivalis ATCC 33277 pogi NC_010729 431947 2089 0.001 

Ralstonia solanacearum GMI1000 raso NC_003295.1 267608 3436 0.002 

Sphingomonas wittichii RW1 spwi NC_009511 392499 4850 0.007 

Staphylococcus aureus NCTC 8325 stau NC_007795 93061 2767 0.004 

Synechocystis sp. PCC 6803 sysp NC_000911.1 1148 3179 0.004 

Thermotoga maritima MSB8 thma NC_000853.1 243274 1858 0.001 

Vibrio cholerae N16961 vich NC_002505 243277 2534 0.001 

Xylella fastidiosa 9a5c xyfa NC_002488 160492 2766 0.002 

        
 

2.2 Codon Usage Bias Measures 

In the last years, different metrics to measure CUB have been proposed. In this work we use the following four 
indices to characterize a genetic sequence (we remand to [6,23] for the detailed definitions). 1) The Relative 
Synonymous Codon usage (RSCU) of a codon is the number of occurrences of that codon in the genome, with 
respect to the family of synonymous codon it belongs to. RSCU values can be combined into the Effective 
Number of Codons (NC) [26], which is a popular statistical measure of the number of codons used in a 
sequence. 2) The tRNA Adaptation index (tAI) [27] is instead a widely used metric based on gene expression 
levels, which builds on the assumptions that tRNA availability is the driving force for translational selection. 3) 
CompAI and CompAI_w [23] are two recently proposed metrics that refine tAI by using the competition 
between cognate and near-cognate tRNA to proxy the efficiency of codon-anticodon coupling. 4) The GC 
content of a gene, namely the percentage of guanine and cytosine in the RNA molecules, is a parameter used to 
explain CUB differences between species [28]. 

2.3 Protein-Protein Interaction Network 

The PPI networks of the 34 bacterial genomes were retrieved from the STRING database (Known and Predicted 
Protein-Protein Interactions) [29]. Given that a predicted interaction in STRING is assigned with a confidence 
level w, as typically done in PPI studies we select as actual links of the networks only those interactions with 
w>0.9. The resulting degree (namely the number of incident link) of a protein is denoted as k. 
To detect the communities of a PPI we use the Molecular Complex Detection (MCODE) method [30]. MCODE 
works by iteratively grouping together neighboring nodes with similar values of the core-clustering coefficient, 
which is defined as the density of the highest k-core of its immediate neighborhood times k (here a k-core is a 
sub-network of minimal degree k). Thus, MCODE detects the densest regions of the network and assigns a 
score to each community equal to its size times its internal link density. In line with our previous study [23], 
here we consider only the first eight MOCDE communities.  



  

 

2.4 Principal Component Analysis 

Principal Component Analysis (PCA) [31] is a multivariate statistical method that transforms a set of possibly 
correlated variables into a set of linearly uncorrelated ones (called principal components, spanning a space of 
lower dimensionality). The transformation is defined so that the first principal component accounts for the 
largest possible variance of the data, and each succeeding component in turn has the highest variance possible 
under the constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components. 
We use PCA over the space of the five codon bias indices described above. Thus, for a given species, each gene 
is represented as a 5-dimensional vector with coordinates (compAI, compAI_w, tAI, NC, GC). These 
coordinates are separately normalized to zero mean and unit variance over the genome of the species. The 
principal components are then the eigenvectors of the covariance matrix, ordered according to the magnitude of 
the corresponding eigenvalues. 

2.5 Null Network Model and Statistical Tests 

For a given species, in order to characterize the CUB patterns over the interactome we have to compare the PPI 
network with a suitable null network model, which should embody a null hypothesis of no relation between the 
codon usage of two genes and the possible interactions between their encoded proteins.  
Here we use the configuration model (CM), namely a degree-preserving randomization of the network links 
which thus destroys the original structure of the network (see [32] for an introduction to the method). Note that 
by constraining the degrees, the model automatically takes care of the linking bias for highly connected 
proteins, which typically corresponds to essential genes [33] (but also to genes that are conserved across species 
or related to ribosomal functions [34]). 
Once the CM is built, we can assess the significance of a given set of link-related quantities by comparing their 
distribution on the original PPI network with their distribution on the null model. The Mann-Whitney U test is 
used to determine if the two distributions are different (we use a p-value threshold of 10-3). Alternatively, to 
assess the significance of a single network quantity X, we use the Z-score Z[X] = (X − 〈X〉)/σX where 〈X〉	 and	
σX are its mean and standard deviation computed in the null model. Thus, the Z-score quantifies the number of 
standard deviations by which the actual and null model values of X differ. 
 

3. Results and Discussion 

3.1 Interacting proteins do not share a common codon usage statistic nor tRNA adaptation level 

As mentioned in the introduction, our aim is to analyze how the closeness in codon usage of two genes is 
reflected in the capacity of their proteins to make physical contact in the cell, and we expect a more similar CUB 
between interacting proteins than non-interacting ones.  
We analyze one species at a time. For a given species, we start by characterizing each gene by its 61-component 
vector of RSCU values, which provides the detailed statistics of codon usage in the sequence. We can then 
quantify how similar are two genes in the use of synonymous codons through the normalized scalar product of 
their RSCU vectors. We thus compute the distribution of the scalar products between the RSCU vectors of the 
genes whose encoded proteins are linked in the PPI. We compare this distribution with the analogous 
distribution computed on the null model network. Table 2 reports the p-values of the Mann-Whitney U test 
between these distribution for all species in the dataset. We notice that many species do not pass the test (having 
a p-values larger than the threshold 10-3), in which cases we can conclude that the two distributions are 



  

 

statistically equal. Therefore, CUB is not very predictive of protein interactions when measured only through 
codon usage statistics, without taking into account the information about tRNA levels.  
We can perform the same exercise using the (normalized) difference in tAI levels (rather than the scalar product 
of RSCU) in order to qualitatively assess whether similarity of tRNA abundance and adaptation, without 
sequences statistic, can explain protein connectivity. Results of the Mann-Whitney U test reported in Table 2 
show that tAI (used as a proxy of gene expressivity) is rarely informative about PPI connections, and in general 
less informative than codon usage statistics.  
Before moving to the next section, two remarks are in order. Firstly, we do not test the difference in CompAI 
index because its distribution on the various interactomes turn out to be too narrow for the Mann-Whitney U test 
to work properly, and we also do not test GC since it is not a direct measure of CUB but rather a contributing 
factor reflecting mutational bias [35] Secondly, rather than gene expressivity it would be much more interesting 
to test gene co-expressivity, which is known to have significant correlation to PPIs. However, gene 
co-expression data are available only for a handful of species, and thus can be employed in specific case studies 
but not for a species-wide assessment. 

Table 2. P-values of to the Mann-Whitney U test, for the pairwise comparisons between the normalized 
distribution of RSCU scalar products and tAI differences for genes corresponding to interacting proteins in the 
PPI, and their distribution obtained in the randomized CM of the PPI. For each species, we report the organism 
name, abbreviation, and p-value of RSCU and tAI statistics. In bold we report statistically significant values. 

Organisms Abbr. p-val RSCU p-val tAI 

Agrobacterium tumefaciens agtu 1.3*10-6 1.1*10-3 

Anabaena variabilis ATCC 29413 anva 1.0*10-4 1.2*10-4 

Aquifex aeolicus VF5 aqae 2.0*10-2 1.2*10-5 

Bifidobacterium longum NCC2705 bilo 1.5*10-3 8.9*10-1 

Bordetella bronchiseptica RB50 bobr 2.7*10-3 8.7*10-1 

Bordetella parapertussis 12822 bopa 1.1*10-3 1.2*10-2 

Brucella melitensis bv. 1 str. 16M brme 1.6*10-7 1.3*10-2 

Buchnera aphidicola str. Bp buap 1.3*10-3 8.7*10-1 

Burkholderia pseudomallei K96243 bups 1.2*10-6 1.2*10-5 

Buchnera aphidicola Sg uid57913 busg 3.5*10-2 5.0*10-2 

Burkholderia thailandensis E264 buth 9.1*10-15 4.0*10-2 

Caulobacter crescentus cacr 1.5*10-1 3.0*10-2 

Campylobacter jejuni caje 1.0*10-1 1.2*10-1 

Corynebacterium efficiens YS-314 coef 2.7*10-3 8.9*10-1 

Corynebacterium glutamicum ATCC 13032 cogl 6.0*10-3 1.4*10-1 

Chlamydia trachomatis D/UW-3/CX chtr 1.8*10-1 2.0*10-2 

Clostridium acetobutylicum ATCC 824 clac 7.0*10-11 5.0*10-2 

Francisella novicida U112 frno 6.6*10-1 7.0*10-2 

Fusobacterium nucleatum ATCC 25586 funu 1.1*10-11 1.9*10-6 

Haemophilus ducreyi 35000HP hadu 5.7*10-3 1.1*10-5 

Klebsiella pneumoniae klpn 8.9*10-3 3.0*10-4 

Listeria monocytogenes EGD limo 1.3*10-5 2.0*10-3 

Mesorhizobium loti MAFF303099 melo 1.0*10-2 2.4*10-1 



  

 

Mycoplasma genitalium G37 myge 5.8*10-5 5.4*10-1 

Mycoplasma pneumoniae M129 mypn 5.2*10-5 7.8*10-2 

Mycobacterium tuberculosis H37Rv mytu 1.6*10-2 4.5*10-2 

Porphyromonas gingivalis ATCC 33277 pogi 4.5*10-6 5.0*10-3 

Ralstonia solanacearum GMI1000 raso 2.2*10-2 5.0*10-3 

Sphingomonas wittichii RW1 spwi 8.9*10-9 4.0*10-4 

Staphylococcus aureus NCTC 8325 stau 2.0*10-2 2.3*10-1 

Synechocystis sp. PCC 6803 sysp 3.0*10-4 2.0*10-2 

Thermotoga maritima MSB8 thma 1.6*10-3 1.5*10-4 

Vibrio cholerae N16961 vich 2.1*10-8 3.4*10-1 

Xylella fastidiosa 9a5c xyfa 5.1*10-4 2.2*10-1 

 

3.2 Principal Component Analysis over the space of CUB indices 

A possible way to obtain a more evident correlation between CUB similarity and PPI connectivity is to combine 
the information coming from the various facets of codon bias, namely codon usage statistics, mutational 
selection, tRNA expression levels and coupling efficiency, respectively measured by NC, GC, tAI and 
CompAI. Thus, for a given species, we then perform PCA over the space of the five codon bias indices 
(CompAI, CompAI_w, tAI, NC and GC content) measured separately for each gene in the genome (see Figure 
1 for an example; plots for all species are shown in the Supplementary Materials). Typically, the first and 
second principal components (𝑃𝐶! and 𝑃𝐶")	turn out to represent for as much as 65% of the total variance of 
codon bias over the genome. Additionally, projection of these two principal components on the individual CUB 
indices (loadings) shows that none of the five indices predominantly contributes to the data variability. We can 
thus focus on the plane defined by the 𝑃𝐶! and 𝑃𝐶"	vectors (see Figure 2 for an example; plots for all species 
are shown in the Supplementary Materials), where the placement of a gene depends on a weighted contribution 
of all the CUB indices.  
 

 

Figure 1. PCA results for the example agtu species. (Left panel) Eigenvalues of the PCA analysis, showing the 
first and second principal components (𝑃𝐶! −	𝑃𝐶")	turn out to represent as much as 65% of the total CUB 
variance. (Right panels) Projection of these two components over the space of CUB indices. The other bacteria 
species are shown in the Supplementary Materials. 



  

 

We can also place on this plane the centroids of the top eight MCODE communities of the PPI network, where 
coordinates and error bars of each centroid are obtained as the coordinate mean and standard deviations of the 
genes belonging to the respective module. The first community (composed overall by 97 % of genes belonging 
to COG class J, related to translation, ribosomal structure and biogenesis) is typically well separated from the 
others. Concerning the other communities, the situation depends on the species (see Figure 2 of Supplementary 
Materials): some bacteria such as caje, chtr and pogi do not have separated centroids, whereas many other 
bacteria such as bups, buth and myge have all eight communities well separated and localized. In these latter 
cases we can conclude that when a set of proteins are physically and functionally connected in a module, then 
their corresponding genes tend to share common codon bias features. This observation could be explained by 
considering that interacting proteins (especially those belonging to the same community) need to be present in 
the cell according to precise quantities at a given time to form the protein complexes required for the ongoing 
cellular programs.  

 
  

Figure 2. Representation of each gene in the 𝑃𝐶! −	𝑃𝐶" plane, for the example agtu species. The inset shows 
the centroids of the top-eight MCODE communities, with error bars denoting the standard deviation of the 
distribution of points around the centroid. The other bacteria are shown in the Supplementary Materials. 

3.3 Z-score profiles: The closer the codon usage of genes, the higher the probability of protein interaction 

A last, we use the Euclidean distance d between two genes on the 𝑃𝐶! −	𝑃𝐶" plane as a proxy of their overall 
codon usage similarity. We can then compute, for each species, the conditional probability	𝑃𝑟(𝑙𝑖𝑛𝑘|𝑑)	of a 
physical or functional pair interaction between proteins, given that their coding genes fall within a distance d in 
the plane of the two principal PCA components. In other words, 𝑃𝑟(𝑙𝑖𝑛𝑘|𝑑) is the fraction of gene pairs, 
among those localized within a distance d, whose encoded proteins are connected in the PPI network. In order to 
obtain a statistically significant profile, we compare 𝑃𝑟(𝑙𝑖𝑛𝑘|𝑑)  estimated on the real interactome with 
Pr	(á𝑙𝑖𝑛𝑘ñ|𝑑), namely the same probability estimated on the configuration model (CM) of the network. We 
recall that CM is used as the null hypothesis that no relation exists between the codon usage of two genes and 
the interaction between the encoded proteins. The significance of 	Pr(𝑙𝑖𝑛𝑘|𝑑)  with respect to the null 
hypothesis is thus quantified through the Z-score 

𝑍# =
Pr(𝑙𝑖𝑛𝑘|𝑑) − Pr	(á𝑙𝑖𝑛𝑘ñ|𝑑)

𝜎[á𝑙𝑖𝑛𝑘ñ|𝑑]  

 



  

 

Figure 3 shows the Z-score as a function of the gene distance d for some example bacterial species (plots for all 
species are shown in the Supplementary Materials). Interestingly, a typical pattern emerges. For small distances 

(d £ 3), the probability of finding a connection between two proteins in the empirical interactome is 
significantly much higher than in the null model. Conversely, for larger distances (d > 3) the real PPI and the 
CM become statistically compatible (and sometimes, for 3 < d < 5, links are even less likely than in the null 
model). This pattern is evident for all the 24 bacteria that pass the test for the RSCU distributions (see Table 2), 
although not significantly in four cases (anva, bopa, coef, vich). Notably, the same pattern is observed also for 
eight bacteria (busg, cacr, caje, chtr, frno, klpn, raso, stau, mytu) that instead do not pass the RSCU test. In 
contrast, only two bacteria (aqae and melo) are characterized by a different Z-score profile (for melo this is 
probably due to its low PPI density). We can thus conclude that, as a general rule, the distance between a pair of 
genes in the plane of the first two PCA components is a statistically robust predictor of the likelihood that their 
corresponding proteins interact (physically or functionally). In agreement with our previous results [23], the 
signal is more evident when codon usage frequencies of interacting proteins are far from being random.  

 
agtu            bups 

 

spwi            klpn 

 

vich             melo 

 

Figure 3. Z-scores of 𝑃𝑟(𝑙𝑖𝑛𝑘|𝑑)	as a function of the Euclidean distance d between the codon usage bias of pair 
of genes (computed via PCA). The horizontal dashed lines mark the significance interval of ±3 standard 
deviations. We show a few example species. The other bacteria are shown in the Supplementary Materials. 

 

4. Conclusion 

In this work we studied how the coherence in codon usage among genes is reflected in the capacity of their 
encoded proteins to interact in the protein network. For this purpose, we have extended our previous work on 
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the case study of E. Coli [23] to a set of other 34 bacterial genomes characterized by different taxonomy [24]. As 
a general rule, we find that CUB as measured solely by either the occurrence frequencies of synonymous codons 
or tRNA abundance levels is not much able to distinguish between proteins that make contacts or not in the PPI 
network. Conversely, by combining the different facets of CUB (as expressed by NC, tAI, CompAI, GC), we 
observe that highly connected proteins belonging to the same communities in the protein interaction network 
are encoded by genes that are coherent in their codon choices. Specifically, our results provide evidence that if 
two genes have similar codon usage patterns, then the corresponding proteins have a significant probability of 
being functionally connected or physically interacting. Consequently, this study provides new information 
based on the similarity in codon usage of genes that can be potentially integrated into existing computational 
prediction methods of protein-protein interaction. Additionally, as recent studies point out (see for instance 
[36]), using CUB as an additional level of information in the study of protein interaction networks could be 
useful to identify genes linked to infections, drug-resistance or altered metabolism, and thus hint at alternative 
treatments in the light of growing resistance to antibiotics and the propagation of infectious agents [37]. 
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Figure S1. Eigenvalues of the PCA analysis, and projection of 𝑃𝐶! and 𝑃𝐶" over the five CUB indices. Each 
plot corresponds to a specie in our dataset. 

 

 
 
 



  

 

 
 
 
 

Figure S2. Representation of each gene in the 𝑃𝐶! −	𝑃𝐶"  plane. The inset reports the centroids of the 
top-eight MCODE communities, with error bars denoting the standard deviation of the distribution of points 
around the centroid. Each plot corresponds to a specie in our dataset. 

 
 
 
 



  

 

 
 
 
 

Figure S3. Z-scores of 𝑃𝑟(𝑙𝑖𝑛𝑘|𝑑)	as a function of the Euclidean distance d between the codon usage bias of 
pair of genes (computed via PCA). The horizontal dashed lines mark the significance interval of ±3 standard 
deviations. Each plot corresponds to a specie in our dataset. 

 

 
 
 


