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Abstract. We prove that an Anosov flow with C1 stable bundle mixes exponentially whenever
the stable and unstable bundles are not jointly integrable. This allows us to show that if a flow
is sufficiently close to a volume-preserving Anosov flow and dimEs = 1, dimEu ≥ 2 then the
flow mixes exponentially whenever the stable and unstable bundles are not jointly integrable. This
implies the existence of non-empty open sets of exponentially mixing Anosov flows. As part of the
proof of this result we show that C1+uniformly expanding suspension semiflows (in any dimension)
mix exponentially when the return time is not cohomologous to a piecewise constant.
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1. Introduction & results

Anosov flows [1], which have been studied extensively since the 1960s, are arguably the
canonical examples of chaotic dynamical systems and the rate of mixing (decay of cor-
relation) is one of the most important statistical properties. Nevertheless our knowledge
of the rate of mixing of Anosov flows remains unsatisfactory. The study of the rate of
mixing for hyperbolic systems goes back to the work of Sinai [38] and Ruelle [36] in the
1970s and plenty of results were obtained for maps during the subsequent years. However
various results for flows have been established only recently and several basic questions
remain open. Exponential mixing is interesting in its own right, it is an intrinsic property
of a dynamical system which describes the rate at which initial information is lost, but
also it is crucial for establishing other quantitative statistical properties and when work-
ing on more intricate models (prominently in nonequilibrium statistical mechanics, e.g.,
in questions of energy transport [22]).

Let φt : M → M be an Anosov flow on M, a smooth compact connected Rie-
mannian manifold. That φt is Anosov means that there exists a φt -invariant continuous
splitting of the tangent space, TM = Es ⊕ E0 ⊕ Eu where E0 is the line bundle tangent

O. Butterley: Abdus Salam International Centre for Theoretical Physics,
Strada Costiera, 11, 34151 Trieste, Italy; e-mail: oliver.butterley@ictp.it
K. War: Faculty of Mathematics, Ruhr-Universität Bochum,
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to the flow, Es is the stable bundle in which there is exponential contraction and Eu is the
unstable bundle in which there is exponential expansion. It is known that each transitive
Anosov flow admits a unique SRB measure which will be denoted µ (see [43] for ex-
tensive information on SRB measures). This invariant measure is most relevant from the
physical point of view.

The focus of this text is to prove exponential mixing with respect to the SRB measure.
By exponential mixing we mean the existence of C, γ > 0 such that

∣∣∣∣∫
M
f · g ◦ φt dµ−

∫
M
f dµ

∫
M
g dµ

∣∣∣∣
≤ C‖f ‖C1‖g‖C1e

−γ t for all f, g ∈ C1(M,R) and all t ≥ 0.

(An approximation argument shows that exponential mixing for C1 observables implies
exponential mixing for Hölder observables [21, proof of Corollary 1].) In the following
we will use the expression mixes exponentially to mean with respect to the unique SRB
measure for the flow, often without explicit mention of the measure.

Not all Anosov flows mix exponentially, indeed those which are constant time sus-
pensions over Anosov maps are not mixing.1 One wonders if this degenerate case is the
only way that Anosov flows can fail to mix exponentially or if other slower rates are
possible. Taking a suspension over an Anosov diffeomorphism is one way to construct
Anosov flows but not all Anosov flows are of this type. The geodesic flow of any compact
Riemannian manifold of strictly negative curvature is an Anosov flow, and these were a
major motivation at the beginning of the study of Anosov flows. Some initial progress was
made by proving exponential mixing for geodesic flows in the case of constant curvature
and low dimension (see the introduction of [32] for details and further references), but
these methods, which are group-theoretical in nature, were not suitable for adaption to
the general case of variable curvature, let alone for Anosov flows which are not geodesic
flows.

In the late 1990s a major advance was made by Dolgopyat [21] who, building on the
dynamical argument introduced by Chernov [18], showed that transitive Anosov flows
with C1 stable and unstable bundles mix exponentially whenever the stable and unstable
bundles are not jointly integrable.2 In particular this means that geodesic flows on surfaces
of negative curvature mix exponentially (in this special case the regularity of the bundle
is a consequence of the low dimension and the preserved contact structure which exists
naturally for geodesic flows). However, a question of foremost importance is to show
that statistical properties hold for an open and dense set of systems and the problem
here is that the requirement of regularity for both bundles simultaneously is not typically
satisfied for Anosov flows [28]. Both stable and unstable foliations are always Hölder but

1 Suspensions over Anosov diffeomorphisms by a return time that is cohomologous to a constant
are not mixing either but these can always be written as constant time suspensions.

2 A subbundle E ⊂ TM is said to be integrable if, for each point p ∈ M, there exists an
immersed submanifold S ⊂M which contains p and such that E(q) = TqS for all q ∈ S.



Open sets of exponentially mixing Anosov flows 2255

the regularity cannot in general be expected to be better than Hölder: a generic smooth
perturbation3 will destroy the Lipschitz regularity of at least one of the foliations.4

If a flow preserves a contact form then it is said to be a contact flow. Liverani [32]
showed that all contact (with C2 contact form) Anosov flows mix exponentially with no
requirement on the regularity of the stable and unstable bundles. This provides a complete
answer for geodesic flows on manifolds of negative curvature since all such geodesic
flows are contact Anosov flows with smooth contact form.5 Liverani’s requirement of a
C2 contact form has two important consequences: firstly it guarantees that Es ⊕ Eu is
not integrable and this is a property which is robust under perturbation; secondly, the
smoothness of the contact form guarantees the smoothness of the subbundle Es ⊕ Eu
and the smoothness of the temporal function [32, Figure 2]. This smoothness is essen-
tial to Liverani’s argument. Unfortunately the existence of a C2 contact form cannot be
expected to be preserved by perturbations of the Anosov flow (the consequences of the
existence of a smooth contact structure would contradict the prevalence of foliations with
bad regularity which was mentioned above).

In the case of Axiom A flows6 there exist flows which are mixing but mix arbitrarily
slowly [37]. These are constructed as suspensions over Axiom A maps with piecewise
constant (but not constant) return time and consequently are not Anosov flows. It would
be interesting to understand if this phenomenon can only exist in the Axiom A case and
not for Anosov flows.

The Bowen–Ruelle conjecture states that every mixing Anosov flow mixes exponen-
tially. At the present moment this conjecture remains wide open: there is a substantial
distance between the above discussed results and the statement of the conjecture. One ob-
vious possibility of proceeding is to separate this conjecture into two separate conjectures:
(A) if an Anosov flow is mixing then Es ⊕ Eu is not integrable; (B) a transitive Anosov
flow mixes exponentially whenever Es ⊕ Eu is not integrable. A related, but seemingly
slightly easier problem is to understand whether exponential mixing is an open and dense
property for Anosov flows. Statement (A) was proved by Plante [34, Theorem 3.7] under
the additional assumption that the Anosov flow is codimension one7 but the general state-
ment remains an open conjecture. Our main aim is to show statement (B) in the greatest
generality possible, i.e., to show exponential mixing under the assumption that Es ⊕ Eu
is not integrable. The question of exponential mixing continues to be of significant im-
portance, beyond the (rather special) setting of Anosov flows. In particular it would be

3 Here and in the following, by perturbation of the flow we mean a Cr (r ≥ 1) perturbation of
the vector field associated to the flow. The structural stability of Anosov flows means that such a
perturbed vector field (under a small perturbation) also defines an Anosov flow.

4 Stoyanov [39] obtained results similar to Dolgopyat [21] for Axiom A flows but, among other
assumptions, required that local stable and unstable laminations are Lipschitz.

5 Not every contact Anosov flow is a geodesic flow on a Riemannian manifold, for example the
flows constructed by Foulon & Hasselblatt [26].

6 Axiom A flows are a generalization of Anosov flows, they are uniformly hyperbolic but the
maximal invariant set is permitted to be a proper subset of the underlying manifold (for further
details see e.g., [10]).

7 An Anosov flow is said to be codimension one if dimEs = 1 or dimEu = 1.
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easily argued that, from the physical point of view (e.g. for the multitudes of uniformly
hyperbolic billiard flows [19]), discontinuities are natural. In such situations part (B) of
the conjecture is the important part.8 Given the Axiom A examples mentioned above, it
would be surmised that part (A) is a peculiarity of the special properties of Anosov flows.
The main advance to date for flows with discontinuities is the work of Baladi, Demers &
Liverani [7] which proves exponential mixing for Sinai billiard flows (three-dimensional)
and, as in the work mentioned above, their argument uses crucially the contact structure
which is present in such billiard flows.

Major progress on exponential mixing for flows was made recently by Tsujii [41]
who demonstrated the existence of a C3-open and Cr -dense subset of volume-preserving
three-dimensional Anosov flows which mix exponentially. Interestingly the set Tsujii con-
structs does not contain flows which have C1 stable and unstable bundles (and conse-
quently does not contain flows which preserve a C2 contact form). In some sense the new
ideas introduced in his work are the main recent advance towards settling the Bowen–
Ruelle conjecture. One of the consequences of the present text is that in certain higher-
dimensional settings the result analogous to Tsujii’s can, to some extent, be proved rather
more easily.

It is enlightening to consider the three-dimensional case in more detail. As mentioned
above, it is known [21, 32] that any contact Anosov flow (and hence any geodesic flow of
a negatively curved surface) mixes exponentially. Tsujii [41] uses the expression “twist of
the stable subbundle along pieces of unstable manifolds” to describe the geometric mech-
anism which produces exponential mixing for flows. For contact Anosov flows a key part
of the argument, and one which is clear in the work of Liverani [32], is to use the contact
structure to guarantee that (in the language of Tsujii) moving along the unstable manifold
a prescribed distance guarantees a uniform amount of twist of the stable subbundle. On
the other hand, Tsujii uses the fact that the twist “will be ‘random’ and ‘rough’ in generic
cases”. The core of our work in this paper will be to study the flows by quotienting along
stable manifolds. We will then take advantage of a twist in the sense discussed above,
but since we have already quotiented, we will not distinguish between the two different
cases.9

Given the evidence currently available it is reasonable to conjecture that (B) is true,
i.e., transitive Anosov flows mix exponentially whenever Es ⊕Eu is not integrable. How-
ever, a complete solution of this problems appears to be difficult and the path in this
direction is not clear. It is also reasonable to hope that the above holds more generally
and that uniformly hyperbolic flows (with discontinuities permitted) mix exponentially
whenever Es ⊕ Eu is not integrable (assuming sufficient structure such that integrability
of this bundle has a meaning). One of the motivations behind the present work is to bet-

8 In some settings (e.g., symbolic systems) it is not clear that the notion of integrability (or non-
integrability) of Es⊕Eu always makes sense. However, for Axiom A attractors, since unstable disks
are contained within the maximal invariant set, the notion is fine and corresponds to the existence
of a foliation of a neighbourhood of the attractor [2, §3]. Another relevant direction is to consider
dispersing billiard flows in the presence of a small external field.

9 In practice we will consider the picture with stable and unstable exchanged but this seems to be
merely a preference and not significant when studying Anosov flows.
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ter understand and enlarge the set of Anosov flows which are known to be exponentially
mixing in order to eventually improve our understanding of the general case.

At this point it is worth noting that the mechanism behind the exponential mixing of
Anosov flows is also important in some partially hyperbolic maps (see e.g. [20, Appendix
C]) and is essential in semiclassical analysis (see e.g. [24]).

Our first result concerns exponential mixing under relatively weak regularity assump-
tions.

Theorem 1. Suppose that φt :M →M is a transitive C1+Anosov flow10 and that the
stable bundle is C1+. If the stable and unstable bundles are not jointly integrable, then φt

mixes exponentially with respect to the unique SRB measure.

This result improves the result of Dolgopyat [21] since regularity is only required for
the stable bundle whereas in the cited work it was required for both bundles. Although
this change is small when measured in terms of the number of characters altered in the
statement, we have to redo the proof in a somewhat different fashion (even though the es-
sential ideas are the same). More to the point, the improvement over Dolgopyat’s previous
result is substantial in terms of the advantage it gives in finding open sets of exponentially
mixing flows. This is illustrated by the following theorem.

Theorem 2. Suppose that φt : M → M is a C2+ volume-preserving Anosov flow and
that dimEs = 1 and dimEu ≥ 2. There exists a C1-neighbourhood of this flow such
that for all C2+Anosov flows in the neighbourhood, if the stable and unstable bundles are
not jointly integrable, then the flow mixes exponentially with respect to the unique SRB
measure.

Since the set of Anosov flows where the stable and unstable bundles are not jointly in-
tegrable is C1-open and Cr -dense in the set of all Anosov flows (see [25] and references
therein concerning the prior work of Brin), the above theorem implies a wealth of open
sets of exponentially mixing Anosov flows. To the best of our knowledge, this is the first
proof of the existence of open sets of Anosov flows which mix exponentially (observe
that the neighbourhood in the statement of the theorem, although centred on a volume-
preserving flow, is a neighbourhood in the set of all Anosov flows). Similarly the set
of Anosov flows where the stable and unstable bundles are not jointly integrable is C1-
open and Cr -dense in the set of volume-preserving Anosov flows.11 This means that an
open and dense subset of the volume-preserving Anosov flows such that dimEs = 1 and

10 For any k ∈ N, the notation Ck+ means Ck+α for some α ∈ (0, 1]. That a flow is Ck+ is
shorthand for requiring that the map M× R→M; (x, t) 7→ φtx is Ck+.
11 Consider a volume-preserving Anosov flow and assume that Es⊕Eu is integrable. There exists

a section such that the flow can be described as a suspension with constant return time. We will
perturb the flow by smoothly modifying the magnitude of the associated vector field in a small
ball. Following [25] we can do this so as to guarantee that, for the perturbed flow, Es ⊕ Eu is not
integrable. Note that the perturbed system is still Anosov and as smooth as before. Since we only
changed the magnitude of the vector field, the cross-section remains a cross-section and the return
map also remains unchanged. Consequently, we ensure that the perturbed flow also preserves a
smooth volume.
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dimEu ≥ 2 mix exponentially. The ideas used here and the application of Theorem 1
actually show exponential mixing for an even larger set of Anosov flows than stated
in the above theorem, but further details concerning this are postponed to the remarks
in Section 2.2 (in particular we can prove the same conclusions in many cases where
dimEs > 1).

Let us consider the particular case of four-dimensional volume-preserving flows φt :
M→M. Since the flow is Anosov and four-dimensional, either dimEs = 1 or dimEu
= 1. In the first case Theorem 2 applies directly. For the other case observe that the SRB
measure for a volume-preserving Anosov flow is the preserved volume and consequently
the SRB measure for the time reversed flow φ−t is equal to the SRB measure for φt . Since∫
M f · g ◦ φt dµ =

∫
M f ◦ φ−t · g dµ and since stable and unstable are swapped for the

time reversed flow, we can again apply Theorem 2. Consequently, the above result implies
the following statement: Suppose that φt :M→M is a C2+ four-dimensional volume-
preserving Anosov flow. Then, if the stable and unstable bundles are not jointly integrable,
the flow mixes exponentially with respect to the volume. In particular a C1-open and Cr -
dense subset of four-dimensional volume-preserving flows mix exponentially. This means
that Tsujii’s result holds in four dimensions. As discussed above, Plante demonstrated that
mixing implies that Es⊕Eu is not integrable in the codimension-one case. Consequently,
the results of this paper provide a complete resolution of the Bowen–Ruelle conjecture in
the volume-preserving four-dimensional case.

Remark. The proof of Theorem 2 requires the flow to be transitive in order to apply
Theorem 1. However, due to Verjovsky [42], codimension-one Anosov flows on higher-
dimensional manifolds (dimM > 3) are transitive and so transitivity is automatic12 in
the case of Theorem 2.

Section 2 contains the proof of Theorem 1 and the details of how Theorem 2 is derived
from it. The proof of the first result rests heavily on a result (Theorem 3 below) concerning
exponential mixing for C1+ expanding semiflows. Our motivation for proving Theorem 3
was proving Theorem 1, but Theorem 3 is also of interest in its own right. Details con-
cerning past work on similar questions follow after we precisely introduce the setting.

We observe that the ideas in this text are very much limited to the argument presented
here and will not suffice to fully answer the question of when in general Anosov flows mix
exponentially. For this, we hope that the work of Dolgopyat [21], Liverani [32], Baladi &
Vallée [8] and Tsujii [41] (among others) can eventually be extended and improved.

We proceed to define the class of C1+ expanding semiflows. Firstly we require two
pieces of information concerning the geometry of the set in question. LetX be the disjoint
union of a finite number of connected bounded open subsets of Rd (we use the convention
that the distance between two points in different connected components is infinite).

12 In the case where both the stable and unstable bundles are at least two-dimensional there are
examples of non-transitive Anosov flows [27]. Also, as remarked in [27], in the three-dimensional
case, where Verjovsky’s proof does not work, this question of transitivity of Anosov flows remains
open.
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Definition 1.1. We say thatX ⊂ Rd is almost John if there exist constants C, ε0 > 0 and
s ≥ 1 such that, for all ε ∈ (0, ε0) and all x ∈ X, there exists y ∈ X such that d(x, y) ≤ ε
and the ball centred at y of radius Cεs is contained in X.13

We will always assume that X is almost John and that the boundary of X has upper box
dimension strictly less than d . Let T : X→ X denote a uniformly expanding C1+Markov
map, by which we mean that there exists a finite partition P of a full measure subset of X
into connected open sets such that, for each ω ∈ P , T is a C1 diffeomorphism from ω to
T ω and T ω is a full measure subset of one of the connected components of X.14

Remark. The conditions onX would be satisfied if the boundary ofX were a finite union
of C1 submanifolds. However, in view of the intended application, we must allow lower
regularity of the boundary since such low regularity is the unfortunate reality for Markov
partitions [12].

We require that there exist C1, λ > 0 such that

‖(DT n(x))−1
‖ ≤ C1e

−λn for all x ∈ X and n ∈ N, (1)

and there exist C2 > 0 and α ∈ (0, 1) such that∣∣∣∣ln det(DT (x))
det(DT (y))

∣∣∣∣ ≤ C2 d(T x, T y)α for all x, y ∈ ω and ω ∈ P. (2)

We also require T to be covering in the sense that for every open ball B ⊂ X there exists
n ∈ N such that T nB = X (modulo a zero measure set). For such maps it is known that
there exists a unique T -invariant probability measure absolutely continuous with respect
to Lebesgue measure. We denote this measure by ν. The density of ν is Hölder (on each
partition element) and bounded away from zero. Let τ : X→ R+ denote the return time
function. We require that τ is C1+α , that there exists C3 > 0 such that15

‖Dτ(x)DT (x)−1
‖ ≤ C3 for all x ∈ ω and ω ∈ P, (3)

and that there exists C4 > 0 such that

τ(x) ≤ C4 for all x ∈ ω and ω ∈ P. (4)

The suspension semiflow Tt : Xτ → Xτ is defined as usual, Xτ := {(x, u) : x ∈ X,
0 ≤ u < τ(x)} and Tt : (x, u) 7→ (x, u + t) modulo the identifications (x, τ (x)) ∼
(T x, 0). The unique absolutely continuous Tt -invariant probability measure16 is denoted
by ντ .

13 This condition on X is similar in spirit to the requirement of a John domain as used in [6].
However, they are not equivalent; in our case we need only weaker properties and so we can make
do with weaker assumptions. See the discussion in the Appendix for further details.
14 That is, the map is required to be Markov but it is not necessarily full-branch.
15 In our setting, (3) could be simplified but we choose to write it like this because it corresponds

to D(τ ◦ `) where ` is an inverse branch of T .
16 ντ (f ) =

1
ν(τ)

∫
X

∫ τ(x)
0 f (x, u) du dν(x).
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Baladi and Vallée [8] showed that semiflows similar to the above, but with the C2

version of assumptions, typically mix exponentially when X is one-dimensional. The
same argument was shown to hold by Avila, Gouëzel & Yoccoz [6], again in the C2 case,
irrespective of the dimension of X. Recently Araújo & Melbourne [3] showed that the
argument still holds in the C1+case whenX is one-dimensional. This evidence means that
the following result is not unexpected.

Theorem 3. Suppose that Tt : Xτ → Xτ is a uniformly expanding C1+ suspension semi-
flow as above. Then either τ is cohomologous to a piecewise constant function or there
exist C, γ > 0 such that, for all f, g ∈ C1(Xτ ,R) and t ≥ 0,∣∣∣∣∫

Xτ

f · g ◦ Tt dντ −

∫
Xτ

f dντ

∫
Xτ

g dντ

∣∣∣∣ ≤ C‖f ‖C1‖g‖C1e
−γ t .

The proof of the above is the content of Section 3. The estimate for exponential mixing
relies on estimates of the norm of the twisted transfer operator given in Proposition 3.16.
In some sense Proposition 3.16 is the main result of this part of the paper and the ex-
ponential mixing which we use here is merely one consequence of it. For many other
applications, for example, to other statistical properties or to the study of perturbations,
the extra information contained in the functional-analytic result is key. However, we avoid
giving the statement here because it relies on a significant amount of notation which is
yet to be introduced.

The argument of Araújo & Melbourne [4] follows closely the argument of Avila,
Gouëzel & Yoccoz [6], which in turn follows closely the argument of Baladi & Vallée [8].
Everything suggests that exactly this argument could be used with minor modifications
in order to prove Theorem 3. That the structure of the proof contained in Section 3 is
superficially rather different is merely due to the aesthetic opinion of the present authors.

2. Anosov flows

This section is devoted to the proof of Theorems 1 and 2. The proof of Theorem 1 relies
crucially on Theorem 3. The proof of Theorem 2 relies crucially on Theorem 1.

2.1. Proof of Theorem 1

Suppose that φt :M→M is a C1+α Anosov flow and that the stable bundle is C1+α for
some α > 0. The proof is based (as per [5, 2, 3]) on quotienting along local stable man-
ifolds and reducing the problem to the study of the corresponding expanding suspension
semiflow. We then use the estimate which is given by Theorem 3.

The argument is the same idea as used previously [2] for Axiom A flows,17 the only
difference being that some of the estimates are now Hölder and not C1 since here we have

17 Lemma 5 in [2] contains an inaccuracy: it is claimed that the domain of the uniformly expanding
map is a C2 disk whereas in reality it is a subset of such a disk but with a boundary of poor
smoothness.
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a merely C1+α stable bundle whereas in [2] the bundle is C2. One important element in
this argument is the regularity of the boundary of the elements of the Markov partition.
The Appendix is devoted to further details concerning the construction and various im-
portant estimates which will be required, in particular estimates concerning the boundary
of elements of the partition.

We recall that Bowen [9] constructed Markov partitions for Axiom A diffeomor-
phisms and then extended this construction to Axiom A flows, in particular Anosov
flows [10]. Ratner [35] also constructed Markov partitions for Anosov flows, again based
on Bowen’s work. We will take Ratner’s description of the construction as our primary
reference since several parts of that presentation are more amenable to our present pur-
poses.

The main idea is that we can find a section which consists of a family of local sections
which are C1+α and foliated by local stable manifolds. The return map is a uniformly
hyperbolic Markov map on the family of local sections [10]. Let Y denote the union of
the local sections and let S : Y → Y and τ : Y → R+ denote the return map and return
time for φt to this section. Let η denote the unique SRB measure for S : Y → Y . Note
that τ is constant along the local stable manifolds [2, §3].

We now quotient along the local stable manifolds (within the local sections) letting
π : Y → X denote the quotient map. Consequently, we obtain a map T : X → X such
that T ◦ π = π ◦ S. Since the original flow is Anosov (in particular has an attractor),
the set X is the finite union of connected components. Each connected component is a
subset of a C1+α submanifold of the same dimension as the unstable bundle. However,
the boundary of these components, viewed as a subset of this submanifold, cannot be
expected to be smooth [12].

That the assumptions on X which are required by Theorem 3 are satisfied is shown in
Section A.1 and Lemma A.3. Because of the properties of S (in particular due to the use
of the Markov partition in the above construction), the map T is a uniformly expanding
Markov map and satisfies conditions (1)–(4). Therefore, by Theorem 3, either the suspen-
sion semiflow Tt mixes exponentially or τ is cohomologous to a constant function. In the
latter case the stable and unstable bundles are jointly integrable [2, Lemma 12], so for the
rest of the proof we suppose that τ is not cohomologous to a constant function and hence
Tt mixes exponentially.

Let ν denote the unique SRB measure for T (ν = π∗η). To proceed we observe
that ν admits a disintegration into conditional measures along local stable manifolds. We
observe using [17] that there exists a family {νx}x∈X of conditional measures (with νx
supported on π−1x) such that

η(v) =

∫
X

νx(v) dη(x)

for all continuous functions v : Y → R. We also know that this disintegration has good
regularity in the sense that x 7→ νx(v) is Hölder on each partition element and has uni-
formly bounded Hölder norm for any Hölder v : Y → R [17, Proposition 6].

Let Yτ , St , ητ be defined analogously toXτ , Tt , ντ . Suppose u, v : Yτ → R are Hölder
continuous functions. Points in Y are denoted by (x, a) according to the product repre-
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sentation of Y as X times the local stable manifolds. To prove that S mixes exponentially,
it is convenient to write∫

Yτ

u · v ◦ S2t dητ =

∫
Yτ

u · (v ◦ St − vt ◦ πτ ) ◦ St dητ +

∫
Xτ

ũ · vt ◦ Tt dντ (5)

where ũ, vt : Xτ → R are defined as

ũ(x, a) :=

∫
π−1x

u(y, a) dνx(y), vt (x, a) :=

∫
π−1x

v ◦ St (y, a) dνx(y).

The new observables ũ and vt are Cα on each partition element as observed above. To
estimate the first term on the right hand side of (5) we observe that

(v ◦ St − vt ◦ πτ )(y, u) =

∫
π−1(πy)

[v ◦ St (y, u)− v ◦ St (z, u)] dνπy(z).

Consequently, the function vt is exponentially close to v◦St on each local stable manifold
and so ∣∣∣∣∫

Yτ

u · (v ◦ St − vt ◦ πτ ) ◦ St dητ

∣∣∣∣ ≤ C‖u‖Cα‖v‖Cαe−γ̃ t (6)

where γ̃ > 0 depends on the contraction rate on the stable bundle.
The second term on the right hand side of (5) is estimated using Theorem 3 which

says that Tt mixes exponentially since τ is not cohomologous to a piecewise constant. We
have ∣∣∣∣∫

Xτ

ũ · vt ◦ Tt dντ −

∫
Xτ

ũ dντ ·

∫
Xτ

vt dντ

∣∣∣∣ ≤ C‖ũ‖Cα‖vt‖Cαe−γ t . (7)

Using estimates (6) and (7) in (5) shows that the flow St : Yτ → Yτ mixes exponentially.
This in turn implies that the flow φt is exponentially mixing.

2.2. Proof of Theorem 2

The proof consists in showing that if φt is C1-close to a volume-preserving flow and if
dimEs = 1 and dimEu ≥ 2 then the stable bundle is C1+. We then apply Theorem 1.

We recall that the regularity of the invariant bundle of an Anosov flow is given by
Hirsch, Pugh & Shub [29] (see also [4, Theorem 4.12]) under the following bunching
condition. Suppose that φt : M → M is a C2+Anosov flow.18 If there exist t, α > 0
such that

sup
x∈M
‖Dφt |Es (x)‖ ‖Dφ

t
|
−1
Ecu(x)‖ ‖Dφ

t
|Ecu(x)‖

1+α < 1, (8)

then the stable bundle is C1+α (Ecu = Eu ⊕ E0 is called the central unstable subbundle).
Following Plante [34, Remark 1], we observe that if the Anosov flow is volume-

preserving, and dimEs = 1 and dimEu ≥ 2, then the above bunching condition holds

18 This is the only place where the flow is required to be C2+, everywhere else C1+ suffices.
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true and consequently the stable bundle is C1+α for some α > 0. This is because volume-
preserving means that the contraction in Es must equal the volume expansion in Eu.
Since dimEu ≥ 2 the maximum expansion in any given direction must be dominated by
the contraction. Consequently, the stable bundle is C1+α . From its definition the bunching
condition (8) is robust under C1 perturbations of the Anosov flow.

Remark. This argument for the robust regularity of the stable bundle crucially uses the
fact that the unstable bundle has dimension at least 2 whilst the stable bundle has dimen-
sion 1. Such an argument is therefore impossible if the Anosov flow is three-dimensional
(see [34] for a counterexample). Of course regular bundles are possible in the three-
dimensional case but not in a robust way.

Remark. In general, when dimEs < dimEu it is again possible to find open sets such
that the bunching condition is satisfied although this will not be possible for all such flows.
A natural assumption to add would be isotropy of the hyperbolicity, i.e., the expansion is
of equal strength in all directions and similarly for the contraction. In this case we can
again obtain (8) robustly and prove the analog of Theorem 2.

Remark. In higher dimensions, with a large difference between the dimensions of the
stable and unstable bundles, it is sometimes possible to obtain stronger bunching and
therefore to guarantee that the stable bundle is C2 in a robust way. In this case results
for C2 expanding semiflows [6] can be applied with the same argument as in this paper
and exponential mixing proved for the flow [2]. A substantial part of this paper is to
prove Theorem 3 which generalizes prior work to the higher-dimensional C1+ case. This
is required to be able to handle a significantly larger set of Anosov flows, in particular to
handle flows in dimension 4 and higher when dimEs = 1.

3. Expanding semiflows

This section is devoted to the proof of Theorem 3. Throughout the section we suppose the
setting of the theorem. Recall that the semiflow is a combination of a uniformly expanding
map T : X → X and return time τ : X → R+. Let m denote Lebesgue measure on X.
We will assume, by scaling if required, that the diameter of X is not greater than 1 and
that m(X) ≤ 1. We will also assume that C1 = 1 in assumption (1). Suppose that this is
not the case originally; then there exists some iterate such that C1e

−λn < 1. We choose
some partition element such that returning to this element takes at least n iterates. We
take X̃ (which will replace X) to be equal to this partition element and choose for T̃
the first return map to X̃. The new return time τ is given by the corresponding sum of
the return time. There is then a one-to-one correspondence between the new suspension
semiflow and the original. It is simply a different choice of coordinates for the flow which
has the effect that the expansion per iterate is increased and the return time increases
correspondingly. This is not essential but it is convenient because below we can choose
a constant cone field which is invariant. We will also assume for notational simplicity
that C4 ≤ 1, i.e., τ(x) ≤ 1 for all x. This can be done without loss of generality, simply
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by scaling uniformly in the flow direction. Let 3 > 0 be such that ‖DT (x)‖ ≤ e3 for
all x. This relates to the maximum possible expansion, whereas λ > 0 relates to the
minimum expansion. In view of this discussion the suspension semiflow is controlled by
the constants α ∈ (0, 1), 3 ≥ λ > 0 and C2, C3 > 0.

Central to the argument of this section are Propositions 3.6, 3.9 and 3.16. The first de-
scribes how we see, in an exponential way, a key geometric property. The second propo-
sition uses this geometric property and the idea of oscillatory integrals in order to see
cancellations on average. The third proposition is the combination of the previous esti-
mates to produce the key estimate on the norm of the twisted operators.

3.1. Basic estimates

Let C5 := 2C3/(1 − e−λ), τn :=
∑n−1
j=0 τ ◦ T

j and let Pn denote the nth refinement of
the partition. For convenience we will systematically use the notation `ω := (T n|ω)−1 for
any n ∈ N and ω ∈ Pn. Let Jn(x) = 1/det(DT n(x)).

Lemma 3.1. ‖D(τn ◦ `ω)(x)‖ ≤ 1
2C5 for all n ∈ N, ω ∈ Pn and x ∈ T nω.

Proof. Let y = `ω(x) and observe that

D(τn ◦ `ω)(x) =

n−1∑
k=0

Dτ(T ky)D(T k ◦ `ω)(T
ky)

Consequently, using also (1) and (3), we see that ‖D(τn ◦ `ω)‖ ≤ C3
∑n−1
k=0 e

−λ(n−k). As∑
∞

k=0 e
−λk
= (1− e−λ)−1, the required estimate holds. ut

Lemma 3.2. There exists C6 > 0 such that, for all n ∈ N and ω ∈ Pn,∣∣∣∣ln det(D`ω(x))
det(D`ω(y))

∣∣∣∣ ≤ C6 d(x, y)α for all x, y ∈ T nω.

Proof. We write `ω = g1 ◦ · · · ◦ gn where each gk is the inverse of T restricted to the
relevant domain. Let xk = T k`ωx and yk = T k`ωy. Consequently, det(D`ω(x)) =∏n
k=1 det(Dgk(xk)) and so∣∣∣∣ln det(D`ω(x))

det(D`ω(y))

∣∣∣∣ ≤ n∑
k=1

∣∣∣∣ln det(Dgk(xk))
det(Dgk(yk))

∣∣∣∣.
Assumption (2) implies that

∣∣ln det(Dgk(xk))
det(Dgk(yk))

∣∣ ≤ C2 d(xk, yk)α . Using also assump-
tion (1) we obtain a bound

∑n
k=1 C2(e

−λ(n−k))α d(x, y)α . To finish the proof let C6 :=

C2
∑
∞

j=0 e
−λαj . ut

Lemma 3.3. There exists C7 > 0 such that∑
ω∈Pn
‖Jn‖L∞(ω) ≤ C7 for all n ∈ N.
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Proof. For each ω ∈ Pn there exists some xω ∈ ω such that m(ω) = Jn(xω)m(T
nω).

This means that
∑
ω∈Pn Jn(xω) ≤ m(x)(infωm(T nω))−1. By Lemma 3.2,

‖Jn‖L∞(ω)/Jn(xω) ≤ e
C6 .

Consequently,
∑
ω∈Pn ‖Jn‖L∞(ω) ≤ C7 where C7 := e

C6/infωm(T nω). ut

3.2. Twisted transfer operators

For z ∈ C, the twisted transfer operator Lz : L∞(X)→ L∞(X) is defined as

Lnzf =
∑
ω∈Pn

(e−zτn · f · Jn) ◦ `ω · 1T nω.

We use the standard notation for the Hölder seminorm |f |Cα(J ) where J is any metric
space: |f |Cα(J ) is the supremum of C ≥ 0 such that |f (x) − f (y)| ≤ C d(x, y)α for all
x, y ∈ J , x 6= y. The Hölder norm is defined to be ‖f ‖Cα(J ) := |f |Cα(J ) + ‖f ‖L∞(J ).
Recall that X is the disjoint union of a finite number of connected subsets of Rd . In this
case

|f |Cα(X) := sup
x,y

|f (x)− f (y)|

d(x, y)α

where the supremum is taken over all distinct x, y ∈ X which are in the same con-
nected component. As before let ‖f ‖Cα(X) := |f |Cα(X) + ‖f ‖L∞(X). Let Cα(X) := {f :
X→ R : |f |Cα(X) <∞}. This is a Banach space when equipped with the norm ‖·‖Cα(X).
Define, for all b ∈ R, the equivalent norm

‖f ‖(b) :=
1

1+ |b|α
|f |Cα(X) + ‖f ‖L∞(X).

Observe that, by Lemma 3.3, ‖Lnzf ‖L∞(X) ≤ C7e
−<(z)n

‖f ‖L∞(X) for all n ∈ N and
f ∈ L∞(X).

The argument of this section depends on choosing σ > 0 sufficiently small in a way
which depends only on the system (X, T , τ ). We suppose from now on that such a σ > 0
is fixed (sufficiently small) and the precise constraints on σ will appear at the relevant
places in the following paragraphs.

Lemma 3.4. There exists C8 > 0 such that, for all z = a + ib with a > −σ , and all
f ∈ Cα(X) and n ∈ N,

‖Lnzf ‖Cα(X) ≤ C8e
−(αλ−σ)n

|f |Cα(X) + C8e
σn(1+ |b|α)‖f ‖L∞(X).

Proof. Suppose that ω ∈ Pn, f ∈ Cα(X) and x, y ∈ T nω, x 6= y. Then

(e−zτn · f · Jn)(`ωx)− (e
−zτn · f · Jn)(`ωy) = A1 + A2 + A3 + A4
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where
A1 = (e

−ibτn(`ωx) − e−ibτn(`ωy))(e−aτn · f · Jn)(`ωx),

A2 = e
−ibτn(`ωy)(e−aτn(`ωx) − e−aτn(`ωy))(f · Jn)(`ωx),

A3 = e
−zτn(`ωy)(f (`ωx)− f (`ωy)) · Jn(`ωx),

A4 = e
−zτn(`ωy)f (`ωy)(Jn(`ωx)− Jn(`ωy)).

By Lemma 3.1, |A1| ≤ (e
−aτn ·|f |·Jn)(`ωx)2 min(|b|(C5/2) d(x, y), 1). Since min(u, 1)

≤ uα for all u ≥ 0, we have |A1| ≤ (e
−aτn ·|f |·Jn)(`ωx)2|b|α((C5/2))α d(x, y)α . Again,

by Lemma 3.1,

|A2| ≤ e
−aτn(`ωx)|1− e−a(τn(`ωy)−τn(`ωx))|(|f | · Jn)(`ωx)

≤ (e−aτn · |f | · Jn)(`ωx)|a|(C5/2) d(x, y).

Using assumption (1) we find that |A3| ≤ (e
−aτn · Jn)(`ωy)e

−αλn d(x, y)α|f |Cα(ω). Fi-
nally, by Lemma 3.2, |A4| ≤ (e

−aτn · |f | · Jn)(`ωy)C6 d(x, y)α . Summing over ω ∈ Pn
we obtain

|Lnzf (x)− Lnzf (y)|
d(x, y)α

≤ ‖Lna1‖L∞(X)
[(
(2|b|α + |a|)C5/2+ C6

)
‖f ‖L∞(X) + C7e

−λn
|f |Cα(X)

]
(9)

To finish the proof we observe that ‖Lnzf ‖L∞(X) ≤ ‖Lnσ1‖L∞(X)‖f ‖L∞(X) and
‖Lnσ1‖L∞(X) ≤ C7e

σn and choose C8 according to (9). ut

In view of the definition of the ‖ · ‖(b) norm, Lemma 3.4 implies the following uniform
estimate.

Lemma 3.5. For all z = a + ib with a > −σ ,

‖Lnzf ‖(b) ≤ C8e
σn(e−λn‖f ‖(b) + ‖f ‖L∞(X)) for all f ∈ Cα(X) and n ∈ N.

3.3. Exponential transversality

The goal of this subsection is to prove Proposition 3.6 below. This is an extension of
Tsujii’s [40, Theorem 1.4] to the present higher-dimensional situation. Much of the argu-
ment follows the reasoning of the above mentioned reference with some changes due to
the more general setting.

Define the (d + 1)-dimensional square matrix Dn(x) : Rd+1
→ Rd+1 by

Dn(x) =

(
DT n(x) 0
Dτn(x) 1

)
.

This is notationally convenient since DTt (x, s) = Dn(x) whenever τn(x) ≤ s + t

< τn+1(x).19 To proceed it is convenient to introduce the notion of an invariant unstable

19 If one wished to study the skew product G : (x, u) 7→ (T x, u− τ(x)), this is also the relevant
object to study since Dn = DGn.
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cone field. Recall that C5 = 2C3/(1− e−λ). We define K ⊂ Rd+1 as

K =
{(
a
b

)
: a ∈ Rd , b ∈ R, |b| ≤ C5|a|

}
.

We refer to K as a cone. We will see now that the cone has been chosen sufficiently wide
to guarantee invariance. Note that(

DT (x) 0
Dτ(x) 1

)(
a

b

)
=

(
DT (x)a

Dτ(x)a + b

)
=

(
a′

b′

)
.

Let ω ∈ P be such that a = D`ω(T x)a′. Using conditions (1) and (3), we have

|b′| = |Dτ(x) a + b| = |D(τ ◦ `ω)(T x) a
′
+ b|

≤ C3|a
′
| + C5e

−λ
|a′| ≤ 1

2C5|a
′
|. (10)

Suppose that x1, x2 ∈ X and n ∈ N are such that T nx1 = T
nx2. We write

Dn(x1)K t Dn(x2)K

if Dn(x1)K ∩Dn(x2)K does not contain a d-dimensional linear subspace. In such a case
we say that the image cones are transversal.

Proposition 3.6. Let T : X → X be a C1+ uniformly expanding Markov map and τ :
X → R+ as above. Further suppose that there is no θ ∈ C1(X,R) such that τ =
θ ◦ T − θ + χ where χ is constant on each partition element. Then there exist C9, γ > 0
such that, for all y ∈ X and x0 ∈ T

−ny,∑
x∈T −ny

Dn(x)K 6tDn(x0)K

Jn(x) ≤ C9e
−γ n. (11)

The major part of the remainder of this subsection is devoted to the proof of this proposi-
tion, but first we record a consequence of transversality.

Lemma 3.7. Suppose that ω,$ ∈ Pn, y ∈ X and Dn(`ωy)K t Dn(`$y)K. Then there
exists a 1-dimensional linear subspace L ⊂ Rd such that, for all v ∈ L,

|D(τn ◦ `ω)(y)v −D(τn ◦ `$ )(y)v| > C5(|D`ω(y)v| + |D`$ (y)v|).

Proof. Let x1 = `ωy and x2 = `$y. That Dn(x1)K t Dn(x2)K means there exists a
line L ⊂ Rd which passes through the origin and such that, when restricted to the two-
dimensional subspace L × R ⊂ Rd+1, the image cones Dn(x1)K and Dn(x2)K fail to
intersect, except at the origin. To see this, suppose this were false. Then, for all L, the
cones restricted to L × R intersect and the intersection contains a 1D subspace. We can
do this for {Lk}dk=1 which are pairwaise orthogonal. This yields a d-dimensional subspace
in the intersection of the images of the cones, contradicting the assumed transversality.
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Observe that

Dn(x)K ∩ L× R =
{(

DT n(x)a

Dτn(x)a + b

)
: |b| ≤ C5|a|, DT

n(x)a ∈ L

}
=

{(
v

Dτn(x)DT
−n(x)v + b

)
: v ∈ L, |b| ≤ C5|DT

−n(x)v|

}
.

Consequently, Dn(x1)K ∩Dn(x2)K ∩ L× R = {0} implies

|[(Dτn(x1)DT
−1(x1)− (Dτn(x2)DT

−1(x2)]v|

> C5|DT
−n(x1)v| + C5|DT

−n(x2)v|. ut

For all n ∈ N, let
φ(n) := sup

y∈X

sup
x0∈T −ny

∑
x∈T −ny

Dn(x)K 6tDn(x0)K

Jn(x).

Let hν denote the density of ν (the T -invariant probability measure). It is convenient to
introduce the quantity

ϕ(n, P, y) :=
∑

x∈T −n(y)
Dn(x)K⊃P

Jn(x) ·
hν(x)

hν(y)
, (12)

where P ⊂ Rd+1 is a d-dimensional linear subspace. Let

ϕ(n) := sup
y

sup
P

ϕ(n, P, y).

The benefit of this definition is that ϕ(n) is submultiplicative, i.e., ϕ(n+m) ≤ ϕ(n)ϕ(m)
for all n,m ∈ N; and ϕ(n) ≤ 1 for all n ∈ N. In order to prove Proposition 3.6 it suffices
to prove the following lemma.

Lemma 3.8. The following statements are equivalent:

(i) lim infn→∞ φ(n)1/n = 1;
(ii) limn→∞ ϕ(n)

1/n
= 1;

(iii) for all n ∈ N and y ∈ X there exists a d-dimensional linear subspace Qn(y) ⊂ K
such that Dn(x)K ⊃ Qn(y) for all y and all x ∈ T −ny;

(iv) there exists θ ∈ C1(X,R) such that τ = θ ◦ T − θ + χ where χ is constant on each
partition element.

Proof. (i)⇒(ii). Let m2 ∈ N and n = d2(3/λ)m2e. Since 3 ≥ λ, we have n > m2. Let
m1 ∈ N+ be such that n = m1+m2. Let Pn(x1) := Dn(x1)(Rd×{0}). We will first show
that Dn(x1)K 6t Dn(x2)K implies Dm2(T m1x2)K ⊃ Pn(x1). Observe that

Dn(x)K =
{(

a

Dτn(x)DT
−n(x)a + b

)
: a ∈ Rd , b ∈ R, |b| ≤ C5|DT

−n(x)a|

}
.



Open sets of exponentially mixing Anosov flows 2269

That transversality fails means that Pn(x1) (being contained in Dn(x1)K) is close to the
image cone Dn(x2)K by a factor of C5e

−λn. We also know that Dm2(T m1x2) is suffi-
ciently bigger than Dn(x2)K in the sense that

Dm2(T m1x2) ⊃

{(
a

b1 + b2

)
:

(
a

b1

)
∈ Dn(x2)K, |b2| ≤ C5e

−λn
|a|

}
.

To prove this let a ∈ Rd and b0, b1, b2 ∈ R be such that |b0| ≤ C5|DT
−n(x2)a|, b1 =

Dτn(x2)DT
−n(x2)a + b0 and |b2| ≤ C5e

−λn
|a|. It will suffice to prove that

|(b1 + b2 −Dτm2(T
m1x2)DT

−m2(T m1x2))a| ≤ C5|DT
−m2(T m1x2))a|.

We estimate

|(b1 + b2 −Dτm2(T
m1x2)DT

−m2(T m1x2))a|

= |(b0 + b1 +Dτm1(x2)DT
−m1(x2))DT

−m2(T m1x2)a|

≤ C5
( 1

2 |DT
−m2(T m1x2))a| + 2e−λn|a|

)
≤ C5

(
2e−λn|a| − 1

2 |DT
−m2(T m1x2))a|

)
+ C5|DT

−m2(T m1x2))a| (13)

That |DT −m2(T m1x2))a| ≥ e
−3m2 ≥ e−λn/2 means 1

2 |DT
−m2(T m1x2))a| ≥ 2e−λn|a|

for n sufficiently large (depending only on λ and3). We therefore conclude that Pn(x1) ⊂

Dm2(T m1x2). Suppose that x1 ∈ T
−ny. Then∑

x2∈T
−ny

Dn(x2)K 6tDn(x1)K

Jn(x2) ≤
∑

x2∈T
−ny

Dm2 (T m1x2)K⊃Pn(x1)

Jm2(T
m1x2)Jm1(x2)

≤

∑
x3∈T

−m2y
Dm2 (x3)K⊃Pn(x1)

Jm2(x3)
∑

x2∈T
−m1x3

Jm1(x2).

Consequently, ϕ(n) ≤ Cφ(m2(n)) where m2(n) =
⌊
nλ
23

⌋
and C = supx,y fν(x)/fν(y).

(ii)⇒(iii). First observe that limn→∞ ϕ(n)
1/n
= 1 implies ϕ(n) = 1 for all n since

ϕ(n) is submultiplicative and bounded by 1. Consequently, the following statement holds:

(iii′) For each n there exists yn ∈ X and a d-dimensional linear subspace Qn ⊂ Rd+1

such that Dn(x)K ⊃ Qn for every x ∈ T −n(yn).

It remains to prove that the above statement implies the following:

(iii) For all n ∈ N and y ∈ X there exists a d-dimensional linear subspace Qn(y) ⊂ K
such that Dn(x)K ⊃ Qn(y) for all y and all x ∈ T −ny.

We will prove the contrapositive. Suppose the negation of (iii), i.e., there exist n0 ∈ N,
y0 ∈ X and x1, x2 ∈ T −n0(y0) such that Dn0(x1)K ∩ Dn0(x2)K does not contain
a d-dimensional linear subspace. Let ω1, ω2 ∈ Pn0 be such that x1 = `ω1y0 and
x2 = `ω2y0. These inverses are defined on some neighbourhood 1 containing y0
and due to the openness related to the cones not intersecting we can assume that
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Dn0(`ω1(y0))K ∩ Dn0(`ω2(y0))K does not contain a d-dimensional linear subspace for
all y ∈ 1 (after shrinking 1 if required).

There exist m0 ∈ N and $ ∈ Pm0 such that `$X ⊂ 1 (by the covering property
of T ). Observe that, for all z ∈ X,

Dn0+m0(`ω1(`$ z))K ⊂ Dm0(`$ z)Dn0(`ω1y)K

where y = `$ z (and similarly for ω2). This means that for all z ∈ X there exist x1, x2 ∈

T −(m0+n0)(z) such that Dm0+n0(x1)K ∩ Dm0+n0(x2)K fails to contain a d-dimensional
linear subspace and consequently contradicts (iii′).

(iii)⇒(iv). Let (ω1, ω2, . . .) be a sequence of elements of the partition P . For each
n ∈ N let Gn := `ωn ◦ · · · ◦ `ω1 . Consider

D(τn ◦Gn)(x) =

n∑
k=1

D(τ ◦ `ωk )(Gk−1x)DGk−1(x) (14)

and observe that, by (3) and (1), this series converges uniformly. Moreover this limit is
independent of the choice of a sequence of inverse branches. This is a consequence of (iii).
Observe that

Dn(x)K =
{( v
Dτn(x)DT

−n(x)v+b

)
: v ∈ Rd , |b| ≤ C5|DT

−n(x)v|
}
.

Therefore, for all n, y ∈ X,

‖Dτn(x1)DT
−n(x1)v −Dτn(x2)DT

−n(x2)v‖ ≤ 2C5‖v‖λ
−n

for all x1, x2 ∈ T
−ny.

Consequently, we can denote by �(x) the limit of (14). Then, for all ω ∈ P ,

�(x) = D(τ ◦ `ω)(x)+�(`ωx)D`ω(x).

Fix x0 ∈ X. The function series
∑
∞

n=1(τ ◦Gn − τ ◦Gn(x0)) is summable in C1. Denote
its sum by θ . By construction �(x) = Dθ(x). Consequently, D(τ + θ − θ ◦ T ) = 0.

(iv)⇒(i). Let
Q(x) :=

{( a
Dθ(x)a

)
: a ∈ Rd

}
.

Observe that Q(x) ⊂ K. Since Dτn(x) = Dθ(T nx)DT n(x)−Dθ ,

Dn(x)Q(x) =
{(
DT n(x) 0
Dτn(x) 1

)( a
Dθ(x)a

)
: a ∈ Rd

}
=
{(

DT n(x)a
Dθ(T nx)DT n(x)a

)
: a ∈ Rd

}
= Q(T nx).

This means that for all y ∈ X we have Dn(x)K ⊃ Q(y) for all x ∈ T −ny. Consequently,
Dn(x)K 6t Dn(x0)K whenever x, x0 ∈ T

−ny. The required conclusion then follows from
the definition of φ(n). ut



Open sets of exponentially mixing Anosov flows 2271

3.4. Oscillatory cancellation

In this subsection we take advantage of the geometric property established above and
estimate the resulting cancellations. The following estimate concerns the case when f
is more or less constant on a scale of |b|−1. The argument will depend on the following
choice of constants (convenient but not optimal)

β1 :=
2
λ
, β2 :=

α

83
, q :=

αλ

2
.

Let n1 = bβ1 ln |b|c, n2 = bβ2 ln |b|c and n := n1+n2, β := β1+β2. The first n1 iterates
will be so that the dynamics evenly spreads the function f across the space X. Then n2
iterates will be to see the oscillatory cancellations. The assumptions of the following
proposition are identical to the assumptions of Proposition 3.6.

Proposition 3.9. Let T : X → X be a C1+ uniformly expanding Markov map and τ :
X → R+ as above. Further suppose that there is no θ ∈ C1(X,R) such that τ =
θ ◦ T − θ + χ where χ is constant on each partition element.

Then there exist ξ > 0, b0 > 1 and σ > 0 such that, for all z = a + ib with
a ∈ (−σ, σ ) and |b| > b0, for n = bβ ln |b|c, and for all f ∈ Cα(X) satisfying
|f |Cα(X) ≤ eqn|b|α‖f ‖L∞(X), we have

‖Lnzf ‖L1(X) ≤ e
−ξn
‖f ‖L∞(X).

The proof is via several lemmas.
It is convenient to localize in space using a partition of unity. Using the assumption

that the box-counting dimension of the boundary is strictly smaller than the ambient di-
mension we have the following partition of unity.

Lemma 3.10. There exist C10, C11, r0 > 0 and d1 ∈ [0, d) such that for all r ∈ (0, r0)
there exists a set {xp}

Nr
p=1 of points and a C1 partition of unity {ρp}

Nr
p=1 on X (i.e.,∑

p ρp(x) = 1 for all x ∈ X, and ρp ∈ C1(X, [0, 1])) with the following properties:

• Nr ≤ C10r
−d ;

for each p,

• ρp(x) = 1 for all x ∈ B(xp, r);
• supp(ρp) ⊂ B(xp, C10r);
• ‖ρp‖C1 ≤ C10r

−1;

and, with R∂ := {p : B(xp, C10r) ∩ ∂ω 6= ∅ for some ω ∈ P},

• #R∂ ≤ C11r
−d1 .

The construction of such a partition of unity and the proof of the above estimates are
given in Subsection A.1 of the Appendix.
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At each point of X we have a direction in which we see cancellations. One major
use of the partition of unity is to consider the direction as locally constant. We choose
r = r(b) = |b|−1/2. Take f ∈ Cα(X). Using Jensen’s inequality we get

‖Lnzf ‖L1(X) =

∫
X

∣∣∣ ∑
ω∈Pn

(Jn · f · e
−zτn) ◦ `ω(x) · 1T nω(x)

∣∣∣ dx
=

Nr∑
p=1

∫ ∣∣∣ ∑
ω∈Pn

ρp · (Jn · f · e
−zτn) ◦ `ω(x) · 1T nω(x)

∣∣∣ dx
≤

( ∑
p 6∈R∂

∑
ω,$∈Pn

∣∣∣∣∫
T nω∩T n$

(ρp ·K ◦ `ω ·K ◦ `$ · e
ibθω,$ )(x) dx

∣∣∣∣)1/2

+ eσn‖f ‖L∞
∑
ω∈Pn
‖Jn‖L∞(ω)

∑
p∈R∂

∫
T nω

ρp(x) dx

where K := Jn · f · e−aτn and θω,$ := τn ◦ `ω − τn ◦ `$ . Using Lemmas 3.3 and 3.10,
we can bound the final term above by

C112drd−d1C7e
σn
‖f ‖L∞(X) ≤ C112dC7e

−(
d−d1

2β −σ)n‖f ‖L∞(X). (15)

It remains to estimate the other term. We consider separately the set

Qn,p,ω := {$ ∈ Pn : Dn2(T n1`$xp) 6t Dn2(T n1`ωxp)}

and the set of $ where this is not the case. In the second case we see oscillatory cancel-
lations.

Lemma 3.11. There exists C12 > 0 such that

|K ◦ `ω(x)−K ◦ `ω(y)| ≤ e
σn
‖Jn‖L∞(ω)(C12‖f ‖L∞(ω) + |f |Cα(ω)e

−αλn) d(x, y)α

for all n ∈ N, ω ∈ Pn and x, y ∈ T nω.

Proof. Since K ◦ `ω(x) = (Jn · f · e−aτn) ◦ `ω(x), for all x, y ∈ T nω we have

K ◦ `ω(x)−K ◦ `ω(y) = (e
−aτn(`ωx) − e−aτn(`ωy))f (`ωx) · Jn(`ωx)

+ e−aτn(`ωy)f (`ωy)(Jn(`ωx)− Jn(`ωy))

+ e−aτn(`ωy)(f (`ωx)− f (`ωy)) · Jn(`ωx).

Using the estimates of Lemmas 3.1 and 3.2, and (1), we obtain

|K ◦ `ω(x)−K ◦ `ω(y)|

≤ eσn‖Jn‖L∞(ω)
(
(σC5/2+ C6)‖f ‖L∞(ω) + |f |Cα(ω)e

−αλn
)

d(x, y)α

The lemma follows by choosing C12 := C6 + σC5/2. ut
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Lemma 3.12. There exists C13 > 0 such that, for all n ∈ N and ω,$ ∈ Pn,

‖Dθω,$‖Cα ≤ C13.

Proof. Since D(τn ◦ `ω)(x) =
∑n−1
k=0 Dτ(hkx)Dhk(x) where hk := T k ◦ `ω, we have

‖D(τn ◦ `ω)(x)−D(τn ◦ `ω)(y)‖ ≤

n−1∑
k=0

‖Dτ‖Cα d(hkx, hky)α

≤ ‖Dτ‖Cα
n−1∑
k=0

e−λnα d(x, y)α,

and so ‖Dθω,$‖Cα ≤ 2‖Dτ‖Cα
∑
∞

k=0 e
−λnα . ut

Lemma 3.13. In the setting of Proposition 3.9, there exists C14 > 0 such that( ∑
p 6∈R∂

∑
ω∈Pn

∑
$∈Qn,p,ω

∣∣∣∣∫ (ρp ·K ◦ `ω ·K ◦ `$ · eibθω,$ )(x) dx∣∣∣∣)1/2

≤ C14e
−(

γβ2
2β −σ)n‖f ‖L∞ . (16)

Proof. Fixing for the moment p /∈ R∂ and ω ∈ Pn we want to perform the sum over $ :∑
$∈Qn,p,ω

∣∣∣∣∫
T nω∩T n$

(ρp ·K ◦ `$ ·K ◦ `ω · e
ibθω,$ )(x) dx

∣∣∣∣
≤

( ∑
$∈Qn,p,ω

‖Jn‖L∞($)

)
e2σn
‖Jn‖L∞(ω)‖f ‖

2
L∞‖ρp‖L1 . (17)

Observe that ∑
$∈Qn,p,ω

‖Jn‖L∞($) ≤
( ∑
$1∈Pn1

‖Jn‖L∞($1)

)(∑
$2

‖Jn‖L∞($2)

)
where the second sum is over the set of $2 ∈ Pn2 which satisfy

Dn2(T n1`$2xp) t Dn2(T n1`ωxp).

Consequently, the estimate of Proposition 3.6 shows that the term in (17) is bounded by

C9C7e
−γ n2e2σn

‖Jn‖L∞(ω)‖f ‖
2
L∞‖ρp‖L1 .

Using again Lemma 3.3, we see that
∑
ω∈Pn ‖Jn‖L∞(ω) ≤ C7 and we sum over p. ut

Now we turn our attention to the $ ∈ Pn where we observe oscillatory cancellations.
The crucial technical part of the estimate is the following oscillatory integral bound.

Lemma 3.14. Suppose that J ⊂ [0, 1] is an interval, k ∈ Cα(J ), θ ∈ C1+α(J ), |θ ′| ≥
κ > 0, |b| > 1 and k ∈ Cα(J ). Then∣∣∣∣∫

J

eibθ(x)k(x) dx

∣∣∣∣ ≤ C

κ2|b|α
‖k‖Cα(J ). where C = (‖θ ′‖L∞(X) + 6)(1+ |θ ′|Cα(X)).
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Proof. We assume that b > 1, the other case being identical. We also assume without loss
of generality that θ ′ ≥ κ , otherwise we can exchange −θ for θ . Since k/θ ′ is α-Hölder,
there exists20 gb ∈ C1(J,R) such that

‖gb − k/θ
′
‖L∞ ≤ b

−α
|k/θ ′|Cα , ‖g

′

b‖L∞ ≤ 2b1−α
|k/θ ′|Cα .

Changing variables via y = θ(x) yields∫
J

k(x) · eibθ(x) dx =

∫
θ(J )

k

θ ′
◦ θ−1(y)eiby dy

=

∫
θ(J )

gb ◦ θ
−1(y)eiby dy +

∫
θ(J )

(
k

θ ′
− gb

)
◦ θ−1(y)eiby dy.

Observe that the final term is equal to
∫
J
(k/θ ′ − gb)(x)e

ibθ(x)θ ′(x) dx. Integrating by
parts the penultimate term we get∫

θ(J )

gb ◦ θ
−1(y)eiby dy = −

i

b
[gb ◦ θ

−1(y)eiby]θ(J ) +
i

b

∫
θ(J )

g′b

θ ′
◦ θ−1(y)eiby dy

= −
i

b
[gbe

ibθ
]J +

i

b

∫
J

g′b(x)e
ibθ(x) dx.

Combining these estimates gives∣∣∣∣∫
J

eibθ(x)k(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫
J

(
k

θ ′
− gb

)
(x)eibθ(x)θ ′(x) dx

∣∣∣∣+ ∣∣∣∣1b [gbeibθ ]J
∣∣∣∣

+

∣∣∣∣1b
∫
J

g′b(x)e
ibθ(x) dx

∣∣∣∣
≤

(
‖θ ′‖∞|J |

bα
+

2
b1+α +

2|J |
bα

)∣∣∣∣ kθ ′
∣∣∣∣
α

+
2‖k‖∞
bκ

.

To finish we observe that∣∣∣∣ kθ ′ (x)− k

θ ′
(y)

∣∣∣∣ = ∣∣∣∣k(x)− k(y)θ ′(x)
+
k(y)(θ ′(y)− θ ′(x))

θ ′(x)θ ′(y)

∣∣∣∣
≤

(
|k|α

κ
+
‖k‖∞|θ

′
|α

κ2

)
|x − y|α. ut

Lemma 3.15. In the setting of Proposition 3.9, there exists C15 > 0 such that( ∑
p 6∈R∂

∑
ω∈Pn

∑
$∈Pn\Qn,p,ω

∣∣∣∣∫ (ρp ·K ◦ `ω ·K ◦ `$ · eibθω,$ )(x) dx∣∣∣∣)1/2

≤ C15|b|
−α/4e(3β2/β+σ)n‖f ‖L∞ ≤ C15e

−( α8β−σ)n‖f ‖L∞ . (18)

20 Take a molifier ρ ∈ C1(R, [0, 1]) such that supp(ρ) ⊂ (−1, 1) and
∫
ρ = 1,

∫
|ρ′| ≤ 2.

Define gb(x) :=
∫
ρb(x − y)

k
θ ′
(y) dy where ρb(z) := bρ(bz). Observe that gb(x) − k

θ ′
(x) =∫

ρb(x−y)
[
k
θ ′
(y)− k

θ ′
(x)
]
dy, g′

b
(x) =

∫
ρ′
b
(x−y)

[
k
θ ′
(y)− k

θ ′
(x)
]
dy,

∫
|ρb| = 1 and

∫
|ρ′
b
| ≤ 2b.
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Proof. Fixing p and ω for the moment we want to perform the sum over $ , i.e., we
estimate ∑

$∈Pn\Qn,p,ω

∣∣∣∣∫
T nω∩T n$

(ρp ·K ◦ `ω ·K ◦ `$ · e
ibθω,$ )(x) dx

∣∣∣∣.
Since Dn2(T n1`$xp)K t Dn2(T n1`ωxp)K there exists (Lemma 3.7) a 1-dimensional
linear subspace L ⊂ Rd (which depends on $ and ω) such that, for all v ∈ L,

|D(τn2 ◦ T
n1 ◦ `$ )(xp)v −D(τn2 ◦ T

n1 ◦ `ω)(xp)v| > C5|D(T
n1 ◦ `$ )(xp)v|.

(We could also write another term on the right hand side of the above but this worse
estimate suffices for what follows.) By Lemma 3.1,

|D(τn1 ◦ `$ )(xp)v| ≤
1
2C5|D(T

n1 ◦ `$ )(xp)v|.

Consequently,

|D(τn ◦ `$ )(xp)v −D(τn ◦ `ω)(xp)v|

> 1
2C5(|D(T

n1 ◦ `$ )(xp)v| + |D(T
n1 ◦ `$ )(xp)v|).

Rotating and translating, we choose an orthogonal coordinate system (y1, . . . , yd) such
that y1 corresponds to L and xp = (0, . . . , 0). We have∣∣∣∣∂θω,$∂y1

∣∣∣∣(0, . . . , 0) =
∣∣∣∣∂(τn ◦ `$ )∂y1

−
∂(τn ◦ `ω)

∂y1

∣∣∣∣(0, . . . , 0) ≥ C5e
−3n2 .

Since r > 0 is sufficiently small, the transversality holds along this direction for the entire
ball (by Lemma 3.12). In order to show this we will show that C13r(b)

α
≤

C5
2 e
−3n2 since

‖Dθω,$‖Cα ≤ C13. This is equivalent to exp
(
−
[
α

2β2
−3

]
n2
)
≤

C5
2C13

, which holds for |b|
sufficiently large since β2 was chosen such that β2 ≤

α
23 . Here b0 is chosen sufficiently

large to guarantee that |b| is large enough to satisfy the above condition. We have∣∣∣∣∂θω,$∂y1

∣∣∣∣(y1, . . . , yd) =

∣∣∣∣∂(τn ◦ `$ )∂y1
−
∂(τn ◦ `ω)

∂y1

∣∣∣∣(y1, . . . , yd) ≥
1
2
C5e
−3n2

for all (y1, . . . , yd) ∈ Brb (0). To proceed we must estimate the Hölder norm of ρp · K ◦
`ω · K ◦ `$ . By Lemma 3.11, since we assume that |f |Cα(ω) ≤ e(q+α/β)n‖f ‖L∞(ω) in
Proposition 3.9 and q + α/β ≤ α(λ/2+ 1/β1) = αλ (for some C > 0), we have

|K ◦ `ω(x)−K ◦ `ω(y)| ≤ Ce
σn
‖Jn‖L∞(ω)‖f ‖L∞(ω) d(x, y)α.

Consequently, using Lemmas 3.11 and 3.10 we get

|ρp ·K ◦ `ω ·K ◦ `$ |Cα(T nω) ≤ C(1+ r−α)eσn‖Jn‖L∞(ω)‖f ‖L∞(ω).



2276 Oliver Butterley, Khadim War

Using the estimate of Lemma 3.14, for (y2, . . . , yd) fixed we obtain∣∣∣∣∫ r

−r

(ρp ·K ◦ `ω ·K ◦ `$ · e
ibθω,$ )(y1, . . . , yd) dy1

∣∣∣∣
≤ Cr−αe23n2 |b|−αe2σn

‖Jn‖L∞(ω)‖Jn‖L∞($)‖f ‖
2
L∞ .

If d = 1 we are done, otherwise we integrate over the other directions. We also recall that
r = |b|−1/2. Thus∣∣∣∣∫

T nω∩T n$

(ρp ·K ◦ `ω ·K ◦ `$ · e
ibθω,$ )(x) dx

∣∣∣∣
≤ C|b|−α/2e23n2+2σn

‖Jn‖L∞(ω)‖Jn‖L∞($)‖f ‖
2
L∞ .

Using Lemma 3.3 we sum over ω and $ to obtain the estimate. ut

Proof of Proposition 3.9. The estimates from (15) and Lemmas 3.15 and 3.13 imply that,
for some C > 0,

‖Lnzf ‖L1(X) ≤ C
(
e
−(

γβ2
2β −σ)n + e

−( α8β−σ)n + e
−(

d−d1
2β −σ)n

)
‖f ‖L∞(X).

Here we take σ > 0 sufficiently small, depending only on the system. ut

Proposition 3.16. Let T : X → X be a C1+ uniformly expanding Markov map and
τ : X → R+ as above. Further suppose that there is no θ ∈ C1(X,R) such that τ =
θ ◦ T − θ + χ where χ is constant on each partition element.

Then there exist ζ, b0, B > 0 such that, for all z = a+ ib with a ≥ −σ and |b| ≥ b0,
and all n ≥ B ln |b|,

‖Lnz‖(b) ≤ e−ζn.

Proof. We start by estimating ‖Lnz‖(b) for n = β ln |b|. First we consider the case when

‖f ‖L∞(X) ≤ e
−qn
‖f ‖(b).

We apply Lemma 3.5:

‖Lnzf ‖(b) ≤ C8e
σn(e−λn‖f ‖(b) + ‖f ‖L∞(X)) ≤ Ce

σn(e−λn + e−qn)‖f ‖(b).

It remains to consider the case when ‖f ‖L∞(X) ≥ e−qn‖f ‖(b). This means that |f |Cα(X)
≤ eqn(1+|b|α)‖f ‖L∞(X). Recall that s ≥ 1 is the exponent associated to the almost-John
property. The interpolation result of Lemma A.4 means that there exist C, ε0 > 0 such
that, for any ε ∈ (0, ε0),

‖f ‖L∞(X) ≤ Cε
−d
‖f ‖L1(X) + ε

α/s
|f |Cα(X). (19)

Here we choose ε = e−
ξ

2d n. Applying Lemma 3.5 twice yields

‖L2n
z f ‖(b) ≤ C8e

2σne−λn‖f ‖(b) + C8e
σn
‖Lnzf ‖L∞(X).
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Using also the above estimate (19) we get

‖L2n
z f ‖(b) ≤

(
C8e
−(λ−2σ)n

+ e−
αξ
2ds n

)
‖f ‖(b) + C8e

(σ+ξ/2)n
‖Lnzf ‖L1(X).

The estimate of Proposition 3.9 means that

‖L2n
z f ‖(b) ≤

(
C8e
−(λ−2σ)n

+ e−
αξ
2ds n

)
‖f ‖(b) + C8e

−(ξ/2−σ)n
‖f ‖(b).

Again we take σ > 0 sufficiently small. We have obtained the estimate ‖Lnz‖(b) ≤ e−ζn
when n = bβ ln |b|c. Iterating this estimate and choosing B > 0 sufficiently large con-
cludes the proof. ut

3.5. Rate of mixing

It remains to complete the proof of Theorem 3. In the present setting, in particular that
the twisted transfer operators satisfy a Lasota–Yorke style estimate (Lemma 3.5), the
required conclusion of exponential mixing follows in an established fashion (for example
[3, §2.7] or [6, §7.5]) from the estimate of Proposition 3.16. In the first cited reference
the C1 norm is used whilst we using the Cα norm, but the same argument holds since it
depends on the spectral properties of the twisted transfer operator and the norm estimate
(Proposition 3.16), and these are identical in the present case. In the second cited reference
the Cα norm is used but for functions on the interval and not in the higher-dimensional
situation of the present work. Again the argument presented there depends only on the
spectral properties of the operator and so holds also in this setting.

For the convenience of the reader we here summarize the general argument which
was cited above; at each stage the relevant paragraph in one of the references is detailed.
The main part of the argument is to observe that the Laplace transform of the correlation
function can be written in terms of a sum of twisted transfer operators [3, Proposition
A.3]. The Laplace transform of the correlation is then shown to admit an analytic exten-
sion to a neighbourhood of each point z = ib. For b 6= 0 this is because the existence
of poles on the imaginary axis would contradict mixing since they form groups and for
z = 0 this uses the fact that the problem reduces to the case when one of the observables
has zero average [3, Lemma 2.22]. This part of the argument uses the quasi-compactness
of the twisted transfer operators. When |b| is large the main functional-analytic estimate
(Proposition 3.16) is used to imply an analytic extension of uniform size [3, Lemma 2.23].
The above is done in a way which is independent of the choice of observables. Combin-
ing the above gives an analytic extension of the correlation function to a strip about the
imaginary axis. The result of exponential mixing then follows from a Paley–Wiener type
estimate [3, §2.7].

Appendix. The boundary of Markov partitions

In the early 1970s, Bowen [10] and Ratner [35] showed that it is possible to construct
Markov partitions for Anosov flows. However, it is known [12] that the regularity of the
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boundary of these partitions is normally rather poor. This is unfortunate for our present
purposes since we need some degree of regularity of the unstable part of the Markov
construction in order to complete our argument. Ratner [35] showed that the boundary
of the Markov partition has Lebesgue measure zero but this is not quite sufficient for our
purposes. Fortunately, as shown by Horita & Viana [30, Proposition 3.5], we also have
estimates for the box-counting dimension21 of the boundary. Section A.1 is devoted to
reviewing this topic and the information on the dimension of the boundary is a key point
in constructing the partition of unity of Lemma 3.10. Section A.2 is devoted to showing
a different control on the geometry of the Markov partition, namely that the set satisfies
a generalization of the notion of a John domain. This piece of information is used in
order to have a convenient interpolation result (Lemma A.4). Note that the constructions
of Bowen [10] and Ratner [35] are very similar but that Bowen’s latter description [11]
of the construction of Markov partitions is described rather differently. The later method
of construction is based on shadowing in a way that works elegantly for all Axiom A
systems. However, the geometry is rather lost in the construction and a clear hold of the
geometry is precisely what we require for our present purposes. In this appendix we will
follow the construction of Ratner [35] and for clarity use, whenever possible, identical
notation as used in that reference.

Throughout this section we assume that φt : M → M is a transitive Anosov flow.
First we recall the notation and the general idea behind the construction of the Markov
partition. For any x let W s

ε (x) (resp. W cs
ε (x), W

u
ε (x), W

cu
ε (x)) denote the ε-sized local

stable (resp. centre-stable, unstable, centre-unstable) manifold of x. As usual, we know
that there exist ε0, γ > 0 such that for all x, all y ∈ W s

γ (x) and all z ∈ W cu
γ (x) the sets

W s
ε0
(y) and W cu

ε0
(z) intersect in exactly one point which we denote by [y, x]; this defines

the canonical local product structure. From now on we suppose that such a choice of
ε0, γ > 0 is fixed. Let C ⊂ Wu

γ (x) and D ⊂ W s
γ (x). A parallelogram is a set A = [C,D]

defined as all the points [y, z] such that y ∈ C and z ∈ D. Observe that the set A is foliated
by stable manifolds but not, in general, by unstable manifolds. Let A = {A1, . . . ,Ak},
Ai = [Ci,Di], Ai ∩ Aj = ∅ for i 6= j , be a finite complete system of parallelograms.
(Here complete means that for every point in M there is an interval on the trajectory of the
point whose end points each lie in one of the parallelograms.) Let MA be the set-theoretic
union of the parallelograms {Ai}i with the induced topology. For any x ∈ MA, consider
the trajectory of the flow φt extending from x to its first intersection x′ with MA. Let T
denote the one-to-one mapping of MA onto itself which maps x to x′. A system A is said
to be Markovian for the flow φt if, whenever x ∈ Int Ai ∩ T −1(Int Aj ),22

T (Int Di(x)) ⊂ Dj (T (x)) and T (Ci(x)) ⊃ Int Cj (T (x)). (20)

As mentioned previously, we rely on the following result.

21 In general the upper box-counting dimension may differ from the lower box-counting dimen-
sion. Throughout this text our only interest is in an upper bound for the upper box-counting dimen-
sion and for conciseness we omit explicit mention of this detail. Note that in [30] the term limit
capacity is used for the same concept.
22 Here we use the notation Di(x) = [x,Di ] and Ci(x) = [Ci , x].



Open sets of exponentially mixing Anosov flows 2279

Theorem A.1 ([10, Theorem 2.5] or [35, Theorem 2.1]). For every ε > 0 the transitive
Anosov flow φt :M→M has a Markov partition with all elements of size at most ε.

Since we will need more details of the construction of the Markov partition, particu-
larly some information on the geometry of the partition elements, we recall the most
relevant details of the construction. During the construction, α, δ > 0 are chosen to sat-
isfy, amongst other conditions, the requirement 0 < α < δ < min(ε, γ, ε0). To start
the construction we fix A0

= {A0
1, . . . ,A0

k}, a complete finite system of parallelograms
A0
i = [C

0
i ,D0

i ] with C0
i = Wα

u (xi) and D0
i = Wα

s (xi). By a recursive procedure23 [35,
§2] we define the sets Cni ⊂ W

δ
u (xi) and Dni ⊂ W

δ
s (xi). The procedure involves starting

with the system of parallelograms {A0
i }i

and using the dynamics, both in forward and
backward time, to add the appropriate images of the already defined sets in order to be-
come closer to the required Markov property. For the sets Ci this means applying a strong
contraction to the sets already defined in order to add small additional sets to the sets
already defined. At the beginning some m is chosen sufficiently large. For each i, j we
consider if φ−mCnj contributes a part which should be added to the set Ci . The successive
approximation means that these leaves converge to the Markov property. The unstable
part of the partition element is defined by a countable union

Ci =
⋃
n≥1

Cni ⊂ W
u
δ (xi).

The stable part, Di , is defined similarly but using φm in place of φ−m.

A.1. Box-counting dimension of the boundary

The structure of the constructed Markov partition leads to the following result.

Proposition A.2 ([30, Proposition 3.5]). The box-counting dimension of the union of the
unstable boundaries of the elements of the Markov partition of an Anosov map is strictly
smaller than the dimension of the unstable bundle.

The proof of the above is based on estimates available in Bowen [11] and on a standard
relation [23] which connects the measure of a neighbourhood of a set to the box-counting
dimension of that set. Although the result is stated for Anosov diffeomorphisms, the same
result holds for the Markov structure of an Anosov flow as described above.

We will use this information about the box-counting dimension of the boundary to
prove the previously stated Lemma 3.10 which concerns the existence of a partition of
unity. This construction is essentially standard but since the details are crucial and the
estimates concerning the boundary of the set are less common, we give the details of the
construction and the proof of the required estimates.

Fix a function 8 ∈ C1(R, [0, 1]) such that 8(u) = 1 whenever |u| ≤ 1/4, 8(u) = 0
whenever |u| ≥ 3/4 and

∑
∞

k=−∞8(u− k) = 1 for all u ∈ R. For any x ∈ Rd and r > 0

23 The reference [35, §2] contains a clear description of this recursive construction. See also the
pertinent details reproduced in §A.2.
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we denote by B(x, r) the open ball centred at x and of radius r > 0. For each ε > 0,
` = (`1, . . . , `d) ∈ Zd define 8(ε)` ∈ C1(Rd , [0, 1]) by

8
(ε)
` (x1, . . . , xd) :=

d∏
k=1

8(ε−1(xk − ε`k)).

Such a function is “centred” at the point ε` = (ε`1, . . . , ε`d) ∈ Rd . Observe that

• the support of 8(ε)` is contained within B(ε`, 3ε/4),
• for all x ∈ B(ε`, ε/4),

8
(ε)
` (x) = 1,

• for each x ∈ Rd , ∑
`∈Zd

8
(ε)
` (x) = 1,

• There exists K > 0 such that ‖8(ε)` ‖C1 ≤ Kε−1 for all ε > 0 and ` ∈ Zd .

We suppose thatX ⊂ Rd is bounded and that ∂X has box-counting dimension strictly
less than d . That the set is bounded implies there exists K > 0 such that the cardinality
of the set {` ∈ Zd : B(ε`, 3ε/4) ∩X 6= ∅} is bounded from above by Kε−d .

Consider the ε-mesh where the cubes of the mesh are centred on the points {ε` :
` ∈ Zd}. For any set E ⊂ Rd let Nε(E) denote the number of cubes in the ε-mesh
which intersect E. (There are several equivalent definitions of box-counting dimension
[23, §3.1].) Since the boundary ∂X has box-counting dimension strictly less than d, there
exist K > 0 and d1 ∈ [0, d) such that, for all ε > 0,

Nε(∂X) ≤ Kε
−d1 .

Consequently, the cardinality of the set {` ∈ Zd : B(ε`, 3ε/4) ∩ ∂X 6= ∅} is bounded
from above byKε−d1 (increasingK > 0 if required, independently of ε). This completes
the proof of Lemma 3.10.

A.2. Markov partitions are almost John

The construction of the unstable part of the Markov partition can be conveniently re-
phrased24 as follows (for full details consult [35]). There is a collection {Ci}Ni=1 of
bounded subsets of Rd . (These sets are the unstable parts of the complete finite system
of parallelograms A0

i = [C
0
i ,D0

i ] which are the starting point of the construction of the
Markov structure.) For each set there is a subset C0

i ⊂ Ci which has nice geometry in the
sense that the boundary of C0

i is C1. Let C denote the disjoint union
⊔
i Ci . Again with a

slight abuse of notation, there is a map T : C→ C which corresponds to the Anosov flow

24 Strictly speaking, the objects here are Ci and T as above combined with an appropriate choice
of du-dimensional chart. Abusing notation we suppress this detail and use the same symbols.
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for some large time (this is the return map associated to the family of parallelograms after
projecting along local stable manifolds). There is an index set A ⊂ {1, . . . , N}2 and, for
each (j, k) ∈ A, a map hj,k : Cj → Ck such that T ◦ hj,k = id. Moreover these maps
are strong contractions in the sense that there exist 0 < λ2 ≤ λ1 < 1 such that, for all
(j, k) ∈ A and x, y ∈ Cj ,

λ2 d(x, y) ≤ d(hj,k(x), hj,k(y)) ≤ λ1 d(x, y).

Define
Cnj =

⋃
k: (j,k)∈A

hj,k(Cn−1
k ), Ci =

⋃
n≥1

Cni .

Note that Cni ⊃ Cn−1
i for all n. The above structure suffices to show some modest control

on the geometry.
Since 0 < λ2 ≤ λ1 < 1 there exists s ≥ 1 such that

λ2 = λ
s
1. (21)

Observe that s ≥ 1 can be taken to be equal to 1 in the special case when the expansion is
isotropic. In particular this is the situation when the unstable bundle is one-dimensional.
Recall (Definition 1.1) that a set � ⊂ Rd is almost John with exponent s ≥ 1 if there
exist K2, ε0 > 0 such that, for all ε ∈ (0, ε0) and all x ∈ �, there exists y ∈ � such that
d(x, y) ≤ ε and B(y,K2ε

s) ⊂ �.

Lemma A.3. Each set Ci is almost John. The exponent s ≥ 1 is that given by (21).

Proof. Let δ > 0 be such that diam(C0
i ) ≤ δ for each i. Since the set C0

i has smooth
boundary, there exist K1 > 0 and ε1 > 0 such that for all i, all x ∈ C0

i and all ε ∈ (0, ε1)

there exists y ∈ C0
i such that

B(y,K1ε) ⊂ C0
i and d(x, y) ≤ ε.

Fix the constants

K3 =
2δ

λ1(1− λ1)
, K4 = min(1/2, ε0K

−1
3 ).

Let ε ∈ (0, ε0). Define Nε ∈ N by the requirement that K3λ
Nε+1
1 ≤ ε ≤ K3λ

Nε
1 . For

x ∈ Ci , we will consider two cases.

Case 1 (x ∈ CNεi ): Let j be such that T nx ∈ Cj . We choose ε′ = εK4λ
−Nε
1 ∈

(0, ε0). We know that there exists y ∈ CNεi such that T Nεy ∈ C0
j , d(T Nεx, T Nεy) ≤ ε′

and B(T Nεy,K1ε
′) ⊂ C0

i . Consequently, d(x, y) ≤ ε′λ
Nε
1 and T NεB(y,K1ε

′λ
Nε
2 ) ⊂

B(T Nεy,K1ε
′) ⊂ C0

i . This means that

d(x, y) ≤ εK4 ≤ ε
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as required. Since the definition of s > 1 implies λ2/λ1 = λ
s−1
1 , we see that

K1ε
′λ
Nε
2 = K1K4

(
λ2

λ1

)Nε
ε = K1K4λ

Nε(s−1)
1 ε ≥ K1K4

(
ε

K3

)s−1

ε =
K1K4

Ks−1
3

εs .

This means that we have shown that B(y,K ′1ε
s) ⊂ CNεi where K ′1 = K1K4/K

s−1
3 .

Case 2 (x ∈ Ci \CNεi ): In this case we know that there exists z ∈ CNεi such that d(x, z) ≤

δ
λ
Nε
1

1−λ1
. This is because, from the construction, the diameter of every component of Cni is

not greater than δλn1 and must intersect some previously defined set. Using now what
we demonstrated in the other case we know that there exists y ∈ CNεi which satisfies
d(z, y) ≤ K4ε and B(y,K ′1ε

s) ⊂ CNεi . Observe that

d(x, y) ≤ δ
λ
Nε
1

1− λ1
+K4ε ≤

(
δ

λ1(1− λ1)K3
+

1
2

)
ε ≤ ε

as required. ut

Remark. The work of Avila, Gouëzel & Yoccoz [6] required the domain of the expand-
ing Markov map to be a John domain in a sense which corresponds to our definition if
s = 1. However, when the expansion is not the same in all directions, it seems unlikely
that a condition better than the one we use here could be satisfied. A weakening of the
definition of a John domain similar to ours has been studied in other contexts (see, e.g.,
[33] and references therein). In the case s = 1 the John domain property implies the es-
timate on the box-counting dimension of the boundary [33, Corollary 6.2]. However, in
general when s > 1, this is not sufficient for a useful estimate of the dimension [33, §7.3].
We therefore show independently the two properties we require.

In our application we use the above lemma for the following key interpolation result.

Lemma A.4. Let � ⊂ Rd be almost John with exponent s ≥ 1. Let γ = 1/s ∈ (0, 1].
There exist K5 > 0 and ε1 > 0 such that, for all ε ∈ (0, ε1) and f ∈ Cα(�),

‖f ‖L∞(�) ≤ K5ε
−d
‖f ‖L1(�) + ε

γα
|f |Cα(�).

Proof. Let x ∈ �, ε ∈ (0, ε1) and f ∈ Cα(�). Since� is almost John, there exists y ∈ �
such that B(y,K2ε) ⊂ � and d(x, y) ≤ εγ . Let Vd denote the appropriate constant such
that the volume of the d-ball of radius ε is equal to Vdεd . There must exist z ∈ B(y, ε)
such that |f (z)| ≤ V −1

d ε−d‖f ‖L1(�) because otherwise there would be a contradiction
for the L1 norm (if the statement were false then |f (z)| > V −1

d ε−d‖f ‖L1(�) for all
z ∈ B(y, ε) and consequently ‖f ‖L1(B(y,ε)) > ‖f ‖L1(�)). This means that

|f (x)| ≤ |f (z)| + |f (x)− f (z)|

≤ V −1
d ε−d‖f ‖L1(�) + |f |Cα(�) d(x, z)α

≤ K5ε
−d
‖f ‖L1(�) + ε

γα
|f |Cα(�).

This estimate holds for all x ∈ �, ε ∈ (0, ε1) and f ∈ Cα(�). ut
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Poincaré 17, 2975–3004 (2016) Zbl 1367.37033 MR 3556513
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