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Abstract: The early detection of fire is one of the possible applications of LiDAR techniques.
The smoke generated by a fire is mainly compounded of CO2, H2O, particulate, and other combustion
products, which involve the local variation of the scattering of the electromagnetic wave at specific
wavelengths. The increases of the backscattering coefficient are transduced in peaks on the signal of
the backscattering power recorded by the LiDAR system, located exactly where the smoke plume is,
allowing not only the detection of a fire but also its localization. The signal processing of the LiDAR
signals is critical in the determination of the performances of the fire detection. It is important that
the sensitivity of the apparatus is high enough but also that the number of false alarms is small,
in order to avoid the trigger of useless and expensive countermeasures. In this work, a new analysis
method, based on an adaptive quasi-unsupervised approach was used to ensure that the algorithm is
continuously updated to the boundary conditions of the system, such as the weather and experimental
apparatus issues. The method has been tested on an experimental campaign of 227 pulses and the
performances have been analyzed in terms of sensitivity and specificity.
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1. Introduction

LiDAR techniques are laser-based remote sensing methods widely used for the study of the
atmosphere. The techniques are based on probing the atmosphere by a laser beam and on analyzing
the backscattering signals at specific wavelengths [1,2]. They are meant to study the vertical property
profile of the atmosphere, providing density and temperature information, chemical gas and particulate
compositions, and more [3–5]. In recent years, LiDAR-based methods are finding many other
environmental applications, such as pollution monitoring in urban and industrial areas and early
detection of fire [6,7].

The smoke plume developed by a fire is mainly compounded by CO2, H2O, particulate, and other
minor products of the combustion. When the laser beam crosses the smoke plume, both the scattering
and the absorption of the electromagnetic wave increases [8,9]. This effect is directly observed on the
intensity of the backscattered radiation measured by a LiDAR apparatus, which reports a peak where
the smoke is located [10]. Previous studies demonstrated the capability of LiDAR to be an effective
technique for early detection and localization of smoke and fire, helping in avoiding the increase of fire
sizes and severity, and decreasing the critical consequences that may affect the environment [11,12].
The efficiency and limits of this technique to smoke fire detection are strongly related to different
parameters of the system itself (laser pulse properties, receiver, etc.), the distance, characteristics of the
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smoke plume, and environmental conditions (wind, fog, etc.). A sensitivity analysis of this technique
was analytically/numerically investigated by Bellecci et al. [13].

Despite it being demonstrated that LiDAR technique is a sensitive method for the early detection
of fire, the analysis of the signals needs caution, especially to avoid a high number of false alarms,
because LiDAR signals sensitive to several atmospheric variables. The most common approach to
detect fire is to use peak-detection algorithms, since the presence of smoke leads to an increase of the
local extinction coefficient. However, they are not so performant. A peak amplitude threshold must
be used to ensure a small number of false alarms, losing sensitivity. A few alternative approaches,
such as machine learning-based techniques, were developed and tested, and they seemed to provide
better results [14]. The use of the LiDAR in real-time applications poses some issues on the best
selection of the parameters and the most critical aspect is the unsteadiness of the application. In fact,
the continuous monitoring of an area, day by day, season by season, involves that the environment
changes. The weather, the air temperature, density, and water vapor concentration vary, thus, involving
a shift of the best parameters of the algorithms. This work aims to present and test a new LiDAR
analysis approach for the early detection of fires. The new technique is based on an unsupervised
classification method designed for this application, which has the advantage to be self-calibrating.
Moreover, in order to face the unsteadiness of the application, an adaptive calibration logic has been
adopted, ensuring the best performances at any time.

2. Materials and Methods

2.1. LiDAR Apparatus and Measurement Scheme

Experimental measurements were performed to analyze and validate the new method.
The experimental apparatus is a compact and robust mobile LiDAR system based on a monostatic
biaxial configuration, where the laser and the telescope were placed together on the same structure,
but have different axes. The laser was a pulsed Q-switch Nd:YaG (Quantel Laser (now LUMIBIRD),
Lannion, France) operating at the fundamental wavelength of 1064 nm. The maximum repetition rate
was 10 Hz and the pulse was 8 ns. The beam diameter was about 5 mm, and the beam divergence was
lower than 4 mrad. “In order to avoid dangerous radiation in the environment, it has been chosen
to attenuate the laser radiation, by using a laser beam attenuator with an attenuation factor of 10,
involving that the laser beam fluence is under the safety fluence limit of 20 mJ/m2 at one distance of
200 m”. The backscattered light was collected by the telescope (it is a commercial Cassegrain), with a
nominal focal length of 1300 mm, a primary mirror diameter of 102 mm, an f-number of f/12.7, and a
field of view of 1.2 mrad. The signal was detected by an IR-enhanced Avalanche PhotoDiode (APD,
Hamamatsu Photonics K.K., Ammersee, Germany), which had a response time lower than 5 ns, a gain
of 100, and a quantum efficiency of 38%. A narrow bandpass filter centered at 1064 nm and wide
2 nm was used to filter background radiation. Then, the signal was recorded by a National Instrument
PXI (NATIONAL INSTRUMENTS CORP., Austin, TX, USA), which used a card NI-PXI 5122 with
a resolution of 14 bit and a sampling rate of 100 Msamples/s. The measurements were performed
producing a controlled fire, at a distance of about 400 m from the LiDAR equipment. Measurements
were taken without a specific measurement frequency, but accordingly to the change of the fire. At first,
pulses with no fire were recorded. Then, the fire was made and other measurements were performed.
This process was reapplied three times, leading to a number of measurement equal to 227, 61 safe, and
166 with fire at different intensities. Table 1 resumes the characteristics of the main components of the
LiDAR system, while Figure 1 shows a schematic view of the system.



Sensors 2020, 20, 6602 3 of 11

Table 1. Characteristics of LiDAR main components.

Light Source

Laser type ND:YaG Pulse width 8 ns
Functioning Pulsed Beam diameter 5 mm

Mean wavelength 1064 nm Beam divergence 4 mrad
Max repetition rate 10 Hz

Telescope
Nominal focal length 1300 mm Primary mirror diameter 102 mm

f-number f/12.7 Field of view 1.2 mrad
Photodiode

Time response 5 ns
Gain 100

Quantum Efficiency 38%
DAQ—Card PXI 5122

Resolution 14 bit
Sampling rate 100 Msample/s
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2.2. LiDAR Inversion

The LiDAR technique probes the atmosphere by a laser beam in the infrared, visible, or ultraviolet
region and analyses the backscattered power signal. A LiDAR can use different types of radiation,
which is a function of the laser wavelength and the filtering of the signal. When the radiation
wavelength is the same as the laser wavelength, the LiDAR is a Rayleigh-Mie based LiDAR which
used the “elastic scattering”. The backscattered power can be written as follows [15]:

P(r) =
C0βπ(r)

r2 exp
(
−2

∫ r

0
α(z)dz

)
+ B (1)

where P(r) is the backscattered power, r is the distance, C0 is a constant of the system, βπ is
the backscattering coefficient, kt is the extinction coefficient, and B is the background radiation.
The background radiation can be easily removed from the signal just measuring the background
radiation (laser off).

The LiDAR equation contains two unknowns, the backscattering and the extinction coefficient.
Different methods, based on approximations or atmospheric assumptions, were developed to calculate
the backscattering coefficient from the LiDAR equation, such as the slope method, the boundary
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point solution, and the optical depth solution. In this work, the similar approach presented by
Klett [16,17] was used. The method is based on assuming that there is a correlation between the volume
extinction and the backscatter. If this correlation is known, Equation (1) has only one unknown and the
backscattering coefficient can be calculated:

βπ(r) =
exp(S(λ, r) − Sm(λ))

1
βπ,m

+ 2
Bp

∫ rm

r exp(S(λ, R′) − Sm(λ))d r′
(2)

where S(λ, R) is P(r)r2, Sm(λ, R) is calculated at the “reference” position, the βπ,m is the backscattering
radiation at the reference position. Bp is the “phase function”), calculated as the ratio between β and
α. This approach requires that you know the phase function and the backscattering at the reference
position. In our case, the phase function was considered constant along the path and equal to 0.43.
The reference backscattering coefficient was taken as equal to 1.047 × 10−4 at the reference position of
200 m (the values have been calculated from Shettle et al. [18]). It has to be mentioned that the method
used in this work was quite simple and based on assumptions that may not be always satisfied and that
in the literature there can be found more robust approaches, even a data-driven one, which minimizes
the intervention of the operators. However, the eventual miscalculation of the absolute value of
backscattering radiation is not so important in this work, being the aim of this work, the automatic
detection of off-normal backscattering radiation respect with a standard measurement (see Section 2.3.).

Moreover, the moving standard deviation of the backscattering coefficient was applied, and it was
used as input of the classification model to increase the performances of the algorithm. The standard
deviation was computed by a central moving standard deviation in a sliding window of 30 m.

The signals used for the inversion and standard deviations are the results of only one laser pulse,
thus, no signal averaging has been used and it means that each LiDAR profile corresponded to one
laser pulse.

2.3. Quasi-Unsupervised Classification Algorithm

The core of the classification algorithm is the support-vector machine (SVM). The SVM is a
supervised algorithm that, by giving a certain number of examples, where both inputs and outputs are
known, creates a model where the operative spaces of each class are determined. An SVM is aimed at
generating one or more hyperplanes that allow to separate the points of the classes. The simplest SVM
is the linear SVM, which generates a plane with the input variables that maximize the classification
output. However, the linear SVM is usually not sufficient and high-order hyperplanes are generated
using a different kernel function (most common are parabolic, cubic, gaussian). Once the hyperplane is
found, the model is used to determine the class of new points, where their classes are unknown [19].
In the present work, the class should be “alarm” and “safe”. SVM, such as any other supervised
classifier, was strongly affected by the training set. The LiDAR returns the backscattered coefficient as
a function of the time (or distance) and, since the smoke is local, a no safe profile contains both “safe”
and “alarm” points. Moreover, due to wind, the “manual” localization of the smoke may be affected
by uncertainties, and a supervised training may be hazardous, involving that also the training set
may be affected by errors. Moreover, an adaptive supervised algorithm would require the continuous
involvement of an operator that must classify the pulses for the training set update, making that
application not automatic. Thus, an alternative solution was found using a one-class SVM [20], where
the class is the “safe” one. The safe and alarm classification by the one-class SVM was obtained by a
probability threshold. In brief, the SVM returns the probability that the analyzed point belongs to the
same population of the training set class (safe). Then, the probability was converted in a Zscore by the
inversion of gauss function. The kernel function used was a gaussian kernel.

The logic of the algorithm is shown in Figure 2.
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At first, a first LiDAR scan was performed in the area, when there is no smoke and fire.
Then, the probability density function maps of both backscattering and backscattering standard
deviation as a function of the distances were calculated. For any bin of the distance map, N number of
points were generated following the pdf at that distance and the SVM was trained. So, the SVM was
ready for the real-time application. The i-th laser pulse was classified by the SVM and there were four
different possibilities:

1. True positive alarm: the SVM classifies an alarm, the operator takes the countermeasures and
confirms the presence of smoke and fire. In this case, the LiDAR continues the monitoring and
goes to the i-th + 1 pulse.

2. False positive alarm: the SVM classifies an alarm, the operator takes the countermeasures and
negates the presence of smoke and fire. In this case, the data of the i-th pulse, which is a “safe”
pulse, is used to update the map and retrain the SVM.

3. True negative alarm: the SVM does not classify an alarm, no fires and smokes are observed in
the following minutes. The pulse is a “safe” pulse and it is used to update the map and retrain
the SVM.

4. False negative alarm: the SVM does not classify an alarm, but within the next minutes, smokes
and fires are observed. The pulse is not a “safe” pulse and cannot be used to update the map and
retrain the SVM.

3. Results

Figure 3 shows the backscattering coefficient amplitude and moving standard deviation in three
different cases.

On the left, a pulse with no smoke is present. The backscattering coefficient amplitude was almost
flat, excluded in the first 200 m, due to the configuration of the experimental apparatus (it was a biaxial
LiDAR and the telescope is normally blind in the first meters). The backscattering standard deviation
was almost flat too, there was a small rise in the first 200 m due to the increase of the backscattering
amplitude, a slight increase at the end of the pulse, since the SNR of the signal decrease and the
uncertainty arise. A pulse with a small amount of smoke along the laser path was shown in the center.
Here, a smoke plume was placed at 375 m. Both the amplitude and standard deviation signals show
an increase of their values where the smoke was placed and the moving standard deviation returned a
wider window where the signal increased, which may help in increasing the detection of the fire in
noisy signals. The last column of images shows a pulse where the fire was increased and, thus, the
smoke plume also expanded. Thus, both the signals increased in the fire position.
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distance in the case of no smoke (pulse 10, a and d), small smoke plume (pulse 15, b and e), and large
smoke plume (pulse 21, c and f).

As explained in the method section, the new algorithm was based on generating a probability
density map (which are probability density functions at any distance) of the “safe” pulse, where no
smoke is present. The maps for both the amplitude and standard deviation of the backscattering
coefficient are shown in Figure 4.
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Figure 4. Probability density map of backscattered coefficient amplitude (a) and standard deviation (b).

The “safe” region, represented by the yellow-green-light blue colors, symbolizes the operative
space where it is expected to have the points of the next LiDAR profiles (backscattering and moving
standard deviation) if the pulse is a safe one. Contrariwise, if a smoke plume is present, the point should
go out from the “safe” region. The narrow profiles indicate that both the laser functioning and weather
conditions are stable during the measurements. In fact, if the laser pulse was unstable or a strong
change of the atmosphere was present, the safe region map would have been wider, since each safe
pulse would have shown different values of the backscattering coefficient and its standard deviation.
During long experimental campaigns or real-time applications, this may not be true, especially due to
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natural changes, such as the weather. The introduction of adaptive logic avoided this problem, creating
a wide map of safe pulses, ensuring a small number of false alarms.

The application of the maps on fire and smoke detection is shown in Figure 5.Sensors 2020, 20, x FOR PEER REVIEW 8 of 12 
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Figure 5. Signals of the backscattered coefficient amplitude (a,d,g) and standard deviation (b,e,h) on
the pdf map with the signal value in red circles and signals of the Zscore (c,f,i) for the pulses 10 (a–c),
15 (d–f) and 21 (g–i).

Any image row of the figure shows one of the previous pulses (10, 15, and 21). The points of
the safe pulse (pulse 10) lay on the safe region of both maps and the Zscore of the was lower than 1
at any distance, which suggested that there are not “alarm” points. The pulse 15, which had a small
smoke plume at 375 m, shows that all the points lie on the safe region and excluded the points near
375 m. The Zscore of both signals increased in that region, with a wider area in the case of the standard
deviation. The last pulse, where the smoke was well developed, is shown in the last row. Again, both
the signals got out from the safe region where the fire was located. However, two different issues
arise for the backscattering coefficient amplitude. The first is that the Zscore has several oscillations
in the smoke region, while the standard deviation is better defined. Moreover, the backscattering
amplitude has high Zscore also for larger distances, involving a difficulty in smoke detection. The last
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issue arose because of the interference of smoke with the LiDAR equation inversion, which slightly
underestimated the backscattering amplitude, which goes in the “unsafe” region.

The algorithm was tested on an experimental campaign of 227 pulses, 61 safe and 166 unsafe,
with different levels of smoke, from low to high. The best results in terms of true positive rate and
true negative rate, or sensitivity and specificity, have been obtained using the standard deviation
signals, which, as discussed before, demonstrated to be more stable and less influenced by errors on
the backscattering coefficient calculation. Figure 6 shows the trend of the specificity and sensitivity
during the experimental campaign, using the real-time application. The trend was stable for both
parameters. At the end of the campaign, the specificity was 96.7% (2 false alarms) and the sensitivity
was 93.4% (11 missed alarms).
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Figure 6. Sensitivity and specificity of the predictor in an experimental campaign.

The results obtained with the new algorithm were compared with the old peak finder algorithm.
The peak finder was based on calculating the presence and the position of one or more peaks in a
signal and the function used in this work is the one implemented in MATLAB, which allows to set
the threshold, prominence, peak width, etc. When our experimental apparatus was built years ago,
the peak finder algorithm was tested, and the best parameters were obtained leaving the default
parameters of the peak finders and varying the peak prominence. The same algorithm was tested
on the data used in this work and a parametric test was conducted varying the prominence value.
The blue line in Figure 7 shows the Receiver Operating Characteristic (ROC) curve (specificity vs.
sensitivity) of the algorithm (where each point is obtained using one prominence value). What can be
observed is that:

1. The sensitivity does not reach very high performances, even for very small specificity (and thus a
high number of false alarms);

2. The specificity is very high only for very small sensitivity;
3. The algorithm is very unstable in the “best performances” region, i.e., where both specificity and

sensitivity are large enough (>80%). A variation of the 5% of the prominence lead to a variation
of the performances of 10%, making the choice of the prominence very critical.

A similar analysis was conducted on the one-class adaptive SVM algorithm varying the Zscore

value (from 10−3 to 102, with a logarithm spacing) and the results are shown in the red line of Figure 7.
The red line clearly shows that the SVM algorithm ensured higher sensitivity with same false alarms.
For example, if we allow a maximum number of false alarms equal to 5%, we will have a sensitivity for
the peak finder algorithm of about 86%, while the SVM algorithm returns a 93.4% (+ 7%). At last, it
has been found that the algorithm was very robust on the optimal performance region.
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4. Discussion and Conclusions

In this work, a new method for the analysis of LiDAR signals for the early detection of fire was
introduced. In the presence of smoke, the local properties of the atmosphere changed and by probing
it through a laser beam, it was possible to detect these differences and provide an alarm, in order to
take the proper countermeasures and avoid fire growth and threats to the environment.

The new method consisted of a quasi-unsupervised approach, with an adaptive and real-time
logic. The probability density function map of the backscattering coefficient amplitude and standard
deviation were both used. The map, representing the “safe” region, allows to extract the points
that better represent the population of the safe points, where there is no smoke. Then, a supervised
algorithm, in this case a support vector machine, was used to generate a model that returns the
probability of a point to belong to the safe population. Then, this probability was converted in a Zscore

and by a threshold, each point was classified as “safe” and “alarm”.
The adaptive logic ensures that changes to the environment and experimental apparatus properties,

which may change the backscattering coefficient amplitude and standard deviation, were continuously
updated with new “safe” pulses.

The use of the backscattering standard deviation led to higher results in terms of both sensitivity
and specificity. It was expected given the trends of the standard deviation on safe and alarm pulses,
which were less noisy and affected by less issues related to the LiDAR equation inversion.

The number of missed alarms were 11 out of 166 (specificity equal to 93.4%), while the false alarms
were 2 of 61 (specificity equal to 96.7%). Each output was the result deriving from one laser pulse
and one backscattering profile. However, due to the high repetition rate of lasers, signal averaging
or consistency alarm detection may be used to improve the performances. For example, using a
laser with a repetition rate equal to 1 Hz, the user may perform 60 pulses in a minute and giving
an alarm based on a statistic of the 60 pulses, helping in decreasing the false alarms in significant
ways. Otherwise, an aerial scan may be performed, and the detection may be performed on the
area (also creating a three-dimensional probability density function map). Using a 2D scansion, for
example using the equatorial mounts, may also help in developing more sophisticated and accurate
detection algorithms, even if they are probably slower. An example could be the approach used with
the CALIPSO LiDAR [21]. However, any possible improvement of this approach is dependent on the
applications and it could also be easily applied to other LiDAR applications, such as polluted area
detection, etc.

The new algorithm was also compared with the older algorithm, based on a simple peak finder.
It was found that the new adaptive one-class SVM ensures much higher performances and it is less
sensitive to the choice of the “calibration” parameters (Zscore for the SVM based and prominence for
the peak finder).
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It has to be highlighted that the present apparatus, based on elastic LiDAR, may be sensitive to
many other variations in the atmosphere, which may lead to an increase of the backscattering variations
(especially low-height clouds and fogs), involving an increase of false positives. More sophisticated
approaches may be used. For example, one may use the polarization-based setup, a multiwavelength
LiDAR or a DIAL setup [7,22].
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