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The distributivity spectrum of Baker’s variety

Paolo Lipparini

Abstract. For every n, we evaluate the smallest k such that the congruence inclusion
α(β ◦n γ) ⊆ αβ ◦k αγ holds in a variety of reducts of lattices introduced by K. Baker.
We also study varieties with a near-unanimity term and discuss identities dealing with
reflexive and admissible relations.

1. Introduction

Baker [1] considered the variety generated by polynomial reducts of lattices

in which the only basic operation is b defined by b(a, c, d) = a(c + d). Here

juxtaposition denotes meet and + denotes join. In a few cases, for clarity,

the meet of a and c shall be denoted by a · c. We shall denote the above

variety by B and we shall call it the Baker’s variety, but let us mention that

[1] contains a more general study of varieties which arise as reducts of lattices;

see, in particular, [1, Theorem 2]. Notice that, in every algebra in B, the

term x · y = b(x, y, y) provides a semilattice operation; in particular, we can

consider any algebra in B as an ordered set in a natural way. A related variety

is obtained by taking polynomial reducts of lattices in which the only basic

operation is u defined by u(a1, a2, a3, a4) =
∏

j 6=j(ai + aj), where the indices

on the product vary on the set {1, 2, 3, 4}. We shall denote this variety by

N4. Notice that u is a near-unanimity term in N4 and that the position

b(a, c, d) = u(a, a, c, d) provides an interpretation of B in N4.

Baker showed that B is 4-distributive but not 3-distributive. Recall that

a variety V is m-distributive, or ∆m, if V satisfies the congruence identity

α(β◦γ) ⊆ αβ◦mαγ. In the above formula, α, β, . . . are intended to be variables

for congruences of some algebra in V , juxtaposition denotes intersection and we

have used the shorthand β◦mγ for β◦γ◦β . . . withm factors, that is, withm−1

occurrences of ◦. If, say, m is odd, we sometimes write β ◦γ ◦ m. . .◦β in place of

β ◦m γ in order to make clear that β is the last factor. Conventionally, β ◦0 γ =

0, the minimal congruence of the algebra under consideration; otherwise the

reader might always suppose that m ≥ 1. We refer to Baker [1], Jónsson [10]

or Lipparini [15] for other unexplained notions and notations.
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The original definition of m-distributivity involves the existence of a certain

number of terms introduced by Jónsson [9]; Jónsson terms are exactly the

terms arising from the Maltsev condition associated to α(β ◦ γ) ⊆ αβ ◦m αγ.

Here it will be more convenient to express results by means of congruence

identities rather than terms. See [15] for a more detailed discussion and further

references. Jónsson proved that a variety is distributive if and only if it is m-

distributive, for some m. It follows from Jónsson’s proof that, for every n

and m, there is some k such that every m-distributive variety satisfies the

congruence identity α(β ◦n γ) ⊆ αβ ◦k αγ. We initiated the study of the

related “Jónsson distributivity spectra” in [15]. Here we shall evaluate exactly

the distributivity spectra of N4 and of Baker’s variety B. We shall also show

that we get exactly the same spectra if we consider the corresponding reducts

of distributive lattices, call such reducts N d
4 and Bd.

Relying heavily on Kazda, Kozik, McKenzie and Moore [12], we observed

in [15] that congruence distributive varieties satisfy also identities of the form

α(R ◦n T ) ⊆ αR ◦k′ αT , where R and T denote reflexive and admissible rela-

tions. In Sections 3 and 4 we shall find the best bounds for identities of this

kind in B and N4; moreover, we shall show that in the case of B and N4 it is

possible to take α, too, as an admissible relation. As far as relation identities

are concerned, B and N4 exhibit a subtly different behavior. This partially

confirms the suggestion implicit in [10, p. 370] and explicitly advanced in [16]

that the study of relation identities might provide a finer classification of vari-

eties (in particular, congruence distributive varieties), in comparison with the

study of congruence identities alone.

The relation identities found in Sections 3 and 4 solve also some earlier

problems. In [14] we have showed that, under a fairly general assumption,

a congruence identity is equivalent to the same identity when considered for

representable tolerances, instead. In Remark 3.4 we show that the assumption

of representability of tolerances is necessary in the above equivalence.

It is known [5, 18] that the identities α(Θ ◦Θ) ⊆ αΘ ◦k′ αΘ and α(R ◦R) ⊆

αR ◦k αR, for some k, k′, both characterize congruence modularity, where

Θ denotes a tolerance. Remarks 4.4 and 4.5 show that, for a variety V , the

best values of k or k′ in the above identities are not determined by the Day

modularity level of V . It is an open problem to find the example of a variety

for which the best values for k and k′ above are distinct.

Section 5 contains a few remarks about relation identities satisfied by va-

rieties with a near-unanimity term and by varieties with an edge term. Here

we are dealing with the general case, not with specific examples such as N4.

Further remarks are contained in Section 6. Among other, and following the

lines of [1], we consider identities satisfied by arbitrary polynomial reducts of

lattices. We also consider polynomial reducts of Boolean algebras.
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2. The distributivity spectra of B and N4

Recall that B is the variety generated by polynomial reducts of lattices

in which the only basic operation is b(a, c, d) = a(c + d) and that N4 is de-

fined similarly with respect to the operation u(a1, a2, a3, a4) =
∏

j 6=j(ai + aj).

The varieties obtained by considering only reducts of distributive lattices are

denoted, correspondingly, by Bd and N d
4 .

Theorem 2.1. Suppose that n ≥ 2 and V is either B, Bd, N4 or N d
4 . Then

V satisfies the following congruence identities:

α(β ◦n γ) ⊆ αβ ◦2n αγ, for n even, and (2.1)

α(β ◦n γ) ⊆ αβ ◦2n−1 αγ, for n odd; (2.2)

and the subscripts on the right-hand sides are best possible; actually, V does

not even satisfy

α(β ◦ (αγ ◦ αβ ◦ n−2. . . ◦ αβ) ◦ γ) ⊆ αβ ◦2n−1 αγ, for n even, and (2.3)

α(β ◦ (αγ ◦ αβ ◦ n−2. . . ◦ αγ) ◦ β) ⊆ αβ ◦2n−2 αγ, for n odd. (2.4)

Proof. The positive result that equations (2.1) and (2.2) hold in B is an ob-

servation in [15, Section 3], however inserted there in a quite abstract and

general context. In the special case of B the proof is direct and is an al-

most immediate generalization of Baker’s argument. Indeed, if n is even

and (a, d) ∈ α(β ◦n γ), then a α d and there are elements ci such that

a = c0 β c1 γ c2 β . . . cn−1 γ cn = d. Then the elements

a = b(a, a, d) = b(a, c0, d), b(a, c1, d), b(a, c2, d), . . . b(a, cn−1, d),

b(a, cn, d) = b(a, d, d) = a · d = b(d, a, a) = b(d, c0, a),

b(d, c1, a), b(d, c2, a), . . . b(d, cn−1, a), b(d, cn, a) = b(d, d, a) = d

(2.5)

witness (a, d) ∈ αβ ◦2n αγ. Notice that, say, b(a, cj, d) α b(a, cj , a) = a =

b(a, cj+1, a) α b(a, cj+1, d), for every j. The same chain of elements works

in the case n odd, but in this case cn−1 β cn = d, hence b(a, cn−1, d) αβ

b(a, d, d) = a · d = b(d, a, a) αβ b(d, c1, a), in particular, b(a, cn−1, d) αβ

b(d, c1, a), thus one passage might be skipped and we get (a, d) ∈ αβ ◦2n−1αγ.

Since B is interpretable in N4, then (2.1) and (2.2) hold in N4, too. The result

for N4 can be obtained also directly from the case m = 2 of equations (5.1)

and (5.2) in Proposition 5.1 below. Clearly, if some congruence identity holds

in B, respectively, N4, then it holds in Bd, respectively, N d
4 .

Now we show that equations (2.3) and (2.4) fail, hence the bounds in (2.1)

and (2.2) are optimal. We shall present the argument for N4 and N d
4 . This is

enough, since, say, B is interpretable in N4. In any case, the same argument

works for B and Bd, too, with no essential modification.

For h ≥ 1, let Ch+1 denote the h + 1-elements chain with underlying set

Ch+1 = {0, 1, . . . , h} and with the standard ordering, inducing the standard

lattice operations of min and max. Let L be the lattice Cn+1 ×Cn+1 ×C2.
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Since in what follows the “last” C2 will play a different role with respect to

the first two Cn+1’s, we shall usually denote the largest elements of C2 by ↑

and the smallest element of C2 by ↓. Consider the following elements of L:

a = c0 = (n, 0, ↑), d = cn = (0, n, ↑), and

ci = (n− i, i, ↓), for i = 1, . . . , n− 1.

Recall that we let u(x1, x2, x3, x4) =
∏

j 6=k(xj + xk) and b(x1, x3, x4) =

u(x1, x1, x3, x4) = x1(x3 + x4). Let

B = {a ∈ L | a ≤ ci, for some i ≤ n}.

We show that B is closed under u, hence B = (B, u) is an algebra in N4,

actually, in N d
4 , since L is a distributive lattice. Indeed, suppose that a1 ≤ ci1 ,

. . . , a4 ≤ ci4 . Since u is invariant under any permutation of its arguments, it

is no loss of generality to assume that i1 ≤ i2 ≤ i3 ≤ i4. If u(a1, a2, a3, a4)

has a third ↑ component, then at least three among a1, a2, a3, a4 have a third

↑ component, hence at least two among a1, a2, a3, a4 are either ≤ c0 or ≤ cn.

Say, a1, a2 ≤ c0, hence, since u is a monotone operation, u(a1, a2, a3, a4) ≤

u(c0, c0, ci3 , ci4) = c0(ci3 + ci4) ≤ c0. Otherwise u(a1, a2, a3, a4) has a third ↓

component and u(a1, a2, a3, a4) ≤ u(ci1 , ci2 , ci3 , ci4) = (n− i3, i2, ↓) = ci2ci3 ≤

ci2 . In any case, u(a1, a2, a3, a4) ∈ B.

Hence B = (B, u) is an algebra in N4; in particular, (B, b) is an algebra

in B. Let B↑ denote the set of all the elements of B with a last ↑. By the

definition of B, the elements of B↑ are exactly the following:

ei = a(d+ ci) = (n− i, 0, ↑), fi = d(a+ ci) = (0, i, ↑), i = 0, . . . , n. (B↑)

Now we can show that (2.3) and (2.4) fail, in general. Let α be the kernel

of the third projection, thus α is a congruence on B.

Let β be the congruence on B defined in such a way that two elements

(i1, i2, i3) and (j1, j2, j3) of B are β-related if and only if, for every ℓ = 1, 2,

their components iℓ and jℓ differ at most by 1, and:

(aβ) if i1 6= j1, then sup{i1, j1} has the same parity of n, and

(bβ) if i2 6= j2, then sup{i2, j2} is odd.

It can be checked directly that β is a congruence; otherwise, argue as follows.

Let β′
1 be the congruence onCn+1 whose blocks are {n, n−1}, {n−2, n−3}, . . .

If β′′
1 is the counterimage in L of β′

1 through the first projection, then β′′
1 is a

congruence on L, hence a congruence on (L, u). Thus the restriction β1 of β′′
1

to B is a congruence on (B, u). Similarly, define β2 using the counterimage

through the second projection of the congruence on Cn+1 whose blocks are

{0, 1}, {2, 3}, . . . Then β = β1β2, hence β is a congruence, being the meet of

two congruences.

The congruence γ on B is defined in a similar way: two elements (i1, i2, i3)

and (j1, j2, j3) of B are γ-related if and only if, for every ℓ = 1, 2, their com-

ponents iℓ and jℓ differ at most by 1, and:

(aγ) if i1 6= j1, then sup{i1, j1} has not the same parity of n, and
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(bγ) if i2 6= j2, then sup{i2, j2} is even.

In passing, let us mention that there is an alternative construction of B

which makes the definitions of β and γ simpler; actually, in this alternative

construction β and γ turn out to be kernels of appropriate projections. See

[17]. However, all the remaining arguments are much more involved in [17];

moreover, the current presentation has the advantage of being more compact.

With the above definitions of α, β and γ, we have c0 α cn and cj α cj+1, for

j = 1, . . . , n−2. Moreover, c2i = (n−2i, 2i,−) β (n−2i−1, 2i+1,−) = c2i+1,

for all the appropriate values of i and where the value of the third component is

not relevant. Similarly, c2i+1 γ c2i+2, for every appropriate i. Hence (c0, cn) ∈

α(β ◦ (αγ ◦n−2αβ)◦γ), for n even, and (c0, cn) ∈ α(β ◦ (αγ ◦αβ ◦n−2. . . ◦αγ)◦β),

for n odd.

On the other hand, in view of the above description of B↑, the only elements

αβ-connected to c0 = e0 = (n, 0, ↑) are c0 itself and e1 = (n − 1, 0, ↑). No

other element of B↑ is αγ-connected to c0, hence there is no advantage in

“staying at c0”. The only other element αγ-connected to e1 = (n − 1, 0, ↑) is

e2 = (n− 2, 0, ↑) and, so on, the only element αβ-connected to e2i is e2i+1 and

the only element αγ-connected to e2i+1 is e2i+2, until we reach en−1, where

the situation splits into two cases.

If n is even, then (1, 0, ↑) = en−1 αγ en = (0, 0, ↑) = f0 αβ f1 = (0, 1, ↑)

and no other nontrivial relation holds among these elements. Symmetrical

considerations hold for the fj ’s and, since fn = cn, we get that any chain from

c0 to cn in which each pair of elements is either αβ or αγ-connected must

involve all the 2n+1 elements of B↑, hence any chain as above is of length at

least 2n, thus (2.3) fails in B.

On the other hand, if n is odd, then (1, 0, ↑) = en−1 αβ en = (0, 0, ↑) =

f0 αβ f1 = (0, 1, ↑), thus en−1 αβ f1 and we do not need all the elements of

B↑ to get an αβ-or-αγ-chain, we can skip en = f0. However, all the rest is the

same and we need 2n− 1 steps from c0 to cn, hence (2.4) fails. �

The case n = 2 for B in Theorem 2.1 gives another proof of Baker result

that B is 4-distributive but not 3-distributive. The proof of 4-distributivity is

the same. The counterexample to 3-distributivity in [1] has 10 elements and

the counterexample here can be taken to have 9 elements, since two elements

can be discarded from B, still having an algebra in B, as we shall show in the

proof of Proposition 2.3 below. In the special case n = 2 the treatment from

[17] would be slightly simpler; the classes of congruences in the example from

[1] are to be computed by hand, while in [17] we have considered kernels of

projections, which are automatically congruences.

Remarks 2.2. (a) There is a short and simple syntactical folklore proof that

Baker’s variety is not 2-distributive, that is, that B has no majority term.

Actually, the proof shows that B has no near-unanimity term. If t is a term of

B, define the relevant variable of t inductively as follows. If t is a variable xj ,

then xj is the relevant variable of t. Otherwise, t = b(t1, t2, t3) and we define
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the relevant variable of t to be the relevant variable of t1. If B ∈ B, B has a

minimal element 0 and we substitute 0 for the relevant variable of some term t,

then t is evaluated as 0, no matter what we substitute for the other variables.

Thus B has no near-unanimity term, in particular, no majority term.

More generally, the argument shows that, for every k-ary term t, there is

some “place” i ≤ k such that B satisfies no equation of the form t(. . . , y, . . . ) =

x, where y is put in place i, x is a variable distinct from y and the other

arguments of t are arbitrary variables. This shows that B has no cube term,

as introduced by Berman, Idziak, Marković, McKenzie, Valeriote and Willard

[3].

(b) Using a different method, Mitschke [20] proved that the variety I of

implication algebras has no near-unanimity term. Since Baker’s variety B is

interpretable in I, then Mitschke’s result furnishes another proof that B has no

near-unanimity term. The method in (a) can be applied also to I, providing

a shorter proof of the mentioned result by Mitschke. Simply argue as in (a)

above, defining the relevant variable of t1→t2 to be the relevant variable of t2
and dealing with some maximal element 1 rather than with 0. Thus we also

get that I has no cube term. Essentially, this is the argument hinted on [3, p.

1470]. In particular, 3-distributive 3-permutable varieties do not necessarily

have a cube term.

(c) The argument in (a) can be extended in order to give still another proof

that Baker’s variety is not 3-distributive. Indeed, 3-distributivity is equiva-

lent to the existence of ternary terms j1 and j2 satisfying x = j1(x, x, y) =

j1(x, y, x), j1(x, y, y) = j2(x, y, y) and j2(x, x, y) = j2(y, x, y) = y [9]. With

the same assumptions and definitions as in (a) above, the first equations imply

that the relevant variable of j1(x, y, z) is x, hence 0 = j1(0, b, b) = j2(0, b, b),

for every b ∈ B. Under the order induced by the semilattice operation, we

have that every term operation is monotone (this applies to B but not to the

variety of implication algebras!), hence 0 = j2(0, b, b) ≥ j2(0, 0, b) = b, which is

impossible if B is taken to be of cardinality ≥ 2. Thus B is not 3-distributive.

In fact, in the above argument we have not used the equation j2(y, x, y) = y.

This shows that B does not even satisfy α(γ ◦ β) ⊆ αγ ◦ β ◦ γ, equivalently,

taking converses, B does not satisfy α(β ◦ γ) ⊆ γ ◦β ◦αγ. This negative result

shall be improved in the following Proposition. Compare equation (2.8) below.

In the terminology from [15], Theorem 2.1 implies that JB(n− 1) = 2n− 1,

for n even and that JB(n−1) = 2n−2, for n odd. In [15] we have also considered

“reversed” Jónsson spectra, given by identities like α(β ◦n γ) ⊆ αγ ◦k αβ. We

are going to see that the proof of Theorem 2.1 gives exact bounds for identities

of the above kind both in B andN4, as well as in their distributive counterparts.

Moreover, it follows from results by Tschantz [21] that, for every congruence

modular variety V and every n, there is some k such that V satisfies α(β◦nγ) ⊆

α(γ ◦ β) ◦ (αγ ◦k αβ). See, e. g., [15, Section 4] for details. Of course, in a

congruence distributive variety we already know that α(β◦nγ) ⊆ αβ◦k′αγ, for
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some k′. However, in principle, it might happen that Tschantz-like formulae

provide a value of k much smaller than k′. This is not the case for B and N4.

Proposition 2.3. Suppose that n ≥ 2 and V is either B, Bd, N4 or N d
4 . Then

V satisfies the following identities.

α(β ◦n γ) ⊆ αγ ◦2n+1 αβ for n even, (2.6)

α(β ◦n γ) ⊆ αγ ◦2n αβ for n odd, (2.7)

α(β ◦n γ) ⊆ α(γ ◦ β) ◦ (αγ ◦2n−1 αβ) for n even, (2.8)

α(β ◦n γ) ⊆ α(γ ◦ β) ◦ (αγ ◦2n−2 αβ) for n odd, (2.9)

and the values of the indices on the right-hand sides give the best possible

bounds. Actually, V fails to satisfy

α(β ◦ (αγ ◦n−2 αβ) ◦ γ) ⊆ α(γ ◦ β) ◦ (αγ ◦2n−4 αβ) ◦ α(γ ◦ β), for n even,

α(β ◦ (αγ ◦n−2 αβ) ◦ β) ⊆ α(γ ◦ β) ◦ (αγ ◦2n−5 αβ) ◦ α(β ◦ γ), for n odd.

Proof. Equations (2.6) - (2.9) are immediate from (2.1) and (2.2), since, say,

αβ ◦2n αγ ⊆ αγ ◦2n+1 αβ and αβ ⊆ α(γ ◦ β).

The proof of Theorem 2.1 shows that the bounds on the right-hand sides

of (2.6) and (2.7) are optimal. Indeed, in the proof that (2.3) and (2.4) fail

we have observed that c0 is αγ-connected to no other element of B↑, hence we

“lose one turn” if we want the chain to start with αγ. Actually, we have that,

say, for n even, already α(β ◦ (αγ ◦n−2 αβ) ◦ γ) ⊆ αγ ◦2n αβ fails in V .

In order to show that the indices in (2.8) and (2.9) are best possible, we

shall modify the construction in the proof of Theorem 2.1. With the definitions

and notations in the mentioned proof, let B− = B \ {(n, 0, ↓), (0, n, ↓)}. We

claim that B− is (the base set for) an algebra in, say, N4. We shall show that

if a1, a2, a3, a4 ∈ B−, then it is not the case that u(a1, a2, a3, a4) = (n, 0, ↓).

Indeed, since c0 is the only element of B− with first component n, if the first

component of u(a1, a2, a3, a4) is n, then at least three arguments of u have n as

the first component, hence at least three arguments of u are equal to c0, thus

u(a1, a2, a3, a4) is itself c0. Notice that, by construction, n is the maximum

possible value for the first component. Similarly, if a1, a2, a3, a4 ∈ B−, then

u(a1, a2, a3, a4) is not (0, n, ↓), hence B− is an algebra in N4.

We have that c0 is γ-connected to no other element of B−, because of clause

(aγ) in the definition of γ. Thus if c0 α(γ ◦ β) f in B−, for some f , then

c0 γ e β f , for some e, hence necessarily c0 = e and c0 αβ f . Thus if, say, n is

even and we suppose by contradiction that (c0, cn) ∈ α(γ ◦ β) ◦ (αγ ◦2n−2 αβ),

then we would have (c0, cn) ∈ αβ ◦2n−1 αγ, but this is impossible because of

the counterexample constructed in the proof of Theorem 2.1. Hence we cannot

get better bounds in (2.8) or (2.9). Performing also the symmetric argument,

we have that V fails to satisfy the last equations in the statement. �
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Recall that a variety V is n-modular if V satisfies the identity α(β◦αγ◦β) ⊆

αβ ◦n αγ. Cf. Day [6]. Equations (2.2) and (2.4) in Theorem 2.1 in the case

n = 3 provide the following corollary.

Corollary 2.4. The varieties B, Bd, N4 and N d
4 are 4-distributive, 5-modular

and not 4-modular.

3. Some relation identities

We shall use R, S and T as variables for reflexive and admissible binary

relations and Θ as a variable for tolerances. All the relations considered in

the present note are assumed to be reflexive, hence we shall sometimes simply

say admissible in place of reflexive and admissible. In [15, Proposition 3.1] we

noticed that congruence distributive varieties satisfy also relation identities of

the form Θ(R ◦n S) ⊆ ΘR ◦k ΘS. This is a consequence of results by Kazda,

Kozik, McKenzie and Moore [12]. See [15] for further details and references.

We do not know whether every congruence distributive variety satisfies

T (R ◦ S) ⊆ TR ◦k TS, for some k. However, we showed in [16] that the

above relation holds in Baker’s variety with k = 4. In the present section we

shall provide exact bounds for identities of the above kind, both in the case of

B and in the case of N4. We shall exhibit a subtle difference between the two

varieties, when relation identities are concerned. Compare Theorems 3.1, 4.1

and Proposition 3.2 below. On the other hand, as we showed in the previous

section, B and N4 behave in the same way as far as congruence identities are

concerned.

Each result in the present and in the following section holds for B if and

only if it holds for Bd. In fact, we shall never use lattice distributivity in the

proofs; on the other hand, all the counterexamples we shall deal with are based

on the construction in the proof of Theorem 2.1 and this construction is the

reduct of a distributive lattice. Similarly, each result holds for N4 if and only

if it holds for N d
4 . For the sake of simplicity, we shall not mention Bd and

N d
4 explicitly in the following statements. However, the reader might always

consider Bd in place of B and N d
4 in place of N4 in what follows.

Recall that, if n is odd, we sometimes write R◦S ◦ n. . .◦R in place of R◦nS,

when we want to make clear that the last factor is R.

Theorem 3.1. If n ≥ 2, then the following identities are satisfied:

T (R ◦n S) ⊆ TR ◦2n TS, by B, N4, n even; (3.1)

T (R ◦n S) ⊆ (TR ◦ TS ◦ n... ◦ TR) ◦ (TR ◦ TS ◦ n... ◦ TR), by B, n odd; (3.2)

T (R ◦n S) ⊆ TR ◦2n−1 TS, by N4, n odd, (3.3)

and the bounds on the right are best possible; moreover, B fails to satisfy

α(Θ ◦n γ) ⊆ αΘ ◦2n αγ, (3.4)

for n odd, where Θ is a tolerance and α and γ are congruences.
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Before proving Theorem 3.1 we shall prove Proposition 3.2 below, a more

general result whose formulation, however, is more involved. The statement

of Theorem 3.1 suggests that, for n even, B and N4 behave in the same way

and no essential difference seems to appear in comparison with the previous

section. On the other hand, for n odd, Theorem 3.1 shows that N4 satisfies

the somewhat stronger identity (3.3). However, in a sense, N4 behaves better

than B for every value of the index n, as we shall show in Proposition 3.2. The

difference between B and N4 will appear in a clearer light in Theorem 4.1.

After the proof of Proposition 3.2, furnishing the positive side of Theorem

3.1, we shall present the example of a tolerance on (B, b), the algebra con-

structed in the proof of Theorem 2.1. The example shall then be used in order

to show that the bounds in identity (3.2) are optimal.

For a binary relation R, let Rn denote the n-fold composition of R with

itself, that is, Rn = R ◦n R. If R and S are binary relations, let R ∪ S denote

the smallest admissible relation containing both R and S.

Proposition 3.2. For every n ≥ 2, the following identities are satisfied:

by B: T (R1 ◦R2 ◦ . . . ◦Rn) ⊆ (TR1 ◦ TR2 ◦ . . . ◦ TRn)
2; (3.5)

by N4: T (R1 ◦R2 ◦ . . . ◦Rn−1 ◦Rn) ⊆ TR1 ◦ TR2 ◦ . . . ◦ TRn−1◦

T (TRn ◦ TR1)(Rn ∪R1) ◦ TR2 ◦ . . . ◦ TRn−1 ◦ TRn.
(3.6)

Proof. Were T a congruence, the proof of (2.1) in Theorem 2.1 would give

a proof of (3.5), since in the proof of Theorem 2.1 we have not used the

assumption that β and γ are congruences, we have only used that β and

γ are admissible relations. Dealing with many relations instead of just two

relations presents no new difficulty. At certain places in Theorem 2.1 we need

transitivity of β, but this is not necessary here, according the formulations of

Theorem 3.1 and Proposition 3.2. For example, were both T and R transitive

in equation (3.2), then the two adjacent occurrences of TR would absorb into

one. This is the reason why the indices in Theorem 2.1 can be improved by

one in the case n odd, since α and β there are congruences, hence transitive.

But we are not assuming transitivity in Theorem 3.1 and in Proposition 3.2;

correspondingly, we are not asking for the stronger conclusions.

We have to give a proof of Proposition 3.2 in the case when T is just an

admissible relation. This involves considering a different sequence of elements

in comparison with the sequence described in (2.5). We shall first give the proof

of (3.5) for B; then we shall improve (3.5) to (3.6) for N4 by an additional and

somewhat delicate argument.

Suppose that (a, d) ∈ T (R1◦R2 ◦ . . .◦Rn) in some algebra in B. This means

that a T d and that there are elements ci such that a = c0 R1 c1 R2 c2 . . . Rn−1

cn−1 Rn cn = d. In what follows, we shall write, say, a(d + c1) for b(a, d, c1),

and a(d+ c1)(d+ c2) for b(b(a, d, c1), d, c2). Equations like a(d+ c1)(d+ c1) =

a(d+c1) or a(d+c1)(a+c2) = a(d+c1) hold in B since corresponding equations

hold in lattices. Consider the following elements.
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g0 = a g1 = a(d+ c1)

g2 = a(d+ c1)(d+ c2) . . .

gn−1 = a(d+ c1)(d+ c2) . . . (d+ cn−1) gn = h0 = ad

h1 = d(a+ c1)(a+ c2) . . . (a+ cn−1) h2 = d(a+ c2) . . . (a+ cn−1)

. . . hn−1 = d(a+ cn−1) hn = d

We have gi TRi+1 gi+1 for i < n and similarly for the hi’s. Indeed, for

example,

g1 = a(d+ c1) = a(d+ c1)(a+ c2) T a(d+ c1)(d+ c2) = g2, and

g1 = a(d+ c1) = a(d+ c1)(d+ c1) R2 a(d+ c1)(d+ c2) = g2.

Notice that, in the definition of the gi’s, when going from gn−1 to gn we

follow the preceding pattern; indeed, according to the pattern, gn would be

a(d+ c1) . . . (d+ cn−1)(d + cn) = a(d+ c1) . . . (d + cn−1)(d + d) which in fact

is equal to ad. Thus we have (a, gn) ∈ TR1 ◦ TR2 ◦ . . . ◦ TRn and (h0, d) ∈

TR1 ◦TR2 ◦ . . . ◦TRn, hence (a, d) ∈ (TR1 ◦TR2 ◦ . . . ◦TRn)
2, since gn = h0.

We have proved (3.5).

In passing, let us remark that the above elements g0, g1, . . . , gn = h0,

. . . , hn−1, hn satisfy some additional relation identities. We have that each

element in the above chain is T -related with every element which follows. For

example, gn−1 T h1, since

gn−1 = a(d+c1) . . . (d+cn−1) = a(d+c1) . . . (d+cn−1)(a+c1) . . . (a+cn−1) T

d(d+ c1) . . . (d+ cn−1)(a+ c1) . . . (a+ cn−1) = d(a+ c1) . . . (a+ cn−1) = h1.

All the other relations are proved in a similar way.

The proof of equation (3.6) involves the same chain of elements, this time

working in N4. Notice that the above elements are expressible in N4, since

b(x1, x3, x4) = u(x1, x1, x3, x4) = x1(x3 + x4). In the above-displayed for-

mula we have showed gn−1 T h1. It remains to show that, in addition,

gn−1 Rn ∪R1 h1. In order to prove this relation, we shall write gn−1 =

a(d+ c1) . . . (d+ cn−1) as u(a, a, d, cn−1) · (d+ c1) . . . (d+ cn−2). This formula

should be interpreted in the sense that, say, u(a, a, d, cn−1) · (d + c1) is an

abbreviation for b(u(a, a, d, cn−1), d, c1), and we can add further factors of the

form (d + cj) by iterated applications of b, as we did in the first part of the

proof. The identities we shall use will all follow from corresponding identities

holding in lattices. Now we compute

gn−1 = a(d+ c1) . . . (d+ cn−2)(d+ cn−1) =

a(d+ cn−1)(d + c1) . . . (d+ cn−2)(a+ c2) . . . (a+ cn−1) =

u(a, a, d, cn−1) · (d+ c1) . . . (d+ cn−2)(a+ c2) . . . (a+ cn−1) Rn ∪R1

u(a, c1, d, d) · (d+ c1) . . . (d+ cn−2)(a+ c2) . . . (a+ cn−1) =
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d(a+ c1)(d + c1) . . . (d+ cn−2)(a+ c2) . . . (a+ cn−1) =

d(a+ c1)(a+ c2) . . . (a+ cn−1) = h1.

Thus gn−1 Rn ∪R1 h1 and the proof of Proposition 3.2 is complete. �

Recall the definitions of α, β, γ, B, B↑ from the proof of Theorem 2.1. Let

B↓ = B \B↑ be the set of those elements of B with a third ↓ component. Let

E = {e0, . . . en} and F = {f0, . . . fn}, where e0, . . . , fn are the elements in the

displayed list (B↑) in the proof of Theorem 2.1. We now present the example

of a tolerance on (B, b). Recall that (B, b) is an algebra in B.

Example 3.3. Let Λ be the binary relation on B defined as follows. Two

elements x and y of B are Λ-related if and only if either

(a) both x and y belong to E, or

(b) both x and y belong to F , or

(c) at least one of x and y belongs to B↓.

We are going to show that Λ is a tolerance on (B, b).

Indeed, Λ is clearly symmetric and reflexive, since B↑ = E ∪ F , hence

B↓ = B \ (E ∪ F ). We have to check that Λ is admissible. Suppose that

x1 Λ y1, x2 Λ y2 and x3 Λ y3 are elements of B. Letting x = b(x1, x2, x3) and

y = b(y1, y2, y3), we have to show that x Λ y. If either x ∈ B↓ or y ∈ B↓,

there is nothing to prove. If both x = b(x1, x2, x3) and y = b(y1, y2, y3) belong

to B↑, that is, they have a last ↑ component, then both x1 and y1 have a last

↑ component, that is, x1, y1 ∈ B↑. By the definition of Λ, either x1, y1 ∈ E

or x1, y1 ∈ F , and, correspondingly, x1 and y1 either both have a null second

component or have a null first component; hence this applies to x and y, too.

By the description of B↑ in the proof of Theorem 2.1, if x and y have a null

second component, then they both belong to E, and if x and y have a null first

component, then they both belong to F . We have showed that x Λ y, thus Λ

is admissible (we have not used the assumption that x2 Λ y2 and x3 Λ y3).

On the other hand, Λ is not admissible on (B, u); see Remark 4.2.

Proof of Theorem 3.1. The positive result that equations (3.1) - (3.3) hold is

an immediate consequence of Proposition 3.2, taking R1 = R3 = · · · = R and

R2 = R4 = · · · = S. Notice that if n is odd, then Rn = R1 = R, hence the

factor T (TRn ◦ TR1)(Rn ∪R1) in (3.6) becomes TR, thus we get (3.3) from

(3.6).

The bounds given by equations (3.1) and (3.3) are optimal even in the case

of congruences, as shown by equations (2.2) and (2.4) in Theorem 2.1. As

soon as we show that (3.4) fails, we get that (3.2) is the best possible result; in

particular, the two adjacent occurrences of TR in the middle of the right-hand

side of (3.2) do not always “absorb into one”, even in the case when T is a

congruence and R is a tolerance.

To show that (3.4) can fail, consider the construction in the proof of Theo-

rem 2.1 in the case n odd, this time taking B = (B, b) in place of B = (B, u).

Let Θ = Λβ, where Λ is the tolerance constructed in Example 3.3. Proceed as
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in the proof of Theorem 2.1 and notice that (c0, cn) ∈ α(Θ ◦n γ), as witnessed,

again, by c1, c2, . . . In the case at hand en−1 = (1, 0, ↑) and f1 = (0, 1, ↑) are

not Θ-related, since they are not Λ-related. Hence here we cannot skip the

passage from en−1 to en, as we did in the case n odd in the proof of Theorem

2.1. Of course, we do have (c0, cn) ∈ (αΘ ◦αγ ◦ n. . .◦αΘ)◦ (αΘ ◦αγ ◦ n. . .◦αΘ),

as shown be equation (3.2); however, we lose one more turn if we want that

αΘ and αγ strictly alternate on the right-hand side of (3.4), hence we cannot

have (c0, cn) ∈ αΘ ◦2n αγ. �

Notice that the above argument shows that even the identity α(Θ ◦ (αγ ◦

αΘ ◦ n−2. . . ◦ αγ) ◦Θ) ⊆ αΘ ◦2n αγ fails in B, for n odd.

Remark 3.4. In [14] we have showed that, under a fairly general hypothesis,

any congruence identity is equivalent to the corresponding tolerance identity,

provided that only tolerances representable as R ◦ R` are considered in the

latter identity. Here R` denotes the converse of R.

Equations (2.2) in Theorem 2.1 and (3.4) in Theorem 3.1 show that, in

general, the assumption of representability is necessary in the results from

[14]. A similar counterexample has been presented in [19].

It follows from [14] that the tolerance Θ used in the proof of Theorem 3.1

is not representable. It can be checked directly that in (B, b) neither Θ for n

odd, nor Λ for every n are representable, where Λ is the tolerance constructed

in Example 3.3. In fact, if R is reflexive and admissible, c0 R ◦R` c1 and

cn−1 R ◦R` cn, then en−1 R ◦R` f1. Indeed, if c0 R g R` c1 and cn−1 R

h R` cn, then cn R h and g R` c0, hence en−1 = c0(cn−1 + cn) R g(h+ h) =

gh = h(g + g) R` cn(c0 + c1) = f1.

4. Identities with just two relations

If R is a congruence, or just a transitive relation, then then there is no point

in considering identities of the form T (R ◦R) ⊆ something, since R ◦R = R.

In passing, let us point out that this latter identity R ◦ R = R is equivalent

to congruence permutability, as noticed independently by Hutchinson [8] and

Werner [22]. If we only suppose that R is admissible, many more identities of

the form T (R ◦R) ⊆ something become interesting. For example, we showed

in [18] that a variety V is congruence modular if and only if there is some k

such that V satisfies the identity Θ(R ◦R) ⊆ (ΘR)k.

In the present section we evaluate the best possible bounds for identities

of the above kind both in B (equivalently, Bd) and N4 (equivalently N d
4 ). In

a certain respect, here the situation is simpler than in the preceding sections,

since we do not need the division into the two cases n odd and n even; more-

over, the bounds for N4 are always better than the bounds for B. Notice that

all the identities considered in the present section are strictly weaker than
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congruence distributivity, since they might hold in non distributive congru-

ence modular varieties; actually, all the identities below hold in congruence

permutable varieties.

Theorem 4.1. For n ≥ 2, the following identities are satisfied:

by B: TRn ⊆ (TR)2n (4.1)

by N4: TRn ⊆ (TR)2n−1 (4.2)

and the exponents on the right are best possible; actually,

B fails to satisfy α(Θ ◦ (αΘ)n−2 ◦Θ) ⊆ (αΘ)2n−1, and (4.3)

N4 fails to satisfy α(Θ ◦ (αΘ)n−2 ◦Θ) ⊆ (αΘ)2n−2. (4.4)

Proof. Identities (4.1) and (4.2) are immediate from identities (3.1) - (3.3) in

Theorem 3.1, taking S = R; they can also be obtained directly from Proposi-

tion 3.2.

We first show that (4.4) can fail, hence the bound in (4.2) is best possible.

Consider again the counterexample (B, u) constructed in the proof of Theorem

2.1. Let Ψ be the binary relation on B defined in such a way that two elements

x and y in B are Ψ-related if and only if

(d) for each ℓ = 1, 2, the components xℓ and yℓ differ at most by 1.

We claim that Ψ is a tolerance on B. Indeed, condition (d) defines a tol-

erance ΨL on the lattice L = Cn+1 × Cn+1 × C2, since ΨL is a product of

tolerances on the factors. Hence ΨL is a tolerance on the polynomial reduct

(L, u) and Ψ, being the restriction of ΨL to B, is a tolerance, too.

Now we have (c0, cn) ∈ α(Ψ◦(αΨ)n−2◦Ψ), again, as witnessed by c1, c2, . . .

On the other hand, as in the proof of Theorem 2.1, the only other element

αΨ-connected to c0 = e0 is e1, the only other element αΨ-connected to e1 is

e2 and so on, until we reach en−1, which is αΨ-connected only to en−2 (but

this has no use), to en = f0 and to f1. We get the fastest path going directly

through f1; in any case, we need 2n − 1 steps, thus (c0, cn) ∈ (αΨ)2n−2 fails

in N4. Hence (4.4) fails with Ψ in place of Θ.

In order to disprove the identity in (4.3), let us work in (B, b) instead.

Recall that (B, b) ∈ B. The relation Ψ defined above is a tolerance on (B, b),

being a tolerance on (B, u). Let Θ = ΛΨ, where Λ is the tolerance defined

in Example 3.3. As above, we have (c0, cn) ∈ α(Θ ◦ (αΘ)n−2 ◦ Θ). We have

that (c0, cn) ∈ (αΘ)2n−1 fails, since any chain of αΘ-related elements from c0
to cn must contain all the elements of B↑. The difference with the previous

case dealing with N4 is that here en−1 and f1 are not Θ-related, being not

Λ-related, hence one more step is necessary. �

Remark 4.2. In Example 3.3 we have seen that Λ is a tolerance on (B, b). It

follows from the above proof that Λ is not a tolerance on (B, u). It is easy to

see directly that Λ is not even compatible in (B, u); otherwise, we would get

en−1 = u(c0, c0, cn−1, cn) Λ u(c0, c1, cn, cn) = f1, a contradiction.
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As a small improvement on some results in this and in the previous section,

notice that in the identities in (3.1), (3.2), (4.1) and (3.5) it is enough to assume

that T , R and S are set-theoretical unions of admissible relations. Indeed, in

the proofs only one element is moved at a time. Cf. [16].

The following lemma provides a simpler argument to show that the exponent

on the right in the identity in (4.2) cannot be improved. Recall that if T

is a binary relation on some algebra, T denotes the smallest reflexive and

admissible relation containing T . The definition of n-modularity has been

recalled shortly before Corollary 2.4.

Lemma 4.3. Let V be any variety.

(1) If V satisfies α(R ◦R) ⊆ (αR)k, then V is 2k-modular.

(2) More generally, if V satisfies α(R ◦n R) ⊆ (αR)k, for some n ≥ 2, then

V satisfies α(β ◦2n αγ) ⊆ αβ ◦2k αγ.

(3) If k ≥ 2 and V satisfies α(R ◦S) ⊆ αR ◦ (α(R ∪ S))k−1, then V is 2k− 1-

modular.

Proof. (1) Taking R = β ◦ αγ, we have α(β ◦ αγ) = αβ ◦ αγ, hence

α(β ◦ αγ ◦ β) ⊆ α(β ◦ αγ ◦ β ◦ αγ) = α(R ◦R) ⊆

(αR)k = (α(β ◦ αγ))k = (αβ ◦ αγ)k = αβ ◦2k αγ.

(2) is proved in the same way.

(3) Take R = β, S = αγ◦β and observe that R∪S = αγ◦β is admissible. �

Thus N4 fails to satisfy TR2 ⊆ (TR)2, since otherwise N4 would be 4-

modular, by 4.3(1), contradicting Corollary 2.4.

More generally, equation (4.2) cannot be improved to TRn ⊆ (TR)2n−2,

since otherwise Lemma 4.3(2) would give

α(β ◦ (αγ ◦ αβ ◦ 2n−3. . . ◦ αγ) ◦ β) ⊆ α(β ◦2n αγ) ⊆4.3(2) αβ ◦4n−4 αγ, (4.5)

where the superscript in⊆4.3(2) means that we are applying item (2) in Lemma

4.3. Taking m = 2n− 1 in (4.5), we get 2n− 3 = m− 2 and 4n− 4 = 2m− 2,

thus equation (4.5) becomes equation (2.4) in Theorem 2.1 with m in place of

n and Theorem 2.1 shows that this equation fails for N4.

Remark 4.4. Recall that R` denotes the converse of the relation R. It is not

difficult to show that a variety V is k+1-modular if and only if V satisfies the

identity

α(R ◦R`) ⊆ αR ◦k αR
`. (4.6)

See [18], where it is also shown that α can be equivalently taken to vary among

tolerances. If we let R = Θ be a tolerance in (4.6), we get

α(Θ ◦Θ) ⊆ (αΘ)k. (4.7)

Clearly, in turn, (4.7) implies back congruence modularity; actually, (4.7)

implies 2k+2-modularity (perhaps the bound 2k+2 can be improved). Indeed,
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taking Θ = αγ ◦ β ◦ αγ in (4.7) we get

α(β ◦ αγ ◦ β) ⊆ α(αγ ◦ β ◦ αγ ◦ β ◦ αγ) = α(Θ ◦Θ) ⊆(4.7)

(αΘ)k = (αγ ◦ αβ ◦ αγ)k = αγ ◦2k+1 αβ ⊆ αβ ◦2k+2 αγ.

Theorem 4.1 shows that the best value of k in (4.7) for a congruence mod-

ular variety V is not determined by the Day modularity level of V (and it

is not determined by the Jónsson distributivity level, either, for congruence

distributive varieties). Indeed, both B and N4 are 5-modular, not 4-modular,

4-distributive and not 3-distributive, but the best value for k in (4.7) is 4 for

B and 3 for N4: just take n = 2 in Theorem 4.1. In particular, the variety N4

shows that (4.7) for some given k does not imply k + 1-modularity.

Remark 4.5. Since the identity

α(R ◦R) ⊆ (αR)k (4.8)

implies (4.7), then, by the above remark, the identity (4.8) implies congruence

modularity. This follows also directly from Lemma 4.3. As we mentioned in

the introduction, it is shown in [18] that the converse holds, that is, every

congruence modular variety satisfies (4.8), for some k. Again, this argument

from [18] relies heavily on [12].

As in Remark 4.4, we get that Theorem 4.1 shows that the best value of k

in (4.8) for a variety V is not determined by the Day modularity level of V . It

is likely that there is some variety V such that the best value of k in (4.7) is

strictly smaller than the best value of k in (4.8). The varieties considered here

do not furnish a (counter-)example for this possible inequality.

5. Near-unanimity and edge terms

Of course, it is an interesting problem to evaluate the distributivity spectra

of other congruence distributive varieties. Varieties with a near-unanimity

term appear to be a significant test case. Recall that R, S, T, . . . denote

reflexive and admissible relations, Θ denotes a tolerance and R ∪ S denotes

the smallest admissible relation containing both R and S.

Proposition 5.1. Suppose that m ≥ 1 and that the variety V has an m+2-ary

near-unanimity term. Then, for every n ≥ 2, the variety V satisfies

α(β ◦n γ) ⊆ αβ ◦mn αγ for n even, (5.1)

α(β ◦n γ) ⊆ αβ ◦1+m(n−1) αγ for n odd, (5.2)

Θ(R ◦n R) ⊆ (ΘR)1+m(n−1) for every n. (5.3)

Taking n = 2 in equation (5.1) we get that V is 2m-distributive [20]. Taking

n = 3 in equation (5.2) with αγ in place of γ, we get that V is 2m+1-modular.

In fact, we shall prove a more general result.
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Proposition 5.2. Under the assumptions in Proposition 5.1, V satisfies

Θ(R1 ◦R2 ◦ . . . ◦Rn) ⊆ ΘR1 ◦ΘR2 ◦ . . . ◦ΘRn−1 ◦Θ(Rn ∪R1) ◦

ΘR2 ◦ . . . ◦ΘRn−1 ◦Θ(Rn ∪R1) ◦

. . .ΘR2 ◦ . . . ◦ΘRn−1 ◦ΘRn,

(5.4)

with m lines, that is, with a total of 1 +m(n− 1) factors (a total of m(n− 1)

occurrences of ◦) on the right-hand side.

Equation (5.4) should read Θ(R1◦ . . .◦Rn) ⊆ ΘR1◦ΘR2◦ . . .◦ΘRn−1◦ΘRn

when m = 1 and Θ(R1 ◦ . . . ◦Rn) ⊆ ΘR1 ◦ . . . ◦ΘRn−1 ◦Θ(Rn ∪R1) ◦ ΘR2 ◦

. . . ◦ΘRn when m = 2.

Proofs. Suppose that u is an m + 2-ary near-unanimity term, a Θ d and

a R1 c1 R2 c2 . . . cn−2 Rn−1 cn−1 Rn d. Then

a = u(a, . . . , a, a, a, d) R1 u(a, . . . , a, a, c1, d) R2 u(a, . . . , a, a, c2, d) . . .

Rn−1 u(a, . . . , a, a, cn−1, d) Rn ∪R1 u(a, . . . , a, c1, d, d) R2 u(a, . . . , a, c2, d, d)

. . .

Rn−1 u(a, a, cn−1, d, . . . , d) Rn ∪R1 u(a, c1, d, d, . . . , d) R2 u(a, c2, d, d, . . . , d)

. . . Rn−1 u(a, cn−1, d, d, . . . , d) Rn u(a, d, d, d, . . . , d) = d.

In the above chain of relations we have only used a minimal part of the

assumption that u is a near-unanimity term: we have used only the two special

cases in which the “dissenter” is either the first or the last element. The full

assumption will be used in order to show that all the above elements are Θ-

related. Were Θ = α a congruence, this would be trivial, since

u(a, . . . , a, cj , d, . . . , d) α u(a, . . . , a, cj , a, . . . , a) = a =

u(a, . . . , a, ck, a, . . . , a) α u(a, . . . , a, ck, d, . . . , d),

for all pairs of indices j and k and where the cj ’s and the ck’s can occur in

any pair of possibly distinct positions.

Notice that the case in which Θ is a congruence is enough in order to

prove (5.1) and (5.2) in Proposition 5.1. Formally, (5.1) does not follow

from (5.4); however in (5.4) we can replace each occurrence of Θ(Rn ∪R1)

by ΘRn ◦ΘR1. Indeed, say, u(a, . . . , a, a, cn−1, d) ΘRn u(a, . . . , a, a, d, d) ΘR1

u(a, . . . , a, c1, d, d).

It remains to consider the case in which Θ is only supposed to be a tolerance.

The argument resembles a proof in Czédli and Horváth [4]. As above, we shall

show that any two elements in the above chain (disregarding their ordering,

that is, slightly more than required) are Θ-related. Indeed,

u(a, . . . , a, cj , d, . . . , d) =

u(u(. . . a, ck, a . . . ), . . . u(. . . a, ck, a . . . ), cj , u(. . . d, ck, d . . . ), . . . u(. . . d, ck, d . . . )) Θ

u(u(. . . a, ck,
|

d . . . ), . . . u(. . . a, ck,
|

d . . . ), cj , u(. . .
|
a, ck, d . . . ), . . . u(. . .

|
a, ck, d . . . )) =

u(a, . . . , a, ck, d, . . . , d),
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again, for all pairs of indices j and k and where the cj’s and the ck’s can occur

in any pair of possibly distinct positions. In the above-displayed formula the

vertical bars link distinct Θ-related elements and, in order to keep the formula

within a reasonable length, we have written, say, u(. . . a, ck, d . . . ) in place of

u(a, a, . . . , a, a, ck, d, d, . . . , d, d). In conclusion, we get that (a, d) belongs to

the right-hand side of (5.4). �

Equations (5.1) and (5.2) show that a variety with a near-unanimity term

is congruence distributive, a result originally due to Mitschke [20]. The above

proof seems simpler than the one from [20] and uses folklore ideas. Cf., e. g.,

Kaarli and Pixley [11, Lemma 1.2.12], whose proof is credited to E. Fried.

Notice that here and in [11, Lemma 1.2.12], as well, it is not necessary to use

Jónsson’s characterization [9] of congruence distributive varieties.

From a more recent point of view, (5.4) might be seen as a combination of

two observations. First, the fact that a near-unanimity term easily yields a

set of directed Jónsson terms; see, e. g., Barto and Kozik [2, Section 5.3.1].

Second, the observation in [15] that directed Jónsson terms not only imply

congruence distributivity, but also imply certain similar relation identities.

The technical idea of merging Rn and R1, so as to obtain a smaller number of

factors in (5.4) and (5.3) seems new, at least in the present context.

We do not know whether we can replace the tolerance Θ by an admissible

relation T in (5.4) and (5.3) (with or without the same number of factors

on the right). Apart from this, the variety of lattices shows that the results

in Proposition 5.1 are best possible when m = 1. Since u is a 4-ary near-

unanimity term in N4, then Theorems 2.1, 3.1 and 4.1 show that the values of

the indices on the right-hand sides of Proposition 5.1 are best possible when

m = 2.

We now turn to edge terms, an important generalization of near-unanimity

terms. Berman, Idziak, Marković, McKenzie, Valeriote and Willard [3] have

introduced edge terms in [3], providing equivalent characterizations for their

existence. Further characterizations have been found by Kearnes and Szendrei

in [13].

If k ≥ 2, a k + 1-ary term t is a k-edge term for some variety V if the

equations x = t(y, y, x, x, . . . , x) = t(x, y, y, x, . . . , x) hold and, moreover, all

the equations of the form x = t(x, x, x, . . . , y, . . . ) hold in V , where a single

occurrence of y appears in any place after the third place, surrounded by x’s

elsewhere. We have used here the formulation from [13] in which the first two

places are exchanged. Notice that a k-ary near-unanimity term becomes a

k-edge term by adding a dumb variable at the second place. The following

proposition provides, among other, still another proof that varieties with an

edge term are congruence modular.

Proposition 5.3. If k ≥ 3 and V has a k-edge term, then V satisfies

Θ(R ◦R) ⊆ (ΘR)k−1 and, more generally, (5.5)
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Θ(R ◦ S) ⊆ ΘR ◦ (Θ(R ∪ S))k−2. (5.6)

Thus V is 2k − 3-modular by Lemma 4.3(3).

Proof. The proof is similar to the proof of Proposition 5.1, with a variation

“near the edge”. Equation (5.5) is the particular case R = S of equation (5.6),

hence it is enough to prove the latter. If a Θ d and a R c S d, then

a = t(a, a, a, a, a, a, . . . , a, a, a, d) R

t(a, a, a, a, a, a, . . . , a, a,
|
c, d) R ∪ S

t(a, a, a, a, a, a, . . . , a,
|

c,
|

d, d) R ∪ S . . .

. . . t(a, a, a, a, c, d, . . . , d, d, d, d) R ∪ S

t(a, a, a,
|

c,
|

d, d, . . . , d, d, d, d) R ∪ S

t(a,
|

c,
|

c,
|

d, d, d, . . . , d, d, d, d) R ∪ S

t(
|

c, c,
|

d, d, d, d, . . . , d, d, d, d) = d

The proof that all the above elements are Θ-related is similar to the corre-

sponding proof in 5.1. For example,

t(a, c, c, d...) = t(t(a, a, a, c, a...), c, c, t(d, d, d, c, d...)...) Θ

t(t(a, a, a, c,
|

d...), c, c, t(
|

a,
|

a,
|

a, c, d...)...) = t(a, a, a, c, d...).�

Remark 5.4. Merging the proofs of Propositions 5.2 and 5.3 we get that if

k ≥ 4 and V has a k-edge term, then, for every n ≥ 2, the variety V satisfies

Θ(R ◦ S)(R1 ◦ . . . ◦Rn) ⊆ ΘR1 ◦ΘR2 ◦ . . . ◦ΘRn−1 ◦Θ(Rn ∪R1) ◦

ΘR2 ◦ . . . ◦ΘRn−1 ◦Θ(Rn ∪R1) ◦

. . .ΘR2 ◦ . . . ◦ΘRn−1 ◦Θ(Rn ∪R) ◦Θ(R ∪ S),

with k − 3 lines.

6. Further remarks

Recall that α, β, γ, . . . denote congruences, Θ denotes a tolerance and R,

S, T, . . . denote reflexive and admissible relations.

Remark 6.1. It is standard and easy to show that varieties with a majority

term satisfy T (R ◦S) ⊆ TR ◦TS. See, e. g., [15, 16]. Since the composition of

two admissible relations is still admissible, then, by substitution and an easy

induction, we get that if V has a majority term, then, for every n ≥ 2, the

variety V satisfies T (R1 ◦R2 ◦ . . . ◦Rn) ⊆ TR1 ◦ TR2 ◦ . . . ◦ TRn.

Moreover, by taking T = (R3 ◦ R2)(R1 ◦ R3), we get that a variety with a

majority term satisfies (R1◦R2)(R3◦R2)(R1◦R3) ⊆ R1R3◦R1R2◦R1R2◦R2R3.
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Remark 6.2. In passing, we notice the curious fact that while, of course, the

identity α(β ◦ γ) = αβ ◦ αγ for congruences is equivalent to the existence of a

majority term, on the other hand, the identity

(α ◦ δ)(β ◦ γ) = αβ ◦ αγ ◦ δβ ◦ δγ (6.1)

is equivalent to arithmeticity. Notice that we are assuming equality, not just

inclusion.

To prove the claim, assume equation (6.1) and expand the product in two

ways, getting αβ ◦ αγ ◦ δβ ◦ δγ = αβ ◦ δβ ◦ αγ ◦ δγ. Then taking γ = α

and δ = β we get α ◦ β = αβ ◦ α ◦ β ◦ αβ = αβ ◦ β ◦ α ◦ αβ = β ◦ α, that is,

congruence permutability. On the other hand, by taking β = γ in (6.1), we get

2-distributivity, that is, a majority term. It is well-known that arithmeticity

is equivalent to congruence permutability together with the existence of a

majority term, hence our claim follows.

Remark 6.3. (a) It follows from [9] and is by now standard that, for every m,

some variety V satisfies the congruence identity

α(β ◦ γ) ⊆ αβ ◦m αγ (6.2)

if and only if (6.2) holds in FV(3), the free algebra in V generated by three

elements. Actually, what is relevant in the above sentence is the left-hand side

of (6.2); the sentence is true whenever we replace the right-hand side of (6.2)

with any expression in function of α, β, γ constructed by using intersection,

composition and even transitive closure.

Henceforth, a possible way to check whether some variety V satisfies (6.2),

or even many related identities, is to check (6.2) in FV(3). Actually, if x, y

and z are the generators of FV(3), it is enough to check (6.2) in the special

case when α, β and γ are the congruences generated, respectively, by the pairs

(x, z), (x, y), and (y, z). This is classical, by now. As we shall mention in

(e) below, the above procedure is not the simplest way to check (6.2), or to

check congruence distributivity; however, it is the one relevant to the following

discussion.

(b) Let us compute, for example, FBd(3). Since FBd(3) is naturally embed-

ded into FD(3), where D is the variety of distributive lattices, it is easy to see

that the elements of FBd(3) are

x, x(y + z), xy, xyz,

together with the elements arising from all the possible permutations of x, y

and z. Cf. [1]. The elements in the above list are exactly also the elements of

FNd

4

(3), since FBd(3) is closed under u. Indeed, if a ∈ FBd(3), then, by the

above description, either a ≤ x, or a ≤ y, or a ≤ z. Hence if a1, a2, a3, a4 ∈

FBd(3), then at least two elements are less than or equal to some generator,

say, a1, a2 ≤ x, thus u(a1, a2, a3, a4) ≤ x, hence u(a1, a2, a3, a4) ∈ FBd(3). Of

course, the above argument would fail, were we considering FV(4) in place of

FV(3).
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In a sense, computing FV(3) is a way to see that N d
4 and Bd satisfy exactly

the same identities of the form α(β ◦ γ) ⊆ something for congruences, for

many possible variations on the expression on the right. However, there is a

subtle related issue we are going to discuss soon.

(c) Consider now relation identities of the form

T (R ◦ S) ⊆ TR ◦m TS. (6.3)

Again, many variations are possible, including letting some variable be a con-

gruence or a tolerance. It is still true that some variety V satisfies (6.3) if and

only if (6.3) holds in FV(3).

The argument is standard but not very usual. To prove the non trivial

implication, let FV(3) be generated by x, y and z and R, S and T be the

smallest reflexive and admissible relations containing, respectively, the pairs

(x, z), (x, y) and (y, z). Since (x, z) ∈ T (R ◦ S), then, if (6.3) holds, there are

elements t0, . . . , tm ∈ FV(3) witnessing (x, z) ∈ TR ◦m TS. Since we are work-

ing in FV(3), the ti’s correspond to ternary terms of V . What does it mean,

say, that ti R ti+1? It is easy to see that R = {(w(x, y, z, x), w(x, y, z, z)) |

w a 4-ary term of V}. Hence ti(x, y, z) = wi(x, y, z, x) and wi(x, y, z, z) =

ti+1(x, y, z), for some 4-ary term wi. Similarly, the S- and T -relations are wit-

nessed by certain other 4-ary terms. Once we have found appropriate terms

and appropriate equations, it is standard to see that they witness that (6.3)

holds in V . See [16, Proposition 3.7] for full details.

(d) We now see an essential difference between the observations in (a) and

(c) above. By (b), we have FNd

4

(3) = FBd(3); nevertheless, we have seen in

Theorem 3.1 that N d
4 and Bd do not satisfy the same identities of the form

(6.3), in the sense that the best possible indices on the right are not the same.

At first, this might generate some perplexity, but in the end the explanation

is easy. The point is that, when considering congruence identities of the form

(6.2), only ternary terms are relevant; in other words, only the elements of

FV(3) are relevant. On the other hand, as shown in remark (c) above, though

the validity of (6.3) is checked in FV(3), the relevant terms, in this case, are

the 4-ary ones. Thus we have to deal with the algebraic structure of FV(3), not

simply with the set of its elements. Notice that, were we considering tolerance

identities, rather than relation identities, we should deal with 5-ary terms.

(e) In spite of the considerations in (a) above, working in FV(3) is not the

simplest way in order to check the validity of some congruence identity of the

form (6.2). Since Jónsson’s equations [9] are essentially two-variable equations,

a variety V is m-distributive if and only if FV(2) generates an m-distributive

variety (warning: it might happen that FV(2) is congruence distributive, but

the variety it generates is not!) In fact, it is enough to check m-distributivity

in an appropriate subalgebra of (FV(2))
3 and, for finite idempotent algebras,

there are even computationally more effective methods to check congruence

distributivity. Cf. Freese and Valeriote [7].
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Now consider, in general, a variety R which is obtained by taking polyno-

mial reducts of lattices. Then FR(2) is a polynomial reduct of FL(2), where

L is the variety of lattices. But FL(2) = FD(2), where D is the variety of dis-

tributive lattices, hence the variety generated by FR(2) is a polynomial reduct

of distributive lattices. This is one of the main arguments in the proof of [1,

Theorem 2] (warning: it is not necessarily the case that R itself is a reduct

of the variety of distributive lattices: this applies only to the subvariety of R

generated by FR(2)). Exactly as in [1], some results provable for B extend

to every variety which is a congruence distributive polynomial reduct of some

variety of lattices. This is the content of the next theorem, where we shall also

show that there are limitations to the counterexamples which can be furnished

by polynomial reducts of Boolean algebras.

If P is a set of lattice terms and L is a lattice, we denote by LP the algebra

with base set L and with, as basic operations, those induced by the terms of P .

If V is a variety of lattices, we let VP be the variety generated by all algebras

LP , with L varying in V . If W = VP , for some P , we shall say that W is a

polynomial reduct of V .

Theorem 6.4. (1) If the variety W is a congruence distributive polynomial

reduct of some variety of lattices, then W satisfies

Θ(R ◦n S) ⊆ ΘR ◦2n ΘS for n even, and

Θ(R ◦n S) ⊆ (ΘR ◦ΘS ◦ n. . . ◦ΘR)◦(ΘR ◦ΘS ◦ n. . . ◦ΘR) for n odd.

(2) If the variety W is a congruence distributive polynomial reduct of the

variety of distributive lattices, then W satisfies the equations (3.1) and (3.2) in

Theorem 3.1. In other words, we may allow Θ to be a reflexive and admissible

relation in the identities in (1) above.

(3) If W is a congruence modular polynomial reduct of the variety of Boolean

algebras, then either W has a majority term, or W has a Maltsev term, or W

interprets B. If in addition W is congruence distributive, then W satisfies the

equations (3.1) and (3.2) in Theorem 3.1.

Proof. (1) First, notice that in the proof that Baker’s variety B satisfies the

identities (2.1) and (2.2) in Theorem 2.1 we have only used the equations

x = b(x, x, y) = b(x, y, x) and b(x, y, y) = b(y, x, x) (6.4)

and that, as we mentioned, the proof works also when β and γ are admissible

relations. Using the idea from Czédli and Horváth [4], an idea we have already

used above, we can replace α in (2.1) and (2.2) by a tolerance Θ. Indeed, if Θ

is a tolerance and a Θ d, then from the equation x = b(x, y, x) we get

b(a, cj, d) =b(b(a, ck, a), cj , b(d, ck, d)) Θ

b(b(a, ck,
|

d), cj , b(
|
a, ck, d)) = b(a, ck, d),
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for all pairs of indices j and k. Notice that we have showed a little more than

requested, namely, that all the elements from the list in equation (2.5) in the

proof of 2.1 are Θ-related.

Hence if a variety has a term satisfying (6.4), then the conclusion in (1)

holds. We shall show that a variety satisfying the assumptions in (1) either

has a majority term, or a term satisfying (6.4). The argument goes exactly

as in the proof of [1, Theorem 2], as we shall see. Since the equations (6.4)

depend only on two variables, then, for some given term t, they hold inW if and

only if they hold in the free algebra FW(2) in W generated by two elements.

Suppose that W = VP . Since the free lattice generated by two elements is

C2 ×C2, where C2 = {0, 1} is the chain with two elements, then FW(2) is a

(possibly improper) subalgebra of (C2)P × (C2)P . Hence the equations (6.4)

hold in W if and only if they hold in (C2)P , if and only if they hold in the

variety W ′ generated by (C2)P . If W is congruence distributive, then W ′ is

congruence distributive, too. Now the free algebra FW′(3) in W ′ generated by

three elements x, y and z can be seen as a subalgebra of the free distributive

lattice generated by x, y and z. Baker [1, proof of Theorem 2] shows that

FW′(3) must contain either the median xy + xz + yz, or the Baker element

x(y + z) or its dual. These element are given by a 3-ary term t of W ′ and

the above arguments show that in the former case t is a majority term for W ,

while in the latter case t satisfies the equations (6.4). Notice that it is not

necessarily the case that t is interpreted as xy+xz+yz or x(y+z) throughout

W , we only get that t is either a majority term or satisfies (6.4). However

this is enough, by Fact 6.1 in the former case, and by the comment in the first

paragraph of the proof in the latter case. Hence (1) is proved.

(2) is a particular case of the last statement of (3), however a direct proof

along the lines of (1) is easy. Under the additional assumption, we can argue

directly in W , rather than in W ′, hence in the present case t can be actually

interpreted as xy+xz+yz or x(y+z) or the dual throughout W . In the former

case Fact 6.1 is enough and in the latter case the arguments in the proof of

(3.5) in Proposition 3.2 carry over.

(3) Let us prove the first statement. If W is congruence modular, then W

has ternary directed Gumm terms, as introduced in Kazda, Kozik, McKenzie,

Moore [12, p. 205]. See [12, Theorem 1.1 (3)]. We shall recall the equations

that directed Gumm terms satisfy as soon as needed. Obviously, a ternary term

of W corresponds to a ternary Boolean term t, hence it is no loss of generality

to assume that t(x, y, z) = a1xyz + a2xyz
′ + a3xy

′z + . . . , where ′ denotes

complement and each a1, a2, . . . is either 0 or 1. The first term d1 in the set

of directed Gumm terms satisfies the equations d1(x, x, y) = x = d1(x, y, x).

Represent d1 by a Boolean expression as above. By the first equation, the

coefficients of xyz and xyz′ must be 1 and the coefficients of x′y′z and x′y′z′

must be 0. By the second equation, the coefficients of xyz and xy′z must

be 1 and the coefficients of x′yz′ and x′y′z′ must be 0. Considering all the

possibilities, one easily sees that d1 is either the majority term xy + xz + yz,
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or the Baker term, or the dual of the Baker term, or the first projection. In all

but the last case we are done. If d1 is the first projection, then the equations

for directed Gumm terms give d2(x, x, y) = d1(x, y, y) = x and x = d2(x, y, x),

hence we can repeat the above argument for d2. Going on, if we either get a

majority term, or a Baker term, or its dual, we are done as above. Otherwise,

all the dj ’s are first projections. Then the remaining term q in the set of

directed Gumm terms satisfies q(x, x, y) = y and q(x, y, y) = dn(x, y, y) = x,

hence q is a Maltsev term for permutability.

To prove the last statement, if W is congruence distributive, then we have

directed Jónsson terms, to the effect that q as above is the third projection (or,

simply, discard q and ask for dn(x, y, y) = y). Arguing as above, we get that

some dj satisfies all the equations satisfied in distributive lattices by either the

majority term or by the Baker term, hence, again, either Fact 6.1 or the proof

of (3.5) apply. �

We expect that 6.4(2) might fail if W = VP , when V is not the variety of

distributive lattices. In other words, we expect that (at least, without affect-

ing the subscripts) 6.4(1) cannot be improved in such a way that admissible

relations are taken into account everywhere. However, we notice that in the

proof of Theorem 2.1 all the lattices we have considered are indeed distribu-

tive. Hence, in view of 6.4(2), in order to provide a counterexample that 6.4(1)

cannot be improved in the above sense, one should start with a different and

more complicated example, i. e., it is not enough to consider different lattice

term operations on the same set B considered in the proof of 2.1.
The author considers that it is highly inappropriate, and strongly discourages, the use of

indicators extracted from the list below (even in aggregate forms in combination with similar
lists) in decisions about individuals (job opportunities, career progressions etc.), attributions of
funds and selections or evaluations of research projects.
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