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ABSTRACT. The Sierpinski gasket admits a locally isometric ramified self-covering. A semifi-
nite spectral triple is constructed on the resulting solenoidal space, and its main geometrical
features are discussed.

1. INTRODUCTION

In this note, we introduce a semifinite spectral triple on the C*-algebra of continuous
functions on the solenoid associated with a self-covering of the Sierpinski gasket. Such triple
is finitely summable, its metric dimension coincides with the Hausdorff dimension of the
gasket, and the associated non-commutative integral coincides up to a constant with a Bohr-
Fglner mean on the solenoid, hence reproduces the suitably normalized Hausdorff measure
on periodic functions. The open infinite Sierpinski fractafold with a unique boundary point
considered by Teplyaev [43] embeds continuously as a dense subspace of the solenoid, and
the Connes distance restricted to such subspace reproduces the geodesic distance on such
fractafold. On the one hand, this shows that our spectral triple describes aspects of both
local and coarse geometry [37]. On the other hand, this implies that the topology induced
by the Connes distance, being non compact, does not coincide with the weak*- topology on
the states of the solenoid algebra, as we call the C*-algebra of continuous functions on the
solenoid. This means that the solenoid, endowed with our spectral triple, is not a quantum
metric space in the sense of Rieffel [34].

Related research concerning projective limits of (possibly quantum) spaces and the asso-
ciated solenoids appeared recently in the literature. In the framework of noncommutative
geometry, we mention: [30], where projective families of compact quantum spaces have been
studied, showing their convergence to the solenoid w.r.t. the Gromov-Hausdorff propinquity
distance; [1], where, in the same spirit as in this note, a semifinite spectral triple has been
associated with the projective limit generated by endomorphisms of C*-algebras associated
with commutative and noncommutative spaces; [16], where a spectral triple on the stable
Ruelle algebra for Wieler solenoids has been considered and its unboundedd KK-theory has
been studied, based on the Morita equivalence between the stable Ruelle algebra and a Cuntz-
Pimsner algebra. In the same paper these techniques are used for the study of limit sets of
regular self-similar groups (cf. [32]).

When fractals are concerned, we mention the projective family of finite coverings of the
octahedron gasket considered in [42], where, as in our present situation, an intermediate infi-
nite fractafold between the tower of coverings and the projective limit is considered. Periodic
and almost periodic functions on the infinite fractafold are considered, and a Fourier series
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description for the periodic functions is given, based on periodic eigenfunctions of the Lapla-
cian (cf. also [38] for higher-dimensional examples). Let us remark that such coverings, as
the ones considered in this paper, are not associated with groups of deck transformations.

The starting point for the construction of this paper is the existence of a locally isometric
ramified three-fold self-covering of the Sierpinski gasket with trivial group of deck transforma-
tions. Such self-covering gives rise to a projective family of coverings, whose projective limit
is by definition a solenoid. Dually, the algebras of continuous functions on the coverings form
an injective family, whose direct limit (in the category of C*-algebras) is the solenoid algebra.
In [1] we already considered various examples of self-coverings or, dually, of endomorphisms
of some C*-algebras, most of which were regular finite self-coverings. There we constructed
a spectral triple on the solenoid algebra as a suitable limit of spectral triples on the algebras
of continuous functions on the coverings. Given a spectral triple on the base space, attaching
a spectral triple to a finite covering is not a difficult task, and in our present case consists
simply in “dilating” the triple on the base gasket so that the projections are locally isometric.
However, there is no commonly accepted procedure to define a limit of spectral triples. Since
the method used in [1] cannot be used here (see below), we follow another route, in a sense
spatializing the construction, namely showing that there exists an open fractafold which is
intermediate between the projective family of coverings and the solenoid. More precisely,
such fractafold space turns out to be an infinite covering of each of the finite coverings of
the family, and embeds in a continuous way in the solenoid. In this way all the algebras
(and their direct limit) will act on a suitable L?-space of the open fractafold, as do the Dirac
operators of the associated spectral triples. In this way the limiting Dirac operator is well
defined, but the compact resolvent property will be lost.

Let us notice here that we are not constructing a spectral triple on the open fractafold,
where a weaker compact resolvent property (cf. [14] Chap. IV Remark 12) is retained, namely
f(D?*+1 )_1/ 2 is a compact operator, where D is the Dirac operator and f is any function
with compact support on the fractafold. Since we are constructing a spectral triple on the
solenoid, which is a compact space, the weaker form does not help.

In order to recover the needed compactness of the resolvent, we use a procedure first
proposed by J. Roe for open manifolds with an amenable exhaustion in [35], where, based
on the observation that the von Neumann trace used by Atiyah [3] for his index theorem
for covering manifolds can be reformulated in the case of amenable groups via the Fglner
condition, he considered amenable exhaustions on open manifolds and constructed a trace
for finite-propagation operators acting on sections of a fiber bundle on the manifold via a
renormalization procedure. Unfortunately such trace is not canonical, since it depends on a
generalized limit procedure. However, in the case of infinite self-similar CW-complexes, it
was observed in [11] that such trace becomes canonical when restricted to the C*-algebra of
geometric operators.

We adapt these results to our present context, namely we replace the usual trace with a
renormalized trace associated with an exhaustion of the infinite fractafold. Such trace comes
together with a noncommutative C*-algebra, the algebra of geometric operators, which is
similar in spirit to the Roe C*-algebras of coarse geometry [35, 36, 28, 45]. This algebra
contains the solenoid algebra, and the limiting Dirac operator is affiliated to it in a suitable
sense. Such Dirac operator turns out to be 7-compact w.r.t. the renormalized trace. We refer
to [24, 11] for an analogous construction of the C*-algebra and of a canonical trace based on
the self-similarity structure.
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As discussed above, the starting point for the construction of a spectral triple on the
solenoid algebra is the association of a spectral triple to the fractal known as the Sierpinski
gasket [39].

The study of the Sierpinski gasket from a a spectral, or noncommutative, point of view
has now a long history, we refer to the introduction of [26] and references therein for further
comments. As for the spectral triples, various constructions have been considered on the
literature, mainly based on “small” triples attached to specific subsets of the fractal. We
mention first the spectral triple on the Cantor set described by Connes [14], which inspired
two kinds of spectral triples for various families of fractals constructed in [25], and then
further analysed in [26] for the class of nested fractals. These triples are obtained as direct
sums of triples on two points (boundary points of an edge in some cases), and we call them
discrete spectral triples. We then mention some spectral triples obtained as direct sums of
spectral triples on 1-dimensional subsets, such as those considered in [9, 10, 13], where the
1-dimensional subsets are segments, circles or quasi-circles. Discrete spectral triples give a
good description of metric aspects of the fractal, such as Hausdorff dimension and measure
and geodesic distance, and, as shown in [22], may also reconstruct the energy functional
(Dirichlet form) on the fractal, but are not suited for the study of K-theoretical properties
since the pairing with K-theory is trivial. Conversely, spectral triples based on segments or
circles describe both metric and K-theoretic properties of the fractal but can’t be used for
describing the Dirichlet form. Finally, the spectral triple based on quasi-circles considered in
[13] describes metric and K-theoretic aspects together with the energy form, but requires a
rather technical approach.

In the present paper, we make use of the simple discrete spectral triple on the gasket as
described in [26], thus obtaining a semifinite spectral triple on the solenoid algebra which
recovers the metric dimension and the Bohr-Fglner mean of the solenoid, and the geodesic
distance on the infinite fractafold. Further analysis on the solenoid is possible, e.g. the
construction of a Dirichlet form via noncommutative geometry or the study of K-theoretic
properties. As explained above, the latter step will require a different choice of the spectral
triple on the base gasket, such as the triples considered in [9, 10, 13], which admit a non-trivial
pairing with the K-theory of the gasket.

As already mentioned, our aim here is to show that the family of spectral triples on the
finite coverings produces a spectral triple on the solenoidal space. In the examples considered
in [1], the family of spectral triples had a simple tensor product structure, namely the Hilbert
spaces were a tensor product of the Hilbert space H for the base space and a finite dimensional
Hilbert space, and the Dirac operators could be described as (a finite sum of) tensor product
operators. Then the ambient C*-algebra turned out to be a product of B(H) and a UHF
algebra, allowing a GNS representation w.r.t. a semifinite trace.

In the example treated here we choose a different approach since two problems forbid
such simple description. The first is a local problem, due to the ramification points. This
implies that the algebra of a covering is not a free module on the algebra of the base space;
in particular, functions on a covering space form a proper sub-algebra of the direct sum of
finitely many copies of the algebra for the base space. The second is a non-local problem
which concerns the Hilbert spaces, which are ¢?-spaces on edges, and the associated operator
algebras. Indeed, the Hilbert spaces of the coverings cannot be described as finite sums of
copies of the Hilbert space on the base space due to the appearance of longer and longer
edges on larger and larger coverings.

We conclude this introduction by mentioning two further developments of the present
analysis.
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First, the construction of the spectral triple on the solenoid algebra allows the possibility of
lifting a spectral triple from a C*-algebra to the crossed product of the C*-algebra with a single
endomorphism [2], thus generalising the results on crossed products with an automorphism
group considered in [5, 27, 33].

Second, we observe that the construction given in the present paper goes in the direction
of possibly defining a C*-spectral triple, in which the semifinite von Neumann algebra is
replaced by a C*-algebra with a trace to which both the Dirac operator and the “functions”
on the non-commutative space are affiliated, where the compactness of the resolvent of the
Dirac operator is measured by the trace on the C*-algebra, cf. also [23].

This paper is divided in six sections. After this introduction, Section 2 contains some
preliminary notions on fractals and spectral triples, Section 3 describes the geometry of the
ramified covering and the corresponding inductive structure, together with its functional
counterpart given by a family of compatible spectral triples. Section 4 concerns the self-
similarity structure of the Sierpinski solenoid, whence the description of the inductive family
of C*-algebras as algebras of bounded functions on the fractafold. The 5th Section describes
the algebra of geometric operators and the construction of a semicontinuous semifinite trace
on it. Finally, the semifinite spectral triple together with its main features are contained in
Section 6.

2. PRELIMINARIES

In this section we shall briefly recall various notions that will be used in the paper. Though
these notions are well known among the experts, our note concerns different themes, namely
spectral triples in noncommutative geometry and nested fractals (the Sierpinski gasket in
particular), so that we decided to write this section with the aim of helping readers with
different background to follow the various arguments, by collecting here the main notions
and results that will be useful in the following.

2.1. Spectral triples. The notion of spectral triple plays a key role in Alain Connes’non-
commutative geometry [14]. Basically, it consists of a triple (£, H, D), where £ is a *-algebra
acting faithfully on the Hilbert space H, and D is an unbounded self-adjoint operator on H
satisfying the properties
(1) (1 + D*) =% is a compact operator,
(2) 7(a)D(D) C D(D), and [D,w(a)] is bounded for all a € L.
We shall also say that (£, X, D) is a spectral triple on the C*-algebra A generated by L.
Such triple is meant as a generalization of a compact smooth manifold, the algebra £
replacing the algebra of smooth functions, the Hilbert space describing a vector bundle (a
spin bundle indeed) on which the algebra of functions acts, and the operator D generalizing
the notion of Dirac operator. Further structure may be added to the properties above,
allowing deeper analysis of the geometric features of the noncommutative manifold, but these
are not needed in this paper.
Property (2) above allows the definition of a (possibily infinite) distance (Connes distance)
on the state space of the C*-algebra A generated by £ , defined as

d(p, ) = sup{lp(a) — ¢(a)| : [[D;a]ll < 1,0 € L}.

When the Connes distance induces the weak*-topology on the state space, the seminorm
I[D,a]|| on A is called a Lip-norm (cf. Rieffel [34]) and the algebra A endowed with the
Connes distance is a quantum metric space.
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A spectral triple is called finitely summable if (1 + D?)~* has finite trace for some s > 0,
in this case the abscissa of convergence d of the function tr(1 + D?)~* is called the metric
dimension of the triple. Then the logarithmic singular trace introduced by Dixmier [17] may
be used to define a noncommmutative integral on A. Let us denote by {x,(T")} the sequence
(with multiplicity) of singular values of the compact operator T', arranged in decreasing
order. Then, on the positive compact operators for which the sequence > 7, u,(T), is at
most logarithimically divergent, we may consider the positive functional

tr,,(T") = Lim,, M,
logn
where Lim,, is a suitable generalized limit. Such functional extends to a positive trace on
B(H) which vanishes on trace class operators, and is called Dixmier (logarithmic) trace.

If (14 D*)~4is in the domain of the Dixmier trace, one defines the following noncommu-

tative integral:

(2.1) 7{@ = tr,(a(I + D*)~Y?), ac A.

When the function (14 D?)™* has a finite residue for s = d, such residue turns out to coincide,
up to a constant, with the Dixmier trace, which therefore does not depend on the generalized
limit procedure (cf. [14], and [8] Thm. 3.8):

d - try(a(I + D*)~Y?) = Res,—q tr(a|D|*).

We note in passing that spectral triples may also describe non-compact smooth manifolds,
with the algebra £ describing smooth functions with compact support and property (1)
replaced by a(1 4+ D?)~/2 is a compact operator for any a € £.

2.2. Semifinite spectral triples. The notion of spectral triple has been generalized to the
semifinite case, by replacing the ambient algebra B(H) with a semifinite von Neumann algebra
M endowed with a normal semifinite faithful trace 7. We recall that an operator T affiliated
with (M, 7) is called T-compact if its generalized s-number function p,(7") is infinitesimal or,
equivalently, if 7(eq,)(1")) < oo, for any ¢ > 0 (cf. [19] 1.8 p. 34, [20] Proposition 3.2).

Definition 2.1 ([7]). An odd semifinite spectral triple (£, M, D) on a unital C*-algebra A
is given by a unital, norm-dense, *-subalgebra £ C A, a semifinite von Neumann algebra
(M, 7), acting on a (separable) Hilbert space H, a faithful representation = : A — B(H) such
that 7(A) C M, and an unbounded self-adjoint operator DEM such that

(1) (1 + D*)~'/2is a T-compact operator,
(2) 7(a)D(D) C D(D), and [D,7(a)] € M, for all a € L.

As in the type I case, such triple is called finitely summable if (1 + D?)~* has finite trace
for some s > 0, and d denotes the abscissa of convergence of the function 7(1 + D?)~*, and is
called the metric dimension of the triple. The logarithmic Dixmier trace associated with the
normal trace 7 may be defined in this case too, (cf. [22, 8]) and, when the function (1+ D?)~*
has a finite residue for s = d, the equality d - tr,,(a|D|~%) = Res,=q tr(a|D|~*) still holds ([8]
Thm. 3.8).

2.3. Self-similar fractals. Let Q := {w; : i = 1,..., k} be a family of contracting similarities
of RY, with scaling parameters {);}. The unique non-empty compact subset K of RY such
that K = Ule w;(K) is called the self-similar fractal defined by {w;}i—1, . For any i €
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{1,...,k}, let p; € RY be the unique fixed-point of w;, and say that p; is an essential fixed-
point of € if there are ', 7,j" € {1,...,k} such that ¢/ # 4, and w;(p;) = wy(py). Denote
by Vo(K) the set of essential fixed-points of €2, and let Ey(K) := {(p,q) : p,q € Vo,p # q}.
Observe that (Vp, Ey) is a directed finite graph whose edges are in 1:1 correspondence with
ordered pairs of distinct vertices.

Definition 2.2. We call an element of the family {w;, - --- - w;, (K) : kK > 0} a cell, and call
its diameter the size of the cell. We call an element of the family E(K) = {w;, - --- - w;, (e) :
k> 0,e € Eo(K)} an (oriented) edge of K. We denote by e resp. et the source, resp. the
target of the oriented edge e.

As an example, the Sierpinski gasket is the self-similar fractal determined by 3 similarities
with scaling parameter 1/2 centered in the vertices of an equilateral triangle (see Figure 1).

FNFNRNRN

FiGURE 1. The first four steps of the construction of the Gasket

Under suitable conditions, the Hausdorff dimension dy of a self-similar fractal coincides
with its scaling dimension, namely with the only positive number d such that Zle M= 1,

therefore when all scaling parameters coincide with A we have dy = 10;0(%;“/\).
log3

the Hausdorff dimension of the Sierpinski gasket is log 2" We note in passing that one of
the most important aspects of the Sierpinski gasket and of more general classes of fractals
is the existence of a self-similar diffusion, associated with a Dirichlet form, see e.g. [29].
Even though Dirichlet forms on fractals can be recovered in the noncommutative geometry
framework [26], and in particular by means of the spectral triples which we use in this paper,
we do not analyse this aspect in the present note.

In [25] discrete spectral triples have been introduced on some classes of fractals, generalizing
an example of Connes in [14], Chapter 4.3, example 23. Such triples have been further studied
in [26] for nested fractals. On a self-similar fractal K, the triple (£, 3, D) on the C*-algebra
A = C(K) is defined as follows:

Definition 2.3.  (a) H = (?(E(K)),
(b) A acts on the Hilbert space as p(f)e = f(eT)e, f € A, e € E,,
(c) F'is the orientation-reversing map on edges,

In particular,
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(d) D maps an edge e € E(K) to length(e) ™! Fe,
(e) £ is given by the elements f € A such that ||[D, p(f)]|| < occ.

It turns out that £ coincides with the algebra of Lipschitz functions on K, hence is dense
in A, and the seminorm L(f) := ||[D, f]|| is a Lip-norm. By Theorem 3.3 in [26], see also
Remark 2.11 in [25], the triple (£, H, D) is a finitely summable spectral triple on A, its metric
dimension coincides with the Hausdorff dimension, and the noncommutative integral recovers
the Hausdorff measure up to a constant:

@2 e = Y ! [ am fec),
) K

10g k ecEy(K

where H; denotes the normalized Hausdorff measure on the fractal K. Moreover, in some
cases, and in particular for the Sierpinski gasket, the Connes distance induced by the Lip-
norm L(f) := ||[D, f]|| coincides with the geodesic distance on the points of the gasket K,
see [26], Corollary 5.14.

2.4. Covering fractafolds and solenoids. Generally speaking, a solenoid is the inverse
limit of a projective family of coverings of a given space [31]. Dually, the solenoid algebra is
the direct limit of the family of algebras of continuous functions on the spaces of the projective
family. In this sense the notion of solenoid makes sense for injective families of C*-algebras, cf.
e.g. [1] for sequences generated by a single endomorphism and [30] for sequences of compact
quantum spaces. Other examples of the treatment of solenoids in the recent literature have
been mentioned in the introduction.

The notion of fractafold as a connected Hausdorff topological space such that every point
has a neighborhood homeomorphic to a neighborhood in a given fractal has been introduced
in [41], even though examples of such notion were already considered before, e.g. in [4, 40, 43].
In some cases projective families of covering fractafold spaces related to the Sierpinski gasket
have been considered.

Since the gasket does not admit a simply connected covering, one may consider coverings
where more and more cycles are unfolded, in particular consider the regular infinite abelian
covering S,, where all the cycles of size at least 27" are unfolded. Each of those is a closed
fractafold (with boundary) and they form a projective family. The associated solenoid S, i.e.
the projective limit, which turns out to be an abelian counterpart of the Uniform Universal
Cover introduced by Berestovskii and Plaut [6], has been considered in [12], where it is shown
that any locally exact 1-form on the gasket possesses a potential on S,.

Another projective family of covering fractafolds has been considered in [42], each element
of the family being a compact finite covering of the octahedral fractafold modeled on the
gasket. Any element of the family is covered by the infinite Sierpinski gasket with a unique
boundary point, which we call K, here (see Figure 2), considered in [43], Lemma 5.11. The
solenoid associated with the projective family is also mentioned explicitely in [42], together
with the dense embedding of K., in it, and also a Bohr-Fglner mean on the solenoid is
considered (p. 1199).

In the present paper a self-covering of the gasket gives rise to a projective family of finite
ramified coverings, the fractafold K., projects onto each element of the family and embeds
densely in the solenoid, and we recover the Bohr-Fglner mean on the solenoid via a noncom-
mutative integral.
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F1GURE 2. The Gasket and its infinite blowup

3. A RAMIFIED COVERING OF THE SIERPINSKI GASKET

Let us choose an equilateral triangle of side 1 in the Euclidean plane with vertices vy, vy, vo
(numbered in a counterclockwise order) and consider the associated Sierpinski gasket as in
the previous section, namely the set K such that

K= |J wi(K),

J=0,1,2

where w; is the dilation around v; with contraction parameter 1/2. Clearly, for the cell C' =
Wiy v w;, (K), size(C) = 27% and, if ¢y € Eo(K) and e = w;, -~ - - - wy, (eo), length(e) = 27%,

In the following we shall set K := K, Ey = Ey(K), K, = w; "Ky. Let us now consider the
middle point x;,;,; of the segment (wy 'v;, wy 'viy1), i = 0,1,2, the map Ri1; : wy 'w; K —
wy 'w; 1 K consisting of the rotation of %7? around the point z;,41, ¢ = 0,1, 2, and observe
that

(3.1) Riiv20 Riyaiv10 Rip1;=1d 1=0,1,2.

wglwiK7

Setting R; ;11 = R;&Li, the previous identities may also be written as R; 12110 Rit1; = Rito4,
1=0,1,2.
We then construct the map p: K3 — K given by

x, z €K,
p(r) = Roi(z), =€ wo_lle,
Roo(7), z € wy'wyK,

and observe that this map, which appears to be doubly defined in the points z; ;41,7 = 0,1, 2,
is indeed well defined (see Figure 3).
The following result is easily verified.

Proposition 3.1. The map p is a well defined continuous map which is a ramified covering,
with ramification points given by {x;;+1,1 = 0,1,2}. Moreover, the covering map is isometric
on suitable neighbourhoods of the non-ramification points.

Since K; and K are homeomorphic, this map may be seen as a self-covering of the gasket.
The map p gives rise to an embedding a; : C(K) — C(K;), hence, following [15], to an
inductive family of C*-algebras A,, = C(K,), whose inductive limit A, consists of continuous
function on the solenoidal space based on the gasket. As in Definition 2.3, we we consider the
triple (£,,, 3, D,,) on the C*-algebra A,, n > 0, where H,, = (*(E,), E, = {w;"e,e € Fy}
(the set of oriented edges in K,,).

Let us also note that, since the covering projections are locally isometric and any Lip-norm
L,.,(f) = ||[Dm, f]|| associated with the triple (A, Hy,, Dp,) produces the geodesic distance
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FiGure 3. The covering map p: K; — K.

on K,,, we get Ly, q(0miqm(f)) = Ln(f), namely we obtain a seminorm on the algebraic
inductive limit of the A,,’s.

4. A GROUPOID OF LOCAL ISOMETRIES ON THE INFINITE SIERPINSKI FRACTAFOLD

Let us consider the infinite fractafold K., = U,>oK, [43] endowed with the Hausdorff
measure fiq of dimension d = }zig normalized to be 1 on K = K,, with the exhaustion
{Kn}n>0, and with the family of local isometries R = {R},,;, Ry, 14 = 0,1,2,n > 0},
where R?'; = wy"Rijwy : C7' — CP, and CF := wy " 'w; K, n >0, 4,5 € {0,1,2}. We also
denote by s(y) and r(7) the domam and range of the local isometry . Such local isometries
act on points and on oriented edges of K.

We say that the product of the two local isometries 71,72 € R is defined if v, *(s(71)) N

s(72) # 0. In this case we consider the product

%2 H(s()) N s(12) = 7 (Mls)nrae) ) -

We then consider the family G consisting of all (the well-defined) finite products of isome-
tries in R. Clearly, any ~ in G is a local isometry, and its domain and range are cells of the
same size. We set G, = {g € G : s(7) & r(v) are cells of size 2"}, n > 0.

Proposition 4.1. For any n > 0, C1,Cy cells of size 2", Ay € G, such that s(y) = C4,
r(v) = Cy. In particular, if C has size 2", the identity map of C belongs to G, n > 0.

Proof. 1t is enough to show that for any cell C of size 2" there exists a unique v € G,, such that
v :C — K,. For any cell C, let m = level(C') be the minimum number such that C' C K,,.
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We prove the existence: if C has size 2" and level(C') = m > n, then C C O, for some
© = 1,2, hence Rg?;l(C) C K,,—1. Iterating, the result follows. The second statement follows
directly by equation (3.1).

As for the uniqueness, Vn > 0, we call R}, ascending, ¢ = 1,2, R, descending, i = 1,2, R},
constant-level, 4,7 € {1,2}. Indeed, if C' C s(R}), then level(C') < n and level(R}((C)) =
n+1; if € C s(Ry;), then level(C) = n + 1, level(Rf,(C)) < n and level(R7,(C)) = n + 1,
i,je{1,2}, n>0.

The following facts hold:

e The product R}, - R}, of two constant-level elements Rj';, R is defined iff n = m
and k = j, therefore any product of constant-level elements in R is either the identity
map on the domain or coincides with a single constant-level element.

e Any product of constant level elements in R followed by a descending element coincides
with a single descending element: indeed, if the product of constant level elements is
the identity, the statement is trivially true; if it coincides with a single element, say
R}, with 4,7 € {1,2}, then, by compatibility, the descending element should be Rf,
so that the product is Rf,, by equation (3.1).

e Given a cell C with size(C) = 2" and level(C) > n, the exists a unique descending
element v € R such that C' C s(v): indeed, if m = level(C), then C C C*" !, for some
i € {1,2}. The only descending element is then v = Rg?;l.

e Any product of an ascending element followed by a descending one is the identity
on the domain: indeed if the ascending element is R}, then, by compatibility, the
descending element should be Ry ;.

Now let size(C') = 2", v € G, such that v: C — K,,, y =7 Vp-1 - ...72 - 71, Where v; € R,
1 < j < p. Since level(C) > level(K,) = n, for any possible ascending element ~; there
should be a j7 > 4 such that 7; is descending. If ¢ 4 ¢ is the minimum among such j’s, all
terms 7;, 1 < j < ¢+ g, are constant-level, hence the product Vi - Vigg—1 -+ 7% = tds(y,).
Then, we note that 7, can only be descending. As a consequence, vy can be reduced to a
product of descending elements, and, by the uniqueness of the descending element acting on
a given cell, we get the result. U

Let us observe that each G,,, and so also G, is a groupoid under the usual composition rule,
namely two local isometries are composable if the domain of the first coincides with the range
of the latter.

We now consider the action on points of the local isometries in G.

Proposition 4.2. Let us define ﬁn as the algebra

An = {f € Co(Kw): f(7(2)) = f(x),2 € 5(7),7 € Gu}.

Then, for any n > 0, the following diagram commutes,

A, C Ann
(4.1) an anH
An O‘ilv;l An—i—l

where v, : f € ;Ln — flg, € A, are isomorphisms. Hence the inductive limit A is
isomorphic to a C*-subalgebra of Cp(K ).
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Proof. The request in the definition of ﬁn means that the value of f in any point of K is
determined by the value on K, while such request gives no restrictions on the values of f on
K,,. The other assertions easily follow. O

As shown above, we may identify the algebra A,,, 0 < n < oo, with its isomorphic copy ﬁn
in Cy(Kw), so that the embeddings oy, ; become inclusions. Moreover, we may consider the

operator l~7n on (*(Ey), with E., = U,>oFE,, given by Ene = length(e) ™! Fe, if length(e) < 2",
and D,e = 0, if length(e) > 2", where F is defined as in Definition 2.3 (c¢). Then the spectral

triples (A, H,, D,) are isomorphic to the spectral triples (A,,, H,, ﬁn), where Cy(K) acts
on the space (?(E,,) through the representation p given by p(f)e = f(et)e.

Remark 4.3. Because of the isomorphism above, from now on we shall remove the tildes and
denote by A, the subalgebras of C,(K) and by D,, the operators acting on £*(EL,).

5. THE C*"-ALGEBRA OF GEOMETRIC OPERATORS AND A TRACIAL WEIGHT ON IT.

We now come to the action of local isometries on edges. We shall use the following notation,
where in the table below to any subset of edges listed on the left we indicate on the right the
projection on the closed subspace spanned by the same subset:

TABLE 1. Edges and projections.

Subsets of F, Projections
E,={cCK,,n>0 P,
E* = {e € E, : 2F <length(e) < 2F}, for k<p<n Pk
Ef = EFF = {e € E, : length(e) = 2F}, for k <n Pk
E* = U, E* = {e € B, : 2F <length(e) < 2P} Pk
E* = EMF = {e € E,, : length(e) = 2%} Pk
Ec ={e€ Eyx:e CC}, C being a cell Pe.

Let us note that any local isometry v € G, v : s(v) — (), gives rise to a partial isometry
V., defined as

Ve [0, ecsm,
0, elsewhere.

In particular, if C' is a cell, and v = id¢, V,, = Po. We then consider the subalgebras B,, of
B(*(Ex)),

Bn = {V'y Sy € 9m7m Z n}lu Bﬁn = UBna Boo :B_ﬁn;
and note that the elements of B, commute with the projections Pg, for all cells C' s.t.

size(C') > 2™. By definition, the sequence B, is increasing, therefore, since the B, ’s are von
Neumann algebras, B, is a C*-algebra. Let us observe that, Vn > 0, p(A,) C B,.

Definition 5.1. The elements of the C*-algebra B, are called geometric operators.

We now consider the hereditary positive cone

(5.1) I¢ ={T € B{ :Jer € R such that tr(P,T) < or pa(Kyn), Vm > 0}
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Lemma 5.2. For any T € I, the sequence %Z?Z)) 15 eventually increasing, hence convergent.
In particular

tr(P,, 1)
(5.2) tr(P)T) =0Vp>m=1(T) = ———

Md(Km)

Proof. Let T € B;. Then we have, for m > n,

(P T) = Y (e.Te)= > > (e,Te)+ > (e,Te) =3tr(P,T) + tr(PrT),

eCKmy1 1=0,1,2 eGCm eeEzii
hence
(5.3) tr(PpiT)  tr(P,T)  tr(PRHT)
‘ ud(Km+1> /Jld(Km) Nd(Km+1> ’
from which the thesis follows. O

We then define the weight 75 on B as follows:

tr(P,,T)
lim —>22%, TeJ
(5.4) 7o(T) = § m=oe pa(Km) ’
0, elsewhere.

The next step is to regularize the weight 7y in order to obtain a semicontinuous semifinite
tracial weight 7 on B,

Lemma 5.3. For any T € 3§, A € By, it holds ATA* € I}, and 1o(AT A*) < ||A|*7o(T).
Proof. Let A € B,,. Then, for any m > n, we have

tr(P AT A*) = tr(A*AP,T) < ||[A*A| tr(P,,T) < | A|*cr pa(Kp),
and the thesis follows. U

Proposition 5.4. For allp € N, recall that P77 s the orthogonal projection onto the closed
vector space generated by {e € (*(Ey) : length(e) > 277}, and let p,(T) := 1o(P~P*TP~P>),
VT € BL. Then P77 € By, ¢, is a positive linear functional, and ¢,(T) < @p1(T) <
70(T), VT € BL.

Proof. We first observe that
(5.5) tr(P?) = #{e € K,, : length(e) =2/} =6-3"7, j<n.
Then it is easy to verify that PP € B,. Since

tr PP -
5.6 I) = 15(P77>) = li L = lim 37" ) tr(P)) 6-377 =3,
I R EDLLIEDS
J=-P J=—P
¢, extends by linearity to a positive functional on B.,. Moreover, by Lemma 5.3, ¢,(T") <
70(T), VT € Bl . Finally, since P"»>*°P, = P,P™7>* = P-°" V¥n € N, we get, for all
T e B,

Pp+1 (T) — (pp(T) = TO(P*(p+1)7OOTP7(+1)p,oo) i To(Pip’ooTpfpi‘)O)

y tr((Pn_(pH)’n) — P7P)T) y tr(Pn_(pH))T)
= lim = 1m ———
n—00 :ud(Kn) n—00 ,ud(Kn)
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Proposition 5.5. Let 7(T) :=lim, . ¢,(T), VI € BY . Then
(1) T is a lower semicontinuous weight on B,

(i1) 7(T) = 7o(T), VT € J7 .

Proof. (i) Let T € B . Since {¢,(T)},en is an increasing sequence, there exists lim, o, ¢, (1) =
sup,ey p(T). Then 7 is a weight on B, . Since ¢, is continuous, 7 is lower semicontinuous.
(1) Let us prove that, VT € B,

tr(Pg;T) B tr(PgT)

(5.7) = , J<n<m.
pa(BKm) — pra(Kn)
Indeed,
2
tr(P) ., T) = Z (e,Te) Z (e,Te) Z Z (VR;ne,TVR;ne)
eCKm+1 =0 eCcC™ = eCKm
length( )=2 length(e)=2 length( )=2
— Z Z (e, Te) = 3tx(PLT),
= eCKm
length(e)
from which (5.7) follows. Let us now prove that
(5.8) 7(T) = sup ,(T) = 7(T), T €73

peN

Let T € Bf NJy, and ¢ > 0. From the definition of 7o(T), there exists r € N, 7 > n,

such that tr(fr )) > 19(T") —e. Since % =D oo % there exists p € N such that

diep t;il();g)) t:(gf;g)) — &> 719(T) — 2¢. Then, for any s € N, s > r, we have

tr(P,P~P°TP~P>P,) Z tr(PIT) Z tr(PIT) < tr(PIT)

pa () jzfp 1a(Ks) j——p pa () ) 1a(Ks)
(5.7) tr(PIT) L tr(PIT)
= + > 19(T) — 2¢,
J':Z—p pa(K) j;—l Ha(Ks) o

and, passing to the limit for s — oo, we get

_ _ _ te(PPPTP PP,
T) = ro(P~PoT PP = | > 1(T) —
pp(T) = 7ol ) = lim K > 70(T) =,

and equation (5.8) follows. O

We want to prove that 7 is a tracial weight.

Definition 5.6. An operator U € B((*(E,,)) is called §-unitary, § > 0, if ||[U*U — 1]] < 6,
and ||{UU* — 1] < 6.

Let us denote with Us the set of d-unitaries in Bg, and observe that, if § < 1, Us consists
of invertible operators, and U € Uy implies U™ € Us(1—s).

Proposition 5.7. The weight 1y is is e-invariant for d-unitaries in Bg,, namely, for any
€ (0,1), there is § > 0 s.t., for any U € Us, and T € BL,

(1 —&)ro(T) < 7(UTU*) < (1 + €)7o (T).
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Proof. We first observe that, if § € (0,1) and U € Us, T € I§ & UTU* € J}. Indeed,
choose n such that U,T € B,. Then tr(P,UTU*) = tr(U*UP,TP,) < |[U*U| tr(P,T) <
(1+8)er pa(K,), Vn € N, so that UTU* € J¢. Moreover,
_ te(PUTUY) tr(PT)

o(UTU") = lim ————=
T = B ) ali,)

Conversely, UTU* € 3§, and U™ € Usy1—qy = T € I3. Moreover,

< v Jim = U Ulm(T) < (14 B)m(T).

wo(T) < [(UT) U In(UTU") <

1 5TQ(UTU )

The result follows by the choice § = €. U

Theorem 5.8. The lower semicontinuous weight T in Proposition 5.5 is a trace on B, that
is, setting 37 := {A € BL : 7(A) < oo}, and extending T to the vector space § generated by
I, we get

(1) d is an ideal in By,

(17) T(AB) = 7(BA), for any A€ J, B € Bw.

Proof. (i) Let us prove that J* is a unitarily-invariant face in B, and suffices it to prove

that A € J* implies that UAU* € JF, for any U € U(B,,), the set of unitaries in B..
To reach a contradiction, assume that there exists U € U(By) such that 7(UAU*) = oc.
Then there is p € N such that ¢,(UAU*) > 27(A) + 2. Let 6 < 3 be such that V' € Uy
implies 7(VAV*) < 27(A), and let Uy € Bgy, be such that [|[U — Up|| < min{g, m}. The

inequalities
10U — 1| = U UoUg = U*|| < [[U*U = 1I[|Us ]| + U5 = U™[| <0
and ||UjUy — 1|| < 6, prove that Uy € Us. Since |¢,(UgAUS) — p,(UAU*)| < 3||opll AU —
Upl| < 1, we get
27(A) > 1(U AU;) > 0,(UgAU;) > ¢,(UAU™) — 1 > 27(A) + 1
which is absurd.

(1) We only need to prove that 7 is unitarily-invariant. Let A € J*, U € U(B,,). For any
e > 0, there is p € N such that ¢,(UAU*) > 7(UAU*) — ¢, since, by (1), 7(UAU*) is finite.
Then, arguing as in the proof of (1), we can find Uy € By, so close to U that

pp(UoAU;) — 0p(UAU™)| < €
(1—e)1(A) < T(UAU}) < (1 +¢e)1(A).

Then
H(A) > FUATD) > —— o (U ATD)
“1+e¢ T l4e 7’ 0
> 1%8 (o, (UAU") — ) > 115 (F(UAU*) — 22).
By the arbitrariness of ¢ > 0, we get 7(A) > 7(UAU*). Exchanging A with UAU*, we get
the thesis. O

Proposition 5.9. The lower semicontinuous tracial weight T defined in Proposition 5.5 is
semifinite and faithful.



A SPECTRAL TRIPLE FOR A SOLENOID BASED ON THE SIERPINSKI GASKET 15

Proof. Let us recall that, for any p € N, P77 € J by Proposition 5.4. From Proposition
5.5 follows that 7(P7P>°) = 79(P™">) < oo, hence P77 € J*. Then, for any T € BT,
S, :=TYV2p~P>TY2 ¢ g* and 0 < S, < T. Moreover,
7(S,) = T(TY2PP>TY2) = 7 (P7PT PP®) = sup 7o(Q, P "*TP">Q,)
geN

= ro(PTPRTP ) = ,(T),

so that sup,cy 7(5,) = 7(T'), and 7 is semifinite. Finally, if T € BZ is such that 7(7") = 0,
then sup,cy @p(T) = 0. Since {¢,(T)}pen is an increasing sequence, ¢,(T) = 0, ¥p € N.

Then, for a fixed p € N, we get 0 = 7o(P"P*TP7P>®°) = lim,, Sl PPE TP PP - Gince the

ta(Kn)
sequence {tr(P”P_Z;;S_p’OOP")}neN is definitely increasing, we get tr(BP, P P>*TPP>P,) =0

definitely, that is TP P, = 0 definitely, so that T'P77> = (. By the arbitrariness of
p €N, we get T'= 0. O

6. A SEMIFINITE SPECTRAL TRIPLE ON THE INDUCTIVE LIMIT Ao

Since the covering we are studying is ramified, the family {A,,H,, D,} does not have
a simple tensor product structure, contrary to what happened in [1]. We therefore use a
different approach to construct a semifinite spectral triple on A..: our construction is indeed
based on the pair (B.., ) of the C*-algebra of geometric operators and the semicontinuous
semifinite weight on it.

The Dirac operator will be defined below (Def. 6.4) through its phase and the functional
calculi of its modulus with continuous functions vanishing at oo. More precisely we shall use
the following

Definition 6.1. Let (€, 7) be a C*-algebra with unit endowed with a semicontinuous semifi-

nite faithful trace. A selfadjoint operator T affiliated to (€, 7) is defined as a pair given by

a closed subset o(7") in R and a * homomorphism ¢ : Cy(a(T")) — €, f(T) défgb(f), provided

that the support of such homomorphism is the identity in the GNS representation 7, induced
by the trace 7.

The previous definition was inspired by that in [18] appendix A, and should not be confused
with that of Woronowicz for C*-algebras without identity.

Remark 6.2. The x-homomorphism ¢, = 7, 0 ¢ extends to bounded Borel functions on R and

€(—o0,] f ¢ (X(—o0,) tends strongly to the identity when ¢ — oo, hence it is a spectral family.

We shall denote by 7, (T") the selfadjoint operator affiliated to m,(€)” given by

WT(T) déf/tde(_ooﬂ.
R

Proposition 6.3. Let T' be a selfadjoint operator affiliated to (&€, 1) as above.

(a) Assume that for any n € N, there is ¢, € C(R) : 0 < ¢, < 1,9, = 1 for |t| < ay,,
on(t) = 0 for |t| > b, with 0 < a, < b, and {a,}, {b,} increasing to co. Then,
for any A € €, if sup, ||[T" - pn(T), A]|| = C < 0o then [m(T), 7, (A)] is bounded and
[ (T), - (A)]]| = C.

(b) If T(f(T)) < oo for any positive function f with compact support on the spectrum of
T then 7 (T) has T-compact resolvent.



16 VALERIANO AIELLO, DANIELE GUIDO, AND TOMMASO ISOLA

Proof. (a). Let D be the domain of 7.(T"), Dy the space of vectors in D with bounded
support w.r.t. to m.(7T"), and consider the sesquilinear form F(y,z) = (7. (T)y, 7 (A)x) —
(y, m-(A)m.(T)x) defined on D. By hypothesis, for any x,y € Dq there exists n such that
7-(¢n(T))z = x and WT((SOn(T)N)Z/ =y, hence F(y,z) = (y, 7 ([T - pu(T), Az) < Cllz|| [lyl|-
By the density of Dy in D w.r.t.the graph norm of 7 (7T’), the same bound holds on D. Then for
y.2 € D, |(m(T)y, 7o (A)2)] < |(y, 7o () (T)2)| - | Fly, )] < (e Ay, (T + ) ]
which implies 7. (A)z belongs to the domain of 7, (T)* = w,(T). Therefore m (1) (A) —
7 (A)m-(T) is defined on D and its norm is bounded by C'. Since C' is the optimal bound for
the sesquilinear form F' it is indeed the norm of the commutator.

(b) Let A be in the resolvent of |T'|. We then note that for any f positive and zero on a
neighbourhood of the origin there is a g positive and with compact support such that f((|T|—
AM)71) = g(|T']). Therefore 7(f((|T] — X)) < oo, hence T(eq +o0) (- ((|T] = A)71))) < 00
for any ¢ > 0, i.e. 7. ((|T| — AI)™!) is 7-compact (cf. section 2.2). O

Definition 6.4. We consider the Dirac operator D = F|D| on (*(E,,), where F is the
orientation reversing operator on edges and

ID| =Y "27"P", o(|D|)={27"n € Z} U {0}.

nel

Proposition 6.5. The following hold:

(a) The elements D and |D| are affiliated to (Boo, T).
(b) The following formulas hold: T(P™) =6-37", 7(P™7>) = 3**2 as a consequence the
operator D has T-compact resolvents

(¢) The trace T(I + D)™/ < oo if and only if s > d = 1282

2

iog and
og

6

Res,—q 7(I + D?)™*/* = g2
Proof. (a) We first observe that the *-homomorphisms for D and |D| have the same support
projection, then note that since F' and P, belong to By (which is a von Neumann algebra)
for any n € N, then f(D) and f(|D|) belong to Bg for any f € Co(R); therefore it is enough
to show that the support of f +— f(|D|) is the identity in the representation ..
In order to prove this, it is enough to show that 7-(ep([0,2"]) tends to the identity strongly
when p — oo, that is to say that 7, (ejp|(2P,00)) tends to 0 strongly when p — oo.
We consider then the projection P~°*% which projects on the space generated by the edges
with length(e) < 1. Clearly, such projection belongs to By, we now show that it is in-
deed central there. In fact, if ¢ is a cell with size(c) = 1, P. commutes with By. Since
P00 = Zsize(c)zl P., then P> commutes with By. On the one hand, the von Neumann
algebra P~>°%B is isomorphic to B(¢*(K)) and the restriction of 7 to P~°%B, coincides
with the usual trace on B(£?(K)), therefore the representation 7, is normal when restricted
to P=>%B,. On the other hand, since e|p|(2P, 00) = P=oo=P=lig for —p < 1, a sub-projection
of P70 and P~°"P~! tends to 0 strongly in the given representation, the same holds of
the representation 7.
(b) We prove the first equation. Indeed

tr Pn m_tr PJpr
7(P") = lim m_ —tr P 4+ lim J )
(P =lim gy = lm )

j=1
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The first summand is non-zero iff n < 0, while the second vanishes exactly for such n. Since
" tr P/P" gy pr
lim Z . = Ain ,
mo = pua(KG) (k)

the result in (5.5) shows that in both cases we obtain 6-37". We already proved in (5.6) that
T0(P7P) = 32, Since PP> € B, the same holds for 7 by Proposition 5.5 (7). Then the
thesis follows by condition (b) in Proposition 6.3.
(c) We have 7(I + D?)~%/2 = 7(P=%(I + D?)~%/2) 4+ 7(PY*°(I + D*)~%/%). A straightforward
computation and (5.2) give
T(P™(I + D*) ™) = tr(Py(I + D*)™*/%) = 6 Y _(1+2°") /23",
n>0

which converges iff s > d. As for the second summand, we have

tr(PL™ (] + D2 —s/2
T(P1,+oo(]+D2)—s/2) :TO(P1,+oo(I+D2)—s/2) = lim r( m ( + ) )

m pa(Kp)
=lim Y 37" tr(Py" (I + D)%) =6) 379(1+27%)
j=1 J=1

which converges for any s hence does not contribute to the residue. Finally

Res,—q 7(I + D*) 7?2 = lim (s — d)7(I + D?)~%/2

s—dt

log 3
= i _ 6 1 2—2n —s/2 n(log3—slog2)
Jip (5~ 1oga 0 (1 +27) %
6 .. slog2 —log 3 6

B log 2 s—d+ 1 — e~(slog2-log3) — ]og 2

Proposition 6.6. For any f € A, sup, |[[ej—.q(D) - D, p()]l| = I[Dn, p(flx)]l

Proof. We observe that |D| is a multiplication operator on (?(EL,), therefore it commutes
with p(f). Hence,

Dl . IV o i)
D et (D), PO = 11Dl et (DD (ol7) = FPNPN = sup B

As a consequence,

+\ —
sup 1D -0 (D) pU))] = s R

Recall now that any edge e of length 2""! is the union of two adjacent edges e; and ey of
length 2" such that e] = e, , therefore

[f(eF) = fle)l _ Lylfler) — flep)l | [f(e3) — f(ey)] |f(e") — fle7)]
on+l1 = 5( 2n + on ) - lengtsl}(lgzzn length(e)
[terating, we get
|f(e") — fleT)] [f(e") = fe)]

sup = sup
e€Fo length(e) length(e)<2n length(e>
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Since f € A,,

[fle™) = fle)] _ |f(e") — fleT)]
1eng§hL(1S§2n length(e) N ese%(n length(e)

= [I[Dn; p(f )]

0

In the following Theorem we identify B., with 7, (B), the trace 7 on 7 (B.) with its
extension to 7, (Bs)”, and D, and D as unbounded operators affiliated with (B, 7) with
7. (D,,) and 7, (D) as unbounded operators affiliated with (7, (Bs)”, 7).

Theorem 6.7. The triple (£, 7,(Bs)", D) on the unital C*-algebra A, is an odd semifinite
spectral triple, where L = U, {f € A,, f Lipschitz}. The spectral triple has metric dimension
d =283 4he functional

" log?2’
©.) 1=t + 02,
1s a finite trace on A where 7, is the logarithmic Dizmier trace associated with T, and
6.2 f = n , e A,
(62 / log3 pa(Kn) /

where pq is the Hausdorff measure of dimension d normalized as above. As a consequence,
§ [ is a Bohr-Folner mean on the solenoid:

. 6 . fKn .fd,ud
(6.3) %f_ log3 nh pa(K,) [& A

The Connes distance

d(p, ) = sup{|p(f) = ()] - f € LD, p(N)]l =1}, »,% € 8(Ax)

between states on Ao verifies
(6'4> d((sxa 53/) = dgeo(-T? y)> z,y € K,
where dge, s the geodesic distance on K.

Proof. The properties of a semifinite spectral triple follow by the properties proved above, in
particular property (1) of Definition 2.1 follows by Proposition 6.3 (a) and Proposition 6.6,
while property (2) follows by Proposition 6.5 (b). The functional in equality (6.1) is a finite
trace by Proposition 6.5 (¢). Equations (6.2) and (6.4) only remain to be proved. We observe
that (I + D?)~%? — |D,,|~¢ have finite trace. Indeed

(14 47F)=4/2¢ length(e) = 2% k > n,

I D2 —d/2 Dn —d —
(( +D7) [Dnl )e {((1 4+ 47F)=d/2 _2dk)e  Jength(e) = 2, k < n.

hence, makig use of a formula in Theorem 6.5 (b), we get

T((I+ D*)~2 = D [T < Y (L + 4757 Pr(PY) + ) |(1+47%)72 = 3%r(P")

k>n k<n

S6(L+ 47N T3R 4 6 | (14 4k) T2 - 1

k>n k<n
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and both series are convergent. Since the Dixmier trace vanishes on trace class operators,
this implies that

Tu(p()I + D)%) = 7,(p())|Du| ™) = %ZRGSS aT(p(f)|Dn] ™),
therefore, if f € A,

e D) = L e SU)IDA) _ trap)ID
§ 1 =GR (pDID] ) = g Resg TS ADID)
6

/ fdHg, where H, is the

)
Now, by formula (2.2) applied to K,, tr,,(p(f)|D,|™%) = fe

Hausdorff measure normalized on K, hence H; = (,ud(Kd)) g = 3n pa, and e € Ey(K,),
hence ((e)? = 3". Therefore tr,(p(f)|Dn|™?) = 1023 ., [ dpa and formula (6.2) follows. As

for equation (6.4), given =,y € K, let n such that z,y € K,, m > n. Then, combining
Propositions 6.3 (a) and 6.6, we have, for f € A,,,

1D, (I = 1D (1)1
and, by Theorem 5.2 and Corollary 5.14 in [26],

sup{[f(z) = f(W)] - [ € Am, [[Dm, p(f )]l = 1} = dgeo(, ), m = n.

Therefore

d(9z,0,) = sup{[f(x) = f()| : f € L, [[D, p(N]Il = 1}
= lim sup{[f(z) = f(Y)| : [ € Am, [[[D; p())]Il = 1}
= lim sup{[f(z) = f(W)| : [ € A, [P, ol )] = 1} = dgeo(, 9).
U

Remark 6.8. The last statement in Theorem 6.7 shows that the triple (£, M, D) recovers
two incompatible aspects of the space A..: on the one hand the compact space given by the
spectrum of the unital algebra A.,, with the corresponding finite integral, and on the other
hand the open fractafold K., with its geodesic distance. In particular, the functional on £
given by L(f) = ||[D, p(f)]|| is not a Lip-norm in the sense of Rieffel [34] because it does not
give rise to the weak™ topology on §(A). In fact, such seminorm produces a distance which
is unbounded on points, therefore the induced topology cannot be compact.
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