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Abstract

Let M be a von Neumann algebra on a Hilbert space H with a
cyclic and separating unit vector Ω and let ω be the faithful normal
state on M given by ω(·) = (Ω, ·Ω). Moreover, let {Ni : i ∈ I}
be a family of von Neumann subalgebras of M with faithful normal
conditional expectations Ei of M onto Ni satisfying ω = ω ◦ Ei for
all i ∈ I and let N =

⋂
i∈I Ni. We show that the projections ei,

e of H onto the closed subspaces NiΩ and NΩ respectively satisfy
e =

∧
i∈I ei. This proves a conjecture of V.F.R. Jones and F. Xu in

[1].

1 Introduction

Let M be a von Neumann algebra on a Hilbert space H and let Ω ∈ H be a
vector of norm 1 which is cyclic and separating for M . Given a family {Ni :
i ∈ I} of von Neumann subalgebras of M it is often useful to consider the
closed subspaces NiΩ, i ∈ I and the corresponding projections ei ∈ B(H).
If N denotes the intersection

⋂
i∈I Ni and e is the projection of H onto NΩ

one always have e ≤
∧

i∈I ei namely eH ⊂
⋂

i∈I eiH. However in general
the equality does not hold and in fact it is not hard to give examples with
N = C1 but ei = 1 for all i ∈ I even when the set I contains just two
elements.

In this paper we prove (see Corollary 3.4) that if for every i ∈ I there
is a faithful normal conditional expectation of M onto Ni with ω ◦ Ei = ω,
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where ω denotes the faithful normal state onM given by ω(·) = (Ω, ·Ω), then
e =

∧
i∈I ei.

In a recent paper V.F.R. Jones and F. Xu gave a proof of this equality for
a relevant class of examples associated with inclusions of loop groups models
of conformal nets on S1 [1, Lemma 4.14]. Moreover, they conjectured that
this conclusion is not restricted to specific models but holds in general for
inclusions of of completely rational conformal nets [1, Remark 4.15]. In these
examples M is a local algebra of the larger conformal net (a type III1 factor)
and Ω is the vacuum vector (if M is a Type II1 factor and the vector state
ω is the trace on M the equality holds by [2], cf. [1, Remark 4.16]).

Our result proves the conjecture of Jones and Xu in [1] and actually shows
that assumption (2) in [1, Corollary 4.9] is not needed.

The proof we shall give is partially inspired by the one given in [1, Lemma
4.14]. The main new idea is to replace the smeared vertex operators used
in [1] by suitable closed operators provided by the Tomita-Takesaki modular
theory. In fact we shall prove a more general result (Theorem 3.3) where
a normal semifinite normal weight on the von Neumann algebra M is given
instead of the vector state ω.

2 Preliminaries and notations

Let M be a von Neumann algebra and let ϕ be a normal semifinite faithful
(n.s.f.) weight on M . Then the set

Nϕ = {x ∈M : ϕ(x∗x) <∞}. (1)

is σ-weakly dense left ideal ofM . Nϕ with the inner product (x, y) = ϕ(x∗y)
can be completed to a complex Hilbert space Hϕ. Accordingly Nϕ ⊂M will
be considered as a dense subspace ofHϕ via the mapping Nϕ ∋ x 7→ xϕ ∈ Hϕ

so that for x, y ∈ Nϕ we have (xϕ, yϕ) = ϕ(x∗y). The GNS representation πϕ
of M on Hϕ is determined by πϕ(x)yϕ = (xy)ϕ for all x ∈ M and y ∈ Nϕ.
Then πϕ is normal and faithful i.e. a ∗-isomorphism of M onto the von
Neumann algebra πϕ(M) ⊂ B(Hϕ) (see [3, §2]).

The set Nϕ ∩ N∗

ϕ is a σ-weakly dense self-adjoint subalgebra Aϕ of M
which can also be considered as a dense subspace of Hϕ. The antilinear
operator S0

ϕ on Hϕ with domain Aϕ, defined by

S0

ϕxϕ = (x∗)ϕ, x ∈ Aϕ, (2)
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is preclosed and we denote its closure by Sϕ. The modular operator ∆ϕ =
S∗

ϕSϕ and the modular conjugation Jϕ associated withM and ϕ are obtained

from the polar decomposition Sϕ = Jϕ∆
1/2
ϕ of Sϕ. Moreover the following

fundamental relations hold

Jϕπϕ(M)Jϕ = πϕ(M)′, ∆it
ϕπϕ(M)∆−it

ϕ = πϕ(M), t ∈ R (3)

and the modular automorphism group {σϕ
t }t∈R of M associated with ϕ is

defined by
∆it

ϕπϕ(x)∆
−it
ϕ = πϕ(σ

ϕ
t (x)), x ∈M, t ∈ R. (4)

For every η ∈ Hϕ one defines a linear operator R0

η on Hϕ with domain
Aϕ by

R0

ηxϕ = πϕ(x)η, x ∈ Aϕ. (5)

If η is in the domain D(S∗

ϕ) of S
∗

ϕ then R0

η is preclosed and its closure Rη is
affiliated with πϕ(M)′, see [3, Chapter I, §2]. The subset A′

ϕ ⊂ Hϕ defined
by

A
′

ϕ = {η ∈ D(S∗

ϕ) : Rη ∈ B(Hϕ)} (6)

is a dense subspace of Hϕ and the set {Rη : η ∈ A′

ϕ} is a σ-weakly dense
self-adjoint subalgebra of πϕ(M)′.

Similarly, for every ξ ∈ Hϕ one defines a linear operator L0

ξ on Hϕ with
domain A′

ϕ by

L0

ξη = Rηξ, η ∈ A
′

ϕ. (7)

If ξ is in the domain D(Sϕ) of Sϕ then L0

ξ is preclosed and its closure Lξ is
affiliated with πϕ(M).

The operators Lξ, ξ ∈ D(Sϕ), which in general can be unbounded, will
play a crucial role in the proof of our main result.

We conclude this section with a proposition (cf. [2]). which we shall need
later.

Proposition 2.1. Let {Ri : i ∈ I} be a family of von Neumann algebras on
a Hilbert space H and let T be a closed linear operator on H. If T is affiliated
with Ri for every i ∈ I then T is also affiliated with R =

⋂
i∈I Ri.

Proof. Let A be the unital self-adjoint subalgebra of B(H) generated by the
union of the algebras R′

i, i ∈ I. If x ∈ A then xT ⊂ Tx. Now A′′ = R′

and thus A is strong-operator dense in R′. For x ∈ R′ let xλ be a net in A
converging to x in the strong-operator topology. If ξ is in the domain D(T )
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of T then xλξ ∈ D(T ) and Txλξ = xλTξ for each λ. Hence lim xλξ = xξ and
limTxλξ = xTξ. Since T is closed it follows that xξ ∈ D(T ) and Txξ = xTξ.
Hence xT ⊂ Tx for every x ∈ R′ namely T is affiliated with R.

3 Results

Let M be a von Neumann algebra and let ϕ be a n.s.f. weight on M . If N
is a von Neumann subalgebra of M we can define a closed subspace HN of
Hϕ by

HN = {xϕ : x ∈ Nϕ ∩N}. (8)

For all x ∈ N we have x(Nϕ ∩ N) ⊂ Nϕ ∩N and hence HN is invariant for
πϕ(N).

If σϕ
t (N) = N for all t ∈ R and the restriction ψ of ϕ to N is semifinite we

say that N is a modular covariant von Neumann subalgebra of M relatively
to ϕ or simply a modular covariant subalgebra if the corresponding weight
on M is unambiguously defined from the context. Note that if ϕ is a state,
i.e. ϕ(1) = 1, then N ⊂M is modular covariant iff σϕ

t (N) = N for all t ∈ R.
A von Neumann subalgebra N ⊂ M is modular covariant if and only if

there exists a faithful normal conditional expectation E of M onto N such
that ϕ = ϕ ◦E, namely ϕ(x) = ϕ(E(x)) for each positive element x of M [4]
(see also [3, §10]). In this case the conditional expectation E is completely
determined by

πϕ(E(x))e = eπϕ(x)e, x ∈M, (9)

where e denotes the projection of Hϕ onto HN (the Jones projection), and
the fact that HN is separating for πϕ(M), being N ∩Nϕ σ-weakly dense in
N .

Lemma 3.1. Let ϕ be a n.s.f. weight on the von Neumann algebra M .
If N ⊂ M is a modular covariant von Neumann subalgebra and e is the
corresponding Jones projection then

πϕ(N) = πϕ(M) ∩ {e}′.

Proof. From the fact that HN is invariant for πϕ(N) it follows that e ∈
πϕ(N)′. Assume now that x ∈M and that πϕ(x) commutes with e. Then it
follows from Eq. (9) that πϕ(E(x)−x)e = 0 and hence, being HN separating
for πϕ(M) and πϕ faithful, that x = E(x) ∈ N .
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Proposition 3.2. Let M , ϕ and N be as in the previous lemma and for
ξ ∈ D(Sϕ) let Lξ be the closed operator affiliated with πϕ(M) defined after
Eq. (7). Then Lξ is affiliated with πϕ(N) for all ξ ∈ D(Sϕ) ∩HN .

Proof. Let ξ ∈ D(Sϕ) ∩ HN . Since we know that Lξ is a closed operator
affiliated with πϕ(M) and by Lemma 3.1 πϕ(N) = πϕ(M) ∩ {e}′ it follows
from Proposition 2.1 that it is enough to show that Lξ is affiliated with {e}′

namely that eLξ ⊂ Lξe.
From eJϕ = Jϕe (see pag. 131 of [3]) and A

′

ϕ = JϕAϕ [3, 2.12] it follows
that eA′

ϕ = JϕeAϕ. Now, for every x ∈ Nϕ we have E(x) ∈ Nϕ and exϕ =
E(x)ϕ , see [3, 10.3]. Since E is a self-adjoint map it follows that eAϕ ⊂ Aϕ

and hence that eA′

ϕ ⊂ A′

ϕ. Given η ∈ A′

ϕ , x ∈ Aϕ we have

eRηexϕ = eRηE(x)ϕ = eπϕ(E(x))η = πϕ(E(x))eη

= ReηE(x)ϕ = Reηexϕ.

Since Rη and Reη are bounded and Aϕ is dense in Hϕ it follows that eRηe =
Reηe for every η ∈ A′

ϕ. Hence, using the assumption that ξ = eξ, for every
η ∈ A′

ϕ we find

Lξeη = Reηξ = Reηeξ = eRηeξ

= eRηξ = eLξη

and the conclusion follows from the fact that A′

ϕ is a core for Lξ.

We are now ready prove the main result of this paper.

Theorem 3.3. Let M be a von Neumann algebra with a n.s.f. weight ϕ and
let {Ni : i ∈ I} be a family of modular covariant von Neumann subalgebras
of M with Jones projections {ei : i ∈ I}. Assume that the restriction of ϕ to
N =

⋂
i∈I Ni is semifinite. Then N is a modular covariant subalgebra of M

with Jones projection e satisfying e =
∧

i∈I ei.

Proof. We have to show that
⋂

i∈I HNi
= HN . For all i ∈ I we haveNϕ∩N ⊂

Nϕ ∩ Ni and hence HN ⊂
⋂

i∈I HNi
. To prove the other inclusion let us

consider the projection f of Hϕ onto
⋂

i∈I HNi
. Since ei∆ϕ ⊂ ∆ϕei (see pag.

131 of [3]), ∆ϕ is affiliated with {ei}
′ for each i ∈ I and hence, by Proposition

2.1 it is affiliated with
⋂

i∈I{ei}
′ ⊂ {f}′. It follows that f∆

1/2
ϕ ⊂ ∆

1/2
ϕ f and

thus that D(Sϕ) ∩ fHϕ = fD(Sϕ).
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Now let ξ ∈ D(Sϕ). Then fξ ∈
⋂

i∈I (HNi
∩D(Sϕ)) and by Propositions

2.1 and 3.2 Lfξ is affiliated with
⋂

i∈I Ni = N . It follows that eLfξ ⊂ Lfξe

and hence that eRηfξ = Reηfξ for every η ∈ A′

ϕ. Thus, using the fact that
A′

ϕ = JϕAϕ, we find ReJϕxϕ
fξ ∈ eHϕ for all x ∈ Aϕ. From the equalities

RJϕyϕ = Jϕπϕ(y)Jϕ, y ∈ Aϕ (see pag. 26 of [3]) and Jϕe = eJϕ it follows that
Jϕπϕ(E(x))Jϕfξ ∈ eHϕ for every x ∈ Aϕ, where E is the faithful normal
conditional expectation of M onto N satisfying ϕ ◦ E = ϕ. Hence, being
Aϕ σ-weakly dense in M and E normal, we find fξ ∈ eHϕ = HN . Since
ξ ∈ D(Sϕ) was arbitrary we can conclude that fHϕ ⊂ HN .

Corollary 3.4. Let M be a von Neumann algebra on a Hilbert space H with
a cyclic and separating unit vector Ω and let ω be the faithful normal state
on M given by ω(·) = (Ω, ·Ω). Assume that for a given family {Ni : i ∈ I}
of von Neumann subalgebras of M there exist faithful normal conditional
expectations Ei of M onto Ni satisfying ω = ω ◦ Ei for all i ∈ I and let
N =

⋂
i∈I Ni. Then the Jones projections ei, e of H onto the closed subspaces

NiΩ and NΩ respectively satisfy e =
∧

i∈I ei.
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