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Abstract

We show that the sectors with lowest weight h ≥ 0, h 6= j2, j ∈ 1
2Z

of the local net of von Neumann algebras on the circle generated by

the Virasoro algebra with central charge c = 1 have infinite statistical

dimension.
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1 Introduction

The notion of statistical dimension of superselection sectors, introduced by
Doplicher, Haag, and Roberts in [6] is one of the most important concepts
emerging in the formulation of Quantum Field Theory in therms of local
nets of operator algebras ( see [10] for a general reference on this subject).
The deep connection with Jones’ theory on index for subfactors [11, 15],
established by Longo [16] is a remarkable illustration of the relevance of this
notion.

For an irreducible representation π of the algebra of observables A satis-
fying the DHR selection criterion the finiteness of the (statistical) dimension
d(π) is equivalent to the existence of a conjugate representation π corre-
sponding to the particle-antiparticle symmetry [6], a condition which is very
natural on physical grounds. In fact for local nets over a four dimensional
Minkowski space-time no example of (irreducible) sector with infinite dimen-
sion is known and the possibility that in this context the existence of such
sectors can be excluded for physically reasonable algebras of observables is
still open.

The situation is different in the case of conformal nets on S1, i.e. nets
associated to chiral components of 2D conformal field theories, where ir-
reducible representations with infinite dimension seem to appear naturally.
Examples have been found by Fredenhagen [7] and Rehren has given argu-
ments indicating that for the nets generated by the Virasoro with central
charge c ≥ 1 most of the irreducible representations should have infinite
dimension [20]. Moreover the analysis of these representations in a model
independent framework has been initiated in [1]

In this note we show (Theorem 4.4), in agreement with the arguments
in [20], that the representations of the Virasoro algebra with central charge
c = 1 and lowest weight h ≥ 0, h 6= j2, j ∈ 1

2
Z give rise to representations

with infinite dimension of the corresponding conformal net AVir.
Our strategy of proof differs from the one adopted in [7] where (partial)

computation of fusion rules is used to infer infinite dimension. Part of the
fusion rules for the Virasoro algebra with c = 1 have been recently computed
by Rehren and Tuneke [22] but we shall not use their results.

Instead of the fusion structure we use a formula, which appeared in [21],
giving the dimension the restriction of a representation of a net A to a sub-
system B ⊂ A (Proposition 3.1 in this note) and well known results on the
representation theory of the Virasoro algebra [12]. As another interesting
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application of this formula we show, generalizing a result in [24], that for
finite index subsystems of certain rational nets twisted sectors always exist
(Proposition 3.3).

2 Conformal nets, their representations and

subsystems

Let I be the set of nonempty, nondense, open intervals of unit circle S1.
A conformal net on S1 is a family A = {A(I)|I ∈ I} of von Neumann

algebras, acting on a infinite-dimensional separable Hilbert space HA, satis-
fying the following properties:

(i) Isotony.

A(I1) ⊂ A(I2) for I1 ⊂ I2, I1, I2 ∈ I. (1)

(ii) Locality.

A(I1) ⊂ A(I2)
′ for I1 ∩ I2 = ∅, I1, I2 ∈ I. (2)

(iii) Conformal covariance. There exists a strongly continuous unitary rep-
resentation U of PSL(2,R) in HA such that

U(α)A(I)U(α)−1 = A(αI) for I ∈ I, α ∈ PSL(2,R), (3)

where PSL(2,R) acts on S1 by Moebius transformations.

(iv) Positivity of the energy. The conformal Hamiltonian L0, which gener-
ates the restriction of U to the one-parameter group of rotations has
non negative spectrum.

(v) Existence of the vacuum. There exists a unique (up to a phase) U -
invariant unit vector Ω ∈ HA.

(vi) Cyclicity of the vacuum. Ω is cyclic for the algebra A(S1) :=
∨

I∈IA(I)

Some consequences of the axioms are [8, 9]:

(vii) Reeh-Schlieder property. For every I ∈ I, Ω is cyclic and separating for
A(I).
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(viii) Haag duality. For every I ∈ I

A(I)′ = A(Ic), (4)

where Ic denotes the interior of S1\I.

(ix) Factoriality. The algebras A(I) are type III1 factors.

A conformal net A is said to be split if given two intervals I1, I2 ∈ I with
the closure of I1 contained in I2, there exists a type I factor N(I1, I2) such
that

A(I1) ⊂ N(I1, I2) ⊂ A(I2). (5)

Moreover, if for every I, I1, I2 ∈ I with I1, I2 obtained by removing a point
from I we have

A(I1) ∨A(I2) = A(I), (6)

thenA is said to be strongly additive. The split property and strong additivity
do not follow from the axioms of conformal nets but they are satisfied in many
interesting models.

A representation of a conformal net A is a family π = {πI | I ∈ I} where
πI is a representation of A(I) on a fixed Hilbert space Hπ, such that

πJ |A(I) = πI for I ⊂ J. (7)

Irreducibility, direct sums and unitary equivalence of representations of
conformal nets can be defined in a natural way, see [8, 9]. The unitary
equivalence class of an irreducible representation π on a separable Hilbert
space is called a sector and denoted [π]. The identical representation of
A on HA is called the vacuum representation and it is irreducible. The
corresponding sector is called the vacuum sector.

IfHπ is separable then π is automatically locally normal, namely πI is nor-
mal for each I ∈ I and hence πI(A(I)) is a type III1 factor. A representation
π is said to be covariant if there is a strongly continuous unitary representa-

tion Uπ on Hπ of the universal covering group ˜PSL(2,R) of PSL(2,R) such
that

AdUπ(α)πI = παIAdU(α), (8)

where U has been lifted to ˜PSL(2,R). If a covariant representation π is
irreducible then there is a unique Uπ satisfying Eq. (8). Hence, in this case,
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the corresponding generator of rotations Lπ
0 is completely determined by π.

Given a covariant representation π of A on a separable Hilbert space Hπ one
has the (isomorphic) inclusions πI(A(I)) ⊂ πIc(A(Ic))′, I ∈ I [8]. Then the
Jones (minimal) index [πIc(A(Ic))′ : πI(A(I))] is independent of I ∈ I and
the statistical dimension d(π) of π is defined by

d(π) = [πIc(A(Ic))′ : πI(A(I))]
1
2 . (9)

The relation of this definition with the one in [6] is given by the index-
statistics theorem [9, 16].

A conformal subsystem of a conformal net A is a family B = {B(I)| I ∈ I}
of nontrivial von Neumann algebras acting on HA such that:

B(I) ⊂ A(I) for I ∈ I; (10)

U(α)B(I)U(α)−1 = B(αI) for I,∈ I; (11)

B(I1) ⊂ B(I2) for I1 ⊂ I2, I1, I2 ∈ I. (12)

We shall use the notation B ⊂ A for conformal subsystems. Note that
B is not in general a conformal net since Ω is not cyclic for the algebra
B(S1) :=

∨
I∈IB(I) unless B = A. However one gets a conformal net B0 by

restriction of the algebras B(I), I ∈ I, and of the representation U to the
closure HB of B(S1)Ω. Since the map

b ∈ B(I) 7→ b|HB
∈ B0(I)

is an isomorphism for every I ∈ I, we shall, as usual, use the symbol B
instead of B0, specifying, if necessary, when B acts on HA or on HB.

Given a conformal subsystem B ⊂ A the index of the subfactor B(I) ⊂
A(I) does not depend on I and is denoted [A : B].

3 Restricting representations

We now consider restriction of representations. Given a subsystem B ⊂ A

and a representation π of A one can define a representation πrest by

πrest
I = πI |B(I) I ∈ I. (13)

Then the following holds [21] (cf. also [23, Section 3]). We include the proof
for the convenience of the reader.

5



Proposition 3.1. For every conformal subsystem B ⊂ A and covariant

representation π of A on a separable Hilbert space we have

d(πrest) = [A : B]d(π). (14)

Proof. For I ∈ I we have d(πrest)2 = [πIc(B(Ic))′ : πI(B(I))]. Consider the
inclusions

πI(B(I)) ⊂ πI(A(I)) ⊂ πIc(A(Ic))′ ⊂ πIc(B(Ic))′.

Then, the multiplicativity of the index [17] implies that d(πrest)2 is equal
to

[πIc(B(Ic))′ : πIc(A(Ic))′][πIc(A(Ic))′ : πI(A(I))][πI(A(I)) : πI(B(I))].

Since πI is an isomorphism for every I ∈ I we have

[πIc(B(Ic))′ : πIc(A(Ic))′] = [πIc(A(Ic)) : πIc(B(Ic))]

= [A : B]

and similarly
[πI(A(I)) : πI(B(I))] = [A : B].

It follows that
d(πrest)2 = [A : B]2d(π)2.

Remark 3.2. If N ⊂ M is an inclusion of infinite factors acting on a sepa-
rable Hilbert space and ρ is a (normal, unital) endomorphism of M one can
define an endomorphism ρrest of N by

ρrest := γ ◦ ρ|N , (15)

where γ is Longo’s canonical endomorphism [16]. As discussed in [19] the
mapping ρ 7→ ρrest (called σ restriction in [2]) corresponds in a natural way
to the restriction of representations of a net. In fact a similar argument to
the one used in the proof of the previous proposition shows that

d(ρrest) = [M : N ]d(ρ). (16)

Here the dimension d(ρ) of an endomorphism ρ of a factor M is given by the
square root of the index of the subfactor ρ(M) ⊂M .
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Let I1, I2 ∈ I have disjoint closures, let I3, I4 ∈ I be the interiors of the
connected components of S1/(I1 ∪ I2) and let A be a conformal net on S1.
The inclusion

A(I1) ∨A(I2) ⊂ (A(I3) ∨A(I4))
′ (17)

is called a 2-interval inclusion. A conformal net A is said to be completely

rational if it is split, strongly additive and there is a 2-interval inclusion with
finite index µA (in this case every 2-interval inclusion has the same index
[14]). It has been shown in [14] that a completely rational net has finitely
many sectors which are all covariant with finite dimension. Furthermore the
following holds

µA =
∑
i

d(πi)
2, (18)

where for each sector of A a representation πi has been chosen.
We now consider a conformal subsystem B of a completely rational net

A such that the index [A : B] is finite. Then B is completely rational [18]
and the index µB is given by ([14, Proposition 24.])

µB = [A : B]2µA. (19)

We say that a sector of B is untwisted if it is contained in πrest for some
irreducible representation π of A on a separable Hilbert space. If it is not
untwisted we say that it is twisted.

For every sector of B we choose a corresponding representation σi of B.
Let U, (T) be the set of untwisted (twisted) sectors of B. We define

µu
B =

∑
[σi]∈U

d(σi)
2, (20)

µt
B =

∑
[σi]∈T

d(σi)
2. (21)

Clearly µB = µu
B + µt

B. In the case where B ⊂ A is an orbifold inclusion,
namely B is the fixed points net for the action of a (non trivial) finite group
G of internal symmetries of A, it has been shown by Xu [24] that the set of
twisted sectors is not empty. Actually Proposition 3.1 implies the existence
of such sectors even when there is no underlying group action.

Proposition 3.3. Let B be a proper conformal subsystem of a completely

rational net A, with finite index [A : B]. Then the set of twisted sectors of

B is not empty and in fact µt
B ≥ 2.
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Proof. Let πi, i = 0, 1, ..., n be inequivalent irreducible representations ex-
austing all sectors of A and let π0 be the vacuum representation. The
set U of untwisted sectors of B can be decomposed into disjoint subsets
Ui, i = 0, 1, ..., n in the following way: U0 is the set of sectors of B which
are contained in π0

rest and Uk, k = 1, ..., n is the the set of sectors contained
in πk

rest but not in πi
rest , i = 0, ..., k− 1. It follows from Proposition 3.1 and

Eq. (19) that

∑
i

d(πi
rest)2 = [A : B]2 ·

∑
i

d(πi)
2

= [A : B]2µA

= µB.

Therefore

µt
B = µB− µu

B

=
∑
i

d(πi
rest)2 −

∑
[σk ]∈U

d(σk)
2

≥
∑
i

(
∑

[σk]∈Ui

d(σk))
2 −

∑
i

(
∑

[σk]∈Ui

d(σk)
2)

≥ (
∑

[σk]∈U0

d(σk))
2 −

∑
[σk]∈U0

d(σk)
2 ≥ 2,

where the last inequality follows from the fact that U0 has two or more
elements when B 6= A.

4 Virasoro algebra and infinite dimension

We begin this section with the following easy consequence of Proposition 3.1

Proposition 4.1. Let B be a conformal subsystem of a net A with infinite

index [A : B]. Assume that there exists a covariant representation π of A on

a separable Hilbert space whose restriction to B is irreducible. Then [πrest] is
a covariant sector of B with infinite statistical dimension.
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We now come to the sectors of the conformal net AVir generated by the
Virasoro algebra with c = 1. We shall use the fact thatAVir can be considered
has a conformal subsystem of the net A generated by a U(1) current J(z).
The net A is defined has follows, see [3, 5] for more details. The Hilbert space
HA carries a strongly continuous unitary representation U of PSL(2,R) with
positive energy and a unique (up to a phase) U -invariant unit vector Ω. The
U(1) current J(z), z ∈ S1 is defined as operator valued distribution on HA.
Namely the operators

J(u) =

∫
dz

2πi
J(z)u(z) u ∈ C∞(S1) (22)

have a common invariant dense domain D containing Ω which is also U -
invariant. For each ψ ∈ D the mapping u 7→ J(u)ψ is linear and continuous
from C∞(S1) to HA. Moreover the vacuum Ω is cyclic for the polynomial
algebra generated by the smeared currents J(u), u ∈ C∞(S1).

The current J(z) satisfies the canonical commutation relations

[J(z1), J(z2)] = −δ′(z1 − z2), (23)

where the Dirac delta function δ(z1 − z2) is defined with respect to the com-
plex measure dz

2πi
, the hermiticity condition

J(z)∗ = z2J(z), (24)

and the covariance property

U(α)J(u)U(α)∗ = J(uα), u ∈ C∞(S1), (25)

where uα(z) := u(α−1z). For every real test function u ∈ C∞(S1) the oper-
ator J(u) is essentially self-adjoint and the unitaries W (u) := eiJ(u) satisfy
the Weyl relations

W (u)W (v) = W (u+ v)e−
A(u,v)

2 , (26)

where A(u, v) :=
∫

dz
2πi
u′(z)v(z). For every I ∈ I the local von Neumann

algebra A(I) is defined by

A(I) = {W (u)|u ∈ C∞(S1) real, supp u ⊂ I}′′ (27)

and one can show that the family A(I), I ∈ I is a conformal net on S1. Next
we define the conformal subsystem AVir generated by the Virasoro algebra
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with central charge c = 1. First consider the (formal) Fourier expansion of
the U(1)-current

J(z) =
∑
n

Jnz
−n−1, (28)

where the Fourier modes Jn, n ∈ Z satisfy

[Jn, Jm] = nδn+m,0 (29)

Jn
∗ = J−n. (30)

One can define an energy-momentum tensor T (z) by the Sugawara construc-
tion

T (z) =
1

2
: J(z)2 :=

1

2
(J+(z)J(z) + J(z)J−(z)), (31)

where,

J+(z) = J(z)− J−(z) =

∞∑
n=1

J−nz
n−1. (32)

The Fourier modes in the expansion

T (z) =
∑
n

Lnz
−n−2 (33)

satisfy the Virasoro Algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (34)

with central charge c = 1, and the hermiticity condition

Ln
∗ = L−n. (35)

According to our previous notations (the closure of) L0 is the positive self-
adjoint generator of the restriction of U to the one-parameter subgroup of
rotations.

For f ∈ C∞(S1) the operator

T (f) =

∫
dz

2πi
T (z)f(z) (36)

is well defined on D and is essentially self-adjoint when z−1f(z) is real. The
conformal subsystem AVir ⊂ A is then defined by

AVir(I) = {eiT (f)|f ∈ C∞(S1), z−1f(z) real, supp f ⊂ I}′′, I ∈ I. (37)

10



Representations of the net A have been studied in [3]. For every q ∈ R

one can define a covariant irreducible representation (BMT-automorphism)
αq on Hq = HA such that

αqI
(W (u)) = eq

∫
dz
2πi

z−1u(z)W (u), (38)

for I ∈ I, u ∈ C∞(S1) with support in I. Such representations have dimen-
sion d(αq) = 1 and correspond to (unitary) positive energy representations
of the Lie algebra (29) with lowest weight q [4]. Note that α0 is the vac-
uum representation of A. Analogously to each representation of the Virasoro
algebra (34) with central charge c = 1 and lowest weight h ∈ R+ one can
associate a covariant irreducible representation πh of AVir which can be re-
alized has a subrepresentation of αq

rest if h = 1
2
q2, see [5]. The characters of

the representations αq, q ∈ R, are given by (see e.g. [13, Section 2.2.] )

χq(t) = Tr(tL
αq
0 ) = t

1
2
q2p(t) t ∈ (0, 1), (39)

where p(t) =
∏∞

n=1(1 − tn)−1. Moreover, for the representations πh, h ∈ R+

and t ∈ (0, 1), by the results in [12] the following hold

χh(t) := Tr(tL
πh
0 ) = tj

2

(1− t2|j|+1)p(t), h = j2, j ∈
1

2
Z, (40)

χh(t) := Tr(tL
πh
0 ) = thp(t), h 6= j2, j ∈

1

2
Z. (41)

Lemma 4.2. [A : AVir] = ∞.

Proof. As a consequence of Proposition 3.1 we have [A : AVir] = d(α0
rest).

Moreover it follows from the equality χ0(t) =
∑∞

j=0 χ
j2(t) that

α0
rest = ⊕∞

j=0πj2

and this implies infinite index.

Lemma 4.3. (cf. [13, Theorem 6.2.]) If h = 1
2
q2, q /∈ 1√

2
Z, then πh = αq

rest.

Proof. If h = 1
2
q2 πh is a subrepresentation of αq

rest on a Uαq
-invariant

subspace Hh ⊂ Hq. Moreover, if q /∈ 1√
2
Z then χh(t) = χq(t) and hence

Hh = Hq. Accordingly we have πh = αq
rest.
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The following theorem is a direct consequence of Proposition 4.1 and the
previous two lemmata.

Theorem 4.4. If [πh] belongs to the continuum sectors of AVir, i.e. h ∈ R+,

h 6= j2, j ∈ 1
2
Z, then it has infinite statistical dimension.

Remark 4.5. It has been shown by Rehren [20] that if h = j2, j ∈ Z, then
d(πh) = 2|j|+ 1 and the same formula is expected to hold for every j ∈ 1

2
Z.
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