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Abstract

Given a completely rational conformal net A on S1, its fusion ring acts faithfully on
the K-group K0(KA) of a certain universal C*-algebra KA associated to A, as shown
in a previous paper. We prove here that this action can actually be identified with
a Kasparov product, thus paving the way for a fruitful interplay between conformal
field theory and KK-theory.

1 Introduction

In the operator algebraic approach a chiral conformal fied theory is described by a con-
formal net A on S1, namely an inclusion preserving map I 7→ A(I) from the set of proper
(nonempty, nondense, open) intervals of the unit circle S1 into the family of von Neumann
algebras (actually type III1 factors) acting on a fixed separable (complex) Hilbert space H
called the vacuum Hilbert space of the theory, which is conformally covariant and satisfies
some other natural conditions, see e.g. [KL04] and the references therein. The superse-
lection structure of the theory is then captured by the representation theory of the net A
and can also be described in terms of localized (DHR) endomorphisms.

In a recent paper [CCHW12] together with Mihály Weiner we have started an investi-
gation of K-theoretical aspects of conformal nets. In the present note we take one further
step along these lines and provide an interpretation of some of the results obtained there
in the framework of Kasparov KK-theory. At a first glance, this might appear merely as
an academic curiosity. However, in view of the striking success of KK-theory on the one
hand (e.g. [CMR07] for an overview) and the noncommutative geometrization program for
(super-) conformal nets and their representations [Lon01, CKL08, CHKL10] on the other
hand, we feel that there are good reasons to give a closer look at this subject, as it could
possibly reveal a lot of potential for further investigations.
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We recall the results in [CCHW12] relevant for the present analysis, referring the reader
to that paper for more details, notation, and references. Let A be a completely rational
local conformal net on S1. We can then define the so-called locally normal universal C*-
algebra C∗

ln(A) which is canonically associated to the superselection theory of the net.
It may be expressed as a quotient of the universal algebra C∗(A) previously defined by
Fredenhagen in [Fre90] or, equivalently, as the image of C∗(A) in the so-called locally
normal universal representation (πln,Hln). The striking fact is that C∗

ln(A) turns out to
be isomorphic to the direct sum B(H)⊕n of n copies of the algebra B(H) of all bounded
operators on the vacuum Hilbert space of A. Here, n < ∞ is the number of sectors of
A. Consequently, it has trivial K-theory and several other properties which make it not
really attractive as a C*-algebra.

We therefore consider its separable C*-subalgebra KA generated by the finite projec-
tions. It is isomorphic to K⊕n ⊂ B(H)⊕n, where K := K(H) is the algebra of compact
operators on H. Clearly KA is an ideal of C∗

ln(A) and in fact it is the largest among the
norm-separable ideals. We have

K0(KA) = Z
n, K1(KA) = 0.

Furthermore, we get a faithful semiring action of the fusion semiring RA of A on K0(KA),
via restriction of endomorphisms of C∗

ln(A) to KA and subsequent pushforward to K0(KA).
Namely, as shown in from [CCHW12, Th.4.4], there is an injective semiring homomorphism

η : RA → End(K0(KA))

satisfying η[ρ] = (ρ̂|KA
)∗ for every localized covariant endomorphism ρ of C∗(A), where

[ρ] ∈ RA is the sector (i.e., the unitary equivalence class) represented by ρ, and ρ̂ is
a normal *-homomorphism of C∗

ln(A) naturally associated to ρ, mapping KA into itself.
Hereafter, we shall use “[ρ]“ exclusively to denote the sector determined by ρ and not its
KK-class.

We shall give an interpretation of this action in terms of KK-theory. This fact can
be seen as an illustration in the conformal nets setting of a comment of Izumi [Izu02,
page 118], based on previous ideas of Kajiwara and Watatani [KW00, Wat90], on the
relation between sector theory and KK-theory. There they work out the most natural way
of associating a KK-class to a *-homomorphism between two simple C*-algebras. In our
context, however, it is a priori unclear what are the correct C*-algebras to be considered
and whether we can get rid of their assumptions. In [EG09, EG10], Evans and Gannon
discuss KK-theoretical aspects of CFT in relation to modular invariants and twisted K-
theory. Following some of their ideas, we shall provide a KK-theoretical interpretation of
modular invariants in our setting towards the end of the present article.

Another instance of the emergence of KK-theoretical concepts in AQFT has been
recently pointed out by Conti and Morsella [CM12], where the DHR sectors of scaling limit
nets (as defined by Buchholz-Verch, in order to cast the renormalization group analysis
into operator algebraic terms) are described by maps of the original global quasi-local
C*-algebra on four-dimensional Minkowski spacetime that are suitable modifications of
the asymptotic morphisms of Connes and Higson.

We close this introduction by mentioning that other relationships of seemingly quite
different nature between KK-theory and quantum field theory have been investigated by
other authors, see e.g. [BMRS08].

2 Basics of KK-theory

It is well-known that the push-forward of *-homomorphisms gives rise to elements in KK-
theory. We want to see how this works in our setting in relation to the semiring action
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η recalled above. For the convenience of the reader and in order to fix the notation let
us introduce here KK-theory very briefly, while referring to [Bla98] and [JT91] for details.
All C*-algebras we consider below will be separable and stably unital. In particular, the
various approaches to KK-theory become all equivalent [Bla98, Sec.17&18] and K0(A) is
the Grothendieck group of the projection semigroup of the C*-algebra K ⊗A. Moreover,
we will restrict ourselves to the ungraded algebra case.

A Kasparov (A,B)-module is a tuple (E , φ, F ), where E is a countably generated graded
Hilbert B-module, φ : A→ B(E) is a graded *-homomorphism, and F ∈ B(E) has degree
one, such that

(F − F ∗)φ(a), (F 2 − 1)φ(a), [F, φ(a)]

lie all in K(E), the compact operators on E , for all a ∈ A. With the usual concept of
homotopy, one defines KK(A,B) as the set of homotopy equivalence classes of Kasparov
(A,B)-modules. Moreover, if we have two Kasparov (A,B)-modules (Ei, φi, Fi) and a
unitary in B(E1, E2) intertwining the φi and the Fi, then the two Kasparov modules are
homotopically equivalent. There is a direct sum for Kasparov (A,B)-modules, which
passes to the quotient KK(A,B); cf. [Bla98, Sec.17] for all these statements.

For our immediate purposes, the most relevant facts about KK-theory can be summa-
rized as follows:

Theorem 1. Let A,B,C be C*-algebras as above.

(1) KK(A,B) is an abelian group with respect to the above addition, and KK is a
bifunctor from the category of C*-algebras to abelian groups [Bla98, 17.3&17.8].

(2) There is a canonical identification of KK(C, A) with K0(A) (as additive groups),
[Bla98, 17.5.5].

(3) Every *-homomorphism φ : A → B naturally defines a KK(A,B)-element {φ} as
the homotopy class of (B,φ, 0), where we have identified B(B) with the multiplier
algebra M(B).

(4) If two *-homomorphisms φ,ψ : A → B, are unitarily equivalent in M(B), then the
induced KK(A,B)-elements coincide, [JT91, Sec.1.3].

(5) There exists a bilinear map ×, the so-called Kasparov product

KK(A,B)×KK(B,C) → KK(A,C),

which is associative, [Bla98, Sec.18].

(6) If ψ : A→ B and φ : B → C are *-homomorphisms then

{ψ} × {φ} = {φ ◦ ψ}.

If idA is the identity automorphism of A then {idA} is the neutral element in
KK(A,A) for the Kasparov product. Hence KK(A,A) is a unital ring.

(7) The adjoint of the pairing KK(C, A) × KK(A,B) → KK(C, B) defines, via the
identification in (2), a map γ : KK(A,B) → Hom(K0(A),K0(B)), namely

γ(y)(x) = x× y, x ∈ K0(A), y ∈ KK(A,B).

For y = {φ} with φ : A→ B a *-homomorphism, we have

γ({φ}) = φ∗,

the push-forward of φ in K-theory.
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We only mention that property (6) may be obtained as a consequence of the functo-
riality properties of the KK-product [Bla98, 18.7.1] and the relation {φ} = φ∗{idC}. The
canonical identification in (2) is given by

[p+]− [p−] ∈ K0(A) 7→
[

HA ⊕HA, φp+ ⊕ φp− ,

(

0 1

1 0

)

]

∈ KK(C, A),

where HA is the Hilbert module A⊗ l2(Z), the grading on HA⊕HA is 1⊕−1, p± ∈ A⊗K
are projections, and φp± is the map: t ∈ C 7→ tp± ∈ M(A ⊗ K). It has, in particular,
the property that push-forwards in K0(A) and KK(C, A) mutually correspond to each
other. All this can be easiest seen as outlined in [Cun83, Sec.1] following Cuntz’ quasi-
homomorphism picture; alternatively one may use [Bla98, 17.5.5]. Finally, property (7) is
a consequence of (2) and the functoriality property [Bla98, 17.8.2].

3 Main result

Let us return to our setting, using the notation from the theorem and Section 4 in
[CCHW12].

Theorem 2. Let A be a completely rational net on S1, and let η : RA → End(K0(KA))
be the injective semiring homomorphism recalled above. Then there is an injective unital
semiring homomorphism j : RA → KK(KA,KA) such that

x× j([ρ]) = η[ρ](x), [ρ] ∈ RA, x ∈ K0(KA) = KK(C,KA). (1)

Proof. Using Theorem 1(1), define

j([ρ]) := {ρ̂|KA
} ∈ KK(KA,KA), [ρ] ∈ RA .

This map is well-defined since if ρ and ρ′ are equivalent endomorphisms in C∗(A) then
ρ̂ and ρ̂′ are equivalent endomorphisms of C∗

ln(A). As the latter contains KA as an ideal
and it is weakly closed in B(Hln), it can be easily identified with the multiplier algebra
M(KA). Then by Theorem 1(2), ρ̂|KA

and ρ̂′|KA
give rise to Kasparov (KA,KA)-modules,

which according to (3) are equivalent and so define the same KK-element {ρ̂|KA
}.

Furthermore, j is multiplicative, namely j([ρ1][ρ2]) = j([ρ1])× j([ρ2]) and j([id]) is the
unit in KK(KA,KA). Indeed, using the commutativity of the composition of DHR sectors
(due to the existence of a unitary braiding) and point (6) in Theorem 1,

j([ρ1][ρ2]) = j([ρ1 ◦ ρ2]) = j([ρ2 ◦ ρ1]) = {ρ̂2 ◦ ρ1|KA
}

= {ρ̂2|KA
◦ ρ̂1|KA

} = {ρ̂1|KA
} × {ρ̂2|KA

} = j([ρ1])× j([ρ2])

Next, we check the additivity of j, namely j([ρ1] ⊕ [ρ2]) = j([ρ1]) + j([ρ2]). If s1 and
s2 are a pair isometries generating a copy of O2 inside C∗(A) then a representative of
[ρ1]⊕ [ρ2] ∈ RA is the endomorphism ρ = s1ρ1(·)s

∗
1 + s2ρ2(·)s

∗
2. Therefore, using the fact

that ρ̂(x) = ŝ1ρ̂1(x)ŝ
∗
1 + ŝ2ρ̂2(x)ŝ

∗
2, x ∈ C∗

ln(A), where ŝi = πln(si), i = 1, 2, one has

j([ρ1]⊕ [ρ2]) = {(s1ρ1(·)s
∗
1 + s2ρ2(·)s

∗
2)̂|KA

} = {ŝ1ρ̂1|KA
ŝ∗1 + ŝ2ρ̂2|KA

ŝ∗2}.

The subsequent Lemma 3 and its proof (with A = C∗
ln(A) and I = KA) imply

T (KA ⊕ KA) = KA, T (ρ̂1|KA
⊕ ρ̂2|KA

)T ∗ = ŝ1ρ̂1|KA
ŝ∗1 + ŝ2ρ̂2|KA

ŝ2,
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so that, according to Theorem 1(3) and the introduction of Kasparov modules, the classes
of (KA, ρ̂1|KA

, 0)⊕ (KA, ρ̂1|KA
, 0) and (KA, ŝ1ρ̂1|KA

ŝ∗1 + ŝ2ρ̂2|KA
ŝ∗2, 0) in KK(KA,KA) coin-

cide, thus

{ŝ1ρ̂1|KA
ŝ∗1 + ŝ2ρ̂2|KA

ŝ∗2} = {ρ̂1|KA
}+ {ρ̂2|KA

} = j([ρ1]) + j([ρ2]).

Finally, the identity (1) follows at once from point (7) in Theorem 1. Since η is injective
according to [CCHW12, Theorem 4.4], j has to be injective, too. �

Lemma 3. Let A be a unital C*-algebra containing a copy of the Cuntz algebra O2 and
let I be a closed two-sided ideal in A. Then I ⊕ I ≃ I as right Hilbert I-modules.

Proof. Let s1, s2 ∈ A be a pair of isometries such that s1s
∗
1+ s2s

∗
2 = 1. Define the linear

operator T : I ⊕ I → I by T (a, b) := s1a + s2b, a, b ∈ I. It is easy to see that T is an
isometric and surjective right I-module map, so that it is indeed unitary, [Lan95, 3.2].

�

4 Some remarks

First of all, Theorem 2 says that the left action of RA on K0(KA) “factorizes” through a
right action of KK(KA,KA) and can be expressed in terms of a Kasparov product. This
construction appears to depend on various special properties of the algebra KA which
has been defined only for completely rational conformal nets. It is not evident how to
generalize the definition of KA in order to find the analogues of [CCHW12, Th.4.4] and
Theorem 2 for a more general class of conformal nets.

Second, write R̃A for the Grothendieck ring generated by the semiring RA and j̃ for
the unique ring homomorphism extending j to R̃A. It is clearly injective, owing to the
preceding theorem. We would like to stress then that j̃(R̃A) ⊂ KK(KA,KA) is always
a proper subring if the number of sectors n is greater than 1, i.e., for non-holomorphic
theories. This can be easily seen because R̃A ≃ K0(KA) is commutative whileKK(KA,KA)
is non-commutative. To prove the latter statement, we simply the universal coefficient
theorem [Bla06, V.1.5.8], which holds for the algebra KA since it lies in the so-called
bootstrap class [Bla06, V.1.5.4], and which says

KK(KA,KA) ≃ End(K0(KA)) ≃ Mn(Z). (2)

Our last comment concerns modular invariants. In [EG09, Sec.7] it has been pointed
out that modular invariants can be regarded as certain KK-classes. As we shall see now,
an interpretation of modular invariants as KK-classes can be directly formulated in our
setting. For a completely rational conformal net the braiding is always non-degenerate
[KLM01, Cor.37]. Then by Rehren’s construction there are invertible complex vector space
endomorphisms S, T ∈ End(C⊗Z R̃A) giving rise to a representation of the modular group
SL(2,Z) on the fusion algebra C⊗Z R̃A, cf. [Reh90]. A modular invariant is a Z-module
endomorphisms Z ∈ EndZ(R̃A) such that:

- id⊗ZZ ∈ End
(

C⊗Z R̃A

)

commutes with S and T (modular invariance);

- Z(RA) ⊂ RA (positivity);
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- the matrix element Z11 in the distinguished basis of sectors is 1 (uniqueness of the
vacuum).

Hence, as a consequence of the additive group isomorphism R̃A ≃ K0(KA), every modular
invariant Z can be identified with an element in End(K0(KA)) ≃ KK(KA,KA).
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