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1 Model extensions

In this section we describe several extensions of the model described in Section (2.2) of the paper. The first

is a modification to the filtering algorithm of Section (2.2) aimed to provide robust covariance forecasts in

the presence of jumps. We complement the results of the Monte-Carlo and empirical sections with those

obtained by applying the alternative methodology. This also serves as a robustness check for the results

obtained in the paper. We also discuss some alternative parameterizations of the covariances. The first two

are aimed to facilitate the estimation of the model at high dimensions, whereas the latter accommodates for

deterministic intraday volatility patterns.

1.1 A Robust update scheme

It is well-known that high-frequency prices are characterized by the presence of jumps. The filtering algorithm

based on the Gaussian density is sensitive to outliers and might provide inaccurate forecasts when a jump

occurs. To achieve robustness to fat-tails, we modify the Gaussian algorithm as follows. Instead of the

normal conditional density in Eq. (11) of the paper, we consider the following Student-t conditional density:

log pν(Yt|ft,Ft−1,Θ) = log Γ

(
ν + nt

2

)
− log Γ

(ν
2

)
− nt

2
log[(ν − 2)π]− 1

2
log |Ft|

− ν + nt
2

log

(
1 +

v′tF
−1
t vt

ν − 2

) (1)

where vt and Ft are defined as in Section (2). Inspired by Harvey and Luati (2014) and Buccheri et al.

(2019), we re-write the update in Eq. (12) of the paper as:

at = at−1 +Kt−1v
(r)
t−1 (2)

where v
(r)
t = vt(ν+nt)

ν−2+v′tF
−1
t vt

is proportional to the score of the Student-t density in Eq. (1) computed with

respect to at. Furthermore, we re-write the score in Eq. (13) of the paper as:

∇t = −1

2

[
Ḟ ′t (Int ⊗ F−1t )vec(Int − v

(r)
t v′tF

−1
t ) + 2v̇′tF

−1
t v

(r)
t

]
(3)

To understand the rationale behind the new filtering algorithm, observe that the prediction error vt

coincides, up to a normalization, with the score of the Gaussian density in Eq. (11) of the paper computed

with respect to at (see Buccheri et al. (2019) for a detailed discussion on the relation between the score and

the Kalman filter recursions). We thus replace the Gaussian score vt in the update of the latent efficient price

with the score v
(r)
t of the Student-t density in Eq. (1). Observe also that the expression in Eq. (3) coincides

with the score of the Student-t density in Eq. (1) computed with respect to the time-varying parameter

vector ft.

The new filtering recursions, being based on the scores of the Student-t density, provide robust estimates

of both the latent efficient prices and the covariances. If ν goes to infinity, v
(r)
t reduces to vt and we recover

the filtering algorithm of Section (2.2) in the paper. In contrast, when ν is finite, the two filters behave

differently. If an outlier occurs, the prediction error vt is large, and therefore outliers have a large impact in

the standard filtering algorithm described in the paper. On the other hand, due to the nonlinear dependence
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Figure 1: Up: log-returns simulated from a Student-t conditional density with ν = 3 degrees of freedom. Bottom:

simulated correlation (grey line), filtered correlation obtained from the local-level model with Gaussian score (dashed

line), filtered correlation obtained from the local-level model with the robust update scheme (dotted line).

on vt, v
(r)
t remains finite when Yt is large. Thus, in the new filtering algorithm, outliers have a little impact

on the forecast of the time-varying parameters.

The proposed method only requires a minor modification to the algorithm described in Section (2.2).

Indeed, one only needs to replace Eq. (12), (13) of the paper with Eq. (2), (3), respectively, and maximize

with respect to the Student-t density in Eq. (1). However, it has the advantage of performing much better

in the presence of fat-tails. Figure (1) shows one simulation of a bivariate t-GAS model (Creal et al. 2011)

based on a Student-t conditional density with ν = 3 degrees of freedom. As expected, the correlation

filtered by the Gaussian local-level model is significantly affected by the presence of outliers. In contrast, the

filtering algorithm based on the robust scores provides very accurate estimates of the simulated correlation.

A similar result is obtained when comparing the estimates of the variances or, if observations are noisy, when

comparing the filtered log-prices.

1.1.1 Additional Monte-Carlo results

In this section we perform the same Monte-Carlo experiment of Section (3.3) in the paper, but include the

results coming from the estimation of the local-level model with robust update scheme described above.

Figure (2) shows the out-of-sample average Frobenius losses reported in the paper, with in addition the

average loss of the robust local-level model. The local-level model with Student-t scores behaves differently

compared to the Gaussian local-level. On the figure on the left, we change the degree of sparsity of the data

by varying the probability of missing values λ. We see that, for small λ, the performance of the robust model

is much closer to that of the t-GAS, confirming that the proposed approach significantly improves over the
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Figure 2: Left: average out-of-sample Frobenius losses, as a function of the average probability of missing values λ,

of the t-GAS, the local-level and the local-level with robust update scheme. The DGP is a t-GAS with ν = 3. Right:

average out-of-sample Frobenius losses of the same models as a function of the signal-to-noise ratio δ. The DGP is a

t-GAS with ν = 3 contaminated by a Student-t distributed measurement error with νerr = 3 and we set λ = 0.

Gaussian algorithm when observations have fat-tails. On the right, we change the level of noise by varying

the signal-to-noise ratio δ. We note that the performance of the robust local-level is closer to that of the

t-GAS when δ is large, i.e. when estimation errors are small. When δ decreases, it rapidly improves over the

t-GAS, in a similar fashion to the standard local-level model.

1.1.2 Additional empirical results

We denote by LL
(rob)
h and LL

(rob)
e the two robust local-level specifications with hyperspherical coordinates

and equicorrelations, respectively. Table (1) shows the average and the standard deviation of the parameters

estimated by the four local-level models and the t-GAS. We note that the parameter ν estimated by the

LL
(rob)
h and LL

(rob)
e models is significantly lower than that of the t-GAS. Such difference is most likely due to

data reduction and microstructure noise, which both affect the inference of the t-GAS parameters. It thus

implies a higher degree of robustness to jumps for our local-level specifications.
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Parameter t-GAS LLh LL
(rob)
h LLe LL

(rob)
e

Ah
- 0.0323 0.0496 0.0179 0.0274

- (0.0137) (0.0179) (0.0117) (0.0158)

Ad
0.1515 0.0226 0.0312 0.0210 0.0290

(0.0373) (0.0088) (0.0116) (0.0093) (0.0115)

Ar
0.0232 0.0048 0.0053 0.0057 0.0045

(0.0109) (0.0018) (0.0038) (0.0029) (0.0038)

ν
13.555 - 9.6123 - 8.2604

(4.2204) - (2.3327) - (2.1200)

Table 1: Average of maximum likelihood estimates of parameters Ah, Ad, Ar, ν of t-GAS, LLh, LL
(rob)
h , LLe and

LL
(rob)
e models. The averages are computed over the whole sample of 251 business days. Standard deviations are

indicated in parenthesis.
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Figure 3: Average intraday patterns of the estimated LLh and LL
(rob)
h time-varying parameters Dt, H

1/2
t , δt and

Rt. For each t = 1, . . . , 23400, we report 10% and 90% quantiles of the distribution (over days) of averages of Dt,

H
1/2
t , δt and Rt (over assets or couples of assets).
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Figure 4: Average intraday patterns of the estimated LLh and LL
(rob)
h time-varying parameters Dt, H

1/2
t , δt and

Rt. For each t = 1, . . . , 23400, we report 10% and 90% quantiles of the distribution (over assets or couples of assets)

of averages of Dt, H
1/2
t , δt and Rt (over days).
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Figure 5: For both LLh and LL
(rob)
h , we plot d̃jt , h̃

j
t , δ̃

j
t , ρ̃jt computed for j = 82, corresponding to 30-04-2014
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Figure 6: For both LLh and LL
(rob)
h , we plot d̃jt , h̃

j
t , δ̃

j
t , ρ̃jt computed for j = 145, corresponding to 30-07-2014

We report in Figures (3)-(6) the average intraday patterns of LLh and LLrob
h models and their filtered

estimates during FOMC days. It is interesting to note that the average intraday patterns of the LL
(rob)
h

model are similar, in levels, to the average intraday patterns of the LLh model. However, the two models

behave a little bit differently in the presence of jumps and other large movements in the log-prices. This is

more evident when examining the dynamics of the time-varying parameters during the two FOMC days. We

see that, at 14:00, the LLh is characterized by a steep increase in volatilities and correlations, whereas the

LL
(rob)
h provides a more gradual response. This is due to the different update rule used in the two models,

which are based on Gaussian and Student-t scores. Despite this difference, both models rapidly respond

to the release of information, suggesting that the increase of volatilities and correlations in the standard

algorithm is not due to the Gaussian assumption for the conditional density.
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LLh LL
(rob)
h LLe LL

(rob)
e t-GAS DCC EWMA

Ex-post Portfolio Variance

Avg. variance 0.5428 0.5412 0.5501 0.5353 0.5895 0.6987 0.7023

N. of days in M90% 170 181 165 185 98 23 0

Avg. p-value 0.6599 0.7118 0.6238 0.7300 0.2621 0.0061 0.0000

99% VaR

Avg. coverage 0.0198 0.0166 0.0202 0.0156 0.0016 0.4976 0.4812

N. of rejections of HK
0 67 56 82 60 198 250 250

Avg. p-value 0.2681 0.3161 0.2151 0.3047 0.0236 0.000 0.000

95% VaR

Avg. coverage 0.0566 0.0537 0.0605 0.0532 0.0038 0.4976 0.4923

N. of rejections of HK
0 48 33 52 45 239 250 250

Avg. p-value 0.2885 0.3446 0.2885 0.2948 0.0025 0.000 0.0000

Table 2: Top: Average variance (×105) of 1-minute GMV portfolios constructed through out-of-sample covariance

forecasts of LLh, LL
(rob)
h , LLe, LL

(rob)
e , t-GAS and DCC models. We report the number of days in which the models

are included inM90% and the average of the p-values of the MCS test. Middle: Average coverage of 1-minute VaR’s

at 99% CL obtained from the covariance forecasts of GMV portfolios. We report the number of rejections of the

Kupiec test with a significance level of 5% and the average p-value. Down: As before, but VaR’s are computed at

95% CL.

Table (2) shows the results of the out-of-sample experiment performed in Section (4.4) in the paper, with

in addition the performance of the two robust local-level models. We first note that the portfolios based on

LL
(rob)
h and LL

(rob)
e models have slightly lower ex-post variance compared to LLh and LLe portfolios, and

are included in the MCS a larger number of times. When applied to high-frequency data, the robust update

scheme thus improves over the standard Gaussian algorithm of Section (1.1). Similarly, we see that the

LL
(rob)
h and LL

(rob)
e models provide average coverage rates that are closer to the nominal confidence level.

This is not surprising, as the two Gaussian specifications naturally tend to underestimate the risk.

1.2 Reduced rank correlations

If n is large, the dimension of the vector ft of time-varying parameters becomes huge and this can make the

estimation process computationally demanding. In this case, one can use a reduced rank decomposition of

the correlation matrix Rt in order to lower the number of time-varying parameters. We write Rt as:

Rt = Z ′tZt (4)

where Zt is now an r×n matrix with r < n. The number of free parameters of the reduced rank correlation

matrix is (r − 1)(n − r/2). In the hyperspherical parameterization, the nonzero entries zij of Zt read (see
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e.g. Rapisarda et al. 2007):

zij =



1 i = j = 1

cos θ1j i = 1, j > 1

cos θij
∏i−1
k=1 sin θkj 1 < i < min (r, j)∏r−1

k=1 sin θkj i = min(r, j)

(5)

Thus, the matrix Zt has the following structure:

Zt =



1 c12 c13 . . . c1r c1r+1 . . . c1n

0 s12 c23s13 . . . c2rs1r c2r+1s1r+1 . . . c2ns1n

0 0 s23s13 . . . c3rs2rs1r c3r+1s2r+1s1r+1 . . . c3ns2ns1n
...

...
...

...
...

...

0 0 0 . . .
∏r−1
k=1 skr

∏r−1
k=1 skr+1 . . .

∏r−1
k=1 skn


where we neglect the time subscript t for ease of notation. The first r columns are parameterized by

the r(r − 1)/2 angles θ12, θ13, . . . , θr−1r, while each of the remaining n − r columns are parameterized

by the r − 1 angles θ1k, θ2k, . . . , θr−1,k, k = r + 1, . . . , n. The total number of parameters is therefore

kr = r(r − 1)/2 + (n − r)(r − 1), which is equal to the number of free parameters of an n × n correlation

matrix of rank r. Eq. (25) still holds, provided that the derivative of Zt with respect to ft is computed as:

∂zij
∂θlm

=


0 i > j, j 6= m, l ≥ m, l > i

−zij tan θij i 6= min(j, r), l = i

zij
tan θij

l < i

(6)

1.3 Common factor structure in the covariances

Another alternative method to reduce the number of time-varying parameters is to assume a factor structure,

in a similar fashion to Creal et al. (2011). We can write:

log(diag(Ht)) = aH +MHft (7)

log(diag(D2
t )) = aD +MDft (8)

φt = aφ +Mφft (9)

where ft is a vector of lower dimension and aH , aD, aφ, MH , MD, Mφ are vectors and factor loading matrices

of appropriate dimension and subject to identification restrictions. The structure of the filter remains the

same, except that one needs to take into account the linear transformation (7), (8), (9) when computing

the Jacobian. As discussed by Creal et al. (2011), the existence of a factor structure allows to decrease

the number of time-varying parameters, but increases the number of static parameters in the maximum

likelihood estimation.
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1.4 Deterministic volatility patterns

The proposed approach allows the modeling of intraday deterministic patterns in Dt and Ht. We write the

new matrices D
(s)
t and H

(s)
t as:

D
(s)
t = stDt (10)

H
(s)
t = s2tHt (11)

where st is a common deterministic trend. The latter is set as in Andersen et al. (2012) and Bollerslev et al.

(2016), namely:

st = c+ ae−αt + be−β(1−t) (12)

where a = 0.75, b = 0.25, c = 0.88929198 and α = β = 10. The filtering recursions remain unaltered,

provided that one replaces Dt and Ht with D
(s)
t and H

(s)
t , respectively, and multiplies their derivatives by

st.

2 Computation of v̇t and Ḟt

We first introduce the notation. The n × n identity matrix is denoted as In. We use ⊗ to denote the

Kronecker product between two matrices. The operator vec[·], applied to an m × n matrix A, stacks the

columns of A into an mn × 1 vector. The operator diag[·] applied to an n × n matrix stacks its diagonal

elements into an n × 1 vector. When applied to an n × 1 vector, it gives a diagonal n × n matrix with

the elements of the vector in the main diagonal. We also introduce the commutation matrix Cmn, i.e. the

mn×mn matrix such that CmnvecA = vecA′ for every m× n matrix A. The derivative of an m× n matrix

function F (X) with respect to the p × q matrix X is defined as in Abadir and Magnus (2005), i.e. as the

mn× pq matrix computed as ∂vec(F (X))/∂vec(X)′.

Let us define at = Et−1[Xt] and Pt = Covt−1[Xt]. Due to asynchronous trading, Yt is a vector with

nt ≤ n components. We define the nt × n selection matrix Γt with ones in the columns corresponding

to observed prices. We also define the prediction error vt = Yt − Γtat and the prediction error variance

Ft = Γt(Pt + Ht)Γ
′
t. The Kalman filter recursions for the local-level model in Eq. (5), (6) of the paper are

given by:

at = at−1 +Kt−1vt−1 Pt = Pt−1(In −Kt−1Γt−1)′ +Qt (13)

where Kt−1 = Pt−1Γ′t−1F
−1
t−1. If at time t − 1 all the observations are missing, we set at = at−1 and

Pt = Pt−1 + Qt, as discussed by Durbin and Koopman (2012). It is convenient to introduce the auxiliary

vector of time-varying parameters:

f̃t =


diag(Ht)

diag(D2
t )

φt

 (14)
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The latter is related to ft by the following link-function:

f̃t = L(ft) =



exp f
(1)
t

...

exp f
(2n)
t

f
(2n+1)
t

...

f
(k)
t


(15)

The Jacobian of the transformation is:

JL =

(
∂f̃t

∂ft
′

)
=


Ht 0n×n 0n×q

0n×n D2
t 0n×q

0q×n 0q×n Iq

 (16)

Note that, using the chain rule, ∇t and It|t−1 can be expressed as:

∇t = JL∇̃t, It|t−1 = JLĨt|t−1JL (17)

where:

∇̃t =

[
∂log p(Yt|f̃t,Ft−1,Θ)

∂f̃ ′t

]′
, Ĩt|t−1 = E[∇̃t∇̃′t] (18)

which can be computed as in Eq. (13), (14) of the paper, but deriving with respect to f̃t rather than ft. We

thus focus on v̇t = ∂vt/∂f̃
′
t and Ḟt = ∂vec(Ft)/∂f̃

′
t . As a particular case of the general recursions appearing

in Delle Monache et al. (2019), we obtain:

v̇t = 0 (19)

Ḟt = (Γt ⊗ Γt)(Ṗt + Ḣt) (20)

where:

Ṗt = Q̇t (21)

Q̇t = [(DtRt ⊗ In) + (In ⊗DtRt)]Ḋt + (Dt ⊗Dt)Ṙt (22)

Here Ḣt = ∂vec(Ht)

∂f̃ ′t
, Ḋt = ∂vec(Dt)

∂f̃ ′t
are n2 × k matrices given by:

Ḣt =



1 0 . . . 0 0 . . . 0
...

...

0 1 . . . 0 0 . . . 0
...

...
...

...

0 . . . 0 1︸ ︷︷ ︸
n

0 . . . 0︸ ︷︷ ︸
n+q


(23)
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Ḋt =
1

2



0 . . . 0 1
Dt,11

0 . . . 0 0 . . . 0
...

...
...

0 . . . 0 0 1
Dt,22

. . . 0 0 . . . 0
...

...
...

...
...

...

0 . . . 0︸ ︷︷ ︸
n

0 . . . . . .
1

Dt,nn︸ ︷︷ ︸
n

0 . . . 0︸ ︷︷ ︸
q


(24)

The computation of Ṙt depends on the parameterization. We distinguish the case where the hyperspher-

ical coordinates are used and the case where the equicorrelation parameterization is used. In the first case,

we have:

Ṙt = [(Z ′t ⊗ In)Cnn + (In ⊗ Z ′t)]Żt (25)

The derivative of the element Zij,t with respect to the hyperspherical angle θlm,t is given by:

∂Zij
∂θlm

=


0 i > j, j 6= m, l ≥ m, l > i

−Zij tan θij i < j, l = i

Zij

tan θij
i ≤ j, l < i

(26)

Note that the time index was suppressed for ease of notation. In the second case we have:

Ṙt = [0n2×2n, ρ̇tvec(−In + Jn)] (27)

where:

ρ̇t =
1

2

(
1 +

1

n− 1

)
1

cosh2θt
(28)

12



References

Abadir, K., Magnus, J., 2005. Matrix Algebra. Econometric Exercises, Cambridge University Press.

Andersen, T.G., Dobrev, D., Schaumburg, E., 2012. Jump-robust volatility estimation using nearest neighbor

truncation. Journal of Econometrics 169, 75 – 93. Recent Advances in Panel Data, Nonlinear and

Nonparametric Models: A Festschrift in Honor of Peter C.B. Phillips.

Bollerslev, T., Patton, A.J., Quaedvlieg, R., 2016. Exploiting the errors: A simple approach for improved

volatility forecasting. Journal of Econometrics 192, 1 – 18.

Buccheri, G., Bormetti, G., Corsi, F., Lillo, F., 2019. Filtering and smoothing with score-driven models.

Working paper .

Creal, D., Koopman, S.J., Lucas, A., 2011. A dynamic multivariate heavy-tailed model for time-varying

volatilities and correlations. Journal of Business & Economic Statistics 29, 552–563.

Delle Monache, D., Petrella, I., Venditti, F., 2019. Price dividend ratio and long-run stock returns: a score

driven state space model. Working paper .

Durbin, J., Koopman, S., 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford

Statistical Science Series, OUP Oxford.

Harvey, A., Luati, A., 2014. Filtering with heavy tails. Journal of the American Statistical Association 109,

1112–1122.

Rapisarda, F., Brigo, D., Mercurio, F., 2007. Parameterizing correlations: a geometric interpretation. IMA

Journal of Management Mathematics 18, 55–73.

13


	Model extensions
	A Robust update scheme
	Additional Monte-Carlo results
	Additional empirical results

	Reduced rank correlations
	Common factor structure in the covariances
	Deterministic volatility patterns

	Computation of Lg

