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Abstract. We give a general overview of results about subsystems of
local nets of von Neumann algebras in close connection with the prob-
lem of characterizing the abstract algebra of observables through the
existence of Wightman currents.

1 Introduction

The basic philosophy of algebraic quantum field theory (“local quantum physics”
[41]) is that all the information about a physical theory is encoded in the observ-
able net O 7→ A(O), customarily written just A for short. This has been mostly
considered as an isotonous (inclusion preserving) correspondence between the set
K of open double cones1 in 4D Minkowski spacetime M4 and the family of (C∗ or)
von Neumann algebras acting on some fixed Hilbert space H0 satisfying suitable
physically meaningful axioms such as

• locality: O1 ⊂ O′2 ⇒ [A(O1),A(O2)] = {0}
• irreducibility: (∪O∈KA(O))′′ = B(H0)
• property B: if O ⊂ Õ every self-adjoint projection E ∈ A(O) is equivalent

to I in A(Õ), namely there is an isometry W ∈ A(Õ) such that WW ∗ = E

2000 Mathematics Subject Classification. 81T05 (primary); 81T40, 81R15, 46Lxx
(secondary).

1A double cone in Md is a region of the form {(x + V +)∩ (y + V −), y− x ∈ V +} where V +

(resp. V −) is the open forward (resp. backward) light cone.
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• Poincaré covariance: there is a strongly continuous unitary representation
V of P↑+ on H0 such that, for every L ∈ P↑+ and every O ∈ K, there holds

V (L)A(O)V (L)∗ = A(LO) (1.1)

• spectrum condition: the joint spectrum of the generators of the spacetime
translations is contained in the closure V + of V+

among others, although one can consider more general localization regions and
spacetimes, and modify the axioms accordingly.

For many purposes it is essential to strenghten locality to
• Haag duality : A(O′)′ = A(O), O ∈ K

i.e. Ad = A where Ad is the net defined by the l.h.s., or at least to essential
duality, i.e. Ad = Add (Haag duality for Ad), which is equivalent to the locality of
Ad. In the sequel when not otherwise stated we always consider observable nets
satisfying irreducibility, property B and Haag duality. Once a net A has been
given, in the next step one has to look for a suitable class of its representations, i.e.
the representations of the quasi-local C∗-algebra (∪O∈KA(O))−‖·‖ still denoted A.2

For theories on M4 describing short-range interactions these are generally chosen
according to the DHR selection criterion [25]

π|A(O′)
∼= π0|A(O′) ∀O ∈ K. (1.2)

The collection of all such representations together with their intertwiners form a
W∗-category S(π0), and the unitary equivalence classes of irreducible elements in
S(π0) are the superselection sectors. The statistics of a sector is described by the
statistical dimension d taking values in N∪{∞} and a sign ± expressing the Bose-
Fermi alternative.

Usually in models one starts with Wightman fields (as operator-valued distri-
butions), say φ(x), ψ(x), . . . , x ∈ Md; after smearing them out with test functions
they generate (through affiliation of closable unbounded operators to von Neu-
mann algebras) a field net F of bounded operators which in favourable situations
is (graded) local, see e.g. [6]. For a brief survey on the important problem of the
relationships between Wightman fields and local nets we refer to [12].

Given a field net F acted upon by an internal symmetry group G, the observ-
ables A are then obtained by a principle of gauge invariance.

It is interesting to know whether one can recover F and G from A. From a
conceptual point of view there is a very satisfactory answer in the setting of algebraic
QFT provided by the Doplicher-Roberts reconstruction theorem, applicable for
any spacetime dimension D ≥ 3: given A satisfying few relevant assumptions one
can construct a canonical field net FA along with a compact group GA of net
automorphisms (FGA

A = A) describing all suitably localized charges of the theory.
In a sense to be made precise through a new abstract duality theory for compact
groups [29, 30] FA is obtained as a crossed product construction of A by the tensor
category of its localized transportable endomorphisms with finite statistics, and
GA = AutA(FA). In the case where A = FG then it holds F = FH

A and G = GA/H
[31], where H is a closed normal subgroup of GA. In some cases, for instance if a
Bosonic F has no nontrivial sectors, H must be trivial and hence F = FA.

2Sometimes it is convenient to consider an A as represented on H0 ; then for theories on
Minkowski spacetime one refers to the vacuum representation, denoted π0.
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However turning back to generic F and G it has to be made clear the reason
why one should set A := FG; how is it possible to decide what is the best G?
It seems definitely easier to answer only when some generating set of basic fields
φ(x), ψ(x), ... is known together with their transformation properties.

The observable algebra is usually defined in an implicit way through a set
of properties of self-consistency, still is absent a criterion telling how to get it in
general situations. This also overlaps with the problem of uniqueness of the net of
observables: different choices could lead to the same physical consequences such as
mass spectrum, scattering theory etc., and it is by no means clear if there is some
special criterion dictated by an intrinsic principle.

An important object in a theory is the observable energy-momentum tensor
Θµν(x). Given Θµν(x) one might ask what kind of informations are available about
A or F. It is a workable idea to consider the “minimal” local net A0 ⊂ A generated
by Θµν(x), (a kind of “core” for the observables: if anything had to be detected,
these should be through local measurements of energy and momentum), and wonder
under what circumstances it happens that A0 = A. Then A would be generated by
operators with a clear physical meaning, so that the ambiguities in its definition
disappear. Of course a similar situation occurs when Θµν(x) is replaced by other
fields with a definite physical interpretation like Noether currents associated with
more general symmetries. In this way one obtains nets of subalgebras (subsystems)
of F which are not defined as fixpoint nets under compact group actions.

As an example, in the case of a field net F generated by a single massive scalar
free field ϕ(x) acting on the symmetric Fock space H = eL2(H+

m,Ωm), for which

Θµν(x) =: ∂µϕ(x)∂νϕ(x) : −1/2gµν : ∂ρϕ(x)∂ρϕ(x) : +1/2m2gµν : ϕ(x)2 :, (1.3)

it has been recognized long time ago that A0 is generated by the (smeared) Wick
polynomial : ϕ(x)2 : , moreover A0 = FZ2 i.e. the fixed point net under the
symmetry ϕ(x) → −ϕ(x) implemented on H by eiπN̂ with N̂ the number operator
[49, 50]. Here one can define the observable net A to be either F itself or FZ2

corresponding to G = {e} and G = Z2 respectively; in both cases it holds F = FA

since F has trivial superselection structure, but only the second choice leads to
A = A0.

This said, it is worthwhile a deeper and abstract analysis of the above situation
free from the peculiarities of the model under investigation and without assuming
a priori the existence of underlying Wightman fields like Θµν(x). Such an analysis
requires a substitute for the condition A0 = A.
This program has been pursued in close connection with a formulation of Quantum
Noether Theorem, building upon the nice results made accessible by an extensive
use of the split property. The split property for A (for double cones) states that
there is an intermediate type I factor N lying between A(O1) and A(O2) for any
given O1 ⊂⊂ O2, where ⊂⊂ means that O1 + O0 ⊂ O2 for some double cone
O0 centred on the origin. The split property is the algebraic substitute for the
existence of a Lagrangian and it is satisfied in all the physically reasonable models
(free fields, P (ϕ)2, Y2, even for free fields on globally hyperbolic curved spacetimes).
It is implied by nuclearity, a condition which expresses a good thermodynamical
behaviour of the theory. (For a discussion of these facts see [41] and the references
therein.) It should be remarked that the validity of the split property for FA implies
that for A, while the converse is known only in special situations.
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In classical relativistic field theory the existence of conserved currents associated
to every one-parameter group of symmetries of the Lagrangian is a consequence of
Noether’s theorem. For example the existence of the energy-momentum tensor
follows from the invariance under spacetime translations. Although the presence of
conserved currents related to symmetries is a general feature of models of quantum
field theory, the understanding of this relation in this context is less satisfactory
than in the classical case. If one starts from general assumptions as the Wightman
axioms [58], the existence of such conserved currents is not a consequence of the
existence of symmetries.

A new approach towards a quantum Noether’s theorem has been proposed by
Doplicher in [22] and developed by Doplicher, Longo and Buchholz in [26] and [8].
In these works it has been proved that, in a theory where the field net satisfies
the split property, the global symmetries, including discrete symmetries, space-
time symmetries and supersymmetries, can be locally implemented by local unitary
operators which are canonically constructed from the theory in question. If a part
of the symmetries considered forms a connected Lie group, then the generators
of the corresponding local implementations can be considered as the analogue of
the zero component of Wightman conserved currents, smeared with appropriate
test functions with support in the region of localization, thereby establishing the
existence of a rigorous analogue of the current algebra known from particle physics.

It has been suggested by Doplicher in [22] that the canonical local generators
constructed using the split property could be used to construct Wightman currents
by an appropriate scaling limit in which the region of localization shrinks to a point.
The success of this program would give us a complete quantum Noether’s theorem
and a general prescription to construct Wightman fields with a definite physical
meaning, directly from the algebra of observables. See [36, 42] for related issues.

We now consider a Poincaré covariant field net, and let T denote the group
of unitaries implementing spacetime translations. If ΨΛ is the universal localizing
map attached to the standard and split inclusion of von Neumann algebras Λ =
(FA(OΛ),FA(ÕΛ),Ω) [27, 8] associated to the pair of double cones OΛ ⊂⊂ ÕΛ and
to the vacuum vector Ω, then TΛ(x) := ΨΛ(T (x)) = eiP µ

Λ xµ defines the canonical
local implementations of spacetime translations (whose generators are the abstract
analogue for the local energy-momentum tensor), namely a group of unitaries in
FA(ÕΛ) implementing “small” spacetime translations on the algebra FA(OΛ). We
introduce a new net A by setting

A(O) := {TΛ(x) | ÕΛ ⊂ O, x ∈ M4}′′. (1.4)

Then by the properties of the maps ΨΛ one can easily check that A is a Poincaré
covariant subsystem of FA (in fact of A).3 Similarly given a compact group G of
unbroken internal symmetries of FA one could define a local net AG generated by
A and the local operators ΨΛ(Z), Z ∈ G′ ∩ G′′ as a local shadow of the global
superselection structure [18], but for the time being we will restrict our attention
only to A. Actually a universal localizing map can be defined from every net with
the split property, e.g. A itself or more generally FH

A with H a nontrivial compact
subgroup of GA. For these examples one obtains local operators implementing

3As a matter of fact the localization of the whole Poincaré group essentially does not produce
anything different from A (up to the passage to the dual nets), see Sect. 3.
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symmetry transformations on A but not necessarily on FA. For this reason we
disregard this possibility in the definition of A, cf. [8].

Proceeding further, there are two possible directions:

(i) investigate the main properties of the subsystem A ⊂ A (cf. [48] for a more
abstract approach)

(ii) try to define in a suitable limit of operators in A a pointlike localized energy-
momentum tensor Θµν(x), generating a local net AW ⊂ A.

There are natural related problems: find a characterization of the cases A = A
and AW = A (whenever the solution to point (ii) above has been found) respec-
tively.

Actually the equality of nets A = A is a priori less interesting, mainly because
the physical meaning of TΛ is prejudged by the possibility of perturbing it with
operators in FA(O)′ ∩ FA(Õ) (cf. [26, 34]) so that the second equality would be
desiderable. However it always holds

AW ⊂ A ⊂ A

therefore AW = A implies A = A.

A general solution to the problem (ii) above is not yet known. There are
some indications that in some cases it is not possible to get AW (cf. [16]), still its
“algebraic counterpart” A is always present and thus provides a useful substitute.
In fact, as we shall see, under reasonable hypotheses we have A = AW provided the
latter is defined and both nets satisfy Haag duality. Thus in any case the analysis
of the net A is a posteriori justified.

In [18] it is shown that A is irreducible in the field net, namely A′ ∩FA = C; it
also holds A(O′)′ ∩ FA = FA(O). Furthermore, as a consequence of the covariance
properties of the universal localizing maps [8] and the fact that, due to the split
property, the group Gmax of all the (unbroken) internal symmetries of FA is compact
in the strong operator topology and commutes with the Poincaré transformations
[27], it is possible to see that A ⊂ FGmax

A , so that A = A implies G = Gmax.
Actually in presence of broken symmetries it is clear that A ⊂ FGmax

Ad ⊂ Ad but
under reasonable hypotheses it can be shown that A 6⊂ A. The trials for a better
understanding of the potential equality

A = FGmax
A (1.5)

which, together with the necessary condition G = Gmax, implies the equality A = A
motivated the general classification results for subsystems expounded in Sect. 3.
We’ll see that the equality 1.5 is verified under quite general conditions providing
a satisfactory understanding of the 4D situation which comprises a computation of
the dual net of A in concrete models.

Similar problems can be addressed in 2D CFT. Here the net A can still be
introduced by a similar procedure (although there is no analog of the canonical field
net in this context) at the price of some arbitrariness in its definition. Classification
results allowing to identify A are made available for some specific models but no
general result is known. On the positive side, the reconstruction of AW from A is
possible for a larger class of models. We report on this matter in Sect. 5.
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2 Subsystems and Superselection Structure

In order to continue there is a supply of results of general nature about subsys-
tems. Since at this stage this causes no further complications we can work them out
in rather wide generality, and provide a thorough analysis of the situation where
we are given an arbitrary pair system-subsystem (mostly in 4D).

Along the way we will provide answers to some puzzling questions like what
happens by iterating the DR construction, namely what is the field net of (the Bose
part of) the field net, and, more generally, what are the superselection sectors of
certain subsystems B ⊂ FA (e.g. intermediate nets A ⊂ B ⊂ FA).

Although this should be intuitively clear from the previous discussion we start
by formally defining what is meant by a general subsystem (also called subtheory,
subnet in the literature). In one form or another they already appear e.g. in
[49, 50, 24, 63, 60, 2, 5, 21, 51, 18, 20, 17, 14, 15, 52, 13, 37, 54, 64, 65, 66, 4, 46, 55].

Let us consider an isotonous net F of von Neumann algebras over a suitable
family Q of (open) subsets of some “spacetime” manifold M acting on a Hilbert
space H = HF. Usually one requires Q to be a base for the topology on M. Note
that however Q in general might not be directed under inclusion, thus we use the
word “net” in a wider sense than usual precosheaf being a more precise expression,
see e.g. [7]. For instance M and Q could be the Minkowski spacetime and the
directed set K of open double cones, a (globally hyperbolic) 4D spacetime and the
set of regular diamonds [40], R and the set of all bounded open intervals, S1 and
the set of all nondense open intervals, etc. One could also consider more general
situations where M is not given and Q is some abstract partially ordered index set,
including the extreme case of {1, 2} with the natural order giving rise to an inclusion
of von Neumann algebras (e.g. a subfactor), see [3, 51, 57]. We will not further
consider this possibility. Given a net F overQ and an open set S ⊂M one can define
the von Neumann algebra F(S) by additivity, namely F(S) =

∨
O∈Q,O⊂S F(O), and

thus extend the net to all open sets.

Definition 2.1 A subsystem B of F consists in an isotonous net of von Neu-
mann algebras over Q, acting on H, such that

B(O) ⊂ F(O), ∀O ∈ Q. (2.1)

It readily follows that B(S) ⊂ F(S) for all open sets S. We will often use the
notation B ⊂ F to denote the fact B is a subsystem of F. If all the algebras B(O)
and F(O) are (infinite) factors the pair B ⊂ F is also called a net of subfactors [51].
If M has a causal structure one can assume the net F to be local. In this case each
susystem would be automatically local.

For simplicity in the sequel of this section we specialize to the case M = M4

although some of the results below hold in more general situations.
Let F be a net over the double cones of M4. Assume that the Hilbert space HF

contains a preferred unit vector Ω, the vacuum vector, which is cyclic for F(M4).
Given a subsystem B ⊂ F we set HB (the vacuum Hilbert space of B) to be the clo-
sure of B(M4)Ω and call EB the corresponding orthogonal projection. We consider
the restriction B̂ of B to the subspace HB, and for a given B ∈ B(O) we write
B̂ ∈ B(HB) for EBBEB|HB

. Then B → B̂ gives the “vacuum representation” for
B. Usually we consider F to be irreducible on HF, then in some interesting cases B̂

will be irreducible as well. Sometimes we write B instead of B̂ since typically these
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two nets are isomorphic and use B̂ only when spatial properties of the vacuum rep-
resentation are involved. We also remark that if C ⊂ F is another subsystem such
that in addition C(O) ⊂ B(O) for all O ∈ K then in obvious way (the restriction
of) C can be considered as a subsystem of B̂, still we simply write C ⊂ B when no
confusion arises.

Definition 2.2 B ⊂ F is called a Haag-dual subsystem if the net B̂ satisfies
Haag duality on HB.

Besides its usefulness this property may prevent the occurrence of certain
pathologies like B(O) = CI for some O.

The global isometry group of Minkowski spacetime is the Poincaré group, let

P↑+ be its connected component of the identity and P̃↑+ the universal covering of
P↑+.

Assume now that F is Poincaré covariant, i.e. that there is a strongly continuous

representation V of P̃↑+ on HF, leaving Ω invariant, such that

V (L)F(O)V (L)∗ = F(LO), ∀L ∈ P̃↑+. (2.2)

We denote αL the induced action of L on F. Note that if F is Bosonic (local) and
the usual spin-statistics connection holds [58, 25, 39, 47] then the representation V
factorize through a representation of P↑+ via the natural projection map, thus in

this case we can replace P̃↑+ with P↑+.
Later on the following definition plays a central role.

Definition 2.3 A Poincaré covariant subsystem of F is a subsystem B ⊂ F for
which it holds

V (L)B(O)V (L)∗ = B(LO), ∀L ∈ P̃↑+. (2.3)

Then of course the action of (the universal covering of) the Poincaré group
restricts to an action on B, still denoted α. When there is no danger of confusion
we just say that B is a covariant subsystem. Similarly one can define conformal
covariant subsystems in the case where F is a conformally covariant net (taking
some care in the choice of the set Q, cf. [7]).

There are many examples of subsystems of quite different type, we list some
of them for theories on M4 without any claim to be exhaustive: for instance an
observable net A (not necessarily satisfying Haag duality) is a subsystem of its
outer regularized net Ar defined by Ar(O) := ∩K3O1⊃⊃OA(O1), moreover A, being
local, is a subsystem of Ad as well and also of its canonical field net FAd whenever
Ad is local. Actually if G ⊃ GAd is the group of all (broken or unbroken) internal
symmetries one has

A ⊂ FG
Ad ⊂ Ad = F

G
Ad

Ad ⊂ FAd ,

see [9], and furthermore we have already mentioned the Noether subsystem A ⊂ Ad,
sitting in generic position with respect to A. One can also consider subsystems of
the form FM

A ⊂ FN
A where N is a (not necessarily normal) subgroup of M ⊂ Gmax,

and in the next section we’ll meet relative commutant (coset) subsystems. If an
irreducible net is generated by a set of Wightman fields then each (sufficiently
regular) field in the corresponding Borchers class, like a Wick polynomial in the case
of free field theories or a linear combination of the originally given fields, gives rise
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to a subsystem. Given a single selfadjoint local operator X ∈ A(O0) one can naively
define a subsystem AX ⊂ A by AX(O) = {V (L)XV (L)∗; L ∈ P↑+, LO0 ⊂ O}′′,
likewise one defines AX ⊂ A for any generic family X = {X1, X2, . . .} of selfadjoint
local operators, cf. [63]. In a similar vein if R is a von Neumann algebra globally
invariant under the adjoint action of V which contains some local operator (e.g.
RX = {V (L)XV (L)∗, L ∈ P↑+}′′), one can define ÃR via ÃR(O) = A(O) ∩ R (of
course AX ⊂ ÃRX

). In some situation it is important to consider subsystems that
are only covariant under spacetime translations [11].

In order to illustrate some basic ideas and techniques in the sequel we briefly
report on the recent paper [20] motivated by the task of studying some functorial
properties of the embedding of systems, e.g. the subsystem A ⊂ B clearly induces
an embedding Ar ⊂ Br of the outer regularized nets, but there are much more
interesting cases dealing with the embedding of the dual nets or of the canonical
field nets. Hereafter a subsystem A ⊂ B is intended as compatible normal inclu-
sions A(O) ⊂ B(O), O ∈ K with A,B (possibly local, or at least relatively local)
nets, each acting (faithfully and) irreducibly on its vacuum Hilbert space. The
ultimate goal of this analysis is to clarify the relationships between the superselec-
tion structures of a system and that of a subsystem, both living on the Minkowski
spacetime.4 As far as we are concerned with Haag dual nets it is convenient to
work with endomorphisms instead of representations, in fact if π is a DHR repre-
sentation of A then π ∼= π0 ◦ ρ, where ρ is an endomorphism of A which is localized
in some O, namely ρ(A) = A for A ∈ ∪O1⊂O′A(O1), and transportable, i.e. inner
equivalent to endomorphisms localized in any double cone. The family of all such
endomorphisms and their intertwiners gives raise to a category equivalent to S(π0)
with the bonus of having an obvious monoidal structure.

Theorem 2.4 ([19, 20]) Given an inclusion of local nets A ⊂ B, both satisfying
duality on their own vacuum Hilbert space, there are monoidal embedding functors
T (A) → T (B) and, by restriction, Tf (A) → Tf (B) acting identically on the arrows.
More precisely there is a localization-preserving map ρ ∈ ∆(A) 7→ ρ̂ ∈ ∆(B) such
that ρ̂ is an extension of ρ and furthermore

i) ι̂A = ιB,
ii) ρ̂1ρ2 = ρ̂1ρ̂2,
iii) (⊕iρi)̂ = ⊕iρ̂i,
iv) ρ̂ = ρ̂, ρ ∈ ∆f (A),
v) ε(ρ̂, σ̂) = ε(ρ, σ),
vi) d(ρ̂) = d(ρ),
vii) T ∈ (ρ1, ρ2) ⇒ T ∈ (ρ̂1, ρ̂2),
viii) φρ̂|A = φρ

ix) If B is Poincaré covariant and A is a covariant subsystem of B, then

ρ̂L = (ρ̂)L, L ∈ P̃↑+ .

Here ∆(A) (resp. ∆f (A)) is the semigroup of all localized transportable morphisms
(resp. with finite statistics) of A, T (A) (resp. Tf (A)) is the monoidal category with
objects the elements of ∆(A) (resp. of ∆f (A)) and arrows their intertwiners in A,

4A closely related issue is the classification of subsystems; a possible strategy is to classify
subsystems satisfying duality on their vacuum Hilbert space first (as treated in the next section),
and then try to relax duality afterwards.
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ιA denotes the monoidal unit of T (A), ε(ρ, σ) are the statistical operators, d(·) is
the dimension function, φρ is the standard left inverse of ρ and ρL = αL ◦ ρ ◦ α−1

L

(∆(B) etc. are analogously defined).

Using the previous properties it is not difficult to prove the following uniqueness
result for the extensions.

Proposition 2.5 Given A ⊂ B as above, if ρ̃ is a localized endomorphism of
B transportable in A then ρ := ρ̃|A is a localized transportable endomorphism of A
such that ρ̂ = ρ̃.

Remark 2.6 (i) In general the irreducibility is not preserved by the extension.
(ii) The extension procedure for endomorphisms neither need the finiteness of
Ind(A ⊂ B) nor the local algebras to be factors. Actually Haag duality can be
relaxed to some extent, relative duality for both A and B being sufficient: the
functor above corresponds to the embedding Z1(A) ⊂ Z1(B) (1-cocycles in net
cohomology).
(iii) For nets of subfactors on the real line similar results hold true (homomorphism
properties for α-induction [4]); however due to braid group symmetry there are two
possible extensions, a fact which is relevant for the search of modular invariants,
and the understanding of the occurrence of soliton sectors.

Some application of further results concerning conditional expectations imple-
mented by projections gives some useful criteria for the existence of conditional
expectations onto subsystems, and the embedding of the corresponding dual nets.
As a sample, we quote a particular case; recall that a wedge region W is the image
of {x ∈ M4 : x1 > |x0|} under a Poincaré transformation.

Proposition 2.7 ([20]) Let B be a net satisfying Haag duality and the Reeh-
Schlieder property with respect to the vacuum vector Ω ∈ HB, and consider a
subsystem A ⊂ B, with A satisfying, on its vacuum Hilbert space, wedge duality
(Â(W)′ = Â(W ′) for every wedge region W) but not Haag duality. Then there is an
embedding ν : Ad → B such that ν(A)Ω = AΩ, A ∈ Ad and a (unique) conditional
expectation m : B → ν(Ad) such that m(B)E = EBE, B ∈ B, where E is the or-
thogonal projection from HB onto HA. Moreover it holds ν(Ad)(O) = B(O)∩{E}′
for every O ∈ K.

It is convenient to recall in more detail some basic notions and results in [31].

Definition 2.8 A field system with gauge symmetry for A is a triple {π̃, G,F}
where:

• π̃ is a representation of A on a Hilbert space H ⊃ H0 containing π0 as a
subrepresentation

• G is a strongly compact group of unitaries on H leaving H0 pointwise fixed
• O 7→ F(O) is a net of von Neumann algebras on H such that
α) g ∈ G induces automorphisms of every F(O), and F(O)G = π̃(A(O))
β) F is irreducible
γ) H0 is cyclic for F(O)
δ) the fields are local relative to the observables.

A triple as above is normal if there is k ∈ Z(G) with k2 = e such that F obeys
graded local commutativity for the Z2-grading defined by k, and complete if each
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equivalence class of irreducible DHR representations of A 5 with finite statistics is
realized in π̃. The following theorem is of fundamental importance.

Theorem 2.9 ([31]) Assume irreducibility, property B and Haag duality for
A, then there exists a (unique up to isomorphism, thus canonical) complete normal
field system with gauge symmetry (π̃A,FA, GA).6

When A is also Poincaré covariant with spectrum condition there is a corre-
sponding existence result for a canonical Poincaré covariant field net FA,c which is
complete w.r.t. the covariant DHR representations of A with finite statistics.

Theorem 2.10 Let {π̃, G,F} be a field system with gauge symmetry, then
• π̃(A)′ ∩ F = C
• γ ∈ Aut(F) is of the form Adg for some g ∈ G iff γ|π̃(A) = id, i.e. G =

Autπ̃(A)(F)
• π̃(A)′ = G′′, π̃ = ⊕ξ∈Ĝd(ξ)πξ and accordingly H ∼= ⊕ξ∈ĜHξ ⊗ Cd(ξ), where
πξ are inequivalent irreducible DHR representations of A with parastatistics
of finite order d(ξ) equal to the dimension of the corresponding irreducible
representation of G

• (if the system is normal) F satisfies twisted duality, i.e. setting Ft(O) =
V F(O)V ∗, V = (I + ik)/

√
2 it holds Ft(O) = F(O′)′.

Note that the Bosonic net Fb
A of even elements under the grading is a local net,

thus it is meaningful to speak about its superselection sectors; moreover if A has
no Fermionic sector then the grading is trivial and hence FA is local.

Next important result shows that an inclusion of local nets induces an inclusion
of the corresponding canonical field nets [20].

Theorem 2.11 Let A ⊂ B be an inclusion of nets both satisfying property
B and Haag duality, then there is a canonical embedding FA ⊂ FB. Also, if B
is Poincaré covariant with spectrum condition and A is a covariant subsystem of
B, the same conclusion holds true for the corresponding canonical covariant field
nets, namely FA,c ⊂ FB,c, and furthermore FA,c is a covariant subsystem of FB,c.
Finally if FB = FB,c then FA = FA,c.

Proof (sketch) The copy of FA(O) inside FB(O) is generated by the Hilbert
spaces Hρ̂ = {ψ ∈ FB | ψB = ρ̂(B)ψ, B ∈ B} in FB implementing the canonical
extensions to B of the transportable localized morphisms ρ of A with finite statistics
which are localized in O, see [20].
The second statement basically follows from Theorem 2.4, properties vii), ix): if
ρ ∈ ∆(A) is covariant then ρ̂ ∈ ∆(B) is also covariant, and for a given ψ ∈ Hρ̂ it
holds V (L)ψV (L)∗ ∈ H(ρ̂)L

⊂ FA,c(LO), L ∈ P̃↑+ by a straightforward calculation.
Similarly one shows that if FB = FB,c then it contains FA as a covariant subsystem.
But then, arguing as in [27, Theorem 10.4], one deduces that the actions of GA and
of P̃↑+ on FA commute. From this it is easy to show that all the sectors of A with
finite statistics are in fact covariant, cf. [24], and thus the conclusion follows.

5Here the charges are localizable in double cones of Minkowski spacetime. There is also a
version for topological charges, i.e. those localizable in space-like cones.

6To make the notation easier sometimes we drop π̃ and π̃A leaving the reader the task of
deciding from the context the right Hilbert space on which A acts.
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Notice that the canonical representation V = VB of the universal covering of the
Poincaré group making FB,c covariant restricts to the corresponding representation
for FA,c.

Actually the functor ·̂ (in restriction to Tf (A)) is induced by a homomorphism
h : GB → GA, cf. [30, Theorem 6.10]. Let us define N := Ker(h), M = h(GB).

Corollary 2.12 ([20]) With the above notation FA is GB-stable, h is given by
restriction, and FA ∨B = FN

B, FA ∩B = FM
A .

In particular if FA = FB then h is just the inclusionGB ⊂ GA and the extension
procedure for endomorphisms with finite statistics corresponds (via the bijection
between superselection sectors with finite statistics and classes of irreducible rep-
resentations of the gauge group) to the restriction of group representations (while
the restriction of DR-representations corresponds to the induction of group repre-
sentations).

By appealing to Theorem 2.4 it is easy to show that the field net of FK
A is FA,

for every compact K ⊃ GA [20]. Next proposition includes a classification result
for intermediate nets.

Proposition 2.13 ([20]) Consider the situation A ⊂ B ⊂ FA where B is an
intermediate net satisfying Haag duality, then

(a) B = FH
A for some closed subgroup H ⊂ G (“Galois correspondence”, cf.

below and [21, 43, 33]),
(b) H is normal in G if and only if B is G-stable if and only if B is generated

by Hilbert spaces inducing elements of ∆f (A),
(c) if a local FA has no sectors, then FB = FA.

Proof We only show (c): A ⊂ B ⊂ FA ⊂ FB ⊂ FFA

There are two known sets of structural hypotheses [32, 56], allowing one to
conclude that a Bosonic net in 4D has no sectors (cf. [53, 46] for 2D theories).
For instance, the argument in [56] (“quasi–triviality of the 1–cohomology of a F”)
requires (a weak form of) the split property for a field algebra, but not its complete-
ness (which follows at once). However it needs another assumption which seems
much harder to prove, namely that⋂

∂p = ∂b

F(|p|) = F(|∂0b|) ∨ F(|∂1b|),

for each b ∈ Σ1(K), where we use the symbol p to denote a generic path in Roberts’
cohomology.

Using the above results it is possible to show that a (Bosonic) canonical field
net is “DR self-complete”, namely there is no way it can be embedded in a bigger
system by performing the DR procedure simply because it has no sectors. We
say that A is rational if it has only finitely many superselection sectors with finite
statistics (still it could have infinitely many sector with infinite statistics!).

Theorem 2.14 ([19, 52]) If A is rational then Fb
A has no non-trivial bosonic

superselection sectors with finite statistics. In other words FFb
A

= FA, and the gauge
group of Fb

A is generated by the element k ∈ Z(GA) giving the grading.
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There are 3 proofs available by now that we sketch below (for the Bosonic case):
a) uses an extension procedure for automorphisms [10], and it is interesting

for a problem about topologies: since A
GA⊂ FA

H
⊂ FFA

, setting G̃ := the group of
extensions of GA (so that H ⊂ G̃ is the fiber over the unit of GA), then there is a
short exact sequence 1 → H

i→ G̃
r→ GA → 1 but G̃ has to be compact (for a net

A with the split property this would be automatic if the implication “split for A ⇒
split for FA” were true), therefore need the quotient topology on GA = G̃/H to be
weaker (thus equal) to the strong topology of Aut(FA), i.e. the restriction r (=the
quotient map) to be open; in general this is a serious obstruction but in the finite
case it is obviously overcome;

b), in the context of (standard) nets of subfactors, makes use of the analysis
in [51] together with a useful “extension-restriction” argument σ ≺ (σrest)̂ [19] (cf.
[4, 46]) applied to localized endomorphisms with finite statistics of F (the general
case including Fermi statistics then follows e.g. by some kind of Frobenius duality
argument);

c) see the paragraph following the next theorem.

Here follows the most updated version concerning the absence of sectors for a
canonical field net.

Theorem 2.15 ([20]) Let A be an observable net on a separable Hilbert space
and suppose that (1) the dual net satisfies Property B and (2) every representation of
A satisfying the selection criterion is a direct sum of (possibly uncountably many)
irreducible representations with finite statistics, then every representation of an
intermediate Bosonic net B = FH

A satisfying the selection criterion is a direct sum
of sectors with finite statistics and these are labelled by the equivalence classes of
irreducible representations of H.

In particular under the above assumptions, which rule out the occurrence of
sectors of A with infinite statistics, if each sector of A is Bose then the local net
FA has no nontrivial DHR representations (thus it has no sectors with finite or
infinite statistics), whilst when FA contains Fermi elements then the Bose part of
FA has precisely two simple sectors. In the case where A is rational i.e. |GA| <∞
(equivalently Ind(A ⊂ FA) < ∞ when A ⊂ F is a net of subfactors), condition (2)
is automatically satisfied for the “restrictions to A” of the DHR representations of
(the Bose part of) FA with finite statistical dimension. This is sufficient to recover
Theorem 2.14 arguing as in [20].

Corollary 2.16 Under the hypothesis of the previous theorem, the field nets
of A and B coincide, FA = FB.

In the light of the previous theorem (cf. also Prop. 3.1) there is a close con-
nection between the two conditions: the Bose part of the canonical field net has at
most one sector; the observable net has no sectors with infinite statistical dimen-
sion. It would be very interesting to find conditions on general physical grounds
to rule out the occurrence of DHR sectors with infinite dimension. Although there
are 2D conformal field theory models where such sectors show up [35], a fact that
seems to be quite natural in that context [54], there are no examples in 4D.
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Remark 2.17 In a sense a Bosonic FA is a local analog of the compact opera-
tors (no matter what its isomorphism class is): it has only one relevant irreducible
representation.

Most of the above arguments should work for theories living on a high dimen-
sional globally hyperbolic curved spacetime, cf. [40].

3 Classification Results in 4D

In this section we discuss a classification result for subsystems of a local net F
on the 4D Minkowski spacetime satisfying standard assumptions plus the absence
of nontrivial sectors with any statistics. As a consequence of the previous Theorem
2.15 this condition is satisfied by the canonical field net FA of a observable net A
with the split property and countably many DHR sectors, all Bosonic and with finite
statistical dimension [17]. On the model side, the validity of the above condition for
Bosonic free fields is well-known. Note that we don’t exclude the possibility for F
to have representations with weaker localization properties like those corresponding
to topological charges.

Our result will enable us to deduce that any irreducible covariant subsystem B
of F, satisfying Haag duality, arises as a fixpoint net under a compact group action,
and thus to prove the equality 1.5 (up to the substitution of A with its dual net)
on fairly general grounds.

To be more precise throughout this section we assume the local net F, given on
the Hilbert space H, to satisfy Poincaré covariance, spectrum condition, existence
and uniqueness of the vacuum vector Ω, Reeh-Schlieder property, Haag duality,
geometric modular action (for the algebras associated with wedges) and the split
property, in addition to the above condition about the superselection structure. All
these properties hold for FA under reasonable conditions for A, see [17] for more
details.

Let B (acting on H) be a covariant subsystem of F. Then B automatically
satisfies wedge duality on its vacuum Hilbert space. The dual net of B is embedded
as a covariant subsystem of F through the relation Bd(O) = ∩W⊃OB(W) where
W runs over the set of all wedges containing O ∈ K. Therefore B is Haag-dual
if B(O) = ∩W⊃OB(W) for all O ∈ K. Actually as a consequence of covariance
one also has ∩W⊃OB(W) = ∩W⊃OB(W). It follows that Haag-dual covariant
subsystems of F are outer regular, cf. [60].

One can also consider the net Bc defined by

Bc(O) = B(R4)′ ∩ F(O), (3.1)

cf. [21, 5, 66]. If Bc is trivial, then we say that B is full (in F). An irreducible
subsystem (i.e. a subsystem for which the quasi-local C∗-algebra satisfies B′ ∩F =
C) is clearly full. If Bc is nontrivial, then it is easy to check that it is a Haag-dual
covariant subsystem of F (the coset subsystem). It follows from the definition that
B ⊂ Bcc, and Bc = Bccc.

The following basic result provides a kind of converse to Theorem 2.15.

Proposition 3.1 Let F be a local net as above and let B ⊂ F be a Haag-dual
covariant subsystem, then every irreducible DHR representation σ of B̂ is equivalent
to a subrepresentation of the representation induced by the embedding of B in F.
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Moreover σ is covariant with positive energy and it has finite statistical dimension.

Now the Theorem 2.11 is crucial since it shows that FB can be considered as
a covariant subsystem of F, since the latter coincides with its own canonical field
net. Next result describes the relative position of FB in F.

Theorem 3.2 There exists a unitary isomorphism of F with F̂B ⊗ B̂c which
maps FB into F̂ ⊗ B̂ for every O ∈ K, F ∈ FB(O) and B ∈ Bc(O). In particular
FB = Bcc, and if B is full in F then FB = F.

It follows immediately that every Haag-dual subsystem B of F as above is of
the form FH

1 ⊗ I for some tensor product decomposition F = F1 ⊗ F2 and some
compact group H of unbroken internal symmetries of F1.

Corollary 3.3 If B is a full Haag-dual covariant subsystem of F then there
exists a compact group H of unbroken internal symmetries of F such that B = FH ,
and in fact H coincides with the canonical gauge group GB.

We may sum up the results to date in this section about A = FGA

A and A:

Theorem 3.4 Keeping the same assumptions on F = FA as above, we have

Ad = FGmax
A .

Moreover, the following conditions are equivalent:
(1) A = Ad

(2) GA = Gmax (i.e. A = Amin)
(3) A has no proper full subsystem
(4) any Haag dual subsystem B ⊂ A is of the form B1 ⊗ I for some tensor

product decomposition A = B1 ⊗B2

Proof (sketch) (1) ⇔ (2) ⇔ (3) are already shown in [17].
As to (4), ⇐ is clear. “⇒”: let B be a subsystem of A. We know that B is full in
A if and only if B is full in FA. Hence if B is not full in A then FA = FB ∨Bc is
unitarily equivalent to F̂B ⊗ B̂c. From A = FGmax

A it follows that

A ⊂ FGB×e
A = B ∨Bc

∼= F̂B

GB ⊗ B̂c .

Therefore the chain of inclusions B ⊂ A ⊂ B∨Bc is spatially isomorphic to a chain
of the type B1⊗ I ⊂ Ã ⊂ B1⊗ B̂c and, using the results in [38], one can show that
Ã = B1 ⊗B2, i.e. A ∼= B1 ⊗B2 for a certain B2 ⊂ B̂c, cf. [17, Section 3].

Remark 3.5 In any case Ad will not have full subsystems; this can be read
off from the previous result applied to Ad in place of A, recalling that FA = FAd .

Remark 3.6 Theorem 3.4 also holds true ifA is replaced by the net Ã obtained
by localizing the whole Poincaré group, in particular Ad = Ãd.

There are some interesting consequences. In the presence of suitable interac-
tions the possibility that A ' B1 ⊗ B2 has to be excluded (the corresponding
S-matrix would factorize in the form S = S1 ⊗ S2). In this case it turns out that
A = Ad is equivalent to the statement that “A is minimal”, i.e. it has no proper
subsystem.
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A little more effort playing with free theories reveals examples for which A = Ad

is minimal and also other ones for which A = Ad = A1 ⊗ A2 is not. For instance
if F = Fm1 ⊗ Fm2 is generated by the fields ϕ1, ϕ2 with masses m1 6= m2 it holds
Gmax = Z2 × Z2, therefore

Ad = FZ2
m1
⊗ FZ2

m2
= Ad

1 ⊗Ad
2

and hence Ad is not minimal. However, if m1 = m2 = m we have Gmax = O(2) so
that Ad = (Fm⊗Fm)O(2) = FO(2). On the other side Fm⊗Fm is the unique tensor
product decomposition of F (up to inner automorphisms) [17, Appendix]; if we had
Ad = A1 ⊗ A2 it should hold

F = FA1⊗A2 = FA1 ⊗ FA2
∼= Fm ⊗ Fm ,

and thus Ad would be isomorphic to

F
GA1
m ⊗ F

GA2
m ⊃ FZ2

m ⊗ FZ2
m 6⊃ (Fm ⊗ Fm)O(2) = Ad .

The above results lends support to the conjecture that Ad = FGmax even under
less restrictive assumptions, but exhibiting a complete answer seems really tough.

One may also state variants of the above results for the local net AG generated
by A and the local operators measuring the charge content of the theory with gauge
group G. Here are some related problems: (i) study the dependence of AG on G;
even more, one could see what happens replacing the reference vector Ω in the
definition of the universal localizing maps with other suitably chosen (families of)
vectors, e.g. those analytic for the energy (cf. [48]). (ii) it has been shown that
every (metrizable) compact group may appear as a G [28] but as far as we know
there are only few results about the possible Gmax.

4 Back to Wightman Currents

As discussed in the introduction the net A is generated by the canonical im-
plementations of spacetime translations TΛ(x) := ΨΛ(T (x)) = eiP µ

Λ xµ which can
be defined when the field net associated with the observable net A has the split
property. If OΛ ⊂⊂ ÕΛ are the double cones defining the triple Λ then there hold

TΛ(x) ∈ A(ÕΛ) (4.1)
TΛ(x)FTΛ(−x) = T (x)FT (−x) if F, T (x)FT (−x) ∈ FA(OΛ) (4.2)

Now if there is an (observable) energy-momentum tensor Θµν(x) one has the (for-
mal) equality

Pµ =
∫

R3
Θ0µ(x)dx1dx2dx3. (4.3)

It turns out that one can choose a test function fΛ with support in ÕΛ such that the
previous relations for TΛ(x) also hold for eiΘ0ν(fΛ). In this sense the local generators
Pµ

Λ provide an abstract algebraic analogue for Θ0ν(fΛ). A similar situation occurs
for internal symmetries and the corresponding conserved Wightmann currents. Let
us now choose a suitable family ΛR for R > 0 where ÕΛR

is the double cone
centered at the origin with base of radius R. The previous analogy suggests that
T (x)Pµ

ΛR
T (x)∗/R3 should converge to (a multiple of) Θ0µ(x) for R→ 0 in the sense

of distributions, on a suitable domain. This prescription would also allow to define
an energy-momentum tensor from purely algebraic concepts when the latter is not a
priori given. To avoid the difficulties with the domains of the unbounded operators
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Pµ
ΛR

one can try to replace them with suitably chosen bounded substitutes, e.g.

eiP µ
ΛR − (Ω, eiP µ

ΛR Ω).

A preliminary investigation in this direction has been done by Aita [1]. First
results have been given by one of the authors of this report in [16] where it is
shown that in an interesting class of models of chiral 2D conformal field theory
the energy-momentum tensor can be recovered from the canonical local implemen-
tation of translations, with a procedure of the type described above (see also the
next section). On the negative side in [16] an example is given in which the scaling
limit for the U(1) internal symmetry of the model vanishes and the correspond-
ing Wightman current does not exist. Finally partial results have been given by
Tomassini for the 4D massless charged free field [61].

In absence of results of general nature we consider here some consequences of the
assumption that an energy-momentum tensor Θµν(x) can be defined using scaling
limits of local operators in A. It should be clear from the above discussion that
if this limits exists in a sufficiently strong sense then Θµν(x) generates a covariant
subsystem AW of A, cf. [14]. It turns out that despite the intrinsic interest of
the existence the pointwise limit, the associated net essentially coincides with its
abtract version.

Proposition 4.1 Let A be a local net of observables whose canonical field net
satisfies the properties of the previous sections. Assume also that the (re)construction
procedure for Wightman energy-momentum tensor can be succesfully afforded, and
let AW be the local net generated by the (smeared) energy-momentum tensor. Then

(AW )d = FGmax
A = Ad .

Proof AW ⊂ A is full in FA, whence we can apply Corollary 3.3.

The following proposition shows that in favourable situations A is Haag-dual
and hence can be completely computed.

Proposition 4.2 Assume that AW ⊂ A can be constructed, then it holds
Ad = Ar and furthermore Ad = A whenever O 7→ FA(O) is continuous from
inside.

Proof AW , being generated by Wightman fields, is weakly additive, therefore
for every O ∈ K it holds

Ad(M4) = AW (M4) =
∨

x∈M4

AW (O + x) ⊂
∨

x∈M4

A(O + x) ⊂ A(M4) = Ad(M4) ,

so that A is weakly additive as well. Then, from

Ad(OΛ) ⊂ ΨΛ(Ad(M4)) = ΨΛ(A(M4)) = ΨΛ(
∨

x∈M4

T (x)A(OΛ)T (x)∗) ⊂ A(ÕΛ)

(4.4)
(cf. [18]), Ad being outer regular, it follows that Ad = Ar. The continuity of
O 7→ FA(O) implies that of O 7→ Ad(O) = FA(O)Gmax and we are done.
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5 2D Chiral Field Theories

We denote I0 the set of all (non-empty) open bounded intervals on R. A local
chiral net F is an isotonous net of von Neumann algebras over I0 acting on a Hilbert
space H, satisfying

• Locality: [F(I1),F(I2)] = {0} whenever I1, I2 ∈ I0 and I1 ∩ I2 = ∅
• Conformal covariance: there is a strongly continuous unitary representation
V of SL(2,R) on H such that

V (α)F(I)V (α)∗ = F(αI)

whenever I, αI ∈ I0, where SL(2,R) acts on “the circle” R∪{∞} by Moebius
transformations

• Positivity: The one-parameter subgroup of the rotations has positive gener-
ator

• Existence, uniqueness and ciclycity of the vacuum: There is a unique (up to
a phase) V -invariant unit vector Ω ∈ H, which is also cyclic for F(R).

By conformal covariance such a net can always be extended to a net on the family
I of all (nonempty) open nondense intervals of S1.

Interesting examples are constructed starting from the Virasoro or the Kac
Moody algebras, hereafter called AVir(c) and FGk

respectively. AVir(c) is the Haag-
Kastler net on the real line, in its vacuum representation, generated by the energy-
momentum tensor Θ(x) of a chiral CFT, for which it holds

[Θ(x),Θ(y)] = iδ′(x− y)(Θ(x) + Θ(y))− i
c

24π
δ′′′(x− y), x, y ∈ R,

where the central charge c satisfies c ≥ 1 or belongs to the discrete series c =
1−6/(m+ 2)(m+ 3), m ∈ N. Analogously for a simply connected compact simple
Lie group G and a level k ∈ N, FGk

is generated by currents jX(x) such that

[jX(x), jY (y)] = ij[X,Y ](x)δ(x− y)− i
k

4hπ
δ′(x− y)Tr(AdX ·AdY ), x, y ∈ R

where h is the dual Coxeter number of Lie(G). In a different way FGk
can be

defined through a loop group construction, cf. [62]. For any such net there is a
representation of G in the unbroken internal symmetry group of FGk

.

Appealing to our general discussion in Sect. 2 it is now clear how to define the
SL(2,R)-covariant subsystems of a given chiral net, which we simply call conformal
subsystems. For instance AVir(c) ⊂ FG

Gk
for c = k · dim(G)/k + h ≥ 1 by the

Sugawara formula. Other examples are obtained considering subsystems of FGk

generated by currents jX(x) with X in a Lie subalgebra of Lie(G).

It seems difficult for several reasons to adapt the methods discused in the
Sections 2 and 3 to obtain complete classification results for subsystems in the
context of chiral nets. There is no analog of the canonical field net, and the extended
endomorphisms of localized endomorphisms might not be localized better than in
half-lines (“soliton sectors”). However for some of the aforementioned models, the
following classification results are known:

Theorem 5.1 ([14]) AVir(c) has no proper SL(2,R)-covariant subsystem for
all the allowed values of the central charge.

Theorem 5.2 ([15]) All covariant subsystems of FSU(2)1
are obtained as fixed

points under a closed subgroup of the internal symmetry group SO(3).
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Using the fact that the net FU(1) generated by a single U(1)-current j(x), for
which

[j(x), j(y)] = iδ′(x− y),

can be embedded in FSU(2)1
(in fact in every FGk

) it can be shown that the former
has only two distinct proper conformal subsystems, the one generated by the energy-
momentum tensor (with c = 1) which is proportional to : j(x)2 : (with infinite
index), and the Z2 fixed point net [15]. Although the U(1) chiral current algebra
is considered as the chiral analogue of the Hermitian scalar field, in contrast with
the 4D case these two nets do not coincide.

Some remarks are in order. First of all for different G’s or k’s there are subsys-
tems of FGk

which are not fixpoint nets under a compact action, for instance AVir(c)

generated by the Sugawara energy-momentum tensor [54] and FU(1) generated by
a single current jX(x) for a fixed non-zero X ∈ Lie(G) [15]. For such nets no
complete classification results are known. Also the techniques needed to prove the
foregoing theorems are quite different from those used in the previous section. In
particular, differently from the higher dimensional case, these results heavily rely
on the existence of Wightman fields, especially the energy-momentum tensor. An
important ingredient for their proofs (as in the case of the achievements in [16]) is
the paper of Fredenhagen and Jörß [36] where it is shown that chiral nets are always
generated by underlying pointlike localized fields constructed from these nets by a
scaling limit procedure, cf. also [44].

Mimicking the 4D situation given a chiral net F with the split property one can
define a new chiral net by localizing the whole Moebius group, namely

A(I) := {Ψ(F(I1),F(Ĩ1),Ω)(V (SL(2,R))) ; I1, Ĩ1 ∈ I0, I1 ⊂⊂ Ĩ1 ⊂ I}′′ , (5.1)

thus producing a conformal subsystem A = AF ⊂ F. In the light of the above
results we trivially have that A = F for F = AVir(c), while A = FGmax = AVir(1) for
F = FSU(2)1 , where Gmax = SO(3) is the full symmetry group of F. Note that for
FU(1) = F

U(1)
SU(2)1

one has

AFSU(2)1
⊂ AFU(1) ⊂ FZ2

U(1)

one of the two inclusions being necessarily an equality. Besides, for F = FGk
one

can always show that

AVir(c) ⊂ AF ⊂ FGmax , (5.2)

with c = k · dim(G)/k + h, due to the fact that in this context the reconstruction
procedure for the (chiral) energy-momentum tensor as scaling limit of local opera-
tors in AF has a positive end [16], cf. also [14] (AVir(c) playing the role of the net
AW considered before).

Finally we point out an ambiguity which does not arise in 4D. Let A be a chiral
“observable net” and assume that A = FG for some larger net F and compact group
G. One can define two conformal subsystems of A: AA and AF. In analogy with
the 4D case the latter should be preferable, but given A a canonical choice of such
a F, which is maximal in some sense (like the field net in 4D), does not seem to
exist in general. For example in the case of the U(1)-model there are countably
many choices for maximal F’s, see [13]. AF could depend on this choice.
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6 Final Comments

As we have already mentioned several important problems remain open, and
we pointed out some topics for further research.

For the sake of completeness we collect few more questions which have not been
touched in the main text.

In Sect. 3 we stated classification results only for subsystems of Bosonic field
nets. Although we believe that Fermi fields can be settled in a similar way without
changing too much the overall picture, such a generalization would be desiderable.

One can look for more general versions of the results in Sect. 2 in the case
where the charges are localized in space-like cones.

Although the classification results in Sect. 3 are potentially not confined to
free theories, it would be interesting to state results directly applicable to the few
known interacting models like ϕ4

3 and P (ϕ)2 which for different reasons are not
covered by the present analysis.

Other issues are concerned with the geometry of the space-time.
One of them consists in extending the results (even just for the free fields) to

the case of (globally hyperbolic) curved spacetimes. Here we have no translations,
therefore we have to replace the usual spectrum condition. Perhaps it seems feasible
to consider the µSC in terms of wavefront sets.

Hopefully some of the techniques used in the 4D context, like the functorial
properties of the extension procedure, could play an important role in the classifi-
cation program for subsystems of low dimensional theories. The latter is related to
the problem of the possible values for the index of a net of subfactors. In the 4D
situation the index of a subsystem is clearly always infinite, or an integer. Moreover
any integer value is in fact realized.7 However in a broader context (e.g. inclusions
of chiral nets) the computation of these values seems an interesting problem.
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Roma La Sapienza (1989).

[2] Araki, H. Symmetries in the theory of local observables and the choice of the net of local
algebras. Rev. Math. Phys. Special Issue (1992), 1–14.
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Ann. Inst. H. Poincaré 71 (1999), 359–394.
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