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Abstract: We construct explicit examples of microstate geometries of four-dimensional

black holes that lift to smooth horizon-free geometries in five dimensions. Solutions consist

of half-BPS D-brane atoms distributed in R3. Charges and positions of the D-brane centers

are constrained by the bubble equations and boundary conditions ensuring the regularity

of the metric and the match with the black hole geometry. In the case of three centers, we

find that the moduli spaces of solutions includes disjoint one-dimensional components of

(generically) finite volume.
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1 Introduction

Black holes are classical solutions of Einstein’s equations with curvature singularities hidden

behind event horizons. According to the “no-hair theorem”, the solutions are unique in four

dimensions, once the mass, charge and angular momentum are specified. At the classical

level black holes are absolutely black and have zero statistical entropy S = log(1) = 0. In

a quantum theory however a black hole radiates as a black body with a finite temperature

and an entropy given by one quarter of the area of its event horizon. To explain the

microscopic origin of this entropy remains a primary task for any serious contender to a

quantum theory of gravity.

In string theory, black holes can be realised in terms of D-branes intersecting in the

internal space. The micro-states can be represented (and counted) in terms of excitations

of the open strings connecting the building brane bits. Alternatively, one may think of

the geometry generated by the excited brane state as the gravity representation of the

micro-state. Since the micro-state geometry describes a pure state with zero entropy, it

should have no horizon. This line of ideas motivates the “fuzzball” proposal that associates

to every black hole micro-state a regular and horizon-free solution of classical gravity. The

solutions, known as “fuzzballs” or “micro-state geometries”, share with the would-be black

hole the mass, charges and angular momentum but differ from it in the interior [1–3].

The black hole horizon and its entropy arise from a coarse graining superposition of the

micro-state geometries.

In the last years, a large class of four and five dimensional black hole micro-state

geometries have been produced [4–13]. The micro-state geometries are typically coded

in smooth, horizon-less geometries with no closed time-like curves (CTC’s) in five or six

dimensions. This is the best one can achieve, since no-go theorems in four dimensions

exclude the existence of non-singular asymptotically flat soliton solutions1. This is not the

case in five or higher dimensions where the existence of Chern-Simons interactions and

spatial sections with non-trivial topologies circumvent the no-go result [16]. From a four-

dimensional perspective, the finiteness of the higher dimensional Riemann tensor (and its

derivatives) results into a finite effective action with curvature divergences compensated

by the singular behaviour of the scalars and gauge fields.

A black hole with finite area in four dimensions can be realised in several different

frames. Popular choices include bound states of D1-D5-KK-p, of D0-D2-D4-D6 branes

[17–23] or of intersecting D3-branes, wrapping three cycles in T 2 × T 2 × T 2 [24–26]. Af-

ter reduction down to four dimensions, the solution can be viewed as a supersymmetric

vacuum of the N = 2 truncation of N = 8 supergravity involving the gravity multiplet

and three vector multiplets characterizing the complex structures of the internal torus.

In a microscopic world-sheet description of the D3-brane system [25, 26], the harmonic

functions characterising the gravity solution are sourced by disk diagrams with a boundary

ending on a single, two or four different branes [25, 27, 28]. Higher multipole modes are

generated by extra insertions of untwisted open string fields on the disk boundaries. The

micro-state multiplicities can be computed by counting open strings in the D1-D5-p-KK

1Regular solutions with AdS asymptotics have been recently found in [14, 15]
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system or vacua in the quantum mechanics associated to the D0-D2-D4-D6 realisation of

the black hole [29, 30].

The aim of this paper is to construct explicit examples of micro-state geometries of

four- dimensional BPS black holes. We follow the Bena-Warner ansatz [5, 16, 19] and look

for regular five-dimensional geometries generated by distributions of half-BPS D-brane

atoms in R3. The regularity of the five dimensional geometry is coded in the so called

bubble equations that we generalise to account for the case of branes at angles. Boundary

conditions at infinity further restrict the choices leading generically to a moduli space that

consists of disjoint components. There are two classes of solutions. Scaling solutions are

configuration that can be rigidly scaled (see [18, 31–33] for some results). The other class

includes solutions where the distances between the centers are bounded by the charges.

The micro-state geometries that we find carry in general non-zero angular momentum.

This may look surprising, since single-center BPS black holes in four dimensions cannot

carry angular momentum, because rotations of a black hole horizon are not compatible with

supersymmetry. In our case, like for the multi center BPS black holes with non zero angular

momentum considered in [34], the angular momentum is generated by the crossed electric

and magnetic fields of charges separated on R3. In the spirit of the fuzzball proposal, the

black hole can be viewed as the superposition of an ensemble of geometries with all allowed

angular momenta. The statistical average exposes zero angular momentum, even though

each micro-state can carry some2.

The plan of the paper is as follows. In Section 2 we present the BPS solutions de-

scribing systems of intersecting D3-branes on T 6 from the four dimensional perspective.

We consider both cases of orthogonal and of intersecting D3-branes at angles. The Bena-

Warner ansatz is introduced in Section 3. The ansatz is generalised to accomodate for

non-orthogonally intersecting D3-branes. In section 4 and 5 solutions to the bubble equa-

tions and to the boundary conditions are found for the 3-center case with orthogonal or

D3-branes intersecting at angles. A preliminary discussion of the counting of the number of

micro-states with fixed charges is presented in the Conclusions. In Appendix A we derive

the four dimensional solution from dimensional reduction of the intersecting D3-branes

solution in ten dimensional type IIB supergravity.

2 Black holes from intersecting D3-branes

In this paper we consider a family of BPS solutions describing systems of intersecting D3-

branes on T 6 from the four dimensional perspective. We refer the reader to the appendix

for details on the ten dimensional solution and its reduction down to four dimensions. The

four dimensional solution has been first explicitly derived in [19] in the D0-D2-D4-D6 type

IIA frame and lifted to a system of M5 branes in M-theory. Here, for convenience, we

consider the very symmetric formulation in terms of D3-branes, but the results can be

easily translated into the type IIA and M-theory frame.

2Here we have in mind a canonical ensemble interpretation. We thank Iosif Bena for clarifications on

this point.
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The four-dimensional geometries can be viewed as solutions of an N = 2 truncation

of N = 8 supergravity involving the gravity multiplet and three vector multiplets. The

scalars U I in the vector multiplets, usually referred as STU, parametrises the complex struc-

tures of the three internal T 2’s and span the moduli space MSTU = [SL(2, R)/U(1)]3 ⊂
E7(+7)/SU(8) = MN=8. Setting 16πG = 1, the lagrangian can be written as

L =
√
g4

(

R4 −
3∑

I=1

∂µUI∂µŪI

2 ( ImUI)
2 − 1

4
FaIabFb −

1

4
FaRabF̃b

)

(2.1)

where

UI = (σ + is, τ + it, ν + iu) Fa = dAa F̃a = ∗4Fa (2.2)

are the three complex scalars in the vector multiplets characterising the complex structures

of the internal T 2 × T 2 × T 2. In these variables the kinetic functions read

Iab = stu

⎛

⎜⎜⎜⎝

1 + σ2

s2 + τ2

t2 + ν2

u2 − σ
s2 − τ

t2 − ν
u2

− σ
s2

1
s2 0 0

− τ
t2 0 1

t2 0

− ν
u2 0 0 1

u2

⎞

⎟⎟⎟⎠
Rab =

⎛

⎜⎜⎜⎝

2στν −τν −νσ −στ

−τν 0 ν τ

−νσ ν 0 σ

−στ τ σ 0

⎞

⎟⎟⎟⎠

(2.3)

The solutions will be written in terms of eight harmonic functions

{V,LI ,KI ,M} (2.4)

on R3. It is convenient to introduce the combinations

ZI = LI +
|εIJK |

2

KJKK

V
,

µ =
M

2
+

LIKI

2V
+

|εIJK |
6

KIKJKK

V 2
. (2.5)

Here ϵIJK characterise the triple intersections among the three T 2
I 2-cycles in T 6.

The solutions can then be written as

ds2 = −e2U (dt+ w)2 + e−2U
3∑

i=1

dx2i ,

Aa = (A0, AI) = wa + aa (dt+ w)

UI = −bI + i
(
V e2UZI

)−1
(2.6)

with

bI =
KI

V
− µ

ZI
, a0 = −µV 2e4U , aI = V e4U

(
−Z1Z2Z3

ZI
+KI µ

)

∗3dw0 = dV , ∗3dwI = −dKI , ∗3dw =
1

2
(V dM −MdV +KIdLI − LIdKI) (2.7)

and

e−4U = I4(Li, V,KI ,M) ≡ Z1Z2Z3V − µ2V 2 (2.8)

= L1 L2 L3 V −K1K2 K3 M + 1
2

3∑

I>J

KIKJLILJ − MV

2

3∑

I=1

KILI − 1
4M

2V 2 − 1
4

3∑

I=1

K2
IL

2
I

– 4 –



2.1 The asymptotic geometry

For general choices of the eight harmonic functions, the solution (2.6) is singular. Both

naked and ‘horizon-dressed’ curvature singularities can be present. The generic solution

is characterised by a mass M, associated to the Killing vector ξ(t)M∂M = ∂t, four electric

charges Qa and four magnetic charges Pa. Introducing the symplectic vector

F =

(
Fa
δL
δFa

)

=

(
Fa

⋆4 Iab Fb −Rab Fb

)

(2.9)

one finds for the charges

M = − 1

8πG

∫

S2
∞

⋆4 dξ
(t)

(
Pa

Qa

)

= − 1

4π

∫

S2
∞

F (2.10)

with ξ(t) = ξ(t)M dxM and S2
∞ the two sphere at infinity. Solutions with extra symmetries

arise for special choices of the harmonic functions. Axially symmetric solutions are charac-

terised by the existence of an additional Killing vector ξ(t)M∂M = ∂φ associated to rotations

around an axis in R3, and carry an extra quantum number, the angular momentum J given

by3

J = − 1

16πG

∫

S2
∞

⋆4 dξ
(φ) (2.11)

with ξ(φ) = ξ(φ)M dxM . Spherical symmetric solutions are invariant under rotations around

the origin and are characterized by zero angular momentum.

In this paper we consider fuzzballs of spherically symmetric black holes. The harmonic

functions specifying the general spherically symmetric solution can be written in the single-

center form

V = v0 +
v

r
LI = l0I +

lI
r

KI = k0I +
kI
r

M = m0 +
m

r
(2.12)

and describe a general system of intersecting D3-branes wrapping three cycles on T 2×T 2×
T 2 with one leg on each of the three T 2. The absence of Dirac-Misner strings requires that

w vanishes at infinity or, equivalently, that ∗3dw ∼ r−3 at infinity leading to the constraint

v0 m−m0 v + kI0 lI − lI0 kI = 0 (2.13)

For simplicity we take m0 = m = 0. For this choice one finds

e−4U = V L1 L2 L3 − 1
4

(
3∑

I=1

KILI

)2

(2.14)

3Being a surface integral, the expression for J holds true even when ξ(φ) is only an asymptotic Killing

vector.
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Poles and zeros of this function are associated to horizons and curvature singularities

respectively. If e−4U > 0 for all r > 0 the solution describes a black hole with near horizon

geometry AdS2 × S2 and entropy proportional to

lim
r→0

r4 e−4U = I4 = v l1 l2 l3 − 1
4

(
3∑

I=1

kI lI

)2

> 0 (2.15)

If e−4U has zeros for some positive positive r, the solution exposes a naked singularity.

The charges of the solution (or its fuzzball) are computed by the integrals (2.17)

evaluated in the asymptotic geometries (2.12). Writing the three-dimensional metric in

spherical coordinates

ds2 = −e2U (dt+w)2 + e−2U (dr2 + r2 dθ2 + r2 sin2 θ dφ2) (2.16)

and setting G = (16π)−1 one finds for the charges4

M = 8π r2 ∂r e
2U

(
Pa

Qa

)

=

(
(v,−kI )T

−r2 Iab ∂rab

)

(2.17)

where we used the fact that at infinity w = 0 and Fa = dwa+daa dt. On the other hand the

angular momentum of the fuzzball is computed by the integral (2.11). We notice that the

evaluation of this integral requires a more detailed knowledge of the asymptotic geometry

since the angular momentum arises from the first dipole mode in the expansion of the

harmonic function. Indeed, denoting

H = h0 +
h1
r

+
h⃗2 · x⃗
r3

(2.18)

one finds for the angular momentum

J⃗ = 4π
[
m0 v⃗2 − v0 m⃗2 + l0I k⃗2I − k0I l⃗2I

]
(2.19)

We anticipate here that apart from the scaling solutions, all fuzzball solutions we will find

here carry a non-trivial angular momentum. We observe that for orthogonal branes angu-

lar momentum is carried by K-components (see Appendix A.3 for details) corresponding

to open string condensates on disks with boundary on two different D3-brane stacks. In-

deed, an explicit microscopic description of the general supergravity solution exists if the

harmonic functions satisfy the boundary conditions [25]

m2 +
∑

kI2 = 0 (2.20)

As we will see, only scaling solutions in the list of examples we find satisfy this restriction

on the dipole modes.

4In our conventions ⋆4 dr ∧ dt = e−2U r2 sin θ dθ ∧ dφ and
∫

sin θdθ ∧ dφ = 4π.
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2.1.1 Orthogonal branes

We first consider the supergravity solution characterised by the harmonic functions

V = 1 +
v

r
LI = 1 +

lI
r

KI = M = 0 (2.21)

describing a system of four stacks of D3-branes intersecting orthogonally on T 6. At large

distances one finds

e−2U =
√

V L1L2L3 = 1 +
(v + l1 + l2 + l3)

2 r
+ . . .

aI = −L−1
I = −1 +

lI
r
+ . . . a0 = 0

UI = i
(
V e2ULI

)−1
= i+ . . . (2.22)

leading to

M = 4π (v + l1 + l2 + l3) (2.23)
(

Pa

Qa

)

=

(
(v, 0, 0, 0)T

(0, l1, l2, l3)T

)

(2.24)

The extremal Reissner Nordstrom solution corresponds to the choice lI = v = Q/2, or

equivalently

LI = V = 1 +
l

r
M = KI = 0 (2.25)

after the identification FRN = 1
2

(
∗F0 +

∑3
I=1 FI

)
.

2.1.2 Branes at angles

We next consider the supergravity solution characterised by the harmonic functions

V = 1 +
v

r
LI = 1 +

lI
r

K1 = g +
k1
r

K2 = g K3 = M = 0 (2.26)

The absence of Dirac-Misner strings (2.13) requires k1 = g(l1 + l2). The resulting solution

is equivalent after a duality transformation to the solution found in [24] describing a system

of D3 branes intersecting at a non-trivial angle between the branes at infinity, parametrised

by g.

The asymptotic solution at large r becomes

e2U = 1− v + l1 + l2 + l3
2r

+ . . . UI =

(
i, i,

1

g − i

)
+ . . .

wa = (v cos θ dφ,−k1 cos θ dφ, 0, 0) + . . .

aa =

(
g l3
r

,
(1 + g2)l1

r
,
l2 − g2l1

r
,
l3
r

)
+ . . .

Iab =

⎛

⎜⎜⎜⎝

1 0 0 −g

0 1
1+g2 0 0

0 0 1
1+g2 0

−g 0 0 1 + g2

⎞

⎟⎟⎟⎠
Rab =

⎛

⎜⎜⎜⎝

0 0 0 0

0 0 g
1+g2 0

0 g
1+g2 0 0

0 0 0 0

⎞

⎟⎟⎟⎠
(2.27)
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with dots denoting higher order terms in the expansion for large r. Plugging (2.27) into

(2.17) one finds for the charges5

M = 4π (v + l1 + l2 + l3) (2.29)
(

Pa

Qa

)

=

(
(v,−g (l1 + l2), 0, 0)T

(0, l1, l2, l3)T

)

(2.30)

Due to different conventions and duality frames, it is not easy to compare the charges with

the corresponding ones in [24].

3 Microstate geometries

In this section we review the Bena-Warner multi-Taub NUT ansatz for fuzzball geometries

of four- and five-dimensional black holes. We slightly generalise the ansatz to accomodate

for non-orthogonal brane intersections and derive the corresponding bubble equations. In

the next section we present explicit horizon-free solutions with three centers.

3.1 The eleven dimensional lift

The four-dimensional solution (2.6) lifts to an eleven dimensional solution representing a

systems of intersecting M5-branes with four electric and four magnetic charges. The eleven

dimensional metric is given by [5]:

ds2 = ds25 + ds2T 6 (3.1)

where

ds25 = −(Z1 Z2 Z3)
− 2

3 [dt+ µ(dΨ + w0) + w]2 + (Z1 Z2 Z3)
1
3
[
V −1(dΨ + w0)

2 + V dx⃗2
]

dsT 6 =
3∑

I=1

(
Z1 Z2 Z3

Z3
I

) 1
3

(dy2I + dỹ2I ) (3.2)

in which the coordinates associated to R × S1 × T 6 are respectively {t, x⃗, Ψ, yI , ỹI} with

I = 1, 2, 3. Micro-states of the four dimensional black holes can be generically defined

as smooth geometries with no horizons or curvature singularities in eleven dimensions

carrying the same mass and charges as the corresponding black hole. Regular solutions

can be constructed in terms of multi-center harmonic functions (V,LI ,KI ,M) with the

positions of the centers and the charges chosen such that ZI are finite and µ = 0 near the

centers. Under these assumptions one finds that the eleven dimensional metric (3.1) near

5For the central charges ZI = e−U (2ImUI)
−1 r2 ∂rUI , Z4 = i e−U r2 ∂rU one finds at infinity

Z1 = 4π [2 g l1 + i(v + l1 − l2 − l3)] Z2 = 4π [−2 g l1 + i(v − l1 + l2 − l3)]

Z3 = 4πi(v − l1 − l2 + l3) Z4 = 4πi(v + l1 + l2 + l3) (2.28)

showing the saturation of the BPS bound M = |Z4| ≥ |Zi| for i ̸= 4, when v and lI all have the same sign

and g is sufficiently small.
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the centers is R × T 6 × R4/Z|qi|. To avoid orbifold singularities we will henceforth take

|qi| = 1. Moreover, the absence of horizons and closed time-like curves requires that

ZIV > 0 and e2U > 0 (3.3)

Let us remark that the condition ZIV > 0 near the centers requires

ZI V |ri=0 = qi

⎛

⎝l0I +
∑

j ̸=i

lI,j
rij

⎞

⎠+ lI,i

⎛

⎝v0 +
∑

j ̸=i

qj
rij

⎞

⎠+ CIJKkJi

⎛

⎝kK0 +
∑

j ̸=i

kKj
rij

⎞

⎠ > 0

(3.4)

It turns out that these necessary conditions often are enough to ensure the positivity of

both ZIV and e2U on the whole R3. In the next section we look for explicit solutions of

these requirements satisfying the boundary conditions (2.12). We stress that the resulting

solutions are regular everywhere in five dimensions and fall off at infinity to R1,3×S1. The

four-dimensional fuzzball solution follows from reduction of this five-dimensional geometry

down to four dimensions where the apparent singularity in the geometry is balanced by a

blow up of the scalar fields.

3.2 The bubble equations

We consider N-center harmonic functions following the ansatz

V = v0 +
N∑

i=1

qi
ri

, LI = l0I +
N∑

i=1

lI,i
ri

KI = kI0 +
N∑

i=1

kIi
ri

, M = m0 +
N∑

i=1

mi

ri
(3.5)

with ri = |yi−x| and yi the position of the ith center. We notice that (ℓIi,mi) and (qi, kIi )

describe the electric and magnetic fluxes of the four dimensional gauge fields through the

sphere encircling the ith- centers, so Dirac quantisation requires that they be quantised.

Here we adopt units such that they are all integers. Alternatively, one can think of the eight

charges as parametrising the number of D3-branes wrapping one of the eight three-cycles

with a leg on each of the three tori T 2
I in the factorisation T 6 = T 2

1 × T 2
2 × T 2

3 . In other

words, in our units each charge describes the number of D3-branes of a certain kind.

We look for regular five dimensional geometries behaving as R×Taub−NUT near the

centers. It is easy to see that w vanishes near the centers, so the Taub-NUT geometry

factorises if ZI are finite and µ vanishes near the centers, i.e.

ZI

∣∣
ri≈0 ≈ ζIi

µ
∣∣
ri≈0

≈ 0 (3.6)

with ζIi some finite constants. The conditions that ZI is finite near the centers can be

solved by taking

ℓI,i = − |ϵIJK|
2

kJi kKi
qi

mi =
k1i k

2
i k

3
i

q2i
(3.7)
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The vanishing of µ near the centers boils down to the so called bubble equations

N∑

j=1

Π(1)
ij Π(2)

ij Π(3)
ij

qi qj
rij

+ v0
k1i k

2
i k

3
i

q2i
−

3∑

I=1

l0I k
I
i − |ϵIJK | k0I k

J
i kKi

2 qi
−m0qi = 0 (3.8)

with

Π(I)
ij =

kIi
qi

−
kIj
qj

rij = |yi − yj| (3.9)

Indeed the conditions (3.7) ensure that both ZI and µ are finite near the centers while the

bubble equations follows from the requirement that µ vanishes near the center. The bubble

equations ensure also the absence of Dirac-Misner strings. To see this, we notice that using

the bubble equations, the w function defined by (2.7) can be written in the form

∗3 dw =
N∑

i,j=1

(q[imj] + kI[i lj],I)
1

ri
d
1

rj
+

1

2

N∑

i=1

(

v0 mi −m0 qi −
3∑

I=1

(l0I k
I
i − kI0 li,I)

)

d
1

ri

=
1

2

N∑

i,j=1

Π(1)
ij Π(2)

ij Π(3)
ij qi qj

(
1

rj
− 1

rij

)
d
1

ri
(3.10)

where in the second line we used equations (3.7), (3.8) and A[BC] means 1
2(ABC − ACB).

The solution can be written in the form

w =
1

4

N∑

i,j=1

Π(1)
ij Π(2)

ij Π(3)
ij qi qj ωij (3.11)

in terms of the one forms ωij defined via the relation

∗3 dωij =

(
1

rj
− 1

rij

)
d
1

ri
−
(
1

ri
− 1

rij

)
d
1

rj
, (3.12)

that is

ωij =
(ni + nij) · (nj − nij)

rij
dφij (3.13)

with

ni =
x− yi

ri
nij =

yi − yj

rij
dφij =

nij × ni · dx
ri [1− (nij · ni)2]

.

It is easy to see that ωij is free of Dirac-Misner singularities. Indeed along the dangerous

lines connecting any two centers the numerator of (3.13) always vanish so no string-like

singularity arises. One can also see that near the centers w goes to a constant and exact

form.

Finally we notice that if the coefficients kIi satisfy the relation

v0mi −
3∑

I=1

l0I k
I
i + k0I lIi −m0qi = 0 (3.14)
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the system of equations is invariant under overall rescalings of the center positions yi → λyi.

These solutions are known as “scaling solutions”. Multiplying equation (3.14) by the

positions of the centers y⃗i and summing one finds that the scaling solutions satisfy

m0 v⃗2 − v0 m⃗2 + l0I k⃗2I − k0I l⃗2I = 0 (3.15)

and therefore according to (2.19) they carry zero angular momentum.

4 Fuzzballs of orthogonally intersecting branes

We look for regular geometries with the asymptotics (2.21), i.e.

l0I = v0 = 1 m0 = m = k0I = kI = 0 (4.1)

For concreteness we take qi = 1. The charges of the fuzzball solutions are then

P0 = N

QI = −
N∑

i=1

|ϵIJK |kJi kKi
2

(4.2)

The solution is specified by the the positions yi of the centers and the fluxes kIi . The

positions of the centers are constrained by the bubble equations

N∑

j ̸=i

k(1)ij k(2)ij k(3)ij

rij
+ k1i k

2
i k

3
i −

3∑

I=1

kIi = 0 (4.3)

with k(I)ij = kIi − kIj while the match of the asymptotic geometries requires

N∑

i=1

kIi =
N∑

i=1

k1i k
2
i k

3
i = 0 (4.4)

In addition, the absence of horizons and of closed time-like curves requires

ZI V > 0 and e2U > 0 (4.5)

We will consider solutions with three centers. Configurations with one or two centers fail

to meet the requirement QI > 0.

4.1 Three centers

The bubble equations (4.3) for three centers can be solved in general by taking

r12 =
Π12 r23

Π23 − r23 (Γ2 − Λ2)
r13 =

Π13 r23
−Π23 + r23 (Γ1 + Γ2 − Λ1 − Λ2)

(4.6)

with

Πij =
3∏

I=1

(kIi − kIj ) Γi =
3∑

I=1

kIi Λi = k1ik
2
ik

3
i (4.7)
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A solution given by (4.6) makes sense if the distances rij between the three centers are

positive and they satisfy the triangle inequalities. This restricts significantly the choices

for the kIi . A quick scan over the integers shows that boundary conditions are solved only

if at least one of the fluxes kIi vanishes. Without loss of generality the general solution can

then be parametrised in the form (up to permutations of rows and columns)

kI i =

⎛

⎜⎝
−κ1 κ2 −κ1 κ3 κ1 (κ2 + κ3)

κ3 κ2 −κ2 − κ3
−κ4 κ4 0

⎞

⎟⎠ (4.8)

Consequently the harmonic functions takes the general form

V = 1 +
3∑

i=1

1

ri
M = κ1κ2κ3κ4

(
1

r1
− 1

r2

)

L1 = 1 + κ4

(
κ3
r1

− κ2
r2

)
L2 = 1 + κ1κ4

(
−κ2
r1

+
κ3
r2

)

L3 = 1 + κ1

(
κ2κ3
r1

+
κ2κ3
r2

+
(κ2 + κ3)2

r3

)
K1 = κ1

(
−κ2
r1

− κ3
r2

+
κ2 + κ3

r3

)

K2 =
κ3
r1

+
κ2
r2

− κ2 + κ3
r3

K3 = κ4

(
− 1

r1
+

1

r2

)

The charges and distances between the centers reduce to

Q1 = κ4(κ3 − κ2) Q2 = κ1κ4(κ3 − κ2) Q3 = κ1(κ
2
2 + 4κ2κ3 + κ23)

r12 =
2κ1κ4(κ2 − κ3)2r23

κ1κ4(2κ22 + 5κ2κ3 + 2κ23) + (κ2 + κ4 − κ1κ3 + κ1κ2κ3κ4)r23

r13 =
κ1κ4(2κ2 + κ3)(κ2 + 2κ3)r23

κ1κ4(2κ22 + 5κ2κ3 + 2κ23)− (κ1 − 1)(κ2 + κ3)r23
. (4.9)

4.1.1 Scaling solutions

The scaling solution corresponds to the choice

κ2 = 0 κ1 = 1 κ3 = κ4 = κ (4.10)

One finds

kI i =

⎛

⎜⎝
0 −κ κ

κ 0 −κ

−κ κ 0

⎞

⎟⎠ r12 = r23 = r13 = ℓ

P0 = 3 Q1 = Q2 = Q3 = κ2 (4.11)

for any given ℓ. The regularity conditions become

e−4U = 1 +
r1r2 + r1r3 + r2r3

r1r2r3
+

κ2 (r1r2 + r1r3 + r2r3 + 3r1 + 3r2 + 3r3)

r1r2r3

+
κ4 (r1 + r2 + r3 + 9)

r1r2r3
+

κ6
(
2r1r2 + 2r1r2 + 2r2r3 + r1r2r3 − r21 − r22 − r23

)

r21r
2
2r

2
3

> 0

Z1V = 1 +
r1 r2 + r1 r3 + r2 r3 + κ2(2 r2 + 2r3 − r1 + r2 r3)

r1r2r3
> 0 (4.12)
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The conditions Z2V > 0 and Z3V > 0 follow from Z1V > 0 and the permutation symmetry

of the system. The two conditions can be shown to be satisfied using the inequality

r1 + r2 − r3 ≥ 0 (4.13)

holding for any point x ∈ R3 if ri denotes the distance from the point to the three vertices

of an equilateral triangle. This inequality can be proved using triangle inequalities [35].

We conclude that the five-dimensional geometry defined by the multi-center solution

is regular everywhere. We notice that the fluxes satisfy the scaling condition (3.14) and

consistently a rigid rescaling of the positions of the centers generate a new solution. More

precisely, the moduli space of solutions with this charge is spanned by a single continuous

parameter ℓ and permutations of the rows or columns of the matrix (4.11). There are 12

inequivalent choices corresponding to the 3! permutations of the entries in the first line in

(4.11) times the two choices for the position of the 0 in the second line. The remaining

entries are determined by the conditions that the sum along rows and columns of the matrix

kIi should vanish. The number 12 matches the number of apostles and the degeneracy of

four-charge black hole micro-states with the minimal unit of charge P0 = QI = 1 [29]!

Moreover the solutions satisfy
∑3

I=1 k⃗
I
2 = m⃗2 = 0 and therefore according to (2.19) and

(2.20) they carry zero angular momentum and admit a microscopic description in terms of

orthogonal intersecting D3-branes along the lines of [25].

This solution can been shown6 to be related by dualities to a known supertube solution

originally found in [36].

4.1.2 Non-scaling solutions

The analysis above can be repeated for more general choices of the fluxes but regular-

ity conditions in general can only be verified numerically. Here we list some illustrative

examples of the type of solutions one finds.

• κ2 = 0, κ1 = κ3 = 1, κ4 = κ :

kI i =

⎛

⎜⎝
0 −1 1

1 0 −1

−κ κ 0

⎞

⎟⎠ r13 = r23 r12 =
2κ r23

2κ+ (κ− 1) r23

P0 = 3 Q1 = Q2 = κ Q3 = 1 (4.14)

Interestingly, triangle inequalities in this case do not constrain r23 that can take

arbitrarily large value.

• κ2 = κ4 = κ, κ1 = 1, κ3 = 2κ

kI i =

⎛

⎜
⎝

−κ −2κ 3κ

2κ κ −3κ

−κ κ 0

⎞

⎟
⎠ r12 =

r23
10 + r23

r13 = r23.

P0 = 3 Q1 = Q2 = κ2 Q3 = 13κ2 (4.15)

As before r23 can take arbitrarily large value.

6We thank Iosif Bena for pointing this out to us.
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• κ2 = 0, κ1 = 3κ, κ3 = 2κ, κ4 = κ

kI i =

⎛

⎜⎝
0 −3κ 3κ

κ 0 −κ

−2κ 2κ 0

⎞

⎟⎠ r12 =
12κ2 r23

12κ2 − r23
r13 =

6κ2 r23
6κ2 − r23

P0 = 3 Q1 = 2κ2 Q2 = 6κ2 Q3 = 3κ2

r23 < 6 (2 −
√
2)κ2 (4.16)

We notice that triangle inequality in this case impose an upper bound on r23 leading

to a moduli space of finite volume.

5 Fuzzballs of branes at angles

We look for regular fuzzball geometries with the asymptotics (2.26), i.e.

l0I = v0 = 1 m0 = m = k03 = k3 = k2 = 0 k01 = k02 = g k1 = g(l1 + l2) (5.1)

This describes a fuzzball of a non-rotating black hole with charges

P0 = N

QI = − |ϵIJK|
2

N∑

i=1

kJi kKi
qi

(5.2)

The fuzzball is specified by the parameters kIi describing the magnetic fluxes through the

two-spheres encircling the centers and the positions yi. The positions of the centers are

constrained by the bubble equations

N∑

j ̸=i

k(1)ij k(2)ij k(3)ij

rij
+ k1i k

2
i k

3
i −

3∑

I=1

kIi − g k2i k
3
i − g k1i k

3
i = 0 (5.3)

while the match of the asymptotic geometries requires

N∑

i=1

k2i =
N∑

i=1

k3i =
N∑

i=1

k1i k
2
i k

3
i = 0

N∑

i=1

k1i = g (Q1 +Q2) (5.4)

In addition, the absence of horizons and of closed time-like curves requires

ZI V > 0 and e2U > 0 (5.5)

5.1 Three centers

The bubble equations (5.3) for three centers can be solved in general by taking

r12 =
Π12 r23

Π23 − r23 (Γ2 − Λ2 + Ω2)
r13 = − Π13 r23

Π23 − r23 (Γ1 + Γ2 − Λ1 − Λ2 + Ω1 + Ω2)
(5.6)
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with

Πij =
3∏

I=1

(kIi − kIj ) Γi =
∑

I

kIi Λi = k1ik
2
ik

3
i Ωi = g k2i k

3
i + g k1i k

3
i (5.7)

We consider the case

kI i =

⎛

⎜⎝
0 −κ1 κ1 + g κ3(κ1 + κ2)

κ2 0 −κ2
−κ3 κ3 0

⎞

⎟⎠ (5.8)

with κ1,κ2,κ3 three positive integers and g a rational number. One finds

Q1 = κ2 κ3 Q2 = κ1 κ3 Q3 = κ1 κ2 + g κ2 κ3(κ1 + κ2)

r12 =
2κ1 κ2 κ3 r23

2κ1 κ2 κ3 + g κ2 κ23 (κ1 + κ2)− (κ1 − κ3 + g κ1 κ3) r23

r13 =
2 [κ1 κ2 κ3 + g κ2 κ23 (κ1 + κ2)] r23

2κ1 κ2 κ3 + g κ2 κ23 (κ1 + κ2)− [κ1 − κ2 + g κ3 (κ1 + κ2)] r23
(5.9)

The harmonic functions become

V = 1 +
3∑

i=1

1

ri
LI = 1 +

QI

rI
M = 0 (5.10)

K1 = g +

(
−κ1
r2

+
κ1 + k1

r3

)
K2 = g + κ2

(
1

r1
− 1

r3

)
K3 = κ3

(
− 1

r1
+

1

r2

)

Some examples are

• κ1 = κ2 = κ3 = κ = (2g)−1

kI i =

⎛

⎜⎝
0 −κ 2κ

κ 0 −κ

−κ κ 0

⎞

⎟⎠ r12 =
4κ2 r23

6κ2 − r23
r13 =

4κ2 r23
3κ2 − r23

Q0 = 3 Q1 = Q2 = κ2 Q3 = 2κ2

r23 <
9−

√
57

2
κ2. (5.11)

• κ1 = κ2 = κ, κ3 = 2κ, g = (4κ)−1

kI i =

⎛

⎜⎝
0 −κ 2κ

κ 0 −κ

−2κ 2κ 0

⎞

⎟⎠ r12 =
8κ2 r23

12κ2 + r23
r13 =

8κ2 r23
6κ2 − r23

.

Q0 = 3 Q1 = Q2 = Q3 = 2κ2

r23 < κ2
(
−11 +

√
145
)
. (5.12)

We notice that in the two examples considered here distances are bounded by triangle

inequalities leading to moduli spaces of finite volume.
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6 Conclusions

We have constructed explicit examples of micro-state geometries of four-dimensional black

holes. Following Bena, Gibbons and Warner, we have considered solutions consisting of

half-BPS D-brane atoms with centers in R3. Charges and positions of the centers are

constrained by the bubble equations that ensure that the metric uplifts to a horizon-less

and CTC free metric in five dimensions and boundary conditions that grant the match

of the fuzzball and by the black hole geometries at infinity. As a result, divergences

coming from curvature singularities in the four dimensional metric are compensated by the

singular behaviours of the scalars and gauge fields, leading to a finite (higher-derivative)

string effective action.

We have considered the case of three centers in some details and found that there are

two broad classes of solutions. Scaling solutions and non-scaling ones. The moduli space of

scaling solutions is described by a disjoint union of 12 one-dimensional components spanned

by a single parameter (up to rigid rotations and translations of the systems) describing

the distances between the centers. These solutions carry zero angular momentum and

admit a microscopic description in terms of intersecting D3-branes along the lines of [25].

Non-scaling solution are described by disjoint unions of one-dimensional components with

(generically) a finite volume bounded by the charges of the system.
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A The ten dimensional solution and its 4d reduction

In this appendix we collect some details on the dimensional reduction down to four di-

mensions of the eight harmonic family of BPS solutions describing a general system of

intersecting D3-branes on T 6.

A.1 The ten dimensional solution

The eight harmonic family of BPS solutions associated to D3-branes intersecting on T 6 is

characterised by a metric gMN and a four form Ramond field C4 of the form [25]

ds2 = gµν dx
µ dxν +

3∑

I=1

hImn dy
m
I dynI

C4 = Cµ,mnp dx
µ ∧ dym1 ∧ dyn2 ∧ dyp3 , (A.1)
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with µ = 0, . . . 3, m = 1, 2. xµ are the coordinates along the four-dimensional space time

and ymI = (yI , ỹI) span a T 2 × T 2 × T 2 torus with I = 1, 2, 3 labelling the three two-torus.

More precisely we write 7

ds2 = −e2U (dt+ w)2 + e−2U
3∑

i=1

dx2i +
3∑

I=1

1

ImUI
|dyI + UIdỹI |2

C4 = AΛγ
Λ = Aaγ

a +Aȧ γ
ȧ (A.3)

with αΛ one forms in four dimensions and γΛ three forms in the internal torus. Λ =

(mnp) = (a, ȧ) is a collective index labelling the 8 different three cycles [mnp] on T 6

entering in the solution

γa = (dy1 ∧ dy2 ∧ dy3, dỹ1 ∧ dy2 ∧ dy3, dy1 ∧ dỹ2 ∧ dy3, dy1 ∧ dy2 ∧ dỹ3)

γȧ = (dỹ1 ∧ dỹ2 ∧ dỹ3, dy1 ∧ dỹ2 ∧ dỹ3, dỹ1 ∧ dy2 ∧ dỹ3, dỹ1 ∧ dỹ2 ∧ dy3) (A.4)

All functions entering in the metric and four form can be written in terms of eight harmonic

functions

{V,LI ,KI ,M} (A.5)

on R3 or equivalently in terms of the following combination

ZI = LI +
|εIJK |

2

KJKK

V
,

µ =
M

2
+

LIKI

2V
+

|εIJK |
6

KIKJKK

V 2
. (A.6)

with ϵIJK characterising the triple intersections between two cycles on T 6. One finds

e−4U = Z1Z2Z3V − µ2V 2,

UI = ReUI + i ImUI = −bI + i
(
V e2UZI

)−1
bI =

KI

V
− µ

ZI
,

Aa = (α,αI − bIα)

Aȧ =

(
β − b1b2b3α− βIbI +

1

2
|εIJK |αIbJbK , βI + |εIJK |

(
αbJbK − 2bJαK

))
(A.7)

Finally the one-forms α,αI ,β,βI are defined in terms of the eight harmonic function via

α = w0 − µV 2e4U (dt+ w) ,

αI = −dt+ w

ZI
+ bIw0 + wI ,

β = −v0 +
e−4U

V 2Z1Z2Z3
(dt+ w)− bIvI + b1b2b3w0 +

|εIJK |
2

bIbJwK ,

βI = −vI +
|εIJK |

2

{
µ (dt+ w)

ZJZK
+ bJbKw0 + 2bJwK

}
(A.8)

7 In matrix form

hI
mn =

1
ImUI

(

1 ReUI

ReUI |UI |2

)

, hmn
I =

1
ImUI

(

|UI |2 −ReUI

−ReUI 1

)

. (A.2)
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and

∗3dw0 = dV, ∗3dwI = −dKI , ∗3dv0 = dM, ∗3dvI = dLI

∗3dw =
1

2
(V dM −MdV +KIdLI − LIdKI) (A.9)

A.2 The four dimensional model

After reduction to four dimensions, the ten dimensional solution can be viewed as a solution

of a N = 2 truncation of maximal supersymmetric supergravity involving the gravity

multiplet and three vector multiplets. The four dimensional model arises as a dimensional

reduction of the ten dimensional lagrangian

L =
√
g10

(
R10 −

1

4·5!FM1...M5F
M1...M5

)
(A.10)

Plugging the ansatz (A.1) into ( A.10) and taking all fields varying only along the four-

dimensional spacetime one finds

L =
√
g4

(

R4 −
3∑

I=1

∂µUI∂µŪI

2 ( ImUI)
2 − 1

4·2!Fµν,ΛF
µν,Λ

)

(A.11)

It is convenient to introduce a metric HΛΣ and its inverse to raise and lower the Λ indices.

One writes

Habc,def = had1 hbe2 hcf3 (A.12)

or in matrix form

HΛΣ =

(
H1 H2

HT
2 H3

)

, (A.13)

with Hab
1 , Haȧ

2 , Hȧḃ
3 4× 4 matrices. The self-duality condition of the five form field in ten

dimensions

Fµνabc =

√
g10
2

εµνρσabcdefF
ρσdef , (A.14)

reduces to

Fabc = εabcdef F̃
def ⇔ FΛ = εΛΣF̃

Σ (A.15)

with F̃ = ∗4F and εΛΣ an block off-diagonal antisymmetric matrix with the only non-trivial

components

ε00̇ = −εIİ = −ε0̇0 = εİI = 1 (A.16)

In components

Fa = εaȧF̃
ȧ Fȧ = εȧaF̃

a (A.17)

These self-duality relations can be used to express the components Fȧ in terms of the

Poincare’ duals of Fa. Indeed, inverting the first equation in (A.17) one finds8

Fȧ = −(H−1
3 )ȧḃ

(
εḃcF̃c +Hḃc

2 Fc

)
(A.18)

8Here we use ∗24 = −1.
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with εȧa = diag(1,−1,−1,−1) the inverse of εaȧ. Using these relations one can write

FΛF
Λ = Lstu + Ltop (A.19)

with Ltop = −2ϵaȧF̃ȧFa a total derivative,

Lstu = 2(FaIabFb + FaRabF̃b) (A.20)

and 9

Iab = stu

⎛

⎜⎜⎜⎝

1 + σ2

s2 + τ2

t2 + ν2

u2 − σ
s2 − τ

t2 − ν
u2

− σ
s2

1
s2 0 0

− τ
t2 0 1

t2 0

− ν
u2 0 0 1

u2

⎞

⎟⎟⎟⎠
Rab =

⎛

⎜⎜⎜⎝

2στν −τν −σν −στ

−τν 0 ν τ

−σν ν 0 σ

−στ τ σ 0

⎞

⎟⎟⎟⎠
(A.21)

where

UI = (σ + is, τ + it, ν + iu) (A.22)

Discarding the total derivative term, the four-dimensional Lagrangian can then be written

as

L =
√
g4

(

R4 −
3∑

I=1

∂µUI∂µŪI

2 ( ImUI)
2 − 1

4
FaIabFb −

1

4
FaRabF̃b

)

(A.23)

The equations of motion read

Rµν − 1
2gµν =

1

2 ( ImUI)
2

(
∂µUI∂νUI −

1

2
gµν(∂UI)

2

)
+ 1

2I
ab

(
FaµσF

σ
bν −

1

4
gµνFa Fb

)

+ 1
2R

ab

(
FaµσF̃

σ
bν −

1

4
gµνFa F̃b

)

∇µ

{
IabFµν

b +RabF̃µν
b

}
= 0

−∇µ
∇µUI

( ImUI)
2 = i

∂µUI∂µŪI

( ImUI)
3 +

1

2
Fa

∂Iab

∂ŪI
Fb +

1

2
Fa

∂Rab

∂ŪI
F̃b (A.24)

A.3 The basic solutions

A family of supersymmetric solutions to equations (A.24) is given in [25]. These solutions

can be viewed as made of three different types of solutions, referred as K, L or M. In the

following we display a representative of solution in each type.

9Equivalently

Iab ≡ Hab
1 + εaḃ(H−1

3 )ḃċε
ċb −Haḃ

2 (H−1
3 )ċḋH

ḋb
2

Rab ≡ εaḃ(H−1
3 )ḃċH

ċb
2 +Haḃ

2 (H−1
3 )ḃċε

ċb
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A.3.1 L solutions

The L class of solutions can be represented by the choice

V ≡ L (x) , M = KI = 0, LI = 1 ⇒ ZI = 1, µ = 0

I = diag
(
L−3/2, L−1/2, L−1/2, L−1/2

)
R = 0 (A.25)

The solution can be written as

ds2 = −L− 1
2 dt2 + L

1
2

3∑

i=1

dx2i

A0 = w0 ∗3 dw0 = dL

U1 = U2 = U3 = iL− 1
2 (A.26)

A.3.2 K solutions

The K solutions correspond to the choice

K3 = −M ≡ K (x) , LI = V = 1, K1 = K2 = 0 ⇒ ZI = 1, µ = 0

I =

⎛

⎜⎜⎜
⎝

1 +K2 0 0 K

0 1 0 0

0 0 1 0

K 0 0 1

⎞

⎟⎟⎟
⎠

R =

⎛

⎜⎜⎜
⎝

0 0 0 0

0 0 −K 0

0 −K 0 0

0 0 0 0

⎞

⎟⎟⎟
⎠

(A.27)

The solution is given by

ds2 = − (dt+ w)2 +
3∑

i=1

dx2i ,

U1 = U2 = i U3 = −K + i

A0 = A3 = 0 A1 = A2 = −w ∗3 dw = −dK (A.28)

A.3.3 M solutions

The M solutions correspond to the choice

K2 = M ≡ M (x) , LI = V = 1, K1 = K3 = 0 ⇒ µ = M ZI = 1,

I = a3/2

⎛

⎜⎜⎜⎝

1 + 2M2

a −M
a 0 −M

a

−M
a a−1 0 0

0 0 a−1 0

−M
a 0 0 a−1

⎞

⎟⎟⎟⎠
R =

⎛

⎜⎜⎜⎝

0 0 −M2 0

0 0 M 0

−M2 M 0 M

0 0 M 0

⎞

⎟⎟⎟⎠
(A.29)

with a = 1−M2. The solution is given by

ds2 = − dt2√
1−M2

+
√

1−M2
3∑

i=1

dx2i ,

U1 = U3 = M + i
√

1−M2 U2 = i
√

1−M2

A0 = − M dt

1−M2
A1 = A3 = − dt

1−M2
A2 = w2 ∗3 dw2 = −dM (A.30)
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A.4 Sub-family of solutions

For completeness, we list some interesting sub-families of solutions included in the eight-

harmonic class.

A.4.1 No scalars: IWP solution

Einstein-Maxwell theory can be embedded in four dimensional supergravity by restricting

to geometries with a trivial internal square metric

V e2UZ = 1 bI = 0 (A.31)

These equations can be solved in terms of two harmonic functions ReH and ImH via the

identifications

V = L1 = L2 = L3 = ImH

−M = K1 = K2 = K3 = ReH (A.32)

The general solution reduces to10

ds2 = − |H|−2 (dt+ w)2 + |H|2 dx⃗2

A0 = w0 −
ReH

|H|2
(dt+ w)

A1 = A2 = A3 = w1 −
ImH

|H|2
(dt+ w) (A.34)

with H a complex harmonic function

H = ReH + i ImH ∇2H = 0 (A.35)

and w and w0, w1 one forms defined as

dw = i ∗3 [HdH∗ −H∗dH]

dw0 = ∗3d ImH dw1 = ∗3dReH (A.36)

We notice that the contribution to the stress energy tensor of gauge fields AI exactly match

that of A0 , so we can replace the four gauge fields by a single one given by

A = 2w0 −
2ReH

|H|2
(dt+ w)

The resulting solution is known in the General Relativity literature as IWP ( after Israel,

Wilson and Perjes [37, 38] ) and includes very well known examples of solutions of Maxwell-

Einstein gravity:

10 In our conventions the Einstein-Maxwell lagrangian reads

L =
√
g
[

R − 1
4 F 2] (A.33)
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• AdS2 × S2. The harmonic function H reads11

H =
1

√
x21 + x22 + (x3 − iL)2

(A.38)

The geometry is regular everywhere. An infinite class of regular IWP geometries,

obtained as bubbling of AdS2 × S2 and parametrised by a string profile function has

been recently constructed in [14].

• Kerr-Newman solution with M = Q = q, P = 0, J = qL. The harmonic function H

reads

H = 1 +
q

√
x21 + x22 + (x3 − iL)2

(A.39)

The geometry has a naked curvature singularity at the zero of H.

• Reissner-Nordstrom with M = Q = q, P = J = 0. The harmonic function H reads

H = 1 +
q√

x21 + x22 + x23
(A.40)

The geometry has a curvature singularities at the zero of H.

• Charged Taub-NUT with M = Q = b1, P = −b2, J = 0. The harmonic function H

reads

H = 1 +
b1 + i b2√

x21 + x22 + x23
(A.41)

The geometry has no curvature singularities but it has a Dirac-Misner string-like

singularity.

A.4.2 One complex scalar: SWIP solutions

Next, we consider a solutions with single active scalar field, let us say U1, with U2 = U3 = i.

These conditions can be solved in terms of two complex harmonic functions H1, H2 after

the identification

L1 = V = ReH2, L2 = L3 ≡ ImH1 K1 = −M = ReH1 K2 = K3 ≡ − ImH2

(A.42)

11 Global coordinates are defined by

(x1, x2, x3) =
(

√

(ρ2 + L2)(1− χ2) cos φ,
√

(ρ2 + L2)(1− χ2) sinφ, ρ χ
)

(A.37)

with ρ ∈ (−∞,∞), χ ∈ [−1, 1], φ ∈ [0, 2π]. These coordinates cover twice the flat space with the points

(ρ,χ) and (−ρ,−χ) identified.
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For this choice the general solution reduces to

ds2 = −
[
Im
(
H1H̄2

)]−1
(dt+ w)2 + Im

(
H1H̄2

) 3∑

i=1

dx2i ,

U1 =
H1

H2
, U2 = U3 = i,

A0 = w0 +
ImH2

Im
(
H1H̄2

) (dt+ w) , A1 = w1 −
ImH1

Im
(
H1H̄2

) (dt+ w)

A2 = A3 = w2 −
ReH2

Im
(
H1H̄2

) (dt+ w)

∗3dw = −Re
(
H1dH̄2 − H̄2dH1

)

∗3dw0 = Re dH2, ∗3dw1 = −Re dH1, ∗3dw2 = Im dH2. (A.43)

The IWP class corresponds to the choice H1 = iH2 = H. See for instance [39] for more

information on the SWIP solution.

A.4.3 Two complex scalars

This solution corresponds to the choice

L3 = L2 K3 = K2 (A.44)

leading to

Z1 = L1 +
K2

2

V
Z2 = Z3 = L2 +

K1K2

V

µ =
M

2
+

K1K2
2

V 2
+

K1 L1

2V
+

K2L2

V
(A.45)

The solution reads

ds2 = −e−2U (dt+ w)2 + e2U
3∑

i=1

dx2i , e−4U = Z1Z
2
2V − µ2V 2

U1 = −b1 + i(e2UV Z1)
−1 U2 = U3 = −b2 + i(e2UV Z2)

−1

A0 = w0 − µV 2e4U (dt+ w) A1 = w1 + V e4U (dt+ w)
(
Z2
2 −K1 µ

)

A2 = A3 = w2 + V e4U (dt+ w) (Z1Z2 −KI µ) (A.46)

with

∗3dw = 1
2(V dM −MdV +K1dL1 − L1dK1 + 2K2dL2 − 2L2dK2)

∗3dw0 = dV, ∗3dw1 = −dK1 ∗3 dw2 = −dK2 (A.47)

and

b1 =
K1L1 − 2K2L2 −MV

2(K2
2 + V L1)

b2 = b3 = − K1L1 +MV

2(K1K2 + V L2)
(A.48)

The SWIP solution is recovered for L1 = V and K1 −M after the identifications (A.42).
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