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The evidence for macroscopic quantum tunneling (MQT) in Josephson junctions at low

temperatures has been reassessed. Swept bias escape distributions have been modeled with an

algorithm-based simulation and the results compared with data from representative published

experiments. Signatures expected of a crossover to MQT are not found in the analyzed data.
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I. INTRODUCTION

The physics of Josephson junctions, for a number of fun-

damental purposes and device applications, can be described

by a classical circuit model and related dynamics.1 At the low-

est temperatures, however, there is another view in which the

junction is presumed to transform into a macroscopic quantum

device, a “qubit,” thereby acquiring the properties specific of

quantum states such as tunneling and entanglement.2

We have previously provided evidence that the non-

quantum Resistively and Capacitively Shunted Junction

(RCSJ) model of a Josephson junction can successfully repli-

cate a number of experiments originally interpreted as mani-

festations of a macroscopic quantum state. These effects

include microwave induced transitions, Rabi oscillations,

Ramsey fringes, and entanglement of superconducting qubits.3

It is worth noting that new classes of superconductive

devices and systems relying on the physics of Josephson

tunneling have recently attracted the attention of the applied

superconductivity community. In particular, new concepts in

radiation detection have appeared in the literature.4,5 This

paper presents an analysis of thermal and quantum effects

associated with the washboard potential of the Josephson

effect. Besides the specific analysis involving thermal and

quantum excitations, our work might bring deeper insight

into Josephson potentials and their escape mechanisms,

which could be relevant in applications.

Here, we present a more specific and systematic investi-

gation of the basic phenomena from which the new “qubit”

physics took motivation. The earliest indication of

Macroscopic Quantum Tunneling (MQT) was provided by the

least complicated experimental protocol: The bias current to a

Josephson junction is applied in a steadily increasing sweep

until the junction abruptly switches to a finite voltage state.

The value of the current at that moment is recorded and the

sweep is restarted many times. The accumulated data form a

so-called switching current distribution (SCD) that for any

specific junction temperature is peaked at a particular value of

bias. The first claims of evidence of the macroscopic quantum

phenomenon came from this kind of an experiment,6 i.e., evi-

dence of MQT; similar claims by other authors have been

reported since the mid-80s.7

It has been the standard approach in published work to

infer the escape rate out of the Josephson potential3 from the

observed SCD distributions, and then to compare that rate

with theory. Here, we do just the opposite: we will infer the

SCD peaks from an appropriate expression for the escape

rate and then compare those predictions with the experiment.

We do this with a simulation algorithm that has been previ-

ously discussed.8 Any theoretical model can thus be tested

by judging if it can duplicate the experimental results.

Previously, we employed data from the experiment of Yu

et al.9 as a basis of assessing the predictions of a non-quantum

device model from SCD peaks. Here, we again use that same

set of data, as well as results in the seminal work of Voss and

Webb,6 but now exclusively from the perspective of macro-

scopic quantum device models. We also consider some data

of the same type measured for junctions made of high temper-

ature superconductors. This allows a side by side comparison

of non-quantum and quantum predictions.

For the purposes of this treatment, we suppose that the

measured bath temperature is indeed the same as the junction

temperature.

II. THEORY

The RCSJ model of a Josephson junction consists of

three parallel elements: a shunt resistor R, a shunt capacitor

C, and a pure Josephson element. It has a long history of suc-

cessfully predicting the dynamics of Josephson systems.

The current through a Josephson element is given by

IC sin u, and the voltage across the element is governed by

du=dt ¼ 2eV=�h, where u is the phase of the junction and IC

is its critical current. With a total applied bias current I, the

phase dynamics is governed by

�hC

2e

d2u
dt2
þ �h

2eR

du
dt
þ IC sin u ¼ I: (1)

If time is normalized to 1=xJ0, where xJ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eIC=�hC

p
is the zero-bias Josephson plasma frequency, then

€u þ a _u þ sin u ¼ g; (2)

where g ¼ I=IC is a normalized bias current and a ¼ �hxJ0=
2eICR is a normalized loss coefficient.
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A Josephson junction with phase u has stored potential

energy EJð1� cos uÞ. The pre-factor in this expression is the

Josephson energy

EJ ¼ �hIC=2e: (3)

The total potential energy of a junction, when an addi-

tional bias current is supplied, is

U ¼ EJ 1� cos uð Þ � gu
� �

: (4)

In this form, it is apparent that the phase dynamics can

be viewed in terms of a fictitious “particle” moving in a

potential U.

At zero bias, the potential is a horizontal washboard and

the “particle” would sit at the bottom of the well at u ¼ 0.

Small oscillations around the minimum of that well occur at

the plasma frequency fJ0 ¼ xJ0=2p. At non-zero values of

the bias, (a) the washboard tilts, (b) the minimum of the well

occupied by the particle shifts to values u > 0, and (c) the

wells in the washboard potential become progressively

shallower, with correspondingly smaller plasma frequencies,

fJ ¼ fJ0ð1� g2Þ1=4
and reduced barrier heights DU ¼ 2EJ

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� g2Þ

p
� g cos�1g�10 that both disappear at a bias equal

to the junction critical current.

The first escape mechanism to be recognized was classi-

cal thermal activation (TA) in which the “particle” jumps

over the barrier and then bounces down the washboard gen-

erating a voltage. When the bias current is ramped up, a

switching event is signalled when the “particle” escapes

from the well and a voltage appears across the junction. At

all but the lowest temperatures, the mechanism of this escape

is thermal activation over the barrier and into the running

state. The escape rate for such a process is11

CTA ¼ fJ exp
�DU

kBT

� �
; (5)

kB is Boltzmann’s constant, and T is the junction

temperature.

It has been proposed that for sufficiently small tempera-

tures, the junction will change from a classical entity to a

macroscopic quantum entity in which case escape would

occur via quantum tunneling. The escape rate for this process

is given by (see, e.g., Refs. 7 and 12)

CMQT ¼ aq fJ exp �7:2
DU

hfJ
1þ 0:87

Q

� �� �

aq � 120p
7:2DU

hfJ

� �� �1=2

; (6)

where Q is the quality factor of the junction (Q ¼ xJRC).

The expression for escape due to quantum tunneling

[Eq. (6)] is a limiting form generally considered applicable

only for the lowest temperatures. The question of possible

finite temperature enhancements to this rate was explored in

a number of theoretical papers.13,14 It is a widely held opin-

ion that any judgment as to whether quantum theory actually

does describe experiments must include temperature

enhancement effects in a revised expression for the escape

rate. MQT escape rates are expected to increase with finite

temperature through thermal enhancement.13–16 We note that

an enhanced escape rate (greater than CMQT) means it is eas-

ier to escape from the well, so escape will occur sooner in

the sweep. Therefore, a finite temperature effect will result

in SCD peaks being shifted to lower bias positions. For this

reason, the MQT escape peak expected from Eq. (6) must

represent a maximum possible bias position—no quantum

peak can advance beyond this point no matter how low the

sample temperature. So, there is a “cutoff” value for activa-

tion peak positions.

This finite temperature effect, as it applies to the particu-

lar case of Josephson junctions, appeared in Ref. 14 where

the enhanced escape rate in the weak damping limit was

obtained from the zero temperature rate Eq. (6) according to

the following equations [Eqs. (3.16), (3.3), and (3.11) in

Ref. 14]:

ln CðTÞ=Cð0Þ½ � ¼ 10pa B� 8

5

� �
ðkBT=hfJÞ2; (7)

where

B ¼ ðDU=�hxJÞsðaÞ; (8)

sðaÞ ¼ 36

5
1þ 45

p3
nð3Þa

� �
; (9)

with a damping constant a ¼ 1=2Q for the Josephson junc-

tion and nð3Þ ¼ 1:202 is a Riemann number.

III. SIMULATIONS

An algorithm for computer simulations of swept bias

experiments was described in Ref. 8. The program is built

around appropriate escape rate expressions Eqs. (5) and (6)

or Eq. (7), and requires values for the following input param-

eters: junction critical current IC, junction capacitance C, the

junction quality factor Q, and the time taken for a bias

sweep. There are no adjustable parameters.

For these simulations, we chose to model a Josephson

junction with the following parameters taken from:9 bias ramp

time 4.89 ms, IC ¼ 1:957 lA; C ¼ 620 fF, and R ¼ 300 X.

The zero bias plasma frequency was thus 15.59 GHz. The simu-

lations reported here represented an equivalent of 1000000

repeated bias sweeps. Sample results are depicted in Fig. 1.

On the upper panel (TA), the SCD peaks from the simu-

lation of escape only by thermal activation are presented. On

the center panel (MQT), the single SCD peak from macro-

scopic quantum tunneling alone with an assumed Q¼ 12 is

shown. Note that the MQT result (red peak) corresponds to a

TA peak at T � 70 mK.

Next we modified the original simulation algorithm to

include both the thermal activation rate Eq. (5) and the quan-

tum tunneling rate Eq. (6). That is, TA and MQT are present

throughout the swept bias procedure. A simulation run pro-

duced the results shown in the lower panel (TAþMQT) of

Fig. 1. Here it is evident that when both escape modes are

running concurrently, TA peaks for high enough tempera-

tures appear at the same positions that they held in the

133904-2 Blackburn, Cirillo, and Grønbech-Jensen J. Appl. Phys. 122, 133904 (2017)



absence of an MQT escape mode, but below this temperature

only the MQT peak is seen.

This behavior is due to the nature of SCD peaks—they

are distributions of the probability that an escape will occur

at a particular bias value during a sweep. These peaks exhibit

the property that on the high side of the maximum the proba-

bility returns to zero. A second process with a lower escape

rate would have its SCD peak at a higher bias, but that bias

region cannot be accessed. Therefore, swept bias experi-

ments will reflect only the process with the higher escape

rate.

Note that the Josephson plasma frequency is bias-

dependent because the curvature of the well is also bias-

dependent. For example, in the harmonic approximation,

fJ ¼ fJ0ð1� g2Þ1=4
. In addition, the barrier height DU ¼

2EJ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� g2Þ

p
� g cos�1g� is also bias-dependent. The ther-

mal activation rate Eq. (5) and the thermally enhanced MQT

rate Eq. (7) both explicitly depend on temperature, but the

MQT escape rate Eq. (6) does not. However, the MQT rate

will vary during the process of sweeping the bias current.

This is shown in Fig. 2. What this means is that the MQT

escape rate cannot be regarded as a constant; its value

depends on where in a sweep the SCD peak is located.

IV. CROSSOVER

The crossover temperature is defined by the condition

that the escape rate for thermal activation equals the escape

rate for MQT; hence for Eqs. (5) and (6)

fJ exp
�DU

kBT

� �
¼ aq fJ exp �7:2

DU

hfJ
1þ 0:87

Q

� �� �
: (10)

With the usual assumption Q� 1, this leads to

Tcr �
hfJ

2pkB
: (11)

This is a widely quoted result.6,7,12,15,17

Because the escape rates for TA and MQT are equal at

this temperature, it is considered to be the point at which

there is a crossover between the two escape modes. It should

be noted that the rate expression Eq. (6) is in fact a zero tem-

perature limit.7,12

This changeover to thermal activation, from both macro-

scopic quantum tunneling and for thermally enhanced mac-

roscopic tunneling, is illustrated in Fig. 3.

In the simulation, for a chosen temperature, the bias is

ramped up until an escape peak is reached. The bias current

at that point determines the potential barrier DU and also the

plasma frequency. Therefore, the thermal escape rate can be

calculated from Eq. (5). Likewise the MQT escape rate can

be calculated from Eq. (6). In the lower panel, this process

has been repeated but with the thermally enhanced escape

rate given by Eq. (7). What this shows is that for an MQT

process, there is a crossover temperature Tcr, whereas for an

enhanced MQT process there is a corresponding enhanced
crossover temperature eTcr. As the figure illustrates, this

enhancement of the crossover temperature can be quite

small, �4:5 mK.

V. COMPARISON WITH EXPERIMENTS

We now analyze the experiments presented in Ref. 9.

Figure 2 in Ref. 9 (also repeated in Ref. 18) includes a plot

of SCD peak positions as a function of junction temperature.

As discussed in the Appendix of Ref. 3, peak positions are a

FIG. 1. Switching current distributions generated by algorithm-based com-

puter simulations of a swept bias experiment. Bias currents are normalized

to a junction critical current IC ¼ 1:957 lA. Upper panel: SCD peaks from

just thermal activation at various temperatures (the temperatures of unla-

beled peaks are 150, 125, 100, then 50, 40 mK). Middle panel: solid (red)

line—MQT peak for Q¼ 12. Lower panel: simulations of SCD peaks when

escape rates from both thermal activation and quantum tunneling coexist.

Note that the peaks “freeze” at the location of the MQT peak.

FIG. 2. Macroscopic quantum tunneling escape rate as a function of bias

current (solid line) with superimposed markers at the positions of the lowest

temperature peaks in the lower panel of Fig. 1.
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more precise indication of behavior at the lowest tempera-

tures where the width of the peaks shrinks considerably.

We digitized the eight lowest temperature data points

and replot them as (blue) squares in Fig. 4. Note that the tem-

perature scale here is linear.

From simulation-generated plots such as the ones shown

in the lower panel of Fig. 1 with TA and MQT processes act-

ing concurrently, peak positions were extracted. The solid

circles (green) in Fig. 4 come from that process. This illus-

trates the natural transition that takes place between thermal

activation and quantum tunneling.

It might be observed that the experimental data lie

below the TA simulation results. However, at temperatures

above �200 mK, simulation and experiment are in excellent

agreement, as is apparent in Fig. 2 of Ref. 19. In Ref. 19, we

speculated on why experimental results might peel-away

from the expected TA behavior at low temperatures.

We applied Eq. (7) for the enhanced escape rate applica-

ble to this experiment with parameter values a ¼ 1=2Q and

Q¼ 12, T0 ¼ 65 mK, x0=2p ¼ 15:59 GHz. The simulation

yielded the results plotted as diamonds (red) in Fig. 4. As

would be anticipated, the predicted peak positions with ther-

mal enhancement (diamonds) lie slightly below the corre-

sponding simulation results without enhancement (circles).

As expected from the simulation results shown in Fig. 3,

there has been a small upward shift in the crossover point.

With respect to “error bars” that might be associated

with the data presented in Fig. 4, we note the following.

For the experiments, escape data from each bias scan

were sorted into bins of width 1 nA. The large number of

repetitive scans (5� 104 in this instance) assured that the bin

with the largest number of counts corresponded to the true

position of the SCD peak with a statistical uncertainty

of 6 one bin width. The junction critical current was

1:957 lA; hence the uncertainty bars for these experimental

data points would be 0:001=1:957 � 0:0005, in normalized

units. In Fig. 4, the experimental data are shown as (blue)

squares which have a vertical dimension of 0.001; conse-

quently for the experiments, error bars would be approxi-

mately one half the height of the square symbols.

For the simulations based on escape rates, there were

50, 000 data bins evenly spaced over the normalized bias

interval 0! 1:0. Each simulation run represented an equiva-

lent of 106 repeated bias sweeps. The normalized bin spacing

is 1:0=50 000 ¼ 0:00002, which is less than a tenth of the

uncertainty of the experimental data, and also much smaller

than the thickness of the solid line (red) that extends towards

T¼ 0. Hence statistical error bars on the simulation results

would be too small to be visible. Therefore, the disagreement

between experiment and quantum predictions cannot be

attributed to statistical errors.

We performed the same type of analysis done for the Yu

et al. experiment9 on the data reported by Voss and Webb.6 The

parameters for this simulation were: IC ¼ 1:62 lA; C ¼ 0:1 pF,

Q¼ 7.1, zero bias plasma frequency 35:3 GHz, and a bias ramp

time of 0:01 s. The result of the analysis is shown in Fig. 5.

Error bars associated with both experimental and simulation

data points in this figure can be estimated in the same manner as

was done in connection with Fig. 4 and the results are, as before,

that on the scale of this plot the uncertainties are insignificant.

Two significant features can be seen in Fig. 5. The first

is that the experimental data show no evidence of a quantum

transition since the peak positions continue to move up as

the temperature of the junction decreases below the theoreti-

cal crossover temperature.

Secondly, the experimental data points closely track the

simulation results in the “thermal activation” regime of bath

temperatures. We note that in Fig. 4 the experimental data

do not follow the thermal bath temperature, at least for the

FIG. 3. Crossover in the escape rates due to thermal activation and macro-

scopic quantum tunneling. Upper panel: MQT rate from Eq. (6) and TA rate

from Eq. (5). Note that the temperature dependence of MQT must be inter-

preted as illustrated in Fig. 2. The star marks the crossover point at 75:2 mK.

Lower panel: enhanced MQT rate from Eq. (7) and TA rate from Eq. (5).

The star marks the crossover point 79:5 mK for this enhanced tunneling

process.

FIG. 4. Squares (blue): experimental data for SCD peak positions from Fig.

2 in Ref. 9. Circles (green): simulation results for SCD peak positions versus

temperature with TA and MQT operating concurrently (as in the lower panel

of Fig. 1). Diamonds (red): simulation using an escape rate that includes

thermal enhancement of tunneling (eMQT) from Eq. (7). In the simulation

plots, branches are labeled according to the dominant escape processes: TA,

MQT, and eMQT.
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range of temperatures in the plot. This phenomenon has been

previously interpreted as evidence that the sample tempera-

ture might be different from the bath temperature.19 The fact

that in the experiment of Voss and Webb the temperature of

the sample is identical to that of the bath could be due to

their declared experimental condition that the sample was

mounted inside the mixing chamber of the dilution refrigera-

tor and not externally anchored to the chamber itself (as in

most other experiments).

In Fig. 6, we show data digitized from plots of an exper-

iment performed on high-Tc superconducting materials,

namely a grain boundary biepitaxial junction.20 In the figure,

we display the experimentally determined position of the

switching current peaks as a function of temperature.

Although we have not performed a direct simulation in this

case, due to the lack of sweep rate data in the paper, the

nearly linear behaviour down to very low temperatures is so

striking that we can very reasonably claim that no transition

to the theoretically predicted MQT curve has occurred.

VI. COMMENTS

As mentioned already, there exist other sets of experi-

ments in the literature reporting SCD experiments with

claims of evidence for MQT. For this study, we have chosen

to focus on certain experiments that are sufficiently straight-

forward for us to suppose there are no unknown and/or

uncontrollable effects that might disturb the nature of the

mechanism by which escape takes place out of the one-

dimensional Josephson potential. Low supercurrent junctions

represent somewhat ‘safer’ candidates from this point of

view. It has been shown, for example, that the nature of the

escape processes in high-Tc junctions can be unusual21 since

this kind of tunnelling structure can exhibit phase-gradient

effects for relatively high current densities.

A remark in Ref. 7 captures an early view of the cross-

over process: “The crossover temperature at which the

escape rate changes from thermal (temperature dependent) to

quantum (temperature independent) is predicted to be

�hxp=2pkB in the limit Q� 1.” That picture has evolved

somewhat. Figure 3 in Ref. 13 summarizes the current

suppositions underlying the macroscopic quantum tunneling

hypothesis. It distinguishes between various temperature

intervals: well below the crossover region, quantum tunnel-

ing prevails; within the crossover interval itself, quantum

tunneling and thermal activation both operate; above the

crossover zone quantum corrections apply to the classical

thermal escape process; and then finally beyond that, thermal

hopping as the only escape mode.

The present simulations are consistent with this picture.

With respect to switching current distributions, a transition

in SCD peak behavior is expected even when both processes

coexist, and may indeed coexist on either side of the cross-

over point. It follows that any evidence of freezing of escape

peak positions at temperatures below the crossover point

would give no information about when the macroscopic

quantum state actually coalesced—one could only conclude

that it must have been formed at some temperature above

T ¼ Tcr . Even below the crossover temperature, a Josephson

junction could not be supposed to be fully quantum. This

could have consequences for the operation of qubits.

In Ref. 15, Eq. (7) appears in a slightly altered form,

with the right hand side expressed simply as sðaÞT2. This

emphasized the expectation of a T2 dependence of the

enhanced escape rate near T¼ 0. With that in mind,

Washburn et al. inferred escape rates from experimental

SCD peak data, and then plotted the natural logarithm of that

escape rate vs T2. From that plot, the slope sðaÞ was

extracted. Tellingly, they stated “we do not find quantitative

agreement with theoretical prediction for the slope sðaÞ” and

in the summary concluded that they achieved only qualita-

tive agreement with theoretical predictions. Certainly, this

fell short of confirming thermal enhancement of MQT.

Similar outcomes were reported in Ref. 16.

In summary, for the first time escape rates arising from

macroscopic quantum tunneling theory have been tested

against experiments. We have extracted switching current

distribution data from three selected experiments and com-

pared those data with simulation-based predictions of both

FIG. 5. Squares (blue): experimental data extracted from Fig. 1 in Ref. 6.

Circles (green): simulation results for SCD peak positions versus tempera-

ture with TA and MQT operating concurrently.

FIG. 6. Experimental data extracted from Fig. 2(a) in Ref. 20 showing SCD

peak positions as a function of temperature for a high-TC Josephson junc-

tion. The dashed line marks the reported crossover temperature of 50 mK

and the solid straight line is a guide to the eye to emphasize the lack of any

special behavior below the crossover point. The junction critical current was

ICO ¼ 1:40 lA.
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zero temperature MQT theory, and thermally enhanced

MQT theory. We emphasize that no comparisons of this type

have been reported before. Significantly, the scaling expres-

sion for the anticipated thermal enhancement of escape rates

in a Josephson junction with small damping does not resolve

discrepancies between zero temperature theory and observa-

tion, at least for the selected experiments.
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