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Abstract—Despite the high quality performance of the deep
neural network in real-world applications, they are susceptible
to minor perturbations of adversarial attacks. This is mostly
undetectable to human vision. The impact of such attacks has
become extremely detrimental in autonomous vehicles with real-
time “safety” concerns. The black-box adversarial attacks cause
drastic misclassification in critical scene elements such as road
signs and traffic lights leading the autonomous vehicle to crash
into other vehicles or pedestrians. In this paper, we propose a
novel query-based attack method called Modified Simple black-
box attack (M-SimBA) to overcome the use of a white-box
source in transfer based attack method. Also, the issue of late
convergence in a Simple black-box attack (SimBA) is addressed
by minimizing the loss of the most confused class which is the
incorrect class predicted by the model with the highest proba-
bility, instead of trying to maximize the loss of the correct class.
We evaluate the performance of the proposed approach to the
German Traffic Sign Recognition Benchmark (GTSRB) dataset.
We show that the proposed model outperforms the existing
models like Transfer-based projected gradient descent (T-PGD),
SimBA in terms of convergence time, flattening the distribution
of confused class probability, and producing adversarial samples
with least confidence on the true class.

Index Terms—adversarial attacks, black-box attacks, deep
learning methods, autonomous vehicles.

I. INTRODUCTION

Cybersecurity threats on Autonomous vehicles (AV) can cause
serious safety and security issues as per the “Safety First”
industry consortium paper [1] published by twelve industry
leaders such as Audi, BMW, Volkswagen, among others. AV is
made possible due to the control functions of connected vehi-
cles, onboard diagnostics for maintenance, and cloud backend
system. These capabilities also make it a rich and vulnerable
attack surface for the adversary. Cyber-attacks on such systems
can have dangerous effects leading to malicious actors gaining
arbitrary control of the vehicle with such multiple entities
managed simultaneously on the road. These malicious actions
can eventually cause life-threatening harm to pedestrians and
prevent widespread adoption of AV.

Cyber attacks often cause data corruption and intentional
tampering by an unexpected source, which could be crucial
elements in the training data for deep neural networks [2].
Although these models are popular for their accuracy and
performance for computer vision tasks (such as classification,

detection, and segmentation), they are known to be extremely
vulnerable to adversarial attacks [3]. In this type of attack, the
adversary induces minor but systematic perturbations in key
model layers such as filters and input datasets as shown in Fig.
1. Even though this minor layer of noise is barely perceptible
to human vision, it may cause drastic misclassification in
critical scene elements such as road signs and traffic lights.
This may eventually lead to AV crashing into other vehicles
or pedestrians. Stickers or paintings on the traffic signboards
are the most common physical adversarial attacks, which can
impact the functionality of the vehicular system.

Fig. 1. Example of adversarial attack: minor perturbations introduced to the
training data cause misclassification of a critical traffic sign i.e. Yield instead
of Stop sign. This incorrect prediction can be hardly perceptible to the human
eye and thus have dangerous repercussions for autonomous vehicles.

Adversarial attacks are primarily of two types: (1) White-box
where adversary customizes perturbations to the known deep
neural network such as architecture, training data, parameter
settings, and (2) Black-box where adversary has minimum to
nil knowledge about the network. Although white-box attacks
have been under study, they may not be realistic for AV
technology, because of the many dynamic elements primarily
related to sensor data. Our state-of-art study has shown that
there is very limited research on black-box adversarial attacks
in the domain of AV.

Seminal research articles [3], [4] to report adversarial
attack problems for images in neural networks observed
that an imperceptible non-random noise to a test image
can lead to serious misprediction problems, thereby ques-
tioning the model robustness. These white box examples
were generated using box-constrained Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. It has
remarkable transferability property and is illustrated across
tasks with different architectures [5], [6]. The decision outputs978-1-7281-8243-8/20/$31.00 ©2020 IEEE
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resulted from machine learning models of the sub-tasks in the
computer vision domain, such as classification, detection, and
segmentation, become sensitive to the adversarial perturbations
in the input. This is discussed in various prior works [7]–[10].

Gradient estimation techniques such as Finite Differences
(FD) and Natural Evolutionary Strategies (NES) are used in a
black-box setting, because they are not directly accessible to
the adversary. The other significant technique uses surrogates
[11], [12] to exploit the transferability of adversarial exam-
ples over models. Although several papers have verified the
transferability properties [13], the focus of our work is on the
gradient estimation technique [14] because of the convenience
of attack. This property transferability of adversarial attacks
is investigated in [15] for dispersion reduction attack. It
uses limited perturbations compared to the existing attacks
and demonstrated its performance over different computer
vision tasks (image classification, object detection, semantic
segmentation).

The first work to generate adversarial examples for black-
box attacks in video recognition, V-BAD [16] framework
utilizes tentative perturbations transferred from image models
and partition-based rectifications to obtain good adversarial
gradient estimates. They demonstrate an effective and efficient
attack with a ∼90% success rate using fewer queries to the
target model. More recently, the first article on adversarial
examples for sign recognition systems in AV [17] has proposed
two different attack methods: out-of-distribution and lenticular
printing in black-box settings.

Unlike the scored-based and transfer-based methods, the
TRansferable EMbedding based Black-box Attack (TREMBA)
method [18]. Direted to an unknown target network, it learns
a compact embedding with a pre-trained model and performs
an efficient search over the embedding space. The adversarial
perturbations by TREMBA have high-level semantics, which
is effectively transferable. Further, these perturbations help in
enhancing the query efficiency of the black-box adversarial
attack across the architectures of different target networks.

The boundary attack is introduced as a category of the
decision-based attack [19], which is relevant for the as-
sessment of model robustness. These are used to highlight
the security risks of machine learning systems belonging to
closed-source like autonomous cars. Boundary attacks usually
require a large set of model queries for obtaining a successful
human indistinguishable adversarial example. To improve the
efficiency of the boundary attack, it must be combined with a
transfer-based attack. The biased boundary attack [20], signif-
icantly reduces the number of model queries with the combi-
nation of low-frequency random noise and the gradient from
a substitute model. Similar to other transfer-based attacks, a
biased boundary attack depends on the transferability between
the target model and the substitute model. The boundary
attack++ [21] is an algorithmic improvement of the boundary
attack, which estimates the gradient direction with the help of
binary information available at the decision boundary. Another
method [22] of decision-based attack, called qFool, used
very few queries in the computation of adversarial examples.

The qFool method can handle both non-targeted and targeted
attacks with less number of queries.

A simple black-box adversarial attack, called SimBA [23]
has emphasized that optimizing queries in black-box adversar-
ial attacks continues to be an open problem. This is happening
even though there is a significant body of prior work [16], [18].
The algorithm in SimBA repeatedly picks a random direction
from a pre-specified set of directions and uses continuous-
valued confidence scores to perturb the input image by adding
or subtracting the vector from the image. We have extended
their work by improving the efficiency and efficacy of the
attack. Instead of maximizing the loss of the original class,
our model searches for gradients in a direction that minimizes
the loss of the “most confused class”.

The main objective of this research is to design black-box
adversarial attacks for AV for exposing vulnerabilities in deep
learning models. We propose a “multi-gradient” attack in deep
neural networks model for traffic scene perception. There are
three main advantages of our model: fast convergence, flat-
tens the confused class probability distribution, and produces
adversarial samples with the least confidence in true class. In
other words, the results demonstrate that our model is better
at generating successful mis-predictions at a faster rate with
a higher probability of failure. Our work in building such
models will serve two primary scientific communities. First, it
contributes towards the safety and security of the primary users
i.e. passengers and pedestrians. Second, it helps AI researchers
in developing robust and reliable models.

The main contributions of this work are:
• A novel multi-gradient model for designing a black-box

adversarial attack on traffic sign images by minimizing
the loss of the most confused class.

• Result validation by comparison with transfer-based pro-
jected gradient descent (T-PGD) and simple black-box
attack (SimBA) using German Traffic Sign Recognition
Benchmark (GTSRB) dataset

• Our model outperforms on three metrics: iterations for
convergence, class probability distribution, and confi-
dence values on input class.

The paper is organized as follows. In Section II, we describe
the proposed architecture of black-box adversarial attacks.
Section III contains discussions on the performance of the
proposed method on the GTSRB dataset along with quanti-
tative and qualitative analysis. The conclusions are presented
and future work in Section IV.

II. PROPOSED METHOD

In this section, we are presenting the proposed method for
black-box adversarial attacks in AV. As shown in Fig 2, there
are three main modules: (a) input module to sense/detect the
traffic signs through the camera attached to the autonomous
vehicle (b) multi gradient attack module, and (c) adversarial
sample estimator that implements the target attack. The gra-
dient perturbations can be generated from one of the three
methods: Transfer based projected gradient descent (TPGD),
a Simple Black box attack (SimBA), and Modified Simple
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black-box attack (M-SimBA). A detailed explanation of this
key attack module is given in the subsequent sections.

A. Transfer based Projected Gradient Descent (T-PGD)

In this white-box attack, the source CNN architecture is
trained for a similar task. The gradients from this model are
used to produce an adversarial sample which is then trans-
ferred to attack the target. Gradients updates are performed
in the direction which maximizes the classification loss as
per equation (1), where x, Advx are original and adversarial
sample, respectively. The term ε is the step size that decides
the magnitude of the update. The gradient of the loss function
is denoted by ∇xJ and weights corresponding to the CNN is
shown as θ. The output label is shown y.

Advx = x+ ε ∗ sign(∇xJ (θ, x, y)). (1)

Iterative gradient updates are performed until the loss con-
verges to a higher value. This treatment makes the adversarial
image to deviate from the original image, making it unperceiv-
able to humans. Although T-PGD shows good generalization
ability for samples generated on white box source model to be
transferred to the black box model, it is limited by the need
for the white box source model.

B. Simple Black-box Attack (SimBA)

This query-based attack does not require any additional
white-box model unlike T-PGD to create the adversarial sam-
ples. It has no knowledge of the model and its architecture.
Hence, the model parameters such as weights and biases are
not known to calculate the gradient concerning the input image
as done in previous transfer-based attacks. The SimBA attack
uses only the confidence or output probabilities of a black box
CNN model to produce adversarial samples. It tries to search
in various directions so that updating the input pixels in that
direction maximizes the loss of the correct class. This reduces
the overall confidence of the network.

For any given direction q and step size ε, one of the gradient
term (x + qε) or (x − qε) is likely to decrease P (y|x). To
minimize the number of queries to the model, +qε term is
added. In case, this decreases the probability P (y|x), then
a step is taken in this direction. Otherwise, the opposite of
−qε is considered. Although it is a simple method to be used
to attack any unknown architecture, it requires an extensive
gradient search which consumes a large number of iterations
to converge.

C. Modified simple black-box attack (M-SimBA)

To avoid the use of white-box source model of T-PGD
attack and late convergence problems of SimBA attack, we
are proposing a novel method by modifying the Simple Black
box attack to call it M-SimBA. This is shown in Fig. 3. Instead
of maximizing the loss of the original class in SimBA model,
we are minimizing the loss of the most confused class. It is
the incorrect class where the model misclassifies with the
highest probability. As shown in Fig. 4, firstly probability
of the original model class is checked before the attack.

In the next step, random gradients are initialized and are
added to the input sample. Subsequently, the black-box model
probability is calculated in the most confused class. Initially,
a positive update is considered. In case, it fails to improve the
probability of a most confused class, a negative gradient update
is performed. If both positive and negative gradient updates
fail to improve the probability, a new gradient is randomly
initialized and the process is repeated until convergence.

III. EXPERIMENTAL RESULTS

In this section, we are presenting the details about the
dataset, experimental setup and result discussions.

A. Dataset

We are evaluating the performance of the proposed method
on the German Traffic Sign Recognition Benchmark (GTSRB)
dataset [24]. It consists of 43 traffic sign classes, where
39000 are training images and 12000 are test images. The
images contain one traffic sign, a border of 10% around the
actual traffic sign (at least 5 pixels) to allow for edge-based
approaches. It varies between (15× 15) to (250× 250) pixels
and sample images are shown in Fig. 5.

B. Experimental Setup

In this section, we are describing the initial setup for the
three models to ensure their proper functioning without attack.
To perform transfer based projected gradient descent (T-PGD)
attack, a 2-layer customized white-box CNN architecture is
designed which takes the input image of size (150x150). The
model classifies the original samples with 94% accuracy. It
serves as a white-box source to generate adversarial samples
in the T-PGD attack. To perform SimBA and M-SimBA
attack methods, another 2-layer customized black-box CNN
architecture with a larger number of max-pool and dropout
layers compared to white-box CNN is designed. It takes the
input image of same size (150x150) to perform the attack. It
classifies the original samples with 96% accuracy.

C. Comparison results

In this section, we are comparing the three attack meth-
ods based on their success rate. It is defined as a fraction
of generated samples that are successfully misclassified by
the black-box model. As shown in Fig. 6, the success rate
increases with an increase in the number of iterations for all
the three methods. This is an expected trend, gradient updates
for adversarial sample become better with more processing
time. The success rate of T-PGD does not increase much with
an increase in iterations, since it does not rely on random
searching and requires only a fixed number of iterations to
generate the sample. One of the features of our proposed M-
SimBA attack model is that converges faster as compared to
the other two methods.

In the result shown in Fig. 7, a common trend is observed
that as ε increases, the success rate decreases for all the three
methods. This is expected behavior because, as we increase the
step size, the value of the gradient update also increases. For
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Fig. 2. Proposed method for black-box adversarial attacks in autonomous vehicle technology. (a) an input module to sense/detect the traffic signs through
the camera attached to the autonomous vehicle (b) multi gradient attack module to generate 3 different gradient perturbations from Transfer based projected
gradient descent (T-PGD), Simple Black box attack (SimBA), Modified Simple black-box attack (M-SimBA), and (c) a classification module which attacks
the target black-box model

Fig. 3. Basic block diagram for Modified Simple Black-box Attack (M-
SimBA)

the large values of ε, there is a high probability of overshooting
and missing the optimum value. Due to this reason, the method
may not converge and that can lead to a low success rate. On
the other hand, T-PGD gives very good results for small values
of ε, but becomes the poorest of the three methods for larger
values of ε. This happens as T-PGD relies on gradient updates
in a fixed direction and ends up reaching the optimum value
in the neighborhood boundary quickly. In addition, SimBA
and M-SimBA tend to outperform T-PGD and converge to the

Fig. 4. Flowchart of Modified Simple Black-box Attack (M-SimBA)

same point at higher values of ε, but SimBA needs a higher
number of iterations. Finally, in Fig. 8, it is observed that
M-SimBA tends to show a higher success rate for the initial
increase in the number of samples and continues to outperform
other methods, because of its property of early convergence.
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Fig. 5. German Traffic Sign Recognition Benchmark (GTSRB) datase

Fig. 6. Comparison of three attacks on Iterations vs Success rate

D. Qualitative analysis

There are two main ideas for the qualitative analysis of
the proposed black-box adversarial attacks on GTSRB dataset.
Firstly, M-SimBA suppresses the confidence of the original
class, which makes it a desirable feature for attack technique.
As shown in Fig. 9, the true class of the sample is zero. The
T-PGD method leads to minimum distortion in the probability
vector. On the other hand, M-SimBA can attack the black-
box model with very low confidence in the input class with
almost zero value. Secondly, M-SimBA flattens the distribution
of confused class probabilities compared to the other two
attacks as shown in Fig. 10. This is a advantageous from
attack perspective, because it provides a higher chance that
the prediction model confuses with the other class.

Fig. 7. Comparison of three attacks on Epsilon vs Success rate

Fig. 8. Comparison of three attacks on Samples vs Success rate

IV. CONCLUSION

Autonomous vehicles powered with deep neural networks
for scene perception can be extremely vulnerable to adversarial
attacks. For the safety and security of pedestrians and passen-
gers, it is crucial to understand the attacks for building robust
models. The main objective of our research is to demonstrate
and evaluate the black-box adversarial attack for traffic sign
detection for AV. To achieve efficiency in the iterative process
of reducing the number of queries searching the classifier, we
focus on minimizing the loss of the most confused class. We
are comparing our model with two other algorithms SimBA
and T-PGD using the GTSRB dataset. We are showing the
efficiency and efficacy of our model with three different
metrics namely: iterations for convergence, class probability
distribution, and confidence values on input class. In the future,
this work can be extended to attacks in video context and
different vehicle sensor data. Also, novel methods can be
explored to design robust defense techniques to tackle these
adversarial attacks.
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Fig. 10. Visual Results on GTSRB - 2. True class of the input image is 9. M-SimBA flattens the distribution of confused class probabilities (red box on
M-SimBA plot) compared to the other two attacks. It is a desirable behavior such that there is a high chance that the black-box model confuses with at least
of the other class.
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