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ABSTRACT

For a function 𝑔 : {0, 1}𝑚 → {0, 1}, a function 𝑓 : {0, 1}𝑛 → {0, 1}
is called a𝑔-polymorphism if their actions commute. The function 𝑓

is called an approximate 𝑔-polymorphism if this equality holds with

probability close to 1, when 𝑍 is sampled uniformly. A pair of func-

tions 𝑓0, 𝑓1 : {0, 1}𝑛 → {0, 1} are called a skew 𝑔-polymorphism if

𝑓0 (𝑔(row1 (𝑍 )), . . . , 𝑔(row𝑛 (𝑍 ))) = 𝑔(𝑓1 (col1 (𝑍 )), . . . , 𝑓1 (col𝑚 (𝑍 )))
for all 𝑍 ∈ {0, 1}𝑛×𝑚 .

We study the structure of exact polymorphisms as well as ap-

proximate polymorphisms. Our results include a proof that an

approximate polymorphism 𝑓 must be close to an exact skew poly-

morphism, and a characterization of exact skew polymorphisms,

which shows that besides trivial cases, only the functions AND,

XOR, OR, NAND, NOR, XNOR admit non-trivial exact skew poly-

morphisms.

We also study the approximate polymorphism problem in the

list-decoding regime (i.e., when the probability equality holds is not

close to 1, but is bounded away from some value). We show that

if 𝑓 (𝑥 ∧ 𝑦) = 𝑓 (𝑥) ∧ 𝑓 (𝑦) with probability larger than 𝑠∧ ≈ 0.815

then 𝑓 correlates with some junta, and 𝑠∧ is the optimal threshold

for this property.

Our result generalize the classical linearity testing result of Blum,

Luby and Rubinfeld, that in this language showed that the approxi-

mate polymorphisms of 𝑔 = XOR are close to XOR’s, as well as a

recent result of Filmus, Lifshitz, Minzer and Mossel, showing that

the approximate polymorphisms of AND can only be close to AND

functions.

∗This version is an extended abstract and doesn’t contain any proofs. The full version
can be found on arXiv and on the second author’s webpage.
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1 INTRODUCTION

Let 𝑚 ∈ N be thought of as a constant, 𝑛 ∈ N be thought of

as large, and let 𝑔 : {0, 1}𝑚 → {0, 1} be any function. We say

that 𝑓 : {0, 1}𝑛 → {0, 1} is a polymorphism of 𝑔 if their opera-

tions commute. More precisely, defining the functions 𝑓 ◦ 𝑔𝑛, 𝑔 ◦
𝑓𝑚 : {0, 1}𝑛×𝑚 → {0, 1} as

(𝑓 ◦ 𝑔𝑛) (𝑍 ) = 𝑓 (𝑔(row1 (𝑍 )), . . . , 𝑔(row𝑛 (𝑍 ))),
(𝑔 ◦ 𝑓𝑚) (𝑍 ) = 𝑔(𝑓 (col1 (𝑍 )), . . . , 𝑓 (col𝑚 (𝑍 ))),

we say that 𝑓 is a polymorphism of 𝑔 if 𝑓 ◦𝑔𝑛 = 𝑔 ◦ 𝑓𝑚 . See Figure 1

for an illustration.

More generally, for a parameter 𝛿 > 0, we say that 𝑓 is a 𝛿-

approximate polymorphism if

Pr
𝑍
[(𝑓 ◦ 𝑔𝑛) (𝑍 ) ≠ (𝑔 ◦ 𝑓𝑚) (𝑍 )] ⩽ 𝛿 ;

here and throughout, the distribution over 𝑍 is uniform over

{0, 1}𝑛×𝑚 . We note that for any function 𝑔, one always has dic-

tatorship functions as polymorphisms. Namely, for each 𝑗 ∈ [𝑛], it
is easily seen that the function 𝑓 (𝑥) = 𝑥 𝑗 is a polymorphism of 𝑔 as

(𝑓 ◦ 𝑔𝑛) (𝑍 ) = 𝑔(row𝑗 (𝑍 )) = (𝑔 ◦ 𝑓𝑚) (𝑍 ).
Dictatorship polymorphisms will thus be referred to as trivial poly-

morphisms of 𝑔. If 𝑔 possesses a mild structural property, then

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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𝑍11 · · · 𝑍1𝑚
𝑔
→ 𝑔(row1 (𝑍 ))

...
. . .

...
𝑔
→ ...

𝑍𝑛1 · · · 𝑍𝑛𝑚
𝑔
→ 𝑔(row𝑛 (𝑍 ))

↓ 𝑓 ↓ 𝑓 ↓ 𝑓 ↓ 𝑓

𝑓 (col1 (𝑍 )) · · · 𝑓 (col𝑚 (𝑍 ))
𝑔
→ ∗

Figure 1: 𝑓 is a polymorphism of 𝑔, in symbols 𝑓 ◦𝑔𝑛 = 𝑔◦ 𝑓𝑚 ,

if applying 𝑔 to the bottom row produces identical results to

applying 𝑓 to the rightmost column.

there are additional trivial polymorphisms: when 𝑔 is odd, anti-

dictatorships also form polymorphisms; if 𝑔(𝑏, . . . , 𝑏) = 𝑏, then the

constant function 𝑓 (𝑥) = 𝑏 also forms a polymorphism. What can

be said about the structure of functions 𝑔 that have non-trivial poly-

morphisms? More generally, what can be said about functions 𝑔

that have approximate polymorphisms that are far from being triv-

ial? Furthermore, can we classify the structure of the approximate

polymorphisms in these cases?

The problem of studying the structure of polymorphisms as well

as approximate polymorphisms has appeared in several different

contexts throughout theoretical computer science:

(1) Universal algebra and the complexity of constraint sat-

isfaction problems. In this context, the function 𝑔 is al-

lowed to be a predicate rather than a function, and a poly-

morphism is a function 𝑓 that takes satisfying assignments

to 𝑔, ordered as rows in the matrix 𝑍 ∈ {0, 1}𝑛 , and pro-

duces a satisfying assignment for 𝑔 in the form 𝑓𝑚 (𝑍 ) (i.e.,
somewhat of a one-sided version of the above equation).

In this context, the existence of non-trivial polymorphisms

is strongly linked to the complexity of the constraint satis-

faction problem corresponding to the predicate 𝑔 (see for

example [2]).

(2) Property testing. Perhaps the most basic problem in prop-

erty testing, the linearity testing problem [3, 4], can be cast

in the language of approximate polymorphisms. Here, one

takes 𝑚 = 2 and the function 𝑔(𝑥,𝑦) = 𝑥 ⊕ 𝑦, in which

case a function 𝑓 is an 𝛿 approximate polymorphism if

𝑓 (𝑥 ⊕ 𝑦) = 𝑓 (𝑥) ⊕ 𝑓 (𝑦) with probability ⩾ 1 − 𝛿 , where 𝑥

and𝑦 are sampled uniformly and independently from {0, 1}𝑛 .
This question, as well as its 1/2 + 𝛿 list-decoding variant have

been well studied and are useful in the study of PCP’s [9].

(3) Social choice theory. In this context, one thinks of the

functions 𝑓 , 𝑔 as voting rules, and then the above functions

𝑓 ◦ 𝑔𝑛 , 𝑔 ◦ 𝑓𝑚 can be thought of as two ways of aggregating

these voting rules in order to reach a final outcome. Due to

this interpretation, it makes sense to also consider the łcrossž

version of the problem, wherein we have multiple functions

𝑓 , say 𝑓0, . . . , 𝑓𝑚 , and we replace the above equation by

(𝑓0 ◦ 𝑔𝑛) (𝑍 ) = 𝑔(𝑓1 (col1 (𝑍 )), . . . , 𝑓𝑚 (col𝑚 (𝑍 ))).
The interpretation here is that there are 𝑛 voters that cast

their yes/ no opinion on each one of𝑚 topics; notationally,

the vector row𝑖 (𝑍 ) represents the opinions of voter 𝑖 . The
goal is to aggregate these opinions about the topic to reach a

final conclusion, and naturally this can be done in one of two

ways: first, one may aggregate the opinion of each voter, and

then aggregate the final conclusion of each voter. This way

of aggregation is represented by (𝑓0 ◦ 𝑔𝑛) (𝑍 ). Another way
to aggregate these opinions is to first reach a final conclu-

sion regarding each topic, which is 𝑓𝑗 (col𝑗 (𝑍 )) in the above

notation, and then aggregate those; this is represented by

the function 𝑔(𝑓1 (col1 (𝑍 )), . . . , 𝑓𝑚 (col𝑚 (𝑍 ))). Thus, in this

interpretation, the question asks for which aggregation rules

𝑔 and 𝑓𝑖 does it hold that the two natural ways of aggregating

the votes are essentially equivalent.

The case where 𝑔 is an AND function is a prominent example

that has been studied in this context. In particular, the fact

that 𝑓 = Majority does not yield equivalent rules is known as

the Doctrinal paradox, which raised the question of what are

all 𝑓 ’s in this case that yield equivalent rules. This problem

has been addressed by Nehama [17] in the context of social

choice theory and by Parnas, Ron and Samorodnitsky [18]

from the property testing point of view, and both works

establishing partial results. A recent work [7] has improved

these results, showing that in this case the approximate poly-

morphisms of 𝑔 can only be functions that are close to AND

functions.

With this in mind, it makes sense to ask what is the most general

result one can prove when 𝑔 is a general function on constantly

many coordinates. Indeed, answering this question is the main goal

of this paper:

Determine all pairs 𝑓 , 𝑔 which are approximate polymor-

phisms:

Pr[𝑓 ◦ 𝑔𝑛 = 𝑔 ◦ 𝑓𝑚] ⩾ 1 − 𝛿.

1.1 The Structure of Exact Polymorphisms

The exact polymorphisms variant of this problem, i.e. the case that

𝛿 = 0, has been previously studied by Dokow and Holzman [5].

They manage to give the following tight classification of all possible

pairs 𝑓 , 𝑔 in which 𝑓 is a polymorphism of 𝑔:

(1) One of 𝑓 , 𝑔 is constant, a dictator (𝑥𝑖 ), or an anti-dictator

(¬𝑥𝑖 ).
(2) 𝑓 , 𝑔 are XORs or their negation.

(3) 𝑓 , 𝑔 are ANDs.

(4) 𝑓 , 𝑔 are ORs.

Stated otherwise, the only 𝑔’s that have non-trivial polymorphisms

are AND’s, OR’s, XOR’s and NXOR’s. It is interesting to note that

in each one of these cases, the answer to the approximate polymor-

phisms problem has already been resolved; the case 𝑔 is an XOR

or an NXOR is linearity testing [3, 4], and it is well-known that

𝑓 must be close to an XOR or its negation. When 𝑔 is an AND, it

was shown in [7] that 𝑓 is close to zero or to an AND, and the case

where 𝑔 is an OR is similar.

Thus, it would be natural to guess that the only 𝑔’s that have

non-trivial approximate polymorphisms would be exactly the 𝑔’s

found by Dokow and Holzman. Furthermore, we would expect that

if 𝑔 is not an XOR, NXOR, AND, or OR, and 𝑓 is an approximate
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polymorphism, then 𝑓 must be trivial, i.e. close to a constant, a dicta-

tor, or an anti-dictator. Here and throughout, closeness is measured

with respect to the Hamming distance over the uniform measure

on {0, 1}𝑛 .

1.2 Main Results

1.2.1 Approximate Polymorphisms. In this language, our main re-

sult reads:

Theorem 1.1. Fix 𝑔 : {0, 1}𝑚 → {0, 1}. For every 𝜀 > 0 there

exists 𝛿 > 0 (depending on both 𝑔 and 𝜀) such that for every 𝑛, if

𝑓 : {0, 1}𝑛 → {0, 1} satisfies
Pr
𝑍
[(𝑓 ◦ 𝑔𝑛) (𝑍 ) = (𝑔 ◦ 𝑓𝑚) (𝑍 )] ⩾ 1 − 𝛿,

then either:

(1) 𝑓 is 𝜀-close to a constant, dictator, anti-dictator or an exact

polymorphism of 𝑔;

(2) 𝑔 is either an NOR or an NAND, and 𝑓 is 𝜀-close to an OR or

an AND (respectively).

Naively, one may have hoped that the first item in the theorem

must always hold, however as we explain next, it is necessary

to include the second item as well. Suppose that 𝑔 is unbalanced,

so that 𝑝 = E[𝑔] is at least 2−𝑚-far from 1/2. Suppose we have

functions 𝑓0 and 𝑓1 satisfying 𝑓0 ◦𝑔𝑛 = 𝑔 ◦ 𝑓𝑚1 . Given such 𝑓0, 𝑓1, we

may construct a function 𝑓 agreeing with 𝑓1 around the middle slice

and with 𝑓0 around the 𝑝𝑛-slice, and have that 𝑓 ◦ 𝑔𝑛 ≈ 𝑔 ◦ 𝑓𝑚 . All

new solutions in Theorem 1.1 arise from such skew polymorphisms.

Dokow and Holzman in fact solved the more general cross ver-

sion of the problem defined above. Namely, theymanaged to classify

all solutions to the equation 𝑓0 ◦ 𝑔𝑛 = 𝑔 ◦ (𝑓1, . . . , 𝑓𝑚). Our main

result extends to this setting as well, and we prove an analog of

Theorem 1.1 for it as well:

Theorem 1.2. Fix 𝑔 : {0, 1}𝑚 → {0, 1}. For every 𝜀 > 0 there

exists 𝛿 > 0 (depending on both 𝑔 and 𝜀) such that for every 𝑛, if

𝑓0, . . . , 𝑓𝑚 : {0, 1}𝑛 → {0, 1} satisfy
Pr
𝑍
[(𝑓0 ◦ 𝑔𝑛) (𝑍 ) = (𝑔 ◦ (𝑓1, . . . , 𝑓𝑚)) (𝑍 )] ⩾ 1 − 𝛿,

then 𝑓0, . . . , 𝑓𝑚 are 𝜀-close to functions 𝐹0, . . . , 𝐹𝑚 : {0, 1}𝑛 → {0, 1}
satisfying 𝐹0 ◦ 𝑔𝑛 = 𝑔 ◦ (𝐹1, . . . , 𝐹𝑚). (In the case of 𝑓0, 𝐹0, closeness

is with respect to the biased measure 𝜇𝑝 , where 𝑝 = Pr[𝑔 = 1].)

In the context of Theorem 1.1, we have 𝑓0 = · · · = 𝑓𝑚 = 𝑓 . While

we can guarantee that 𝐹1 = · · · = 𝐹𝑚 , it is not necessarily the

case that 𝐹0 = 𝐹1. This is the reason for the second option in the

statement of Theorem 1.1.

We also provide an alternative proof of the classification of

Dokow and Holzman [5], using Boolean function analysis. To illus-

trate the merits of this proof technique, we classify all solutions of

the slightly more general equation

𝑓0 ◦ 𝑔𝑛 = ℎ ◦ (𝑓1, . . . , 𝑓𝑚) .

1.2.2 The List Decoding Regime. As discussed earlier, the linearity

testing problem, which constitutes one example of the approximate

polymorphisms problem, can be studied in several different regimes:

(1) Exact regime: If Pr[𝑓 (𝑥 ⊕ 𝑦) = 𝑓 (𝑥) ⊕ 𝑓 (𝑦)] = 1 then 𝑓 is

an XOR.

(2) Approximate regime: If Pr[𝑓 (𝑥 ⊕ 𝑦) = 𝑓 (𝑥) ⊕ 𝑓 (𝑦)] ⩾ 1 − 𝛿

then 𝑓 is 𝑂 (𝛿)-close to an XOR.

(3) List decoding regime: If Pr[𝑓 (𝑥 ⊕𝑦) = 𝑓 (𝑥) ⊕ 𝑓 (𝑦)] ⩾ 1/2+𝛿
then 𝑓 is Ω(𝛿)-correlated with some XOR.

In this language, Dokow and Holzman extended the exact regime

to arbitrary functions 𝑔 (in linearity testing, 𝑔(𝑥,𝑦) = 𝑥 ⊕ 𝑦), and

Theorem 1.1 extends the approximate regime to arbitrary func-

tions 𝑔. Our second main result extends the list decoding regime to

arbitrary functions 𝑔.

Theorem 1.3. Fix 𝑔 : {0, 1}𝑚 → {0, 1} which is not an XOR or an

NXOR. There exists a constant 𝑠𝑔 < 1 such that the following holds:

(1) For every 𝜀 > 0 there exist 𝐿, 𝛿 > 0 such that for every 𝑛, if

Pr
𝑍
[(𝑓 ◦ 𝑔𝑛) (𝑍 ) = (𝑔 ◦ 𝑓𝑚) (𝑍 )] ⩾ 𝑠𝑔 + 𝛿

then 𝑓 is 𝜀-correlated with some Boolean 𝐿-junta ℎ, that is,

Pr[𝑓 = ℎ] ⩾ 1/2 + 𝜀.

(Without loss of generality, we can take ℎ to be an XOR.)

(2) For every sufficiently small 𝛿 > 0, there exists large enough 𝑛

and a function 𝑓 : {0, 1}𝑛 → {0, 1} such that the correlation

of 𝑓 with any (1/𝛿)-junta is at most 𝛿 , and

Pr
𝑍
[(𝑓 ◦ 𝑔𝑛) (𝑍 ) = (𝑔 ◦ 𝑓𝑚) (𝑍 )] ⩾ 𝑠𝑔 − 𝛿.

A similar result also holds if 𝑔 is an XOR or an NXOR of at least

two variables, with the following difference: instead of guaranteeing

that 𝑓 correlates with a junta, all we can show is that it is correlated

with an XOR (which is also all we can hope for, since XORs are

exact polymorphism of XOR).

Computing the value of 𝑠𝑔 may be a challenging task in general.

When 𝑔 is an XOR, one has 𝑠𝑔 = 1/2. When 𝑔(𝑥,𝑦) = 𝑥 ∧ 𝑦, one

may have expected 𝑠𝑔 to be equal to 3/4 (as was conjectured by [7]).
It turns out that it is actually higher, about 0.814975.

1.2.3 Comparison to Previous Work. Our main theorems generalize

classical work on linearity testing [3, 4], which is the special case

of 𝑔 = XOR.

This work was prompted by recent work [7] which proved The-

orem 1.1 in the special case of 𝑔 = AND. Theorem 1.1 and Theo-

rem 1.3 answer two of the three open questions posed in [7].

Several other results in the literature can be seen as analogs of

Theorem 1.1 in the more general case of predicates:

(1) Arrow’s theorem. The NAE3 predicate is a predicate on

triples of bits which holds whenever the three bits are not all

equal. Arrow’s theorem [1] for three candidates states, in our

language, that the only polymorphisms of NAE3 satisfying

𝑓 (0, . . . , 0) = 0 and 𝑓 (1, . . . , 1) = 1 are dictators. Wilson [20]

improved this, showing that the only polymorphisms of

NAE3 are dictators and anti-dictators.

Mossel [14], improving on earlier work of Kalai [11], showed

that approximate polymorphisms of NAE3 are close to dic-

tators or to anti-dictators. Mossel’s result is more general,

allowing for more than three candidates.1 Mossel’s work

was subsequently improved quantitatively by Keller [12].

1Mossel’s result is even more general, classifying also exact and approximate multi-
polymorphisms, in which different 𝑓 ’s are allowed for different columns.
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(2) Intersecting families. An intersecting family is the same

as a polymorphism of the binary predicate NAND2 on pairs

of bits. We define approximate polymorphisms of NAND2

with respect to the unique distribution 𝜇𝑝,𝑝 supported on

the support of NAND2 whose marginals are 𝜇𝑝 .

Friedgut and Regev [8] proved, in our language, that when

𝑝 < 1/2, any approximate polymorphism of NAND2 is close

to an exact polymorphism of NAND2.

1.3 Techniques: Theorem 1.1

The proof of Theorem 1.1 is composed of two parts. First, we show

that 𝑓 is close to a junta. Second, we use this to reduce the approxi-

mate question to an exact question.

We can assume without loss of generality that 𝑔 depends on all

coordinates. If𝑔 is an XOR or an NXOR then Theorem 1.1 reduces to

linearity testing (except for the trivial cases𝑚 = 0 and𝑚 = 1), and

so we can assume that 𝑔 is not an XOR or an NXOR. This implies

that 𝑔 has an input 𝛼 with a nonsensitive coordinate 𝑗 , that is,

𝑔(𝛼) = 𝑔(𝛼 ⊕ 𝑗 ), where 𝛼 ⊕ 𝑗 results from flipping the 𝑗th coordinate.

To simplify notation, we assume that 𝑗 =𝑚.

1.3.1 Showing That 𝑓 is Close to a Junta.

The basic argument. In this part, we assume that (𝑓 ◦ 𝑔𝑛) (𝑍 ) =
(𝑔 ◦ 𝑓𝑚) (𝑍 ) with probability at least 1−𝜂. Later on, we will choose

𝛿 as a function of both 𝜂 and the size of the junta.

Suppose first that all variables in 𝑓 have small influence. In this

case, we will show that 𝑓 is 𝜀-close to a constant function. We

do this by assuming that 𝑓 is 𝜀-far from constant and reaching a

contradiction.

The idea is to construct two correlated inputs 𝑍,𝑊 , each indi-

vidually uniformly random, such that

(𝑓 ◦ 𝑔𝑛) (𝑍 ) = (𝑓 ◦ 𝑔𝑛) (𝑊 )
with probability 1. To sample such𝑍,𝑊 , we use the input 𝛼 . Namely,

we form𝑊 by resampling the𝑚th coordinate of each row whose

first 𝑚 − 1 coordinates agree with 𝛼 . Thus, by the approximate

polymorphism condition, it follows that (𝑔◦ 𝑓𝑚) (𝑍 ) = (𝑔◦ 𝑓𝑚) (𝑊 )
with probability ⩾ 1 − 2𝜂; as we argue next, this last fact will tell

us that 𝑓 must be close to constant.

Since 𝑔 depends on all coordinates, there is an input 𝛽 such

that 𝑔(𝛽) ≠ 𝑔(𝛽 ⊕ 𝑒𝑚); suppose without loss of generality that

𝑔(𝛽1, . . . , 𝛽𝑚−1, 𝑥𝑚) = 𝑥𝑚 . By assumption, 𝑓 is 𝜀-far from constant,

and so with probability at least 𝜀𝑚−1, if we evaluate 𝑓 on the first

𝑚 − 1 columns of 𝑍 (which are identical to the corresponding

columns of𝑊 ) then we obtain 𝛽1, . . . , 𝛽𝑚−1. When this happens,

(𝑔 ◦ 𝑓𝑚) (𝑍 ) = 𝑓 (col𝑚 (𝑍 )) and (𝑔 ◦ 𝑓𝑚) (𝑊 ) = 𝑓 (col𝑚 (𝑊 )),
and we get that 𝑓 (col𝑚 (𝑍 )) = 𝑓 (col𝑚 (𝑊 )) with probability ⩾

1 − 2𝜂. To analyze this event, we consider the following equivalent

way of sampling 𝑧 = col𝑚 (𝑍 ) and𝑤 = col𝑚 (𝑊 ):
(1) Sample a subset 𝑅 ⊆ [𝑛] by including each element with

probability 2−(𝑚−1) ; these are the rows whose first 𝑚 − 1

columns agree with 𝛼 .

(2) Sample 𝑧 𝑗 = 𝑤 𝑗 for each 𝑗 ∉ 𝑅.

(3) Sample 𝑧 𝑗 ,𝑤 𝑗 independently for each 𝑗 ∈ 𝑅.

The first two steps define a random restriction, and to reach a

contradiction we would like to argue that this random restriction

still has a significant variance with high probability (so that we will

in fact have 𝑓 (𝑧) ≠ 𝑓 (𝑤) with significant probability). Indeed, this

is true provided the variance of 𝑓 is significant and all of the (low-

degree) influences of 𝑓 are small; this is the so-called łIt Ain’t Over

Till It’s Overž theorem from [15]. A bit more precisely, this result

asserts that provided the influences of 𝑓 are small, it is extremely

likely (the failure probability is smaller than 𝜀𝑚−1/2) that 𝑓 is 𝛾-far

from constant even after the random restriction, where 𝛾 (𝜀,𝑚) > 0.

This gives us that

Pr[(𝑔 ◦ 𝑓𝑚) (𝑍 ) ≠ (𝑔 ◦ 𝑓𝑚) (𝑊 )] ⩾
(
𝜀𝑚−1 − 𝜀𝑚−1

2

)
· 2𝛾 (1 − 𝛾).

Thus, choosing 𝜂 so that 2𝜂 is smaller than this expression, we

reach a contradiction. This contradiction thus implies that if all

of the influences of 𝑓 are small, then the only way for 𝑓 to be an

approximate polymorphism of 𝑔 is that 𝑓 is close to a constant.

Lifting the small low-degree influences assumption. An arbitrary

function 𝑓 could potentially have variables with large low-degree

influence. To generalize our argument to this case, we make use of

a regularity lemma [10] by Jones. This lemma asserts that one may

find a small set of variables 𝑇 such that randomly restricting them

in 𝑓 , one gets a function with no significant low-degree influences

with probability close to 1. Thus, we first perform this random

restriction, and then use a variant of the above argument to argue

that under such restrictions, 𝑓 must be in fact close to a constant.

Overall, we obtain that 𝑓 is close to a junta.

1.3.2 Deducing Theorem 1.1. The previous part shows that 𝑓 is

close to a junta 𝐹 , say depending on the first 𝐿 coordinates. We

split the input 𝑍 accordingly to two matrices: 𝑍 (1) consists of the
first 𝐿 rows, and 𝑍 (2) consists of the remaining rows. Thus with

probability 1 − 𝛿 ,

𝑓 (𝑔(row1 (𝑍 (1) )), . . . , 𝑔(row𝐿 (𝑍 (1) )),

𝑔(row1 (𝑍 (2) )), . . . , 𝑔(row𝑛−𝐿 (𝑍 (2) ))) =

𝑔(𝑓 (col1 (𝑍 (1) ), col1 (𝑍 (2) )), . . . , 𝑓 (col𝑚 (𝑍 (1) ), col𝑚 (𝑍 (2) ))) .

If we fix 𝑍 (2) then we can find functions 𝑓0, . . . , 𝑓𝑚 : {0, 1}𝐿 →
{0, 1} such that the left-hand side becomes 𝑓0 ◦ 𝑔, and the right-

hand side becomes 𝑔 ◦ (𝑓1, . . . , 𝑓𝑚).
For a typical 𝑍 (2) , the functions 𝑓1, . . . , 𝑓𝑚 are all close to 𝐹 and

so to each other, and furthermore

Pr[𝑓0 ◦ 𝑔𝑛 ≠ 𝑔 ◦ (𝑓1, . . . , 𝑓𝑚)] ⩽ 𝛿.

We choose 𝛿 < min(𝜂, 2−𝑚𝐿), and so this implies that in fact,

𝑓0 ◦ 𝑔𝑛 = 𝑔 ◦ (𝑓1, . . . , 𝑓𝑚) .

Since the functions 𝑓1, . . . , 𝑓𝑚 are close to each other, the clas-

sification of all solutions to the equation 𝑓0 ◦ 𝑔 = 𝑔 ◦ (𝑓1, . . . , 𝑓𝑚)
implies that 𝑓1 = · · · = 𝑓𝑚 (except for some corner cases), and so

𝑓0 ◦ 𝑔 = 𝑔 ◦ 𝑓1. This completes the proof, since both 𝑓1 and 𝑓 are

close to 𝐹 .

1.4 Techniques: Theorem 1.3

We illustrate the proof of the theorem in the special case of the

AND function. It will be more convenient to switch from {0, 1} to
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{−1, 1}, and to consider 𝑔(𝑥1, 𝑥2) = 𝑥1 ∧ 𝑥2 = min(𝑥1, 𝑥2) (which is

one possible interpretation of AND).

We prove the theorem in contrapositive: assuming that all low-

degree Fourier coefficients are small (which is equivalent to having

small correlation with all XORs), we will bound Pr[𝑓 (𝑥 ∧ 𝑦) =

𝑓 (𝑥) ∧ 𝑓 (𝑦)], or rather E[𝑓 (𝑥 ∧𝑦) (𝑓 (𝑥) ∧ 𝑓 (𝑦))] (this is one reason
to switch to {−1, 1}).

The main idea is to apply the invariance principle in order to

switch to a problem in Gaussian space. For this, we need 𝑓 to have

small low-degree influences, as well as low degree. We can assume

that 𝑓 has small low-degree influences by appealing to Jones’ regu-

larity lemma. In order to reduce the degree of 𝑓 , we apply a small

amount of noise. An expansion argument of Mossel [13] shows that

the noise doesn’t affect the expectation by much, essentially since

given 𝑥 and 𝑥 ∧ 𝑦 there is some uncertainty regarding 𝑦.

What do we get in Gaussian space? The vector

(𝑥 ∧ 𝑦) + 1/2√
3/4

, 𝑥,𝑦

has expectation zero and covariance matrix

Σ =

©­­­«

1 1√
3

1√
3

1√
3

1 0

1√
3

0 1

ª®®®¬
.

This shows that for some functions 𝑞, 𝑝 : R𝑛 → R,

E[𝑓 (𝑥 ∧ 𝑦) (𝑓 (𝑥) ∧ 𝑓 (𝑦))] ≈ E[𝑞(G0) (𝑝 (G1) ∧ 𝑝 (G2))],

where (G0,G1,G2) is a multivariate Gaussian with expectation

zero and covariance Σ, and 𝑝 (G1) ∧𝑝 (G2) = (−1+𝑝 (G1) +𝑝 (G2) +
𝑝 (G1)𝑝 (G2))/2 is the multilinear extension of ∧. Due to the degree-
reducing noise, 𝑝 depends mostly on the behavior of 𝑓 around

the middle slice, and 𝑞 depends mostly on its behavior around the

quarter slice. A standard truncation argument lets us assume that

𝑞, 𝑝 attain values in [−1, 1], and a further rounding argument lets

us assume that they attain values in {−1, 1}.
The assumption that 𝑓 has no large low-degree Fourier coeffi-

cients translates to E[𝑝] ≈ 0.2 We do not have control over E[𝑞],
since it is controlled by the low-degree Fourier coefficients of 𝑓 with

respect to the {−1, 1}-analog of 𝜇1/4. Applying a generalization of

Borell’s theorem due to Neeman [16], this is enough to show that

the optimal choice for 𝑝 is the one-dimensional sign function. By

calculating the corresponding optimal choice for 𝑞, we obtain

Pr[𝑓 (𝑥 ∧ 𝑦) = 𝑓 (𝑥) ∧ 𝑓 (𝑦)] ≲ 0.814975356673002.

Here is a matching construction: take 𝑓 to be the majority func-

tion for inputs 𝑥 such that 1
𝑛

∑
𝑖 𝑥𝑖 ≈ 0, and an appropriate thresh-

old function elsewhere. The construction exploits the fact that

random points 𝑥,𝑦 ∈ {−1, 1}𝑛 satisfy 1
𝑛

∑
𝑖 𝑥𝑖 ,

1
𝑛

∑
𝑖 𝑦𝑖 ≈ 0 while

1
𝑛

∑
𝑖 (𝑥𝑖 ∧ 𝑦𝑖 ) ≈ − 1

2 . Choosing the optimal threshold gives a func-

tion 𝑓 with

Pr[𝑓 (𝑥 ∧ 𝑦) = 𝑓 (𝑥) ∧ 𝑓 (𝑦)] ≳ 0.814975356673002.

2Due to the application of Jones’ regularity lemma, we are actually working with
restrictions of 𝑓 rather than 𝑓 itself. In order to ensure that these restrictions have
expectation close to zero, we need to assume that 𝑓 has small lower-degree Fourier
coefficients.

Explicitly, the following function 𝑓 works, for𝛼 ≈ 0.78670616285939:

𝑓 (𝑥1, . . . , 𝑥𝑛) =




+1 if E[𝑥] ⩾ 0,

−1 if − 1
4 ⩽ E[𝑥] < 0,

+1 if − 1
2 − 𝛼√

𝑛
⩽ E[𝑥] < − 1

4 ,

−1 if E[𝑥] < − 1
2 − 𝛼√

𝑛
,

where E[𝑥] = 1
𝑛

∑
𝑖 𝑥𝑖 .

1.5 Techniques: Classifying Exact
(Multi-)polymorphisms

Dokow and Holzman [5] classified all exact multi-polymorphisms,

that is, all exact solutions to the equation 𝑓0 ◦ 𝑔𝑛 = 𝑔 ◦ (𝑓1, . . . , 𝑓𝑚),
using combinatorial arguments. We present an alternative proof

using Boolean function analysis in the full version of the paper. For

the sake of the proof, we switch from {0, 1} to {−1, 1}.
The proof proceeds in two main steps. In the first step, we

determine all multilinear polynomials 𝑔, ℎ : {−1, 1}𝑚 → R and

𝑓0, . . . , 𝑓𝑚 : {−1, 1}𝑛 → R which solve the equation

𝑓0 (𝑔(𝑧11, . . . , 𝑧1𝑚), . . . , 𝑔(𝑧𝑛1, . . . , 𝑧𝑛𝑚)) =
ℎ(𝑓1 (𝑧11, . . . , 𝑧𝑛1), . . . , 𝑓𝑚 (𝑧1𝑚, . . . , 𝑧𝑛𝑚)),

where the functions 𝑓0, . . . , 𝑓𝑚, 𝑔, ℎ are extended to R𝑛 or R𝑚 mul-

tilinearly. Except for some corner cases, these solutions all involve

functions of the form

𝐴
∏
𝑖∈𝑆

(𝑥𝑖 + 𝜅𝑖 ) − 𝐵.

In the second step, we observe that a function of the form above

is Boolean iff it corresponds to either XOR, NXOR, AND, or OR,

which completes the classification.

The first step is itself composed of two substeps. In the first

substep, we relate the supports of the Fourier expansions of 𝑔, ℎ

and 𝑓0, . . . , 𝑓𝑚 to that of 𝑓0 ◦ 𝑔 and 𝑔 ◦ (𝑓1, . . . , 𝑓𝑚), and conclude

that except for some corner cases, and after possibly removing

irrelevant coordinates, deg𝑔 = degℎ = 𝑚 and deg 𝑓0 = deg 𝑓1 =

· · · = deg 𝑓𝑚 = 𝑛. In the second step, we show that up to affine

shifts, the only solution to 𝑓0 ◦𝑔𝑛 = ℎ◦ (𝑓1, . . . , 𝑓𝑚) is 𝑔(𝑦) = ℎ(𝑦) =∏𝑚
𝑗=1 𝑦 𝑗 and 𝑓0 (𝑥) = 𝑓1 (𝑥) = · · · = 𝑓𝑚 (𝑥) = ∏𝑚

𝑖=1 𝑥𝑖 .

2 LIST DECODING REGIME

A polymorphism of 𝑔 is a function 𝑓 satisfying 𝑓 ◦ 𝑔𝑛 = 𝑔 ◦ 𝑓𝑚 .

There are two ways to relax this definition:

• The 99% regime: study functions 𝑓 satisfying 𝑓 ◦𝑔𝑛 = 𝑔 ◦ 𝑓𝑚
for most inputs. Theorem 1.1 shows that such functions are

close to exact polymorphisms.

• The 1% regime: study functions 𝑓 satisfying 𝑓 ◦ 𝑔𝑛 = 𝑔 ◦ 𝑓𝑚

with significant probability. We would like to say that such

functions are structured.

When 𝑔 is the XOR function, the classic analysis of linearity

testing [3] shows that if Pr[𝑓 (𝑥 ⊕𝑦) = 𝑓 (𝑥) ⊕ 𝑓 (𝑦)] ⩾ 1/2+𝜀, then
𝑓 is correlated with some character, that is, for some 𝑆 ⊆ [𝑛],

Pr

[
𝑓 (𝑥) =

⊕
𝑖∈𝑆

𝑥𝑖

]
⩾

1

2
+ 𝜀.
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Conversely, if 𝑓 is a random function then Pr[𝑓 (𝑥 ⊕ 𝑦) = 𝑓 (𝑥) ⊕
𝑓 (𝑦)] ≈ 1/2, showing that 1/2 is the correct threshold for this kind

of structure.

What happens for other 𝑔? Let us take the AND function as a

test case. If we choose 𝑓 at random then Pr[𝑓 (𝑥 ∧ 𝑦) = 𝑓 (𝑥) ∧
𝑓 (𝑦)] ≈ 1/2, and so one could conjecture that when Pr[𝑓 (𝑥 ∧ 𝑦) =
𝑓 (𝑥)∧ 𝑓 (𝑦)] ⩾ 1/2+𝜀 then 𝑓 is correlated with some character. The

Majority function refutes this conjecture, since it satisfies Pr[𝑓 (𝑥 ∧
𝑦) = 𝑓 (𝑥) ∧ 𝑓 (𝑦)] ≈ 3/4 but is not correlated with any character.

The threshold 3/4 is natural, since it corresponds to the following
łalmost-randomž construction: choose 𝑓 at random for inputswhose

Hamming weight is close to 𝑛/2 (where 𝑛 is the input size), and

choose 𝑓 to be 0 elsewhere. However, it is not the correct threshold:

if we choose 𝑓 to be Majority for inputs whose Hamming weight is

close to 𝑛/2, and a biased majority for other inputs, then Pr[𝑓 (𝑥 ∧
𝑦) = 𝑓 (𝑥) ∧ 𝑓 (𝑦)] ≈ 0.814975; the exact definition of 𝑓 appears

below, as part of the statement of Theorem 2.7.

Our main result shows that 0.814975 is the correct threshold

for AND: if Pr[𝑓 (𝑥 ∧ 𝑦) = 𝑓 (𝑥) ∧ 𝑓 (𝑦)] ⩾ 0.814975 + 𝜀 then 𝑓 is

correlated with some character. Moreover, we can guarantee that

this character has low degree.

The idea of the proof is to translate the question about Boolean

variables to a question on Gaussian space. To this end, we define a

Gaussian analog of the distribution (𝑔(𝑥), 𝑥). It will be convenient
to switch from {0, 1} to {−1, 1}.

Definition 2.1. Let 𝑔 : {−1, 1}𝑚 → {−1, 1} be non-constant. The
distributionN𝑔 is an (𝑚+1)-variate Gaussian distribution (G0,G1, . . . ,G𝑚)
given by:

• Each coordinate is a standard Gaussian.

• The Gaussians G1, . . . ,G𝑚 are independent.

• For each 𝑗 ∈ [𝑚],

E[G0G𝑗 ] =
𝑔({ 𝑗})√
1 − 𝑔(∅)2

.

Ourmain result states that if Pr[𝑓 ◦𝑔𝑛 = 𝑔◦ 𝑓𝑚] exceeds a certain
threshold, then 𝑓 is correlated with a low-degree character. The

result applies to any function other than XOR or NXOR; analogous

results for these functions (in which the character need not be

low-degree) follow from a generalization of the arguments in [3].

Definition 2.2. Fix a function 𝑔 : {−1, 1}𝑚 → {−1, 1}. Let 𝑠𝑔 be

the infimum over all 𝑠 for which the following holds.

For every 𝜀 > 0 there exist 𝛿 > 0 and 𝐿 ∈ N such that for all

𝑛 ∈ N, if 𝑓 : {−1, 1}𝑛 → {−1, 1} satisfies
Pr[𝑓 ◦ 𝑔𝑚 = 𝑔 ◦ 𝑓𝑚] ⩾ 𝑠 + 𝜀

then 𝑓 has correlation at least 𝛿 with some character of degree at

most 𝐿, that is, there exists 𝑆 ⊆ [𝑛], of size at most 𝐿, such that�����E
[
𝑓 (𝑥)

∏
𝑖∈𝑆

𝑥𝑖

] ����� ⩾ 𝛿.

Theorem 2.3. Fix a function 𝑔 : {−1, 1}𝑚 → {−1, 1} which de-

pends on all coordinates and is not ±∏𝑚
𝑖=1 𝑥𝑖 .

If E[𝑔] ≠ 0 then let 𝑠𝑈𝑔 be the supremum of

1

2
+ 1

2
E

𝑥∼N(0,1)𝑛

[��� E
G∼N𝑛

𝑔

[𝑔(𝑞1 (G1), . . . , 𝑞𝑚 (G𝑚)) | G0 = 𝑥]
���
]

over all 𝑛 ∈ N and all functions 𝑞1, . . . , 𝑞𝑚 : R𝑛 → {−1, 1} satisfying
E[𝑞1] = · · · = E[𝑞𝑚] = 0.

If E[𝑔] = 0, instead let 𝑠𝑈𝑔 be the supremum of

1

2
+ 1

2
E

G∼N𝑛
𝑔

[𝑞0 (G0)𝑔(𝑞1 (G1), . . . , 𝑞𝑚 (G𝑚))]

over all 𝑛 ∈ N and all functions 𝑞0, . . . , 𝑞𝑚 : R𝑛 → {−1, 1} satisfying
E[𝑞0] = · · · = E[𝑞𝑚] = 0.

Then 𝑠𝑔 ⩽ 𝑠𝑈𝑔 .

We can show that 𝑠𝑈𝑔 < 1 for all functions 𝑔 covered by the

theorem.

Lemma 2.4. If 𝑔 : {−1, 1}𝑚 → {−1, 1} depends on all coordinates

and is not ±∏𝑚
𝑖=1 𝑥𝑖 then 𝑠

𝑈
𝑔 < 1.

If we take the supremum in Theorem 2.3 with the additional

constraint that the functions 𝑞1, . . . , 𝑞𝑚 coincide, then the resulting

value is a lower bound on 𝑠𝑔 .

Lemma 2.5. Fix a function 𝑔 : {−1, 1}𝑚 → {−1, 1} which depends

on all coordinates and is not ±∏𝑚
𝑖=1 𝑥𝑖 .

If E[𝑔] ≠ 0 then let 𝑠𝐿𝑔 be the supremum of

1

2
+ 1

2
E

𝑥∼N(0,1)𝑛

[��� E
G∼N𝑛

𝑔

[𝑔(𝑞(G1), . . . , 𝑞(G𝑚)) | G0 = 𝑥]
���
]

over all 𝑛 ∈ N and all functions 𝑞 : R𝑛 → [−1, 1] satisfying E[𝑞] = 0.

If E[𝑔] = 0, instead let 𝑠𝐿𝑔 be the supremum of

1

2
+ 1

2
E

G∼N𝑛
𝑔

[𝑞(G0)𝑔(𝑞(G1), . . . , 𝑞(G𝑚))]

over all 𝑛 ∈ N and all functions 𝑞 : R𝑛 → [−1, 1] satisfying E[𝑞] = 0.

There exists a sequence of functions 𝑓𝑁 : {−1, 1}𝑁 → {−1, 1}, with
𝑁 → ∞, such that

Pr[𝑓𝑁 ◦ 𝑔𝑁 = 𝑔 ◦ 𝑓𝑚𝑁 ] −→ 𝑠𝐿𝑔 ,

and for each 𝛿 > 0 and 𝐿 ∈ N, for large enough 𝑁 the functions 𝑓𝑁
do not have correlation at least 𝛿 with any character of degree at most

𝐿.

Consequently, 𝑠𝑔 ⩾ 𝑠𝐿𝑔 .

We do not know whether 𝑠𝑈𝑔 > 𝑠𝐿𝑔 holds for some 𝑔, that is, whether

there is any advantage in allowing 𝑞1, . . . , 𝑞𝑚 to be different.

When E[𝑔] ≠ 0, for any function 𝑞 satisfying E[𝑞] = 0 we have

E
𝑥∼N(0,1)𝑛

[��� E
G∼N𝑛

𝑔

[𝑔(𝑞(G1), . . . , 𝑞(G𝑚)) | G0 = 𝑥]
���
]
⩾

��� E
G∼N𝑛

𝑔

[𝑔(𝑞(G1), . . . , 𝑞(G𝑚))]
��� = | E[𝑔] |,

and so

𝑠𝐿𝑔 ⩾
1

2
+ 1

2
| E[𝑔] |.

This corresponds to the trivial construction in which 𝑓 is chosen

randomly around the middle slice, and sign(E[𝑔]) elsewhere. The
following result, proved by taking 𝑛 = 1 and 𝑞 = sign, shows that

we can improve it if all Fourier coefficients of 𝑔 on the first level

are non-zero.

Lemma 2.6. If 𝑔 : {−1, 1}𝑚 → {−1, 1} satisfies E[𝑔] ≠ 0 and

𝑔({𝑥 𝑗 }) ≠ 0 for all 𝑗 ∈ [𝑚] then 𝑠𝐿𝑔 >
1
2 + 1

2 | E[𝑔] |.
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When 𝑔 is an AND function, we can show that 𝑠𝑈𝑔 is attained by

𝑛 = 1 and 𝑞1 (𝑥) = · · · = 𝑞𝑚 (𝑥) = sign(𝑥). In view of Lemma 2.5,

this gives an expression for 𝑠𝑔 .

Theorem 2.7. Let𝑚 ⩾ 2, and let𝑔(𝑥1, . . . , 𝑥𝑚) = min(𝑥1, . . . , 𝑥𝑚).
Then

𝑠𝑔 =
1

2
+1
2

E
𝑥∼N(0,1)

[��� E
G∼N𝑔

[𝑔(sign(G1), . . . , sign(G𝑚)) | G0 = 𝑥]
���
]
.

In particular, when𝑚 = 2, we obtain

𝑠∧ ≈ 0.814975356673002,

where ∧ denotes the binary AND function 𝑔(𝑎, 𝑏) = 𝑎∧𝑏 = min(𝑎, 𝑏).
Moreover, this is realized by the functions

𝑓 (𝑥1, . . . , 𝑥𝑛) =


sign (∑𝑖 𝑥𝑖 ) if

∑
𝑖 𝑥𝑖 ⩾ −𝑛

4 ,

sign

(∑
𝑖 𝑥𝑖 + 𝑛

2 − 𝜃

√
3
4𝑛

)
if

∑
𝑖 𝑥𝑖 < −𝑛

4 ,

where 𝜃 ≈ 0.9084100298000161.

Remark 2.8. If 𝑔 : {−1, 1}𝑚 → {−1, 1} is of the form ±∏𝑚
𝑖=1 𝑥𝑖 for

𝑚 ⩾ 2 and Pr[𝑓 ◦ 𝑔𝑛 = 𝑔 ◦ 𝑓𝑚] ⩾ 1
2 + 𝜀, then the classical analysis

of linearity testing shows that 𝑓 has correlation Ω(𝜀1/(𝑚−1) ) with
some character. In contrast to Theorem 2.3, we cannot guarantee

correlation with a low-degree character.

3 OPEN QUESTIONS

Our work suggests many open questions. Here are some of them.

Open Question 1. Can Theorem 1.1 be extended to polymor-

phisms of predicates? That is, given a function 𝑔 : {0, 1}𝑚 → {0, 1},
what we can say about functions 𝑓 : {0, 1}𝑛 → {0, 1} satisfying

Pr[(𝑔 ◦ 𝑓𝑚) (𝑍 ) = 1 | 𝑔(row𝑖 (𝑍 )) = 1 for all 𝑖 ∈ [𝑛]] ⩾ 1 − 𝜀?

As mentioned in the introduction, Kalai [11] proved a version

of Theorem 1.1 for the predicate NAE3, and Friedgut and Regev

proved a version of Theorem 1.1 for the predicate NAND2.

Open Question 2. What is the optimal dependence between 𝜀

and 𝛿 in Theorem 1.1? Does it depend on 𝑔?

In our current proof, the dependence is not polynomial. In fact,

due to the use of Jones’ regularity lemma, the dependence is of

tower type. This can be dramatically improved by using a different

regularity lemma, which approximates the function by a decision

tree rather than by a junta. The dependence now becomes only

doubly exponential. We sketch this argument in the full version of

the paper.

For many specific 𝑔 we can prove a version of Theorem 1.1 in

which 𝛿 is polynomial in 𝜀. This is the case for linearity testing, and

also for Maj3, the majority function on three inputs, as we sketch

in the full version of the paper.

OpenQuestion 3. Can we extend Theorem 1.1 to larger alphabets,

replacing {0, 1} with an arbitrary finite set?

One issue is that, to the best of our knowledge, a complete classifi-

cation of multi-polymorphisms for larger alphabets is not currently

known, though some preliminary results appear in [6, 19]. More-

over, while the complete classification of polymorphism of binary

predicates is known (it is given by Post’s lattice), the situation for

larger alphabets is known to be much wilder.

Nevertheless, it might be possible to show that every approxi-

mate polymorphism is close to a skew polymorphism, even without

classifying the latter.

Open Question 4. Can we extend Theorem 1.1 to tensors? For

example, what can we say about Boolean functions 𝑓 , 𝑔, ℎ satisfying

𝑓 ◦ (𝑔 ◦ ℎ𝑚)𝑛 = 𝑔 ◦ (ℎ ◦ 𝑓 𝑝 )𝑚 with probability 1 − 𝛿?

Section 2 gives an upper bound 𝑠𝑈𝑔 and a lower bound 𝑠𝐿𝑔 on 𝑠𝑔
which are similar but not identical.

OpenQuestion 5. Is 𝑠𝑈𝑔 = 𝑠𝐿𝑔 ? Is the optimum always achieved

in one-dimensional Gaussian space?

Another interesting question concerns an analog of łapproxi-

mation resistancež. When 𝑔 is unbalanced, we trivially have 𝑠𝑔 ⩾

max(E[𝑔], 1 − E[𝑔]) by taking 𝑓 to be random around the middle

slice, and constant around the E[𝑔]-slice; and when 𝑔 is balanced,

we trivially have 𝑠𝑔 ⩾ 1/2 by taking 𝑓 to be a random function.

OpenQuestion 6. For which functions 𝑔 is 𝑠𝑔 > max(E[𝑔], 1 −
E[𝑔])?

Lemma 2.6 shows that the strict inequality holds for unbalanced

𝑔 whenever all Fourier coefficients on the first level are non-zero.

Conversely, when all Fourier coefficients on the first level vanish,

Theorem 2.3 shows that equality holds.

Finally, it would be nice to extend the classification of exact

solutions to the case in which we are allowed not only multiple 𝑓 ’s,

but also multiple 𝑔’s.

Open Question 7. Classify all solutions 𝑓0, . . . , 𝑓𝑚 : {0, 1}𝑛 →
{0, 1} and 𝑔0, 𝑔1, . . . , 𝑔𝑛 : {0, 1}𝑚 → {0, 1} to the equation

𝑓0 ◦ (𝑔1, . . . , 𝑔𝑛) = 𝑔0 ◦ (𝑓1, . . . , 𝑓𝑚).
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