
Teaching GANs to Sketch in Vector Format*

Varshaneya V
SSSIHL, Prashanti Nilayam Campus
Puttaparthi, Andhra Pradesh, India

varshaneya.v@gmail.com

Balasubramanian S
SSSIHL, Prashanti Nilayam Campus
Puttaparthi, Andhra Pradesh, India
sbalasubramanian@sssihl.edu.in

Vineeth Balasubramanian
IIT - Hyderabad

Kandi, Telangana, India
vineethnb@cse.iith.ac.in

ABSTRACT
Sketching is a fundamental human cognitive ability. Deep Neural
Networks (DNNs) have achieved the state-of-the-art performance
in recognition tasks like image recognition, speech recognition etc.
but have not made significant progress in generating stroke-based
sketches a.k.a sketches in vector format. Though there are Vari-
ational Auto Encoders (VAEs) for generating sketches in vector
format, there is no Generative Adversarial Network (GAN) archi-
tecture for the same. In this paper, we propose a standalone GAN
architecture called SkeGAN and a hybrid VAE-GAN architecture
called VASkeGAN, for sketch generation in vector format. SkeGAN
is a stochastic policy in Reinforcement Learning (RL), capable of
generating both multidimensional continuous and discrete outputs.
VASkeGAN draws sketches by coupling the efficient representation
of data by VAE with the powerful generating capabilities of GAN.
We have validated that SkeGAN and VASkeGAN generate visually
appealing sketches with minimal scribble effect and is comparable
to a recent work titled Sketch-RNN.

CCS CONCEPTS
• Computing methodologies→ Sequential decision making; Im-
age representations.

KEYWORDS
GANs, Sketch generation, Vector art, Policy gradients

ACM Reference Format:
Varshaneya V, Balasubramanian S, and Vineeth Balasubramanian. 2021.
Teaching GANs to Sketch in Vector Format. In Indian Conference on Com-
puter Vision, Graphics and Image Processing (ICVGIP ’21), December
19–22, 2021, Jodhpur, India, Chetan Arora, Parag Chaudhuri, and Subhransu
Maji (Eds.). ACM, New York, NY, USA, Article 01, 8 pages. https://doi.org/
10.1145/3490035.3490258

1 INTRODUCTION
Since times immemorial, sketching has played an important role in
human communication, much before languages were developed. To
this day, sketches are used to represent abstract concepts including
circuit diagrams, parse trees, and architectural designs [3]. Sketching
involves visual, spatial and conceptual knowledge; understanding
the process of sketching provides an insight into human cognition
[3], beyond being useful for sketch-based applications.

*The entire work was done during the period between Jun 2017 – Apr 2019.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
ICVGIP’21, December 2021, Jodhpur, India
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7596-2. . . $15.00
https://doi.org/10.1145/3490035.3490258

Deep Learning (DL) is the most sought after paradigm recently
for generative modelling. Some of the popular generative models
in DL are VAEs [13] and GANs [5]. VAEs tend to maximize the
likelihood of the generated data coming from the actual distribution
while assuming a Gaussian prior. Different VAE architectures have
performed well in generating various types of images ranging from
handwritten digits [6, 13] to faces [13] to house numbers [6], CIFAR
images [6] etc. On the other hand, in a GAN, the generator and
discriminator play a minmax game until they reach an equilibrium.
At this point, the distribution of generator is close to that of the
original data. GANs are known to have been used for simple image
generation in [19] as well as to more sophisticated tasks such as style-
transfer [30, 34], super-resolution [15], image-to-image translation
[11, 29], image in-painting [18] etc. All of the aforesaid works are
limited to only raster images.

Vector graphics were introduced in computer displays in the
1960s. Since then vector graphics have been studied very intensely.
These images do not degrade when transformations are applied and
they require minimal amount of space to be stored and transferred.
Most importantly, they can be rescaled infinitely. They are repre-
sented as curves and strokes.

Today, DNNs perform the state-of-art in image recognition as
well as image generation tasks but the generative ability of DNNs
is limited to raster images.There are only a handful of works that
discuss sketch generation in vector format, let alone vector image
generation in the wild. As of today, there are few works [2, 7, 9, 33]
based on VAE for sketch generation in vector format. Currently there
are no GAN architectures for sketch generation in vector format. In
this work, we focus on developing GANs that can generate sketches
in vector format. We consider a sketch as a tuple consisting of 2-D
continous offsets and 3-D discrete pen states. This representation is
also called as the “stroke-based format".

2 RELATED WORK
Literature on sketch generation is scarce, particularly with respect to
vector images. Sketches have been used as templates for problems
including recognition [20, 21, 23], eye-fixation or saliency [24],
guessing a sketch being drawn [25] and parsing [22]. Interpretation
of sketches and further refinement using hidden Markov models
is presented in [26]. Sketch drawing by robot using pure image
processing techniques is elicited in [28]. [31] uses GANs to generate
sketches of human faces given digital portraits of their faces. This
work is in rasterized version. There are also works such as [1, 17]
which discuss the approaches to convert rasterized sketches into
realistic images. Recent works such as DoodlerGAN[4] also consider
sketches in raster format which aids them in modelling the process
of sketching as generation of parts/portions which make up the
whole sketch. Since the parts are fixed to 7 for birds (head, body,
beak, tail, mouth, legs, wings) and 16 for terrestrial, aquatic, and

https://orcid.org/0000-0002-7663-1576
https://doi.org/10.1145/3490035.3490258
https://doi.org/10.1145/3490035.3490258
https://doi.org/10.1145/3490035.3490258

ICVGIP’21, December 2021, Jodhpur, India Varshaneya V, Balasubramanian S, Vineeth Balasubramanian

Figure 1: Scribble effect of [9] with yoga pose sketches (left) and
mosquito sketches (right).

aerial creatures (e.g., paws, horn, fins, wings), it would become
mandatory to specify the parts for generating sketch from any other
category. This requires some manual intervention thus making it
hard to generalize across different categories.

The first attempt in generating vector images is by [7] to gener-
ate Kanji (Chinese alphabet) characters using a two-layered LSTM,
where each Kanji character is represented in a stroke-based format.
Following [7], D. Ha et al. proposed a VAE model called the Sketch-
RNN [9] for vector sketch generation. This model is trained on the
QuickDraw dataset [12]. The sketches are represented in the stroke-
based format. This work from Google Brain is state-of-the-art in
unconditional generation, conditional reconstruction, latent space
representation completing incomplete sketches etc. It produced visu-
ally appealing sketches when trained with a single category of sketch.
The sketches are not visually appealing when a mix of category is
used for training. Hence, in order to overcome this difficulty, [2]
replaced the encoder of Sketch-RNN with a Convolution Neural
Network(CNN) and eliminated the KL-Divergence loss. Since the
convolution is spatial, the input to the this model is rasterized format
of sketches from the QuickDraw dataset. Based on the Turing Test,
the authors of [2] conclude that the models with CNN encoders
outperformed those with RNN encoders in generating human-style
sketches. K. Zhong in [33] extended the VAE proposed in [9] to
create an end-to-end pipeline which takes in fonts in vector format
to learn and generate novel fonts.

All the architectures mentioned for sketch generation in vector
format are VAEs. A well known disadvantage with VAEs is that they
tend to produce blurred images in case of raster images. Since there
is no concept of blurring in vector images, stroke-based sketches
produced by VAEs like Sketch-RNN [9] tend to draw smoother and
more circular line segments that resemble an averaging of many
sketches in the training set. This has been discussed under Model
Limitations heading in the supplementary material of [9]. We would
like to call this as the “scribble effect". Figure 1 shows this effect in
the sketches of “yoga poses" and “mosquitos". Images in Figure 1
are generated using the pretrained models and code from one of the
official repositories of Sketch-RNN1.

Since GANs are known to produce sharp raster images, it is quite
logical to expect that they alleviate the scribble effect in vector im-
ages. Towards this end, we propose a stand-alone GAN architecture
called SkeGAN for generating sketches in vector format. To the
best of our knowledge, this is the first GAN proposed for sketching
in vector format. For fair comparison, we also propose a hybrid
VAE-GAN architecture called VASkeGAN. We also compare our
models with Sketch-RNN [9] on visual quality, training complexity,

1Link to the repository is here.

scribble effect and other ablation studies. Since there exists no stan-
dard measure to evaluate visual quality, we use human evaluation for
assessing visual quality. Also both SkeGAN and VASkeGAN gen-
eralizes pretty well across different categories of sketches without
requiring any manual intervention unlike [4].

3 OUR CONTRIBUTIONS
3.1 Problem Setup
Sketches are considered to be a collection of 5-tuple (∆𝑥,∆𝑦, 𝑞1, 𝑞2, 𝑞3),
where (∆𝑥,∆𝑦) are the offsets to be moved along 𝑋 and 𝑌 axes re-
spectively and (𝑞1, 𝑞2, 𝑞3) are the pen-states. (𝑞1, 𝑞2, 𝑞3) = (1, 0, 0)
indicates that pen is on the paper, (𝑞1, 𝑞2, 𝑞3) = (0, 1, 0) indicates it is
lifted and (𝑞1, 𝑞2, 𝑞3) = (0, 0, 1) indicates that the drawing has ended.
Pen-state is modeled as a categorical random variable. All the draw-
ings are assumed to start from origin. This is done by prepending
the sketch with the start-of-sequence symbol 𝑆0 = (0, 0, 1, 0, 0). The
offsets are modeled as a Gaussian Mixture Model (GMM) in the case
of SkeGAN and as IID normal variable in the case of VASkeGAN.
In both the models, we incorporate the parameter 𝜏 ∈ [0, 1] as de-
fined in [9], to control the randomness or the variety in the generated
samples. Sketch generation is done tuple-by-tuple until 𝑞3 is not 1
or until the maximum length 𝑁𝑚𝑎𝑥 is reached. A sketch is generated
stroke by stroke, wherein the stroke at time-step 𝑖 depends on all of
the strokes at previous time-steps. In order to model this dependency,
the generator is an auto-regressive model like LSTM or GRU. We
have used an LSTM unlike Sketch-RNN [9], which has a Hyper-
LSTM [8] as the auto-regressor. The discriminator distinguishes
whether a batch of sketches has come from the dataset or from the
generator. So it must understand the dependency between strokes of
different time-steps in order to distinguish the sketches. Therefore,
the discriminator is also an LSTM.

3.2 SkeGAN: A Sequential GAN for Vector
Images

In a GAN architecture, the weights of the generator are updated
based on the signal/reward from the discriminator. GANs have a
limitation when there is a need to generate discrete tokens. The dis-
crete outputs pose a difficulty for the gradient updates to be passed
from discriminator to generator. In our case, the offsets are contin-
uous random variables whereas the pen-states are discrete random
variables. So, given a conventional GAN architecture, during the
back-propagation, the gradient updates are passed without any diffi-
culty for the offsets but not for pen-states. Also, any discriminator
can guide a generator only when a complete sequence is given to it.
This means that the discriminator cannot guide the generator while
it is in the process of generating a sequence. Therefore, we propose
a coupled GAN architecture with a combination of policy gradient
and standard adversarial losses to generate both multi-dimension
discrete and continuous tokens. The generator 𝐺 in SkeGAN is a
stochastic policy in RL which can sample tuples for the Monte Carlo
search. By performing a Monte Carlo search, the reward signal from
discriminator 𝐷 is passed back to 𝐺 even at its intermediate action
value. Further, policy gradients are used for updating the weights of
𝐺 via gradient ascent.

In the natural sketching process, the current position of the pen
dictates whether it must be on the paper or must be lifted when it

https://github.com/tensorflow/magenta-demos/tree/master/sketch-rnn-js

Teaching GANs to Sketch in Vector Format ICVGIP’21, December 2021, Jodhpur, India

Figure 2: Generator (Top) and Discriminator (Bottom) of
SkeGAN

is to be moved to the next coordinate. In other words, the offsets
influence the pen-states. In addition to this, the previous pen-state
influences the next pen-state. So, the current pen-state depends both
on its previous state and the current offset. To model this coupling,
we propose a fused generator 𝐺 consisting of two generators viz.
𝐺𝛾 for generating offsets and 𝐺\ for generating pen-states. Each of
𝐺𝛾 and 𝐺\ is an LSTM with a hidden size of 512. The hidden and
cell states of 𝐺𝛾 at time-step 𝑡 are denoted as ℎ̃𝑡 and 𝑐𝑡 , respectively.
And that of 𝐺\ are denoted as ℎ̂𝑡 and 𝑐𝑡 , respectively. The coupling
is achieved by having two update gates 𝜎𝑐 and 𝜎ℎ with learnable
parameters. The coupling effect can be mathematically described in
the following equations:

ℎ̂ = 𝜎ℎ(𝑊ℎ[ℎ̃𝑡 , ℎ̂𝑡−1] + 𝑏ℎ) (1)

ℎ̂𝑡 = ℎ̂ ⊙ ℎ̃𝑡 + (1 − ℎ̂) ⊙ ℎ̂𝑡−1 (2)

𝑐 = 𝜎𝑐 (𝑊𝑐 [𝑐𝑡 , 𝑐𝑡−1] + 𝑏𝑐) (3)

𝑐𝑡 = 𝑐 ⊙ 𝑐𝑡 + (1 − 𝑐) ⊙ 𝑐𝑡−1 (4)

where ⊙ refers to element-wise multiplication and𝑊ℎ ,𝑊𝑐 , 𝑏ℎ and 𝑏𝑐
are learnable parameters. The Generator of the proposed architecture
is shown in the top portion of Figure 2. At each time-step 𝑡 , �̃�
generates 𝑦𝑡 and 𝐺 generates 𝑦𝑡 . The parameters for the distribution
of offsets are estimated from 𝑦𝑡 while those for the distribution of
pen-states are estimated from 𝑦𝑡 as given in [9].

The discriminator 𝐷 is a Bidirectional LSTM with a hidden size
of 256. A batch with one half containing generated sketches and
another half from the dataset is shuffled and given to it. The forward
and the backward hidden states of the LSTM are concatenated and
mapped to a vector of dimension 2 followed by softmax activation

to predict the probability of each sequence being real or fake. The
discriminator is shown in the bottom portion of Figure 2.

Policy gradient based formulation: Let𝐺 = (�̃�𝛾 ,𝐺\) and 𝐷 = 𝐷𝜙 .
Since this policy gradient based formulation is meaningful only for
discrete tokens, the following discussion pertains to 𝐺\ alone. Given
a sequence 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑇), where each 𝑦𝑡 is a 3-tuple consisting
of a valid pen-state i.e. 𝑦𝑡 ∈ Y and Y = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
At a time-step 𝑡 , the state 𝑠 of𝐺\ is the sequence of produced tokens,
which is (𝑦1, 𝑦2, ..., 𝑦𝑡−1) and its action 𝑎 is to select the next token
𝑦𝑡 . It can be observed that though the policy model 𝐺\ (𝑦𝑡 | 𝑌1:𝑡−1)
is stochastic, the transition state is deterministic after an action. In
other words, if 𝑠 = 𝑌1:𝑡−1 is the current state and the action is 𝑦𝑡 ,
then the next state 𝑠 ′ equals 𝑌1:𝑡 . 𝐷𝜙 (1 : 𝑌𝑡) is the probability of the
sequence generated until time step 𝑡 being real or not. Since there is
no intermediate reward for an incomplete sequence, the objective of
𝐺\ is to generate a sequence from the start state 𝑠0 which maximizes
the expected end reward as given by:

𝐽 (\) = E[𝑅𝑇 | 𝑠0, \] =
∑
𝑦′∈Y

𝐺\ (𝑦′ | 𝑠0) ·𝑄�̂�\

𝐷𝜙
(𝑠0, 𝑦

′) (5)

where 𝑄�̂�\

𝐷𝜙
(𝑠0, 𝑦′) is the action-value function of the sequence and

𝑅𝑇 is the reward of the complete sequence. 𝑄�̂�\

𝐷𝜙
(𝑠0, 𝑦′) is the ex-

pected accumulative reward starting from state 𝑠, taking action 𝑎 by
following the policy𝐺\ . The next step is to estimate the action-value
function. The estimated probability of a sequence being real, i.e.
𝐷𝜙 (𝑌𝑛1:𝑇), is considered to be the reward for 𝐺\ . 𝐷𝜙 can provide
the reward for a complete sequence only. Also, one must look for
maximizing the long-term rewards. Therefore, to evaluate every in-
termediary step 𝑡 , Monte Carlo search with a rollout policy 𝐺𝛽 is
used to sample the rest of the 𝑇 − 𝑡 tokens.

Let the output of an 𝑁 -time Monte Carlo search be represented
as:

𝑀𝐶�̂�𝛽 (𝑌1:𝑡 ;𝑁) = {𝑌 1
1:𝑇 , ..., 𝑌

𝑁
1:𝑇 } (6)

where 𝑌𝑛1:𝑡 = (𝑦1, ..., 𝑦𝑡) and 𝑌𝑛
𝑡+1:𝑇 is sampled based on rollout policy

and the current state. Here 𝐺𝛽 is set to 𝐺\ itself for simplicity and
speed. Thus, the action value function for 𝐺\ is defined as:

(7)
𝑄
�̂�\

𝐷𝜙
(𝑠 = 𝑌1:𝑡−1, 𝑎 = 𝑦𝑡)

=

{
𝐷𝜙 (𝑌𝑛1:𝑇), 𝑌𝑛1:𝑇 ∈ 𝑀𝐶�̂�𝛽 (𝑌1:𝑡 ;𝑁) for t ≤ T

𝐷𝜙 (𝑌1:𝑡), for t = T

The advantage of using 𝐷𝜙 as the reward function is that, since it
is updated by the adversarial loss at every iteration, it improves in
its capability to distinguish between real and fake. Due to this, it can
provide better feedback to 𝐺\ . The gradient of J(\) with respect to \

is given by [27]:

∇\ 𝐽 (\) =
𝑇∑
𝑡=1
E
𝑌1:𝑡−1∼�̂�\

[∑
𝑦𝑡 ∈Y

∇\𝐺\ (𝑦𝑡 | 𝑌1:𝑡−1) ·𝑄�̂�\

𝐷𝜙
(𝑌1:𝑡−1, 𝑦𝑡)

]
(8)

Using likelihood ratios [32], ∇\ 𝐽 (\) becomes:

∇\ 𝐽 (\) ≃
𝑇∑
𝑡=1
E
𝑦𝑡∼�̂�\ (𝑦𝑡 |𝑌1:𝑡−1) [∇\𝐺\ (𝑦𝑡 | 𝑌1:𝑡−1) ·𝑄�̂�\

𝐷𝜙
(𝑌1:𝑡−1, 𝑦𝑡)]

(9)

The parameters of 𝐺\ are updated by the gradient ascent rule:

ICVGIP’21, December 2021, Jodhpur, India Varshaneya V, Balasubramanian S, Vineeth Balasubramanian

\ ← \ + 𝛼ℎ∇\ 𝐽 (\) (10)

where 𝛼ℎ ∈ R+ is the learning rate at the ℎ𝑡ℎ iteration.
Apart from policy gradient rule to update \ , we also have the

standard adversarial loss to guide the generator 𝐺𝛾 . It is to be noted
that, as in [9], offsets are modeled as a GMM. We also scale the
pen-state outputs, the mixing weights and variance parameters of the
GMM by a temperature parameter denoted as 𝜏 to control the level of
randomness in generation. 𝜏 lies in [0, 1]. Further, in order to ensure
stability and faster convergence, we pre-train both the generator and
discriminator. Complete details regarding training of SkeGAN is
provided in the supplementary material.

3.3 VASkeGAN: VAE-GAN for Sketch
Generation

Since VAEs are good at representing data in the latent space and
GANs at generating data, we propose a VAE-GAN [14] based archi-
tecture VASkeGAN for sketch generation. The VAE in VAE-GAN
[14] produces meaningful representation of the data, which helps the
generator in generating data close to its actual distribution. [14] has
shown that VAE-GAN architecture alleviates blurring for CelebA
[16] and Labeled Faces in the Wild (LFW) [10] datasets. Due to
improved generating capabilities over a conventional VAE, we relax
the assumption used in [9] that the offsets are sampled from a GMM,
and assume that offsets are sampled as IID from N (0, 1). In other
words, our inductive bias is simpler. The proposed architecture is
shown in Figures 3 and 4.

The encoder is a bi-directional LSTM with 256 hidden units
that encodes the given sketch in to a latent vector 𝑧 of size 𝑁𝑧 ,
as in a standard VAE. The decoder of the VAE doubles up to be
the generator of the GAN. It is an LSTM with 512 hidden units
that samples sketches conditioned on 𝑧. The initial hidden state
ℎ0 and cell state 𝑐0 are derived from 𝑧 via the following equation:
[ℎ0; 𝑐0] = 𝑡𝑎𝑛ℎ(𝑊𝑧𝑧 +𝑏𝑧), where𝑊𝑧 and 𝑏𝑧 are learnable parameters.
The input 𝑥𝑖 to the decoder at each time-step 𝑖 is the previous point
𝑆𝑖−1 concatenated with 𝑧. The output of decoder 𝑦𝑖 ∈ R7 at every
time-step 𝑖, can be split as:

[`𝑥,𝑖 , `𝑦,𝑖 , �̃�𝑥,𝑖 , �̃�𝑦,𝑖 , (𝑞1,𝑖 , 𝑞2,𝑖 , 𝑞3,𝑖)] = 𝑦𝑖 (11)

Exponential operation is applied to �̃�𝑥,𝑖 �̃�𝑦,𝑖 so that the standard
deviations are non-negative. Softmax is used on 𝑞’s to calculate
the probabilities of the pen-states. The sampling of ∆𝑥𝑖 and ∆𝑦𝑖 is
akin to the reparametrization trick. In other words, ∆𝑥𝑖 ∼ N (0, 1)
and ∆𝑦𝑖 ∼ N (0, 1) are independently sampled and ∆𝑥𝑖 and ∆𝑦𝑖 are
calculated as:

∆𝑥𝑖 = ∆𝑥𝑖 · 𝜎𝑥,𝑖 + `𝑥,𝑖 ∆𝑦𝑖 = ∆𝑦𝑖 · 𝜎𝑦,𝑖 + `𝑦,𝑖 (12)

For discriminator, we experimented with both LSTM and GRU
with 512 number of hidden units.

Encoder and decoder (generator) are trained with standard KL
loss (𝐿𝐾𝐿) and reconstruction loss (𝐿𝑅). Further, generator is also
guided by the standard adversarial loss. As in SkeGAN, temperature
𝜏 is used here as well. Further details regarding training are provided
in the supplementary material.

4 EXPERIMENTS AND RESULTS
4.1 Datasets, Baselines and Performance Metric
We have used the QuickDraw Dataset created in [9] for training
and experimentation. QuickDraw consists of sketches belonging to
345 different categories. Each category consists of 75000 sketches
for training, 2500 for validation and 2500 for testing. As of today,
QuickDraw is the only dataset with a large number of sketches
in vector format for training and testing. We trained VASkeGAN
and SkeGAN on the categories of sketches such as cat, firetruck,
mosquito and yoga poses. Since there is huge variety of sketches
in QuickDraw, we chose these categories because they represent
the sketches of humans, animals, insects and non-living things, and
capture the diversity of the dataset. We have trained a separate
model for each of the categories for both VASkeGAN and SkeGAN
architectures, as done for Sketch-RNN in [9]. VASkeGAN was
trained for 200000 iterations on the aforesaid sketch categories. The
total number of training rounds for cat, mosquito, yoga and firetruck
sketches are 4, 3, 6 and 4 respectively. The results of SkeGAN and
VASkeGAN along their implications are discussed subsequently. We
have quantitatively assessed the visual appeal of the sketches by
performing a human evaluation with a group of 45volunteers, to rate
the sketches on a scale of 1 – 5 on the categories such as clarity,
drawing skill and naturalness. The experiments conducted are in line
with those done on Sketch-RNN and for results of Sketch-RNN on
the corresponding experiments, due to paucity of space, the readers
are requested to refer [9].

4.2 Results
Unconditional Generation of SkeGAN: All of the sketches are
generated with a single starting tuple 𝑆0. Subsequently tuples are
generated until the pen-state 𝑞3 equals 1 or the number of tuples
generated becomes 𝑁𝑚𝑎𝑥 . Figure 5 shows some of the sketches
generated for the aforesaid categories. Note that the sketches to the
left of the separating line in Figure 5 are generated just after the
pre-training of the 𝐺\ . The sketches to the right of the separating
line are generated by the trained model. The visual appeal of the
generated images on the right favours the combination of policy
gradients and adversarial loss for generating sketches. The images
on the left of separating line indicates that pre-training is essential
but not sufficient to generate good sketches. It is very clear from
Figure 5 that the scribble effect as seen in Figure 1 is absent.
Sketch Completion by SkeGAN: In order to test the extrapolative
abilities of SkeGAN, we feed a partially drawn sketch and observe
how it can figure out various endings for the incomplete sketch. The
generator which is trained with sketches of a particular category,
is conditioned with an incomplete sketch from that category. The
hidden state of the generator after this conditioning is ℎ, which con-
tains the semantic information of the incomplete sketch. Using this
information, the remainder of the tuples for the sketch are sampled
from the generator, with ℎ as its initial hidden state. Figure 6 shows
various completions for the same input sketch at a temperature 𝜏

of 0.25. The completed sketches shown are indeed meaningful and
visually appealing, which highlights the creative aspect of SkeGAN.
Sketches Generated by VASkeGAN: We allow the trained model
to generate sketches after being conditioned by a sketch from a par-
ticular class. A sample of the generated images are shown in Figure

Teaching GANs to Sketch in Vector Format ICVGIP’21, December 2021, Jodhpur, India

Figure 3: Encoder and Decoder of VASkeGAN architecture.

Figure 4: Discriminator of VASkeGAN architecture.

Figure 5: Sketches generated by SkeGAN after pre-training
(left) and after the actual training (right).

7. This confirms that the model is indeed generating meaningful
sketches and not random strokes. Here too, the scribble effect is
absent.

Following this, we experimented by training VASkeGAN as a
standalone GAN wherein only the generator (decoder) and the dis-
criminator are retained. We found that the sketches generated in this
case for all the categories are just doodles without any discernible en-
tity. This experimentally validates the fact that discrete outputs pose
a difficulty for the gradient updates to be passed from discriminator
to generator for the weight update. Hence empirically strengthening
the argument in favour of the formulation of SkeGAN.
Transfer Learning by VASkeGAN: The weights of the model
trained on cat sketches for 200000 iterations are transferred to train

Figure 6: Partially drawn sketches (Left). Completed sketches
by SkeGAN (Right).

two different models on pig and aeroplane sketches. In this case, the
training is done for only 100000 iterations. Figure 8 shows the pig
and aeroplane sketches generated by transferring the learnt represen-
tations across categories. This shows that VASkeGAN generalizes
well and is able to transfer the knowledge across categories. Transfer
learning on SkeGAN led to a mode collapse, which is a direction of
future investigation.
Visual Appeal: The average of scores for a particular criterion
across different categories are tabulated in Table 1. Sketch-RNN
[9] performs closest to the groundtruth while SkeGAN is not too far
away. Further, SkeGAN outperforms VASkeGAN, again emphasiz-
ing the importance of policy gradients to model pen states. Overall,
SkeGAN generates sketches that are clear, artistic and natural as
those generated by Sketch-RNN and those in the dataset.

5 DISCUSSIONS
We now present some ablation studies related to our models and also
compare the training times of SkeGAN with VASkeGAN.

Effect of Temperature 𝜏:
Conditional Generation of VASkeGAN: We fix a sketch from each
category and vary the temperature 𝜏 to see its effect on the recon-
struction. The effect of temperature on sketches trained with GRU

ICVGIP’21, December 2021, Jodhpur, India Varshaneya V, Balasubramanian S, Vineeth Balasubramanian

Figure 7: Sketches generated by VASkeGAN with GRU discrim-
inator (Top) and LSTM discriminator (Bottom).

Figure 8: Transfer learning with GRU discriminator (Top) and
LSTM discriminator (Bottom).

Model Clarity Drawing Skill Naturalness
Dataset 2.79 ± 1.01 2.71 ± 1.07 2.6 ± 1.12

SkeGAN 2.25 ± 1.1 2.25 ± 1.04 2.24 ± 1.21
Sketch-RNN 2.76 ± 1.02 2.61 ± 1.03 2.5 ± 1.06

VASkeGAN(GRU) 1.8 ± 0.86 1.74 ± 0.91 1.87 ± 1.12
VASkeGAN(LSTM) 1.87 ± 0.93 1.68 ± 0.79 1.83 ± 1.04

Table 1: Human Evaluation for Visual Appeal

and LSTM discriminators is shown in Figure 9. The images to the
left of the separating line in the top and bottom subfigures are the
human input to the trained model. To the right of the separating line
in both the subfigures are the ones that are conditionally generated
by the VASkeGAN model at the temperatures of 0.2, 0.4, 0.6, 0.8
and 1.0 respectively. From the Figure 9, it can be noticed that as
the temperature increases the “randomness" increases. Under the
influence of 𝜏 , 𝜎2

𝑥 , 𝜎2
𝑦 and 𝑞𝑘 are replaced by 𝜎2

𝑥𝜏 , 𝜎2
𝑦𝜏 and 𝑞𝑘

𝜏 re-
spectively. Therefore, higher the value of 𝜏 more is the influence of
variance which is translated into variations in the sketch generation.
This is consistent with what is observered with Sketch-RNN when
there is a variation in temperature 𝜏 [9].

Another observation is that the generated sketches of a particular
category has the best visual appeal for a particular temperature. It is
also at this temperature that along with reconstruction of sketches,
extra visually appealing features (not present in the input image)
are generated. For example, in Figure 9, the change in position of
whiskers of cats in the top subfigure and the generation of whiskers
on the cat’s face in the bottom subfigure, are not present in the human
input but are generated by reasoning out as to make the generated
sketch more natural.
Unconditional Generation of SkeGAN: The effect of temperature
𝜏 for unconditional generation is similar to its effect in conditional
generation in the case of VASkeGAN. As 𝜏 increases the randomness
of the generated sketches also increases. Since we are investigating
its effect on unconditional generation, there is no ground-truth to
compare the randomness. Instead, a group of sketches generated
with a particular 𝜏 must be compared with those generated with a
different value of 𝜏 . The influence of 𝜏 on 𝜎𝑥 , 𝜎𝑦 and 𝑞𝑘 is same for
those in conditional generation of VASkeGAN. In addition to this,
it influences the mixing weights of GMM by acting as its inverse
multiplier as in [9]. In Figure 10, there are 5 rows each depicting the
sketches generated by SkeGAN at 𝜏 values of 0.2, 0.4, 0.6, 0.8 and
1.0. We find here that 𝜏 value of 0.4 is ideal for sketch generation
based on visual appeal.
Weighting Policy Gradient Loss: In order to understand the effect
of policy gradient loss on the training, we multiply the loss with
different weights and analyze its effect on the sketches generated.
Figure 11 shows the effect of multiplying weights to policy gradient
loss on the sketches generated. One can observe that the weightage
given to both policy gradient loss and adversarial loss must be equal
in order to generate visually appealing sketches. Therefore, the
ideal weight for both adversarial loss and policy gradient loss is 1.0
respectively.
Weighting KL Divergence Loss for VASkeGAN: To understand
the effect of weighting KL Divergence loss, we assign different
values to 𝑤𝐾𝐿 such as 0.25, 0.5 and 1.0 and analyze the quality of

Teaching GANs to Sketch in Vector Format ICVGIP’21, December 2021, Jodhpur, India

Figure 9: Effect of temperature on VASkeGAN with GRU dis-
criminator (Top) and LSTM discriminator (Bottom).

Figure 10: Effect of 𝜏 on sketches generated by SkeGAN.

sketches generated visually. Visually inspecting these sketches, we
conclude that a value of 0.5 is ideal for 𝑤𝐾𝐿 . Unlike in [9], where a
higher𝑤𝐾𝐿 produces images closer to the data manifold, in our case,
this behaviour is exactly opposite. Figure 12 shows the plot of 𝐿𝐾𝐿
for different values of 𝑤𝐾𝐿 while training the proposed model on
cat sketches with GRU and LSTM respectively as the discriminators.
The implication of this on the sketch generation is shown in Figure
13.
Training-time Comparison: Both VASkeGAN and SkeGAN are
trained on NVIDIA GeForce GTX 1080 Ti. The average time per
iteration for training VASkeGAN is 0.6s, and hence a total time of
33.33 hours to train the model (for 200000 iterations) for a given
category. The average time per iteration (one iteration of generator
+ two iterations of discriminator) for SkeGAN is 16.95s. The total
time to train SkeGAN for cat, mosquito, yoga and firetruck sketches
are 13.18 hours, 9.88 hours, 19.77 hours and 13.18 hours respec-
tively, which are much lesser than the training time of VASkeGAN

Figure 11: Effect of weighting policy gradient loss for cat
sketches (Top) and firetruck sketches (Bottom).

Figure 12: Plot of 𝐿𝐾𝐿 for various 𝑤𝐾𝐿 for GRU (left) and for
LSTM (right) discriminators.

Figure 13: Effect of 𝑤𝐾𝐿 on the generated sketches at constant
𝜏 of 0.25.

ICVGIP’21, December 2021, Jodhpur, India Varshaneya V, Balasubramanian S, Vineeth Balasubramanian

(33.33 hours). SkeGAN evidently admits faster convergence than
VASkeGAN. Both SkeGAN and VASkeGAN converges faster than
Sketch-RNN which takes more than a million iterations to converge2.

6 CONCLUSION
In this work, we propose two GAN-based approaches to address the
problem of sketch generation in vector format. Until now, only a
handful of approaches based on VAE [2, 7, 9, 33], address this prob-
lem. We propose two architectures viz. SkeGAN and VASkeGAN, the
former a standalone GAN with policy gradients and adversarial loss,
while the latter based on VAE-GAN. SkeGAN generates sketches
that are better, both qualitatively and quantitatively, than those gener-
ated by VASkeGAN and has a faster convergence than VASkeGAN.
This is attributed to the effective modelling of the sketching process
and the novel combination of adversarial and policy gradient loss in
SkeGAN. It also generates sketches that are at par with those from
the dataset and those generated by Sketch-RNN. Most importantly,
both VASkeGAN and SkeGAN minimize the scribble effect. They
converge faster than Sketch-RNN. This highlights the effectiveness
of GANs for this task. Future directions include generalizing this
work to larger vector-art datasets, including cartoons.

REFERENCES
[1] Wengling Chen and James Hays. 2018. SketchyGAN: towards diverse and realistic

sketch to image synthesis. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 9416–9425.

[2] Yajing Chen, Shikui Tu, Yuqi Yi, and Lei Xu. 2017. Sketch-pix2seq: a model
to generate sketches of multiple categories. arXiv preprint arXiv:1709.04121
(2017).

[3] Kenneth Forbus, Jeffrey Usher, Andrew Lovett, Kate Lockwood, and Jon Wetzel.
2011. CogSketch: Sketch understanding for cognitive science research and for
education. Topics in Cognitive Science 3, 4 (2011), 648–666.

[4] Songwei Ge, Vedanuj Goswami, Larry Zitnick, and Devi Parikh. 2021. Creative
Sketch Generation. In International Conference on Learning Representations.
https://openreview.net/forum?id=gwnoVHIES05

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[6] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. 2015. Draw: A recurrent neural network for image generation. arXiv
preprint arXiv:1502.04623 (2015).

[7] D Ha. 2015. Recurrent net dreams up fake chinese characters in vector format
with tensorflow.

[8] David Ha, Andrew Dai, and Quoc V Le. 2016. Hypernetworks. arXiv preprint
arXiv:1609.09106 (2016).

[9] David Ha and Douglas Eck. 2018. A Neural Representation of Sketch Drawings.
In International Conference on Learning Representations.

[10] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007.
Labeled Faces in the Wild: A Database for Studying Face Recognition in Uncon-
strained Environments. Technical Report 07-49. University of Massachusetts,
Amherst.

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
Image Translation with Conditional Adversarial Networks. CVPR (2017).

[12] Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick
Fox-Gieg. 2016. The quick, draw!-ai experiment.

[13] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[14] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole
Winther. 2015. Autoencoding beyond pixels using a learned similarity metric.
arXiv preprint arXiv:1512.09300 (2015).

[15] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 4681–4690.

2Training details of Sketch-RNN are found here.

[16] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learn-
ing Face Attributes in the Wild. In Proceedings of International Conference on
Computer Vision (ICCV).

[17] Yongyi Lu, Shangzhe Wu, Yu-Wing Tai, and Chi-Keung Tang. 2018. Image
Generation from Sketch Constraint Using Contextual GAN. In Proceedings of the
European Conference on Computer Vision (ECCV). 205–220.

[18] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei
Efros. 2016. Context Encoders: Feature Learning by Inpainting. In Computer
Vision and Pattern Recognition (CVPR).

[19] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[20] Ravi Kiran Sarvadevabhatla et al. 2015. Eye of the dragon: Exploring discrimina-
tively minimalist sketch-based abstractions for object categories. In Proceedings
of the 23rd ACM international conference on Multimedia. ACM, 271–280.

[21] Ravi Kiran Sarvadevabhatla et al. 2016. Analyzing structural characteristics of ob-
ject category representations from their semantic-part distributions. In Proceedings
of the 24th ACM international conference on Multimedia. ACM, 97–101.

[22] Ravi Kiran Sarvadevabhatla, Isht Dwivedi, Abhijat Biswas, Sahil Manocha, et al.
2017. Sketchparse: Towards rich descriptions for poorly drawn sketches using
multi-task hierarchical deep networks. In Proceedings of the 25th ACM interna-
tional conference on Multimedia. ACM, 10–18.

[23] Ravi Kiran Sarvadevabhatla, Jogendra Kundu, et al. 2016. Enabling my robot to
play pictionary: Recurrent neural networks for sketch recognition. In Proceedings
of the 24th ACM international conference on Multimedia. ACM, 247–251.

[24] Ravi Kiran Sarvadevabhatla, Sudharshan Suresh, and R Venkatesh Babu. 2017.
Object category understanding via eye fixations on freehand sketches. IEEE
Transactions on Image Processing 26, 5 (2017), 2508–2518.

[25] Ravi Kiran Sarvadevabhatla, Shiv Surya, Trisha Mittal, and R Venkatesh Babu.
2018. Game of Sketches: Deep Recurrent Models of Pictionary-Style Word
Guessing. In Thirty-Second AAAI Conference on Artificial Intelligence.

[26] Saul Simhon and Gregory Dudek. 2004. Sketch Interpretation and Refinement
Using Statistical Models.. In Rendering Techniques. 23–32.

[27] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
2000. Policy gradient methods for reinforcement learning with function approxi-
mation. In Advances in neural information processing systems. 1057–1063.

[28] Patrick Tresset and Frederic Fol Leymarie. 2013. Portrait drawing by Paul the
robot. Computers & Graphics 37, 5 (2013), 348–363.

[29] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-Resolution Image Synthesis and Semantic Manipulation
with Conditional GANs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

[30] Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S Paek, and In So Kweon.
2016. Pixel-level domain transfer. In European Conference on Computer Vision.
Springer, 517–532.

[31] Jun Yu, Shengjie Shi, Fei Gao, Dacheng Tao, and Qingming Huang. 2017.
Composition-Aided Face Photo-Sketch Synthesis. (2017).

[32] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. Seqgan: Sequence
generative adversarial nets with policy gradient. In Thirty-First AAAI Conference
on Artificial Intelligence.

[33] Kimberli Zhong. 2018. Learning to draw vector graphics: applying generative
modeling to font glyphs. Ph.D. Dissertation. Massachusetts Institute of Technol-
ogy.

[34] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networkss. In
Computer Vision (ICCV), 2017 IEEE International Conference on.

https://openreview.net/forum?id=gwnoVHIES05
https://github.com/tensorflow/magenta/tree/master/magenta/models/sketch_rnn#training-a-model

	Abstract
	1 Introduction
	2 Related Work
	3 Our Contributions
	3.1 Problem Setup
	3.2 SkeGAN: A Sequential GAN for Vector Images
	3.3 VASkeGAN: VAE-GAN for Sketch Generation

	4 Experiments and Results
	4.1 Datasets, Baselines and Performance Metric
	4.2 Results

	5 Discussions
	6 Conclusion
	References

