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Abstract—Replicated tree data structures are extensively used
in collaborative applications and distributed file systems, where
clients often perform move operations. Local move operations at
different replicas may be safe. However, remote move operations
may not be safe. When clients perform arbitrary move operations
concurrently on different replicas, it could result in various
bugs, making this operation challenging to implement. Previous
work has revealed bugs such as data duplication and cycling in
replicated trees. In this paper, we present an efficient algorithm
to perform move operations on the distributed replicated tree
while ensuring eventual consistency. The proposed technique is
primarily concerned with resolving conflicts efficiently, requires
no interaction between replicas, and works well with network
partitions. We use the last write win semantics for conflict
resolution based on globally unique timestamps of operations.
The proposed solution requires only one compensation operation
to avoid cycles being formed when move operations are applied.
The proposed approach achieves an effective speedup of 14.6×
to 68.19× over the state-of-the-art approach in a geo-replicated
setting.

Index Terms—Conflict-free Replicated Data Types, Eventual
Consistency, Distributed File Systems, Replicated Tree

I. INTRODUCTION

Collaborative applications and distributed systems like

Google Drive and Dropbox make considerable use of repli-

cated data structures. Data is replicated onto several replicas

closer to the clients at different geo-locations to ensure high

uptime and availability. When clients perform concurrent

operations, data replication at different replicas may cause

consistency issues. Various consistency models have been

implemented in the literature to ensure the mutability of

replicated data. These consistency models are classified into

different classes based on the consistency guarantees they

provide, such as strong consistency, eventual consistency [1],

and causal consistency [2]. The mutation occurs instantly

across replicas in the strong consistency model; this is the

strongest condition in an ideal setting. However, replicas may

diverge when the network is partitioned; consequently, strong

consistency is not easy to achieve with network partitions with-

out sacrificing availability. Further, strong consistency suffers

∗A poster version of this paper is accepted in 22nd IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid ’22),
Taormina (Messina), Italy, 16-19 May 2022.
Source code is available on Github at: https://github.com/anonymous1474
Author sequence follows the lexical order of last names.

from performance overhead due to high synchronization costs

when the network is reliable [3].

Strong consistency is the strongest form of consistency

for any replicated system; unfortunately, it comes with a

considerable performance penalty. As a result, it may not be

suitable for replicated systems that require high availability,

scalability with concurrent updates and convergence guarantee

to a consistent state. As a result, systems designed based

on weaker consistency models such as eventual consistency

have become popular [2], [4]. In the eventual consistency

model, replicas may diverge for various reasons; however, they

eventually converge to the same state if no new updates are

performed at any replica [5], [4], [6].

Concurrent updates to various replicas make it very difficult

to converge and has been extensively studied in the literature.

Numerous approaches have been developed to overcome this

problem in several ways. The most prevalent techniques are

operational transformation (OT) [7], [8], [9] and conflict-free
replicated data types (CRDTs) [10], [11], [12]. OT requires a

centralized server and an active server connection to modify

the replicated file collaboratively. In contrast, CRDTs do not

require a centralized server and allow peer-to-peer editing.

CRDTs have become an indispensable component of many

modern distributed applications that guarantee some form

of eventual consistency [13]. Clients update their replicas

concurrently without coordination to provide high availability

even when the network is partitioned. It allows users to operate

locally with no lag, even if they are not connected to other

replicas. The system eventually becomes consistent when a

user synchronizes with other users and devices.

Popular distributed file systems such as Dropbox and

Google Drive optimistically replicate data using a replicated

tree data model. Clients interactively operate on the tree

to perform various operations, such as updating, renaming,

moving, deleting, and adding new files or directories. An

interior node in the tree represents a directory, while a leaf

node represents a file. This distributed file system runs a

daemon on the client’s machine that keeps track of changes

by monitoring the designated directory [13], [14]. Clients can

read and update files locally on their systems, which can then

be synchronized with other replicas. Collaborative text editing

and graphical editors are examples of distributed systems that

often use the replicated tree data model.
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Fig. 1: Difficulty with the move operation on a replicated tree: let
us assume a tree structure t rooted at r, and two clients c1 and c2,
concurrently operating on t in their local replicas. Let say c1 move
(a to be a child of b) concurrently with client c2 moving (b to be a
child of a) in their local version of t without any coordination. Later,
when these replicas are synchronized by propagating local operations,
it may produce a cycle a ↔ b disconnected from the root r.

The clients can read and update the files offline on their

local system, which can later be synchronized with other

replicas. Moving nodes is a common operation in such tree-

based collaborative applications. In the file system example,

the move operation moves files or directories to a new location

within the tree. In a collaborative text editor that stores data

using an XML or JSON data model, changing a paragraph

to bullet points generates a new list and bullet point node.

It then moves the paragraph nodes under the bullet point

node. Another example is a collaborative graphical editor

(Figma [15]) where grouping two objects lead to adding a

new node in the tree [13].

This paper focuses on the move operation in the repli-

cated tree CRDT due to its usefulness. The move operation
moves a sub-tree within the tree. This operation is difficult to

implement because concurrent operations by multiple clients

may result in cycles; additionally, the tree structure may be

broken [16], [13], [14]. Due to the concurrent operations, a

concurrency control mechanism is required to ensure the data

structure’s correctness. Further, ensuring correctness while

providing low latency, high throughput, and maintaining high

availability can be very challenging.

An example in Figure 1 shows the difficulty associated with

the move operation in the replicated setting. The tree structure

is replicated on multiple systems. Different clients can perform

concurrent operations, leading to various malformations in the

tree, such as a cycle, duplication, and detachment from the par-

ent node. Concurrent move operations on the same tree node

cause the data duplication problem. Providing support for a

concurrent move operation for the replicated tree that does not

require continuous synchronization or centralized coordination

is problematic because two operations that are individually

safe at their local replicas, when combined, might produce

a cycle. Prior works by Nair et al. [14] and Kleppmann et

al. [13] have shown that Dropbox suffers from duplication,

and Google Drive results in errors due to the formation of

cycles.

We present an efficient protocol to perform move operations

while maintaining the distributed replicated tree structure and

ensuring that replicas are eventually consistent. The proposed

approach does not require cross-replica coordination and hence

is highly available even when the network is partitioned. In

case of conflicting operations, we follow the last write win

approach based on timestamps computed using the Lamport

clock [17]. The proposed protocol requires one compensation

operation to undo the last moved node that causes the cycle.

Essentially, we address the conflict resolution problem of the

replicated tree by minimizing the number of undo and redo

operations required to resolve conflicts.

The significant contributions are as follows:

• We propose a novel move operation on the distributed

geo-replicated tree that is computationally efficient and

offers low latency operations. The proposed approach

supports optimistic replication, which allows replicas to

temporarily diverge during updates but always converges

to a consistent state in the absence of new updates (see

§IV).

• The proposed algorithm guarantees strong eventual con-

sistency; correctness proofs are provided in §V to show

the convergence of the replicas and the maintenance of

the tree structure.

• The performance of the proposed approach is compared

against the Kleppmann et al. [13]. The experiment results

show that the proposed approach achieves an effective

speedup between 14.6× to 68.19× over Kleppmann’s

approach for the remote move operations (§VI).

A brief overview of the related work aligned with the proposed

approach is discussed in §II, while the system model is given

in §III. §VII conclude with some future research directions.

II. RELATED WORK

This section briefly discusses the related work that has been

done in line with the proposed approach.

Algorithms on replicated data structures are classified into

two classes: operational transformation (OT) [7], [18], [8], [9]

and conflict-free replicated data types (CRDTs) [10], [11],

[12]. Many of the proposed approaches mainly support two

operations: insert and delete. Furthermore, the approaches

based on OT require a central server and an active network

connection between the client and the central server. It means

it does not work when the replica is offline. In comparison,

CRDT mitigates this issue by allowing asynchronous peer-to-

peer communication between replicas using optimistic repli-

cation. In the presence of faults to reduce operation response

time and increase availability, the optimistic replication [19]

allows replicas to diverge temporarily.

The CRDTs are mainly categorized into two types: state-

based [11] and operation-based [20], [11]. The former, al-

ternatively referred to as convergent replicated data types, is

more straightforward to design and implement. However, a

significant disadvantage is that it requires the transmission of

the entire state to every other replica. On the other hand, later,

also referred to as commutative replicated data types, transmit

only update operations to each replica, thus requiring less
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network bandwidth. Nonetheless, it is built on the assumption

of a reliable communication network, which means that no

operations are dropped or duplicated. The data structures

supported by these CRDTs are counters, lists, registers, sets,

graphs, trees, etc. The proposed protocol implements efficient

move operation on operation-based tree CRDT.

Extensive research has been done to implement geo-

replicated distributed tree data structures, which are used in

a variety of distributed applications, including Google Drive,

Dropbox (file systems), Google Docs, Apple’s Notes App

(collaborative text editing), and Figma (collaborative graphical

editor). For replicated tree CRDTs, numerous algorithms have

been proposed. Several of these algorithms support only insert

and delete operations and have a long response time or latency.

Martin et al. [21] proposed tree CRDT for XML data to

support insert and delete operation. While supporting these two

operations in JSON data format is proposed by Kleppmann et

al. [22]. Insert and delete operations can be used to implement

a move operation; however, this could lead to the data duplica-

tion problem and increase the number of computation steps. A

replicated file system using tree CRDT is implemented in [23],

[24]. These solutions result in data duplication (tree node

duplication). When replicas perform operations concurrently,

data duplication occurs, resulting in irreversible divergence

between replicas or the need for manual intervention to restore

replicas to a consistent state.

Data duplication is a severe issue, and for large systems,

manually handling this problem is very difficult. On the other

hand, some techniques require extensive metadata exchanges

between replicas to mitigate these issues, which increases net-

work bandwidth requirements. The solution proposed in [25]

results in a directed acyclic graph on concurrent moves.

The approach proposed in [14] requires causal delivery of

operations that may not be possible when a replica crash fails,

or the network is unreliable.

As discussed earlier in §I, move operations are difficult to

implement because two concurrent moves can produce a cycle

and separate the node from its parent or ancestor. Moving a

node in its descendent tree may produce a cycle and break

the tree structure. Local move operations on a replica may or

may not result in cycles. However, remote move operations

may cause cycles that must be handled properly to preserve

consistency. Hence, an efficient approach must be proposed to

move the nodes and their subtrees to another location in the

replicated tree.

The most recent work is proposed by Kleppmann et al. [13].

This approach is computation-intensive, requires many com-

pensation operations to avoid the cycles in the replicated tree,

and relies on making a total global ordering of operations

and ensure strong eventual consistency. Eventual consistency

focuses solely on a liveness guarantee, i.e., updates will be

detected eventually. Strong eventual consistency, on the other

hand, provides the security guarantee that any two nodes that

have received the same unordered batch of updates will be in

the same state.

In Kleppmann’s approach, before applying any remote

operation (operation received from remote replica), they first

undo all operations applied with a higher timestamp than

the received operation, then apply the received operation,

finally, redo all those undone operations. They maintain total

global order between the operations and ensure strong eventual

consistency. Unlike their approach, which requires multiple

undo and redo operations per remote move operation, the

proposed approach requires only one undo and compensation

operation per conflicting operation and avoids multiple undo

and redo operations for non-conflicting move operations.

The proposed approach ensures strong eventual consistency.

It avoids re-computation for non-conflicting changes to the tree

by identifying which changes might cause problems to arise. In

our approach for a remote operation that creates a problem (cy-

cle), we undo one operation and send that as a compensation

operation to all other replicas. By doing this, we save the time

of re-computation for non-conflicting operations, as well many

operations that need to be undone and redone can be avoided.

Essentially, the number of compensation operations is just 1

per cycle and 0 for safe operations. We observed that such

a simple approach improves the performances significantly.

Additionally, there is no data duplication in the proposed

approach and does not result in directed acyclic graph on

concurrent move operation that may lead to inconsistency or

divergence between the replicas. Moreover, causal delivery

and strict global total order while applying the operations

for consistency are not required. So, we propose a novel

coordination-free efficient move operation on replicated tree

CRDT to support low latency and high availability operations.

III. SYSTEM MODEL

Following system model in [13], there are n replicas
(r1, ..., rn) communicate with each other in a completely asyn-

chronous in a peer-to-peer fashion. We assume that replicas

can go offline, crash, or fail unexpectedly. Each replica is

associated with a client. Each client performs operations on

their local replicas. Each operation is then communicated to all

other replicas asynchronously via messages. A message may

suffer an arbitrary network delay or be delivered out of order.

Clients can read and update data on their local replica even

when the network is partitioned or their replica is offline.

We consider a replicated tree structure t rooted at root to

which clients add new nodes, delete nodes and move the

nodes to the new location within the tree. In a file system,

an internal node of the tree represents directories, while a leaf

node represents files. In collaborative text editing, different

sections, paragraphs, sentences, words, etc., in the document

can be represented as tree nodes.

We propose an efficient algorithm to maintain the replicated

tree structure. The proposed algorithm is executed on each

replica ri without any distributed shared memory to operate

on tree t. Clients generate the operations, apply them on their

local replica, and communicate them asynchronously via the

network to all other replicas. On receiving an operation, remote

replicas apply them using the same algorithm. The proposed

algorithm supports three operations on the tree:
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• Inserting a new node in the tree.

• Deleting a node from the tree.

• Moving a node along with a sub-tree to a child of a new

parent in the tree.

All three operations can be implemented as a move opera-

tion. The move operation is a tuple consisting of timestamp ts,

node n, and new parent p, i.e., move〈ts, n, p〉. The timestamp

ts is unique and generated using Lamport timestamps [17],

the node n is the tree node being moved, and the parent p is

the location of the tree node to which it will be moved. We

represent node timestamp as node.ts, and operation timestamp

as o.ts.

For example, movex〈tsi, nj , pk〉 means that a node with

id nj is moved as a child of a parent pk in the tree t at time tsi
in replica rx. The additional information about the old parents

of the node being moved is also logged in the present log
used to undo the cyclic operations when cycles are formed

due to the move of the nj by the clients at different replicas.

The move operation removes nj from the current parent and

moves it under the new parent pk along with the sub-tree of

nj ; however, if nj does not exist in the tree, a new node with

nj is created as a child of pk.

We implement insert and delete operations as a move
operation. Insert is implemented as a move operation, where

the node being moved (nj in the above example) does not

already exist in the tree. For delete, we use a special node

called trash−a child of root and the parent of all deleted nodes.

When a delete on a node nj is invoked, it is moved to the sub-

tree of trash. We explain further details in §IV.

The proposed algorithm satisfies the strong eventual consis-

tency property convergence−two replicas are said to converge

or be in the same state if both of them have seen and

applied the same set of operations. The replicas may apply

the operations in any order due to reordering of messages

and delays. This implies operations must be commutative. The

formal proof is provided in §V.

IV. PROPOSED ALGORITHM

This section describes the proposed algorithm for perform-

ing efficient move operations on the replicated tree. Each

replica is modeled as a state machine that transitions from

one state to the next by performing an operation. There

is no shared memory between replicas, and the algorithm

operates autonomously. The proposed protocol requires no

central server or consensus mechanism for replica coordination

(unlike OT), requires minimal metadata, and satisfies strong
eventual consistency. A client generates and applies operations

locally with Algorithm 4, then sends them asynchronously

over the network to all other replicas with Algorithm 1. Due to

page constraints, we have described the main idea while all the

details are explained as pseudocode in the various algorithms.

The proposed algorithm supports insert, delete and move
operations on a replicated tree. It can be shown that inserting

and deleting involve changing various nodes’ parents. insert
can be viewed as the creation of a new node that is to be moved

to be the child of a specified parent. For a delete operation,

the node is moved to be a child of a special node denoted as

the trash. Thus, the move operation can be used to implement

the other two operations. Hence, in this discussion, we only

consider an efficient way of moving nodes.

Each move operation takes as arguments: the node to move

and the new parent. Further, each tree node also maintains the

timestamp (ts) of the last operation applied which is passed to

the move operation. A move operation is formally defined as:

move〈ts, n, p〉. Here ts is the timestamp of the move operation,

n is the node to be moved and made as a child of p. The data

structures are shown in Listing 1.

An operation (local or remote) is applied using Algorithm 4

and Algorithm 5. Algorithm 5 first compares the operation

timestamp (i.e., o.ts) with the timestamp of the node to be

moved (i.e., node.ts). It applies the operation only if the o.ts
is greater than the node.ts. We prove convergence by showing

that all the tree nodes across the replicas will get attached to

the parent with the latest ts. Next, we explain how the cycle

is prevented in the proposed approach.

Listing 1: Data Structures

1 move {
2 clock ts; /* Unique timestamp using Lamport

clock. */
3 int n; // Tree node being moved.
4 int p; // New parent.
5 };
6 treeNode {
7 int id; // Unique id of the tree node.
8 clock ts; /* Timestamp of the last operation

applied on the node. */
9 int parent; // Parent node id.

10 };
11 lc_time - Lamport timestamp of a replica.
12 root - Original starting point of the tree.
13 present_log - Stores m unique previous parents of

each node in the adjacency list form.
14 ts - Timestamp.
15 ch[] - Array of channels (size equal to the

number of replicas).
16 conflict node - a special child of the root that

cannot be moved.

Algorithm 1: send(channel ch, i): send local opera-

tions to other replicas.

17 Procedure send(channel ch, i):
18 while true do
19 move〈ts, n, p〉 ← ch.get(i)
20 if ts == -1 then
21 break /* Threads will join when

condition becomes true. */

22 RPC.send(move〈ts, n, p〉)

Algorithm 2: checkCycle(ni, nj): detect cycle be-

tween two nodes in the tree ‘t’.
23 Procedure checkCycle(ni, nj):
24 while nj �= root do
25 if nj == ni then
26 return TRUE

27 nj ← get node(root, nj .parent)

28 return FALSE

482

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on September 20,2022 at 11:39:00 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 3: findLast(ni, nj): find node with high-

est timestamp in cycle.

29 Procedure findLast(ni, nj):
30 maxTS ← ni.ts
31 undoNode ← ni

32 while nj �= ni do
33 if nj .ts > maxTS then
34 undoNode ← nj

35 maxTS ← nj .ts

36 nj ← get node(root, nj .parent)

37 return undoNode

Algorithm 4: applyLocal(n, p): apply local oper-

ations and send them to other replicas.

38 Procedure applyLocal(n, p):
39 noden ← get node(n) /* Gets reference of the

node with id n in t. */
40 nodep ← get node(p) /* Gets reference of the

node with id p in t. */
41 Lock()/* Get lock, so that at a time only one

operation will be applied by threads
(local thread or receiver thread) on the
tree t. */

42 ts ← ++lc time
/* The check cycle method returns true if it

finds a cycle. */
43 if ¬checkCycle(noden, nodep) then
44 present log[noden.id].add(noden.parent) /* Update

the current parent of noden in the
present_log. */

45 noden.parent ← nodep.id
46 noden.ts ← ts

// Send move operation to other replicas
47 for j = 0 to numReplicas do
48 ch[j].add(move〈ts, n, p〉)

/* If found cycle, then discard the move
operation. */

49 Unlock()

Preventing Cycles: Recall from §I that a cycle is formed when

an ancestor tree node becomes a child of its descendant tree

node. Preventing cycles is difficult because concurrent move

operations on different replicas may be safe independently.

However, a cycle may be formed when move operations from

different replicas are merged. To avoid cycles, the proposed

algorithm uses timestamps and compensation operations. We

check for cycles prior to performing any operation by deter-

mining whether the node to be moved is an ancestor of the new

parent. We check for each operation to avoid the formation of a

cycle and maintain the tree structure during concurrent moves.

Another check identifies the node with the latest timestamp

when a cycle is detected (using Algorithm 2). As a result, the

node with the most recent timestamp is returned to its previous

parent, which is safe. A previous parent is said to be safe if

it is not in the sub-tree of the node to be moved in the move

operation.

Algorithm 4 and Algorithm 5 ensure that all operations

applied will not form a cycle. Algorithm 4 applies the local

move operations, while Algorithm 5 applies remote move

Algorithm 5: applyRemote(): receives and applies

remote move operations.

50 Procedure applyRemote():
51 while true do
52 move〈ts, n, p〉 ← Stream.Receive()/* Receive

remote move operation. If returns
End, receiver threads will join. */

53 if End then break
54 noden ← get node(n)// Get reference of n
55 nodep ← get node(p)// Get reference of p
56 Lock()/* Lock so that at a time only one

operation will be applied by threads
(local/receiver) on the tree t. */

/* Already applied an operation with
higher ts on node n then ignore
received operation with smaller ts as
node ts will be higher. */

57 if ts < noden.ts then
58 return
59 lc time ← max(ts, lc time)+1
60 present log[noden.id].add(noden.parent) /* Update

the current parent of noden in the
present_log. */

/* The check cycle method returns true if
it finds a cycle. */

61 if checkCycle(noden, nodep) then
/* Find the node between noden-nodep

with highest ts. */
62 undoNode ← findLast(noden, nodep)

/* Undo (move back) to a most recent
previous parent that is not in the
sub-tree of noden. Keep searching
for a suitable node to undo; if
not found safe previous parent,
then move undoNode under
conflict node. */

63 while true do
64 if present log[undoNode.id] == NULL then
65 undoParent ← conflict node

66 else
/* Get and delete previous

parent from present_log for
undoNode. */

67 undoParent ←
present log[undoNode.id].pop()

/* Check if a cycle exists between
n & undoParent if no cycle,
then found a safe node to move
back to breaks cycle between n
& p. */

68 if ¬checkCycle(noden, undoParent) then
69 break

70 applyLocal(undoNode, undoParent)

// Already applied a higher ts operation.
71 if undoNode == noden then
72 Unlock()
73 return
74 noden.parent ← nodep.id
75 noden.ts ← ts
76 Unlock()

operations.1 The procedure followed to apply a remote move

operation by Algorithm 5 is explained here. Before applying

1Locking methods (Lock() and Unlock() at Line 41, 49, 56, and 76) are
used at a replica to synchronize local and remote move operation processes.
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Fig. 2: Preventing cycles in proposed approach.

move a to be a child of x, ts:9

move a to be a child of x, ts:9

move a to be a child of x, ts:9

Fig. 3: Remote move operation handling at a replica.

a move operation (i.e., move〈ts, n, p〉) Algorithm 5 checks if

the operation’s timestamp is greater than the previous move

operation’s timestamp applied on noden at Line 57 (Line 57).

If the timestamp of the operation to be applied is smaller, it

ignores the operation at Line 58. The following steps occur

when a cycle is detected. The algorithm finds the node with

the highest timestamp in the cycle and assigns it to undoNode
at Line 62. Then find a safe previous parent for the undoNode
in the while loop from Line 63. If there are no more previous

parents left, then keep the previous parent as a conflict node
at Line 65. Then move the undoNode to be a child of safe

previous parent undoParent using Algorithm 4 at Line 70. This

internally updates the Lamport timestamp, which will be used

for the undo operation at Line 42. Then the operation is applied

in the local replica at Line 43 and Line 48. After that, it send

the compensation operation to other replicas. If undoNode is

the same as noden at Line 71 then return at Line 73. Since

it already applied an operation with a higher timestamp on

noden as the undo operation. Otherwise, apply the operation

to change the parent of noden at Lines 74 and 75.

Working Example: From Figure 1, let us assume that initially,

both clients (replicas) consist of the same tree with timestamp

as shown in Figure 2 (sub-figure (i) and (ii)). Each operation

is assigned unique timestamp. Client c1 generates and applies

the local operation move1〈ts:6, n:a, p:b〉, i.e., move a to be
a child of b with timestamp move1.ts : 6 as shown in (iii).

Similarly, client c2 generates and applies the local operation

move2〈7, b, a〉, i.e., move b to be a child of a with timestamp

move2.ts : 7 as shown in (iv). As shown in Figure 2 (v)

when client c1 receives the move2〈7, b, a〉 operation from c2,

it executes the following steps:

1) Operation timestamp (move2.ts : 7) is not less then

move node timestamp (b.ts : 2).

2) Change move node timestamp to operation timestamp,

i.e., b.ts : 7.

3) Cycle is detected involving (a, b).
4) The node in the cycle with the highest timestamp is b

that is found using Algorithm 3.

5) The node b is moved to its previous parent which is r .

6) The compensation operation is propagated to other repli-

cas to ensure that every replica has seen and applied the

same set of operations.

7) Since noden (i.e., node received in move operation) is

same as node to be moved back, so algorithm returns.

Similar steps are followed when operation move1〈6, a, b〉 from

c1 is received at c2 (see Figure 2 (vi)). Except for case (7),

where noden is not the same undoNode. Operation is applied

on node b . In summary, node b is moved back to its previous

parent r using information stored in the present log, then

received operation is applied, i.e., a is moved as a child of

b , and the present log is updated.

Note that when a cycle is detected, the algorithm identifies

the node with the latest timestamp and move that node back

(e.g., b in Figure 2 (vi)) to the previous parent, where it is

safe. In the Algorithm 5: Line 63 − Line 69 tries to identify

the previous parent of the node (e.g., b in Figure 2 (vi)) where

it can be moved back safely, and cycle can be broken. We are

storing m (a constant number) previous parent for tree node
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in an adjacency list in the present log.

Let us consider another example, as shown in Figure 3(i),

when a replica (i.e., Client ci) receive an operation to move
a to be a child of x . As shown in Figure 3(ii), since a is an

ancestor of x it will be detected that this operation can form a

cycle. So algorithm finds the node with the highest timestamp

in the potential cycle between a and x . Here, y has the

highest timestamp; therefore, y can be moved to one of its

previous parents to break the cycle. The algorithm, checks if

any of its previous parents are safe (i.e., the previous parent

is not a descendant of a ). The check fails for n and z but c
is a safe previous parent. Hence move y to be a child of c ,

as shown in Figure 3(iii). As a result of this, x is no longer a

descendant of a . So apply the original operation to move a
to be a child of x .

Storing fixed m previous parents for each node will be

adequate by considering storage; moreover, increasing the

value of m increases the search time. For current experiments,

m is fixed to 5. Identifying the optimal number of previous

parents (i.e., m) is left as future work. If previous parents

in present log are too small for the node to be moved to

break the cycle, it is moved under a special node known as

the conflict node (a child of the root) to break the cycle.

The conflict node is special node that cannot be moved, it

ensures that it will always be free from cycles. In case if the

number of previous parents (or m) for a node to be moved is

deleted (by moving under trash), we still can move the node

under the previous parent (deleted node in this case). Next,

the clients have the choice to change location again as the

nodes attached to trash have not been deleted permanently.

Even when all previous parents are permanently deleted or

present logx for a node x is empty, we can still move that

node under conflict node to break the cycle.

The following important question is, how do we know which

tree nodes are part of the cycle? As previously mentioned, the

cycle is formed when the node moves to an ancestor of its

new parent. Hence the cycle will lie between the new parent

and the node to be moved. Since operations are applied one

by one, an operation can almost form only one cycle. When

a user sees nodes attached to conflict node, they understand it

resulted in the formation of a cycle and had to be resolved. A

valid question could be why not just prevent the last operation

for each replica that results in the cycle instead of looking for

the global last operation. It is possible that since operations

are applied across replicas in different orders, they will result

in each replica moving a different tree node to conflict node /

previous parent. This means that a large number of operations

could be ignored. However, by looking for the global last

operation, only the effect of one operation gets ignored.

Globally Unique Timestamps: We use Lamport clock [17]

on each replica for timestamping operations. However, this

alone will not make it globally unique. Hence, we use the

replica id for tiebreakers when the Lamport timestamps are

equal; together, they globally unique. As an alternative to the

Lamport clock, the hybrid logical clock [26] can be used that

provides the unique timestamps.

Difficulties: Trash can grow indefinitely. There can be a

permanent delete that recursively deletes from the leaf nodes to

maintain consistency. Similar to the rm -r command in Linux.

However, this can lead to the case where a permanently deleted

node is in the log of previous parents of other nodes. We will

have to skip that parent and continue to the next previous

parent in such cases. If none of the previous parents are safe

or are permanently deleted, we move the node to be the child

of conflict node. As we are storing only the last m previous

parents and then moving to conflict node, we are missing out

on moving to the older positions if none are safe. A sound

argument can be made that instead of moving a node to ancient

locations, it is better to move to the conflict node to notify

the user that the move operation on the following node was

unsafe. Users can find another suitable location to move it to.

Implementing permanent delete is left as future work.

Another important point is that, in the case of a cycle

due to remote operations, the proposed approach requires

propagating the undo operation to other replicas (requires

one undo operation per remote move operation) that may

be an additional message cost. However, it decreases many

undo and redo operations to just one compensation operation

at each replica, compensating for additional message costs.

To summarize, we provide a replicated tree that can support

efficient and highly available move operation.

V. PROOF OF CORRECTNESS

This section provides the formal proof that all the replicas

eventually converge to the same tree (state) and maintain the

tree structure through optimistic replication. All our operations

(insert, delete, move) are just changing the parent to which the

node is attached.

Lemma 1 (Duplication): A tree node will never be located
at multiple different positions.

Proofsketch. For every node, we only store a single value for

its parent. It must have more than one parent to be duplicated

at multiple positions. However, that is not possible in our

approach since we only store a single parent based on the

last written win semantic.

Lemma 2 (Cycle): No operation will result in the formation
of a cycle.

Proofsketch. Before applying any operation, our algorithm

tries to detect if it will form a cycle. Assume we have an

operation of the form 〈ts, n, p〉 where ts is a timestamp, n
is the tree node to be moved, p is the parent. As previously

stated, the operation will only form a cycle if n is an ancestor

of p.

We traverse all the way up from p to root, and in case we

do not find n in that path, it implies n is not an ancestor of p.

Hence the operation is safe to apply and will not form a cycle.

If we find n is an ancestor of p, we will apply an alternate

compensation operation. Hence we never apply an operation

where n is the ancestor of p.
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So now, for a cycle to exist, it needs to be formed from an

operation where n is not the ancestor of p. How to prove that

if n is not an ancestor, it will not form a cycle?

If n and p need to form a cycle, there should be a path from

n to p and p to n. However, applying the operation will only

create a path from n to p. The path from p to n needs to exist

before, and such a path will only happen if n is an ancestor

of p.

Lemma 3 (Forest): The tree will never be split into multiple
forests.

Proofsketch. We always maintain a parent for every tree node

other than root, and we do not allow operations that have the

same parent and tree node value. The tree could be split into

forests if there is some node without a parent or a cycle. We

have already shown that cycles cannot be formed, and our

algorithms always maintain a parent for each tree node other

than root.

Theorem 4 (Safe): A previous parent is said to be safe if
it is not in the sub-tree of the node to be moved in the move
operation.

Proofsketch. Since the node with the highest timestamp in the

cycle is moved back to the previous parent, i.e., the previous

parent must not be in the sub-tree of the node to be moved in

a move operation, moreover, when there is no previous parent

such that it is not in the sub-tree, then conflict node (special

child of the root that can not be moved) is assigned as the

previous parent. So one of the nodes in the cycle is always

moved back to a node which is not in the sub-tree of the node

to moved. As a result of this the new parent of the node to

be moved will no longer be in its sub-tree. So there is no

ancestor-descendant relation between the node to be moved

and the new parent and the operation is safe to be applied.

Having explained the lemmas and theorem, we now explain

the main theorem.

Theorem 5 (Convergence): Replicas that have seen and
applied the same set of operations will converge to the same
tree.

Proofsketch. Say two replicas r1 and r2 have seen the same

set of operations. They will have the same parent for each

node as the operation with the latest timestamp taken as the

parent.

From Lemmas 1, 2, 3, and Theorem 4, we get that the

tree structure is maintained and there will be no cycles in

the tree. Next, assume that replicas r1 and r2 have seen the

same set of updates but have different parents for a key (k).

Suppose the replica r1 for k has timestamp ts1 and parent

p1. The replica r2 for k has timestamp ts2 and parent p2. We

know ts1 �= ts2 since we are using globally unique timestamps

(ties are broken by replica id), and if they were equal, then

parents would have been the same. This implies that either

ts1 < ts2 or ts1 > ts2. This means that one of the replicas

has not applied the latest timestamp. However, according to

correctness of our algorithm, it was supposed to do that. Hence

TABLE I: Network latency (ms) between different replicas

US East West Europe Southeast Asia
US East 0 41 111

West Europe 41 0 79
Southeast Asia 111 79 0

this is not possible. It means the initial assumption was wrong

that the replicas have different parents for the same key or

have seen the same set of updates.

VI. PERFORMANCE EVALUATION

This section presents the implementation details (§VI-A)

and performance comparison (§VI-B) of the proposed ap-

proach with the state-of-the-art approach by Kleppmann et

al. [13] in a geo-replicated setting at three different continents

to demonstrate the usefulness of the proposed approach.

A. Implementation

We have implemented the proposed algorithm in

Golang [27] and wrapped it in gRPC [28] network service

to deploy at three different geo-location (Western Europe,

Southeast Asia, and East US) on Microsoft Azure Standard

E2s v3 VM instances, each consisting of 2 vCPU(s), 16 GiB

of memory, and 32 GiB of temporary storage running Ubuntu

20.04 operating system and Intel Xeon Platinum 8272CL

processor.

Table I shows the network latency’s between different geo-

locations chosen for the experiments. The network latency

from US East to Southeast Asia is 111 ms, the maximum,

and West Europe to US East is 41 ms which is the minimum.

However, it is not considered in the final results because the

time to apply a move operation (local or remote) is computed

at each replica.

We ran the experiments seven times for each data point in

the experiments. The first two runs were considered warm-up

runs for the system to stabilize and hence ignored. Thus each

data point in the plot was averaged over the remaining five

times and across the different replicas. The synthetic workload

used for the experiments consisted of insert, delete, and move

operations. Initially, the tree was empty and based on the

experiment, the number of nodes varied in the tree. The node

is identified by key or node id which is an integer. Lamport’s

clock [17] was used to timestamp each operation.

Each replica generates and applies local operations, sub-

sequently asynchronously propagating and receiving the op-

erations to/from the other two replicas. Replica generates

the move operation by selecting tree nodes uniformly at

random from the tree size. Each replica generates ( 13 )
rd of

the total number of operations applied and receives ( 23 )
rd of

the operations from the other two replicas. When a replica

receives a remote operation, it applies, and in case of any

undo operation due to cycle, identifies the appropriate previous

parent (for the node with the higher timestamp in the cycle).

Once the appropriate parent is identified, the node is moved

as a child and the undo operation is sent to other replicas

as per the protocol. Note that our experimental workload is
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Fig. 4: Average time to apply a move operation with varying number
of operations.

more conservative and contains more conflicts than the real-

time workload. Further, move operations conflict only with

other move or delete operations; they do not conflict with

other operations (such as updating a value at a node in the

tree or inserting a new subtree).

B. Results and Analysis

We performed two kinds of experiments. In Figure 4, we

show the variation in performance when the number of tree

size (# nodes) is fixed to 500 while the number of operations

that a single replica is issuing per second is varying. The x-axis

is the operations per second varied from 250 to 5000 while the

y-axis is the average time taken to apply an operation (local

or remote) at a replica. It should be noted that this does not

represent the total time required by all operations, but rather

the average time required to apply an operation. In Figure 5

and Figure 6, the experiment is a function of nodes in the tree

to conflicting operations when operations are fixed to 15K (5K

operations per replica) and 500 operations were issued per

second on the three different geo-locations. Figure 5 shows

the impact of tree size on the move operation performance.

In contrast, Figure 6 shows the number of undo and redo

operations in the proposed approach at different replicas.

Having explained the high-level overview of the experi-

ments, we now go into the details. Figure 4 depicts the average

time to apply a local and remote move operation. As illustrated

in Figure 4(a), the average time to apply a local move oper-

ation at a replica is not significant in both the approaches as

the number of operations increases. Interestingly, the average

apply time for a local move operation drops as the number

of operations increases. We believe this is due to compiler

optimizations that sets in when functions are called repeatedly.

Kleppmann et al. [13] also observed similar trends for local

operations. However, the average time to apply a remote

move operation is almost constant in the proposed approach,

while Kleppmann’s approach has the opposite trend; the time

increases with operations per second as shown in Figure 4(b).

There is a significant performance gap for the average remote

move operation apply time in both the approaches; this is

because the number of compensation operations (undo/redo)

by Kleppmann’s approach is ≈200 undo and redo operations

for every remote operation a replica receives while in our case

it is only 1, only when there is a cycle (conflict).
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Fig. 5: Average time to apply a move operation with varying tree
size.

As shown in Figure 4(b), Kleppmann’s approach attains

a maximum average apply time of 933.53μs over a remote

move operation at 5K operations per second. In comparison,

the minimum is 81.69μs at 250 operations per second; the

minimum time is 14.63× higher than the maximum time of

5.58μs at 250 operations by our proposed approach. It can

be seen that the proposed approach achieves, on average, a

speedup of 1.34× for a local move operation, while 14.6×
to 68.19× speedup for a remote move operation over Klepp-

mann’s approach. Hence, the proposed approach is much faster

in applying remote operations, and the difference in time only

increases with an increase in the rate of operations per second.

In Figure 5 and Figure 6, we fixed the number of local

operations to 5K per replica (total 15K operations) and the

operation interval to 10 milliseconds while varying the number

of nodes in the tree from 250 to 2K. With growing size of

the tree one might assume that the time required to complete

a move operation must decrease as the number of conflicts

decreases (as shown in Figure 6). However, it increases the

search time; hence we can see the divergent tendencies.

When comparing both techniques, the performance patterns

in Figure 5 diverge from those in Figure 4.

Figure 5(a) and Figure 5(b) show that an average time to

apply a move operation (local or remote) at a replica increases

with increasing tree size due to increased search time. The

proposed method improves the performance of local move

operations by almost 1.4× over Kleppmann’s approach. While

the performance difference for the remote move operation

for both the approaches as in Figure 5(b) is quite significant

24.43×. This is due to the performance benefit of the proposed

approach for the remote move operation.

In Kleppmann’s approach, as the operation generation rate

increases, the number of operations in flight also increases. As

a result, the compensation cost will be substantial, requiring a

large number of undo and redo operations. In contrast, even if

the rate increases in the proposed approach, the compensation

cost remains unchanged. The rationale for this performance

improvement is explained next.

In Figure 6, a line chart depicts the average number of

conflicts (undo and redo operations) at different replicas in the

proposed approach. This experiment is performed to demon-

strate the number of undos and redos operations performed by

each replica and the system performance when the tree size is
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changed. In Kleppmann’s approach, the number of undos and

redos per remote move operation is ≈200 [13], while the pro-

posed approach needs just one compensation operation; hence

we explicitly do not compare our approach with Kleppmann’s

approach in this plot. The maximum number of conflicts is

≈427 when the number of nodes in the tree is 250, but it drops

to ≈47 when the number of nodes in the tree is 2K, as shown

in the Figure 6. These numbers are much smaller than the

number of undos and redos by Kleppmann’s approach, which

roughly equals 2M (million) for 10K remote move operations

at a replica in the worst case. As a result, we can see that

the proposed approach significantly improves the remote move

operations apply time than Kleppmann’s approach.

VII. CONCLUSION AND FUTURE DIRECTIONS

We proposed a novel algorithm for efficient move opera-

tions on a replicated tree structure. The proposed technique

ensures that replicas that have viewed and applied the same

set of operations will eventually converge to the same state.

Moreover, it does not require active cross-replica commu-

nication, making it highly accessible even during network

partitions. We have followed a last write win scheme on

globally unique timestamps. The proposed technique requires a

single compensating operation to undo the effect of the cyclic

operation. It achieves an average speedup of ≈68.19× over

the state-of-the-art [13] approach. We have stored a constant

number of the previous parents for every node. Identifying

the optimal number of previous parents is left as future work.

Implementing an efficient move operation on other replicated

data structures could be an exciting area to explore. Also,

performing operations on a range of elements in the list and

tree CRDTs, or applying operations in a group from the same

replica, are other potential directions to pursue.
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