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Abstract

Adversarial robustness of deep learning models has
gained much traction in the last few years. Various at-
tacks and defenses are proposed to improve the adversar-
ial robustness of modern-day deep learning architectures.
While all these approaches help improve the robustness,
one promising direction for improving adversarial robust-
ness is unexplored, i.e., the complex topology of the neural
network architecture. In this work, we address the follow-
ing question: “Can the complex topology of a neural net-
work give adversarial robustness without any form of ad-
versarial training?”. We answer this empirically by exper-
imenting with different hand-crafted and NAS-based archi-
tectures. Our findings show that, for small-scale attacks,
NAS-based architectures are more robust for small-scale
datasets and simple tasks than hand-crafted architectures.
However, as the size of the dataset or the complexity of task
increases, hand-crafted architectures are more robust than
NAS-based architectures. Our work is the first large-scale
study to understand adversarial robustness purely from an
architectural perspective. Our study shows that random
sampling in the search space of DARTS (a popular NAS
method) with simple ensembling can improve the robust-
ness to PGD attack by nearly 12%. We show that NAS,
which is popular for achieving SoTA accuracy, can provide
adversarial accuracy as a free add-on without any form of
adversarial training. Our results show that leveraging the
search space of NAS methods with methods like ensembles
can be an excellent way to achieve adversarial robustness
without any form of adversarial training. We also intro-
duce a metric that can be used to calculate the trade-off
between clean accuracy and adversarial robustness. Code
and pre-trained models will be made available at https:
//github.com/tdchaitanya/nas-robustness
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Figure 1. NAS based architectures are slightly better than
hand-crafted architectures in terms of test accuracy. But
hand-crafted architectures are significantly more robust to
PGD attacks than NAS architectures. Qualitative comparison of
test-set accuracy and PGD accuracy of NAS and hand-crafted ar-
chitectures on CIFAR-10 dataset. Bubble size represents the num-
ber of parameters.

1. Introduction
The choice of neural network architecture and its com-

plex topology play a crucial role in improving the perfor-
mance of several deep learning based applications. How-
ever, in most cases, these architectures are typically de-
signed by experts in an ad-hoc, trial-and-error fashion.
Early efforts on Neural Architecture Search (NAS) [48] al-
leviate the pain of hand-designing these architectures by
partially automating the process of finding the right topol-
ogy that can result in best-performing architectures. Since
the work by [48], there has been much interest in this space.
Many researchers have come up with unique approaches
[45, 4, 31] to improve the performance besides decreasing
the computational cost. Current SoTA (state-of-the-art) on
image classification and object detection [38, 39] are devel-
oped using NAS, which shows how important a role NAS
plays in solving standard learning tasks, especially in com-
puter vision.

Adversarial robustness is defined as the accuracy of a
model when adversarial examples (images perturbed with
some imperceptible noise) are provided as input. Adversar-
ial examples have the potential to be dangerous. [29] dis-
cusses an example where attackers could target autonomous
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vehicles by using stickers or paint to create an adversarial
stop sign that the vehicle could interpret as a yield or other
sign. One commonly used technique to improve the adver-
sarial robustness of neural networks is adversarial training,
but in most of the cases adversarial training decreases the
accuracy on clean (un-perturbed) samples [23, 47]. So, it is
essential to develop architectures that are inherently robust
without any form of adversarial training. This forms the pri-
mary motivation of our work, Can the complex topology of a
neural network architecture provide adversarial robustness
without any form of adversarial training?

In an attempt to understand adversarial robustness purely
from an architectural perspective, we seek to answer the fol-
lowing questions,

• In the absence of adversarial training, how do NAS-
based architectures compare with hand-crafted archi-
tectures (like ResNets [13], DenseNets [14], etc.) in
terms of adversarial robustness?

• Does an increase in the number of parameters of the
architecture help improve robustness?

• Where does the source of adversarial vulnerability lie
for NAS? Is it in the search space or in the way the
current methods are performing the search?

To the best of our knowledge, our work is the first at-
tempt at understanding adversarial robustness purely from
an architectural perspective. We show that the complex
topology of neural network architectures can be leveraged
to achieve robustness without adversarial training. Addi-
tionally, we introduce two simple metrics, Harmonic Ro-
bustness Score (HRS) and Per-parameter HRS (PP-HRS)
that combine: (1) the total number of parameters in a model;
and (2) accuracy on both clean and perturbed samples, to
convey how robust and deployment-ready a given model is
when no adversarial training is performed.

We examine the adversarial robustness of different hand-
crafted and NAS-based architectures in a wide range of
scenarios and find that for large-scale datasets, complex
tasks and stronger attacks (like PGD [23]), traditional hand-
crafted architectures like ResNets and DenseNets are more
robust than NAS-based architectures (Figure 1). This sug-
gests that the adversarial robustness of a model depends sig-
nificantly on network topology. Results of our study can be
used to design network architectures that can give adversar-
ial robustness with no additional adversarial training along
with SoTA performance on unperturbed samples.

2. Related Work
Adversarial Attacks and Robustness: Adversarial ex-
amples, in general, refer to samples that are imperceptible
to the human eye but can fool a deep classifier to predict a

non-true class with high confidence. Adversarial examples
can result in degraded performance even in the presence of
perturbations too subtle to be perceived by humans.

Existing adversarial attacks can be broadly classified into
white-box and black-box attacks. The difference between
these lies in the knowledge of the adversaries. In white-box
attacks, the adversaries have the full knowledge of the target
model, including the model architecture and parameters. In
a black-box setting, the adversaries knowledge is very lim-
ited and may not know details about the model.

In the frameworks of these threat models, several ef-
fective adversarial attacks have been proposed over the
years such as L-BFGS [37], FGSM [10], BIM [19], C&W
attacks [2] JSMA [30], Deep-Fool [25], R-FGSM [40],
StepLL [18], PGD [23] and most recently SparseFool [24],
F-FGSM [42] and AutoPGD [6]. For more information on
adversarial attacks and defenses, please see [3, 33]. White-
box is a stronger setting where attackers can access the
model parameters and architecture. It is also closely related
to the network topology aspect of our study. So we mainly
focus on the white-box setting in our work and present some
results on black-box attacks in the Appendix.

One popular way to improve the adversarial robustness
of deep learning models is adversarial training (AT) [11].
The basic idea of AT is to create and incorporate adver-
sarial samples during training. A critical downside of AT
is that it is time-consuming[35]. In addition to the gradient
computation needed to update the network parameters, each
stochastic gradient descent (SGD) iteration requires multi-
ple gradients computations to produce adversarial images.

Neural Architecture Search (NAS) automates the de-
sign of neural network architectures for a given task.
Over the years, several approaches have emerged to
search architectures using methods ranging from Rein-
forcement Learning (RL) [48], Neuro-evolutionary ap-
proaches [32], Sequential Decision Processes [20], One-
shot methods [31] and fully differentiable Gradient-based
methods [21]. While most of these algorithms attempt to
search a cell architecture (micro search) due to the com-
putational cost involved and repeat the cell a fixed num-
ber of times, few recent approaches have also demonstrated
searching the full architecture (macro search).

Most of the early approaches are based on RL and neuro-
evolutionary algorithms, making the search process com-
putationally intensive. Recently these have been replaced
by one-shot fully-differentiable gradient-based NAS meth-
ods, such as DARTS [21], which are orders of magnitude
faster than non-differentiable techniques and have gained
much traction recently. P-DARTS [5] bridges the gap be-
tween search and evaluation by progressively increasing
search depth. Partially-Connected DARTS [44], a SoTA
approach in NAS, significantly improves the efficiency of
one-shot NAS by sampling parts of the super-network and
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adding edge normalization to reduce redundancy and un-
certainty in search. DenseNAS [9], a more recent method,
attempts to improve search space design by further search-
ing block counts and block widths in a densely connected
search space. Despite a plethora of these methods and their
applications, there has been minimal effort to understand
the adversarial robustness of final learned architectures.

Adversarial Robustness of Architectures: [23] is one
of the early papers to talk about adversarial robustness of
network architectures. It shows that when training with
unperturbed samples, increasing the capacity of the net-
work in terms of width, depth, and the number of param-
eters can alone help improve the robustness for datasets like
MNIST and CIFAR-10. Recently, [43] echoes this obser-
vation by showing the depth of the network helps to im-
prove the adversarial robustness during adversarial training.
Both [23, 43] talk about robustness mainly in the context of
adversarial training. However, our results show that when
no adversarial training is performed, increasing parameters
alone only helps to a certain point and beyond that, it re-
duces the adversarial robustness of the model.

Very recently, there have been limited efforts to improve
adversarial robustness using architecture search [12, 41].
[12] proposes a robust architecture search framework by
leveraging one-shot NAS. However, the proposed method
adversarially trains the entire NAS search space before
starting the search process, making it harder to assess the
contribution of just the architecture to the adversarial ro-
bustness. [41] uses black-box attacks to generate a fixed set
of adversarial examples on CIFAR-10 and uses these ex-
amples to search for a robust architecture using NAS. The
experimental setting is constrained and does not reflect the
true robustness of the model as the adversarial examples are
fixed a priori. No study is done on white-box attacks. Both
[12] and [41] do not make any comparisons with existing
NAS methods (which, as per our study, are already robust
to an extent).

In this work, we mainly focus on evaluating the robust-
ness of SoTA NAS methods on white-box attacks across
datasets of different sizes, including large-scale datasets
such as ImageNet [7] and compare them with hand-crafted
models like ResNets and DenseNets. As a part of our study,
we introduce metrics that can be used to estimate the trade-
off between clean accuracy and adversarial robustness when
comparing architectures within and across different fami-
lies.

3. Robustness of NAS models: A study
We carefully design our experimental setting to answer

the questions stated in Section 1. We begin by describing
the design of our experiments, providing details about
datasets, models, attacks, and metrics.

Datasets: Since we want to compare the robustness of
architectures across different dataset scales and complexi-
ties, we choose four different image classification datasets.
In addition to the standard CIFAR-10 [16] dataset, which
consists of 60K images of 32 ⇥ 32 resolution, we also
choose CIFAR-100 [17] to test if the same robustness trends
hold when the labels turn from coarse to more fine-grained
and the number of classes increase by a factor of 10.
To study the robustness trend for tougher tasks like fine-
grained image classification where the classes are semanti-
cally and perceptually more similar, we choose Flowers-102
dataset [26], which consists of 8189 flowers images split
across 102 categories with number of images in each cate-
gory being between 40 and 258. Since most real-world ap-
plications deal with large-scale datasets, we also test robust-
ness on ImageNet [7] dataset, consisting of ⇠1.3M images
from 1000 classes. This makes our study more complete
when compared to earlier works.
Architectures: We select most commonly used NAS
methods including DARTS [21], P-DARTS [5], Proxyless-
NAS [1], NSGA-Net [22], along with recent methods like
PC-DARTS [44] and DenseNAS [9]. We evaluate five well-
known handcrafted architectures and at least four NAS ar-
chitectures on each dataset mentioned above for a fair com-
parison. For all experiments, we either use pre-trained mod-
els made available by the respective authors or train the
models from scratch until we obtain the performance re-
ported in the respective papers. For the results on Flowers-
102 dataset, we explicitly search for an architecture using
the code provided by [46]. The results for NSGA-Net are
only available for CIFAR-10/100 because its implementa-
tion does not support Imagenet. Similarly, the implementa-
tion of DenseNAS does not support CIFAR-10/100, so the
results are shown only for ImageNet. ProxylessNAS pro-
vides pre-trained models for only CIFAR-10 and ImageNet,
so we show results only for these two datasets.
Ensemble of Architectures: When compared with single
architecture, an ensemble of architectures are known to be
adversarially more robust [27]. To understand the effec-
tiveness of ensembling, in Section 4.4, we random sample
cells from the DARTS search space using the code provided
by [46]; and stack these cells to create small architectures,
since this is randomly sampling, the search cost associated
with building these architectures is zero. After sampling,
we follow the standard DARTS training protocol to train
these architectures. In general, for the CIFAR-10 dataset,
DARTS architectures having 20 cells are trained for 600
epochs. Following this, the number of epochs for train-
ing each network in the ensemble is determined based on
the number of cells in that network. Effectively the ensem-
ble as a whole is trained for 600 epochs to ensure we make
a fair comparison with existing approaches. After training
each of these networks separately, we train a simple linear
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Figure 2. Left: Standard procedure for building architectures from DARTS search space; Right: Procedure for building ensembles using
DARTS search space. 12, 6, 2 can be replaced with any values that sum to 20.

model to combine the individual model outputs. This linear
model is trained only for two epochs. The difference be-
tween standard DARTS and ensembling by sampling from
DARTS search space is visually shown in Figure 2. More
details on the structure of the linear model are discussed in
Section 4.4
Adversarial Attacks: For adversarial robustness, we test
against the standard attacks like FGSM [10], PGD [23] and
also report results on recently introduced F-FGSM [42] and
AutoPGD [6]. For all these attacks, we use a perturbation
value of 8/255(0.03) which denotes the maximum noise
added to each pixel in the input image as perturbation. The
step size is 2/255 (0.007) with the attack iterations set as
10. Moreover, we run the AutoPGD attack with 10 ran-
dom restarts. All these parameter choices are standard and
widely used in the community [28, 8, 42]. Architectures are
trained using standard training protocols, and no adversarial
training is performed. We use the library provided by [15]
for all the adversarial attacks in our experiments.
Metrics: We use Clean Accuracy and Adversarial Accu-
racy as our performance metrics. Clean accuracy refers to
the accuracy on the unperturbed test set as provided in the
dataset. For each attack, we measure Adversarial accuracy
by perturbing the test set examples using various attacks in
the methods listed in the above section (FGSM, F-FGSM,
PGD and AutoPGD).

One of the main problems with adversarially trained
models is that their clean accuracy is usually less than stan-
dard non-adversarially trained models. Adversarial vulner-
ability is a side-effect of overfitting to the training set [34].
While this overfitting gives good performance on the clean
test set, it makes the model vulnerable to adversarial exam-
ples. If the accuracy of a model on clean samples is not
good, it is not useful when deployed in situations where un-
perturbed samples are more frequent. On the other hand,
if the model has SoTA performance on a clean test-set, it

becomes vulnerable to adversarial examples. There is no
well-defined metric to capture this trade-off between clean
and adversarial accuracy.

To this end, we introduce a metric, called Harmonic Ro-

bustness Score (HRS), that is defined as the harmonic mean
of the clean and adversarial accuracy of a given model. HRS
captures the balance of a model’s performance to unper-
turbed inputs and robustness to an adversarial attack . Con-
sider a model with clean accuracy C and Adversarial accu-
racy A (both in percentage), HRS for that model is calcu-
lated as follows:

HRS = 2 · C · A
C + A

(1)

The harmonic mean is better at reflecting extreme differ-
ences in input values, compared to Arithmetic mean. There-
fore, if one of the clean or adversarial accuracy is very low,
then the harmonic mean of C and A would be more reflec-
tive of the same.

A weighted version of HRS, the HRS� score, can also be
used. This is a measure of the model’s performance to clean
as well as perturbed images, weighted according to what the
end-user prefers – clean accuracy, or the adversarial accu-
racy. For a given use case, one might be preferred more to
the other, and hence this metric can be used accordingly.
HRS� is given by,

HRS� = (�2 + 1) · C · A
�2C + A

(2)

where � can be interpreted as the importance of adversar-
ial accuracy over clean accuracy. Since we do not have any
particular preference to adversarial accuracy over clean ac-
curacy (or vice-versa), we use � = 1 for reporting HRS
values. The adversarial accuracy for all models is measured
on perturbed inputs obtained using the PGD [23] attack.
(Choice of PGD is arbitrary, and can be replaced with any
other attack).
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When comparing performances of architectures belong-
ing to the same family, number of parameters play an im-
portant role. A huge parameter difference can easily im-
prove clean and adversarial accuracy, but this comes with
huge training and inference time. So we further define per-
parameter harmonic robustness score (PP-HRS) to measure
the clear accuracy verses adversarial robustness trade-off
within a family of architectures. PP-HRS compares the pa-
rameters of the model with the parameters in the baseline
model of that family. In a family of architectures ( F ), con-
sider a baseline model mb having pb number of parameters,
now for a model mi 2 F with pi number of parameters,
PP-HRS is calculated as follows,

PP-HRS = HRS ⇤ pb
f(pi)

(3)

where the function f(pi) can be defined as per requirement.
We use f(pi) = pi as our function of choice for PP-HRS.
The main motivation behind this choice is to consider the
improvement of accuracy with number of parameters. For
example, in the EfficientNet [38] family, we can compute
the average increase in accuracy per unit increase in the
number of parameters, for the purpose of comparison.

4. Analysis and Results
In this section, we compare and contrast the robustness

of different architectures in a wide-range of scenarios and
answer questions listed in Section 1.

4.1. How do NAS-based models compare with hand-
crafted models in terms of architectural ro-
bustness?

The HRS and robustness of different hand-crafted and
NAS-based architectures on CIFAR-10, CIFAR-100, Ima-
geNet and Flowers-102 datasets are shown in Tables 1, 2, 3,
4 respectively.

In the case of CIFAR-10 and CIFAR-100, NAS-based ar-
chitectures outperform hand-crafted architectures in terms
of architectural robustness for attacks like FGSM and F-
FGSM by a significant margin. However, for stronger
and most commonly used attacks like PGD and AutoPGD,
NAS-based architectures fail significantly compared to
hand-crafted models. In terms of HRS, for CIFAR-10
dataset, the difference in the best-performing NAS and
hand-crafted models is 21%.

This trend seen in CIFAR-10/100 for attacks like FGSM
and F-FGSM do not hold for large-scale datasets like Ima-
geNet and relatively complex tasks like fine-grained classi-
fication. In the case of Imagenet, handcrafted models are
more robust than NAS-based architectures for all the at-
tacks. Similarly, for the task of fine-grained classification
on Flowers-102 dataset, handcrafted models like DenseNet-
169 and VGG-16 beat NAS based architectures by a signifi-

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet-18 93.48 52.43 48.33 24.27 23.13 38.53
ResNet-50 94.38 50.05 45.78 23.45 22.35 37.57
DenseNet-121 94.76 50.94 47.14 24.06 22.66 38.38
DenseNet-169 94.74 53.53 49.47 26.21 24.35 41.06
VGG16 BN 94.07 52.42 46.16 20.03 18.63 33.03

DARTS [21] 97.03 58.53 45.03 7.09 6.10 13.21
PDARTS [5] 97.12 58.67 47.62 9.31 7.98 16.99
NSGA Net [22] 96.94 66.08 56.16 11.1 9.82 19.92
Proxyless-NAS [1] 97.92 51.73 58.38 3.22 4.24 6.23
PC-DARTS [44] 97.05 60.55 48.65 9.84 8.36 17.87

Table 1. For simple attacks, NAS based architectures are ro-
bust, but for strong attacks hand-crafted architectures are bet-
ter. Quantitative comparison of clean accuracy and adversarial
robustness on CIFAR-10 dataset (Top-1 Accuracy)

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet-18 63.87 17.08 17.12 6.05 5.39 11.05
ResNet-50 73.09 19 18.12 5.63 5.16 10.45
DenseNet-121 78.71 22.9 22.22 7.28 6.68 13.33
DenseNet-169 82.44 22.73 21.66 7.37 6.90 13.53
VGG16 BN 72.05 17.09 15.15 4.27 3.81 8.06

DARTS [21] 82.43 24.91 16.34 2.32 1.89 4.51
PDARTS [5] 83.07 27.69 20.23 3.09 2.66 5.96
NSGA Net [22] 85.44 34.93 24.1 2.26 1.94 4.40
PC-DARTS [44] 81.83 26.22 18.35 2.93 2.51 5.66

Table 2. For simple attacks, NAS based architectures are ro-
bust, but for strong attacks hand-crafted architectures are bet-
ter. Quantitative comparison of clean accuracy and adversarial
robustness on CIFAR-100 dataset (Top-1 Accuracy)

cant margin. Even in terms of clean accuracy, for which the
NAS-based models are generally known to be better than
handcrafted models, NAS architectures fail by a margin of
⇠1.5% for the Flowers-102 dataset.

This trend of robustness for all four datasets is clearly
shown in Figure 4. As the dataset size or the task com-
plexity increases, hand-crafted models start to be better
for all the three adversarial attacks. For stronger attacks
like PGD, handcrafted models are more robust when com-
pared to NAS-based architectures at any given dataset scale.
While NAS-based architectures achieve SoTA clean accu-
racy in general, the robustness of these architectures is very
erratic.

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet18 89.08 32.75 18.03 2.41 21.65 4.70
ResNet50 92.86 46.28 26.22 4.68 20.93 8.90
DenseNet121 91.97 56.20 38.11 6.932 24.20 12.89
DenseNet169 92.81 61.89 44.22 10.46 27.15 18.80
VGG16 91.52 33.34 13.54 1.55 19.57 3.05

DARTS 91.26 54.41 31.18 2.94 20.81 5.70
P-DARTS 92.61 55.53 33.87 4.11 20.67 7.86
PC-DARTS 92.49 58.90 37.86 4.75 21.35 9.04
Proxyless-NAS 92.54 59.56 39.69 6.48 22.28 12.11
DenseNAS-Large 92.80 47.91 27.25 2.97 19.62 5.76
DenseNAS-R3 93.81 54.99 32.11 4.32 19.94 8.25

Table 3. As the scale of the problem increases, hand-crafted
architectures are more robust than NAS based architectures.
Quantitative comparison of clean accuracy and adversarial robust-
ness on ImageNet dataset (Top-5 Accuracy)
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Figure 3. DenseNets are always more robust. Qualitative comparison of accuracy of different models for PGD and AutoPGD attacks on
CIFAR-10, CIFAR-100 and ImageNet datasets
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Figure 4. Comparison of PGD accuracy and Parameter count across different family of architectures

Model Clean % FGSM F-FGSM PGD AutoPGD HRS
ResNet-18 95.48 54.33 51.16 11.23 10.38 20.10
ResNet-50 97.31 53.97 52.38 11.36 10.01 20.34
DenseNet-121 97.19 67.4 58.61 16 13.80 27.48
DenseNet-169 97.44 69.11 62.76 18.56 16.48 31.18
VGG16 BN 95.24 72.16 66.06 27.59 26.74 42.78
DARTS [21] 95.97 64.47 59.95 19.29 18.19 32.12
PDARTS [5] 95.12 55.31 51.16 9.52 8.55 17.31
NSGA Net [22] 92.55 40.05 33.58 2.69 2.08 5.23
PC-DARTS [44] 94.02 54.7 45.3 6.84 6.23 12.75

Table 4. For difficult tasks like fine-grained classification,
hand-crafted models with more parameters are robust. Quan-
titative comparison of clean accuracy and adversarial robustness
on Flowers-102 dataset (Top-1 Accuracy)

In summary, as the dataset size (in terms of both sam-
ples and number of classes) or the complexity of the task
increases, NAS-based architectures are more vulnerable to
adversarial attacks than hand-crafted models when no ex-
plicit adversarial training is performed.

4.2. Does an increase in the number of parameters
of architecture help improve robustness?

[36] and [23] observed that within the same family of
architectures, increasing the number of network parameters
helps improve robustness. We therefore hypothesize that
increasing model capacity benefits network robustness. To
study this claim, we compare the robustness of five families
of architectures on the ImageNet dataset with respect to the
parameter count. For comparing the trends, we use PGD ac-
curacy along with the Per-parameter Harmonic Robustness
Score (PP-HRS). The five different families of architectures
we considered for this study are mentioned below.

First, we choose all the eight different variants of the
EfficientNet family [38]. EfficientNet is a family of mod-
els that are developed by taking a NAS-based base model
and scaling its width, depth and input image resolution pro-
portionately using a set of compound-scaling coefficients
which are searched via extensive grid search. We also study
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Family Variant Params (M) Clean % PGD AutoPGD PP-HRS

Efficient-Net

B0 5.29 91.36 8.11 25.61 14.90
B1 7.79 88.89 5.47 24.90 7.00
B2 9.11 92.77 11.40 25.77 11.79
B3 12.23 93.04 13.37 27.15 10.11
B4 19.34 92.73 16.99 29.64 7.86
B5 30.39 90.95 9.37 25.28 2.96
B6 43.04 91.86 11.71 26.17 2.55
B7 66.35 91.57 11.20 27.82 1.59

DenseNAS

A 4.77 90.94 1.84 19.67 3.61
B 5.58 91.89 2.13 19.37 3.56
C 6.13 92.31 2.29 19.22 3.48
Large 6.48 92.80 2.97 19.62 4.24
R1 11.09 91.33 2.01 19.77 3.93
R2 19.47 92.47 3.19 19.60 3.51
R3 24.66 93.81 4.32 19.94 3.71

ResNet 18 11.69 89.08 2.41 21.65 4.69
50 25.56 92.86 4.68 20.93 4.08

DenseNet 121 7.98 91.97 6.93 24.20 12.89
169 14.15 92.81 10.46 27.15 10.60

Table 5. Comparison of parameter count vs Adversarial accuracy
for five different family of architectures on ImageNet dataset

a recent family of SoTA NAS-based models called Dense-
NAS [9]. DenseNAS architectures are developed using two
different search spaces. DenseNAS-A/B/C and Large are
developed using a MobileNetV2-based search space, and
DenseNAS-R1, R2, R3 are developed using a ResNet-based
search space. These networks are listed in the increasing or-
der of their parameters. Lastly, to also understand the trend
in hand-crafted models, we study the robustness of standard
DenseNet and ResNet models.

All the results of this comparison are shown in Table 5
and Figure 4. In 4 out of 5 families considered for this study,
an increase in parameters increases both clean and adversar-
ial accuracy. The maximum value of the parameter count in
these four families in nearly 26 million. This trend of in-
crease in robustness with parameter count is also seen in the
fifth family (EfficientNet) but only up to a parameter count
of 20 million. Increasing the parameters alone beyond 20
million results in a decrease of both clean and adversarial
accuracy. This is probably why EfficientNet considers dif-
ferent image sizes for each of the eight networks. After a
certain point, increasing the parameters alone will not help
improve robustness, and EfficientNet, which has the best
adversarial accuracy in the case of ImageNet dataset, con-
veys this.

“In what family of architectures, is the increase in pa-
rameter count helping the performance?” To better under-
stand this, we report PP-HRS in Table 5. In the case of
DenseNAS models developed using MobileNet-V2 search
space, an increase in parameters from DenseNAS-A to
DenseNAS-Large is improving both clean accuracy and ad-
versarial robustness, which as a result lead to improved PP-
HRS. For all the other families, the increased parameter
count does not give a significant and sufficient improvement
in the PP-HRS and adversarial robustness.

In summary, adversarial robustness can be improved by

increasing the number of parameters, but this holds only
to an extent. Beyond a certain point (approximately 20-
25 million as per our analysis), increasing parameters alone
cannot improve adversarial robustness.

4.3. What makes EfficientNets more robust than
other architectures?

In comparison to the best performing NAS and hand-
crafted architectures in Table 5 (and as discussed in Sec-
tion 4.1), the family of EfficientNet models are signifi-
cantly better in terms of robustness to adversarial attacks.
Among all the architectures compared, EfficientNet-B0 has
the highest PP-HRS of 14.90. In case of PGD, the best per-
forming EfficientNet model, EfficientNet-B4, outperforms
all hand-crafted architectures by atleast 6%. This is a sig-
nificant improvement particularly at the scale of ImageNet
dataset. Further, for AutoPGD, all EfficientNet models per-
form better than all hand-crafted architectures (except for
DenseNet-169 which is still worse than EfficientNet-B4 and
B7).

One significant difference between EffcientNet and ex-
isting NAS and hand-crafted models is the scaling fac-
tor. Most of the hand-crafted and NAS-based architectures
are developed in a micro-style, i.e., a small cell (like the
ResNet block or DARTS cell) is developed/searched, and it
is stacked to build the full architectures of varying depths
and parameter sizes. In the case of EfficientNet, this scaling
is done systematically using a compound scaling method
using a coefficient (�) to scale width, depth, and resolution
in a principled way[38]. This � is specified by the user to
control the resources available for scaling the model pro-
portionately in terms of width, depth and resolution. In our
analysis, for consistency, we keep the image resolution fixed
at 224⇥ 224.

Letting NAS figure out the optimal way to scale a
neural network would alleviate the compute required for
grid-search (for hyperparameters ↵,�, � in EfficientNet)
and makes the complete process of finding an adversari-
ally robust architecture end-to-end. But since Section 4.2
shows that NAS-based architectures are more vulnerable
than hand-crafted ones for larger and complex datasets, it
is important to better understand the source of this vulner-
ability to find more effective ways to scale neural networks
that are also adverasarially robust. We address this in the
next section.

4.4. Where does the source of adversarial vulnera-
bility lie for NAS? Is it in the search space or in
the way the current methods are performing
the search?

In Section 4.2, we see that NAS-based architectures are
more robust than hand-crafted architectures for small-scale
datasets and simpler attacks. However, for stronger attacks
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like PGD, NAS-based architectures are not robust even at
the scale of CIFAR-10. Most of the existing NAS meth-
ods perform the search on CIFAR-10 or a subset of Ima-
geNet, and the discovered cell is stacked and trained for
other datasets. To understand whether the problem lies in
the search space or in the way search is being performed
by the existing methods, we performed two simple experi-
ments.

Our first experiment is motivated by [46]. [46] shows
that a randomly sampled cell in the DARTS search space
gives as good a clean accuracy as a searched cell. To test
if this fact also holds for the case of adversarial robustness,
we sampled random cells from the DARTS search space,
stacked and trained them using the standard procedure, and
tested their robustness on the CIFAR-10 dataset. Due to
the randomness involved, we report the value over four dif-
ferent runs. Results of this experiment are shown in Table
6. We can observed that randomly sampled cells have a
better PGD accuracy than the searched architecture. But
the variance is very high which shows that relying on ran-
domly sampled architectures for adversarial robustness is
not a good idea. This leads us to our second experiment.

For the second experiment, we randomly sample cells
from the DARTS search space to build small models (please
refer to Figure 2 that illustrates this procedure). After train-
ing these models independently, we ensemble the outputs of
all these models using a simple linear network. This linear
model consists of 2 linear layers with batch normalization
and one fully connected classifier layer towards the end that
outputs logits based on the number of classes in the dataset.
This linear model is just fine-tuned for two epochs. Entire
ensemble is treated as one single-network when generating
the adversarial examples. To make a fair comparison, we
ensure that the ensemble as a whole has the same number
of cells as the standard DARTS networks. Since the proce-
dure uses randomly sampled architectures, we run the entire
sample-train-ensemble procedure four times and report the
mean value in Table 6. Due to the randomness involved, this
is a computationally expensive procedure. Therefore, we
restrict our experiments to CIFAR-10 dataset and DARTS
search space.

Model # cells Params (M) Clean % PGD AutoPGD
DARTS [21] 20 3.35 97.03 7.09 6.10
P-DARTS [5] 20 3.43 97.12 9.31 7.98
PC-DARTS [44] 20 3.63 97.05 9.84 8.36

RANDOM? 20 2.73 ± 0.49 95.57 ± 0.40 14.47 ± 4.70 12.56 ± 4.16
ENSEMBLE† 20 2.74 ± 0.41 93.77 ± 0.39 21.68 ± 0.35 20.78 ± 0.39

Value reported over four runs. ? Randomly picked architectures from
DARTS search-space. Value reported over four runs. † Ensemble of
small, randomly picked architectures from DARTS search space.
Table 6. Ensemble of randomly sampled DARTS cells is signif-
icantly more robust than a searched architecture. Adversarial
accuracy comparison of DARTS-based architectures on CIFAR-
10.

Surprisingly this simple ensemble of randomly sampled
architectures can improve the PGD accuracy of DARTS
based models by nearly 12% and can decrease the variance
by ⇠10%. Now, this leads to the following interesting con-
clusions: (1) Learning to build a simple network to com-
bine the outputs of randomly sampled architectures can give
clean accuracy with adversarial robustness as an add-on. In
this case, we used a simple linear model; replacing this with
a searched NAS based architecture can improve the results
further. (2) Using NAS to search for an ensemble of archi-
tectures can be a potential way to achieve adversarial ro-
bustness as an add-on to SoTA clean accuracy. In this case,
the NAS objective should be modified to find small models
that can complement each other. We plan to explore this
in our future work. (3) Both random and ensemble-based
topologies are able to provide significantly better adversar-
ial robustness than existing NAS algorithms. This suggests
that the search space itself is not the source of vulnerabil-
ity. Rather, we need better search algorithms, potentially
ensemble-based, that can leverage the same search space
to build architectures that are inherently more robust even
without any explicit adversarial training.

5. Conclusion
We present a detailed analysis of the adversarial robust-

ness of NAS and hand-crafted models and show how the
complex topology of neural networks can be leveraged to
achieve adversarial robustness without any form of adver-
sarial training. We also introduce a metric that can be used
to calculate the trade-off between clean and adversarial ac-
curacy within and across different families of architectures.
Finally, we show that using NAS to find an ensemble of
architectures can be one potential way to build robust and
reliable models without any form of adversarial training.
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