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Using 980 fb−1 of data collected with the Belle detector operating at the KEKB asymmetric-energy
eþe− collider, we report the measurements of the masses, and the first measurements of the instrinsic
widths, of the Σcð2455Þþ and Σcð2520Þþ charmed baryons. We find MðΣcð2455ÞþÞ −MðΛþ

c Þ ¼
166.17� 0.05þ0.16

−0.07 MeV=c2, ΓðΣcð2455ÞþÞ ¼ 2.3� 0.3� 0.3 MeV=c2, MðΣcð2520ÞþÞ −MðΛþ
c Þ ¼

230.9� 0.5þ0.5
−0.1 MeV=c2, and ΓðΣcð2520ÞþÞ ¼ 17.2þ2.3þ3.1

−2.1−0.7 MeV=c2, where the uncertainties are stat-
istical and systematic, respectively. These measurements can be used to test models of the underlying quark
structure of the Σc states.

DOI: 10.1103/PhysRevD.104.052003

I. INTRODUCTION

The Σc charmed baryons consist of a charm quark in
combination with a spin-1 light (uu, ud or dd) diquark. The
lowest of these states are the Σcð2455Þ isotriplet which have
JP ¼ 1

2
þ, with the next most massive being the JP ¼

3
2
þ Σcð2520Þ isotriplet. All these six states decay strongly
to Λþ

c π. The doubly charged and neutral states, both of
which decay with the emission of a charged pion, have been
well studied. The most precise measurements of their
masses and widths have been made [1] by the Belle
Collaboration using the same dataset as the analysis
presented here. However, π0 transitions have lower effi-
ciency, higher backgrounds and inferior resolution to π�
transitions, so there is comparatively little experimental
information on the singly charged Σþ

c states [2].
All mass measurements of the Σc baryons have been

made with respect to the Λþ
c mass, as the resolution of these

mass differences [denoted ΔðMÞ] is superior to that of the
individual baryons. The CLEO Collaboration has measured
ΔðMÞ for both the Σcð2455Þþ and Σcð2520Þþ states [3]
but were only able to set limits on their intrinsic widths.
The large Belle dataset allows for much more precise

measurements of the masses of these particles than has
been possible hitherto and also the first measurements of
their widths.
Measurements of the masses of all members of the two

isotriplets allow tests of models of isospin mass splittings.
In the model of Yang and Kim [4], for instance, the mass
splittings from the following four sources add: the electro-
magnetic corrections due to the light quarks, the differences
of the masses of the u and d quarks, the hyperfine
interactions between the light quarks, and the Coulomb
interactions between the soliton and charm quark. Most
mass models predict that the singly charged states should
have masses a little lower than their doubly charged and
neutral analogs [5], and this is true in the limited precision
measurements made to date [6].
The natural width of the Σcð2455Þþ is predicted to be

somewhat larger than its isospin partners; this is mostly
because of the effect of the π�=π0 mass difference on
the available phase space for the decay. There is also
a possibility that electromagnetic decays are non-
negligible. Cheng and Chua [7] predict ΓðΣcð2455ÞþÞ ¼
2.3þ0.1

−0.2 MeV=c2 using the experimental value of
ΓðΣcð2455ÞþþÞ ¼ 1.94þ0.08

−0.16 MeV=c2 as input. For the
Σcð2520Þ, it is expected that the instrinsic width of the
Σþ
c will be similar to those measured for its isospin partners

of ΓðΣcð2520ÞþþÞ¼14.8þ0.3
−0.4MeV=c2 and ΓðΣcð2520Þ0Þ ¼

15.3þ0.4
−0.5 MeV=c2, respectively; the two effects listed above

are expected to be small compared with these values.
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In addition to checking the quark model predictions, the
parameters of the Σcð2455Þþ are vital in studies of the
Λcð2595Þþ, whose pole mass appears to be between
the Σcð2455Þþπ0 and Σcð2455Þþþπ− thresholds. This
particle, although generally considered to be an orbitally
excited heavy-quark light-diquark state, has been conjec-
tured to have different underlying quark structure [8]. The
threshold behavior, and thus measurement of the pole mass
and width, of the Λcð2595Þþ is critically dependent on the
masses and widths of the Σc particles.

II. DETECTOR AND DATASET

This analysis uses a data sample of eþe− annihilations
recorded by the Belle detector [9] operating at the KEKB
asymmetric-energy eþe− collider [10]. It corresponds to an
integrated luminosity of 980 fb−1. The majority of these
data were taken with the accelerator energy tuned for
production of the ϒð4SÞ resonance, as this is optimum for
investigation of B decays. However, the Σc particles in this
analysis are produced in continuum charm production and
are of higher momentum than those that are decay products
of B mesons. This allows the use of the complete Belle
dataset which includes data taken at beam energies corre-
sponding to the other ϒ resonances and the nearby
continuum. The Belle detector is a large solid-angle
spectrometer comprising six subdetectors: the silicon ver-
tex detector (SVD), the 50-layer central drift chamber
(CDC), the aerogel Cherenkov counter (ACC), the time-of-
flight scintillation counter (TOF), the electromagnetic
calorimeter (ECL), and the KL and muon detector.
A superconducting solenoid produces a 1.5 T magnetic
field throughout the first five of these subdetectors. The
detector is described in detail elsewhere [9]. Two inner
detector configurations were used. The first comprised a
2.0 cm radius beampipe and a three-layer silicon vertex
detector, and the second a 1.5 cm radius beampipe and a
four-layer silicon detector and a small-cell inner drift
chamber.

III. ANALYSIS

We study Σþ
c baryons from the decay chain

Σþ
c → Λþ

c π
0;Λþ

c → pK−πþ. The decays are reconstructed
from combinations of charged particles measured using the
tracking system, and neutral particles measured in the ECL.
Final-state charged particles, πþ; K−, and p, are selected
using the likelihood information from the tracking (SVD,
CDC) and charged-hadron identification (CDC, ACC,

TOF) systems into a combined likelihood, Lðh1∶h2Þ ¼
Lh1=ðLh1 þ Lh2Þ where h1 and h2 are p, K, and π as
appropriate [11]. We require proton candidates to have
Lðp∶KÞ > 0.6 and Lðp∶πÞ > 0.6, kaon candidates to have
LðK∶pÞ > 0.6 and LðK∶πÞ > 0.6, and pions to have
requirements of Lðπ∶KÞ > 0.6 and Lðπ∶pÞ > 0.6. The
efficiencies of these hadron identification requirements are
about 90%, 90%, and 93% for pions, kaons and protons,
respectively. The probability to misidentify a pion (kaon)
track as a kaon (pion) track is about [9 (10)]%, and the
momentum averaged probability to misidentify a pion or
kaon track as a proton track is about 5%. Combinations of
pK−πþ candidates with an invariant mass within
3.9 MeV=c2 [approximately 2 standard deviations (σ)]
of the Λþ

c were retained as Λþ
c candidates. The number

of events having more than one Λþ
c candidate which share a

daughter particle is approximately 1%.
The π0 candidates are reconstructed from two detected

neutral clusters in the ECL each consistent with being due
to a photon and each with an energy greater than 50 MeV in
the laboratory frame. The invariant mass of the photon pair
is required to be within 5.4 MeV=c2 (≈2σ) of the nominal
π0 mass. The two photons are then constrained to this mass
to improve the momentum resolution of the π0.
To optimize the requirements specific to this analysis, a

simulated data set is constructed using a combination of the
decays under study and eþe− hadronic events generated by
PYTHIA [12]. We find that the following requirements are
optimal for the highest Σcð2455Þþ signal significance: the
momentum of the Σþ

c candidate in the eþe− center-of-mass
frame, p� > 2.6 GeV=c; the momentum of the π0 in
laboratory frame, p > 200 MeV=c.
The Monte Carlo (MC) simulation is performed using a

GEANT-based MC simulation [13] to model the response of
the detector. The photon energy response in the simulation
is corrected to take into account the data-MC difference of
resolution based on studies of mass resolution in the decays
π0 → γγ, η → γγ, and D�0 → D0γ [14,15]. The resolution
of the Σcð2455; 2520Þþ mass peaks is parametrized by
double-Gaussian resolution functions with a small offset in
the peak mass allowed. The parameters of these functions
are shown in Table I, and the statistical uncertainties in
these values are negligible. It is immediately clear that
knowledge of the Σcð2455Þþ signal resolution is vital as it
is similar to the expected intrinsic width. To further check
the MC simulation, a study was made of the decay
D�þ → Dþπ0, where Dþ → K−πþπþ. This decay has
almost the same final state as the one under consideration,

TABLE I. Parameters of the double-Gaussian resolution function derived from the Monte Carlo program.

Particle σnarrowðMeV=c2Þ σwideðMeV=c2Þ Areawide=Areanarrow Mass offset ðMeV=c2Þ
Σcð2455Þþ 1.473 2.932 0.97 0.078
Σcð2520Þþ 2.23 4.22 3.06 0.08
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similar momentum distribution, is much more copiously
produced, and has a very small and well-known intrinsic
width. The resolution of this mode is found to be 3% larger
in data than in MC simulations, and the reconstructed mass
was found to be 0.020� 0.015 MeV=c2 lower, where the
uncertainty is due to the Particle Data Group value [6] as
our statistical uncertainties are negligible. We take these
comparisons into account in the considerations of the
systematic uncertainties of our Σþ

c measurements.
Figure 1 shows the invariant mass distribution for the

Λþ
c π

0 candidates. Clear signals are seen corresponding to
Σcð2455Þþ and Σcð2520Þþ production. In addition, we see
the large enhancement up to a mass difference of
≈200 MeV=c2 due to Λcð2625Þþ → Λþ

c π
0π0 decays as

they produce Λþ
c π

0 combinations with mass differences up
to the kinematic limit ofMðΛþ

c ð2625ÞÞ−MðΛþ
c Þ−Mðπ0Þ¼

207MeV=c2. The simulated shape of this component is
shown in Fig. 1. There is also a possible enhancement due
to Λcð2625Þþ → Σþ

c π
0 decays that may produce an

enhancement at around 194 MeV=c2. These enhancements
were anticipated because of isospin symmetry, but these
particular decays have never been studied. The “cusp”
behavior at around 200 MeV=c2 is particularly problematic
as its shape depends on the relative contributions of three-
body decays, decays proceeding through virtual Σcð2520Þ
production, and the interference between these two [16].
Rather than fitting the entire spectrum, we decided to find
the signal parameters from fits performed to limited-range
subsets of this data which do not include this cusp region.
These are shown in Fig. 2 and Fig. 3 for the Σcð2455Þþ and
Σcð2520Þþ regions, respectively. The results of a global fit
to Fig. 1 will be taken into account in the systematic
uncertainty determination.

A fit is made to Fig. 2 using a third-order Chebychev
polynomial function to represent the background, and a P-
wave relativistic Breit-Wigner function convolved with the
previously described double-Gaussian resolution function,
taking into account the small mass offset. The Breit-Wigner
signal function includes a Blatt-Weisskopf barrier factor
[17], with the radius parameter of R ¼ 3 GeV−1 [18]. The
results of this fit are a mass difference ofΔðMÞ ¼ 166.17�
0.05 MeV=c2 and Γ ¼ 2.3� 0.3 MeV=c2. The fit is made
using a maximum-likelihood method to a large number of
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FIG. 1. The mass difference MðΛþ
c π

0Þ −MðΛþ
c Þ for the entire mass range of interest. The line shows the expected contribution from

Λcð2625Þþ → Λþ
c π

0π0 decays assuming uniform three-body phase-space.
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FIG. 2. The mass difference MðΛþ
c π

0Þ −MðΛþ
c Þ in the region

of the Σcð2455Þþ. The fit to the data is described in the text, and
the lower line shows its contribution from the background
function.
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small bins so that any uncertainty due to bin size is
negligible. A convenient test of the goodness-of-fit is the
χ2 per degree of freedom (reduced χ2) for the distribution as
shown, and for Fig. 2 this reduced χ2 is 49.2=43 ¼ 1.14.
A fit is made to Fig. 3 using a second-order Chebychev

polynomial function to represent the background, and a
P-wave relativistic Breit-Wigner function convolved with
the double-Gaussian resolution function described above.
The results of this fit are a mass difference of ΔðMÞ ¼
230.9� 0.5 MeV=c2 and Γ ¼ 17.2þ2.3

−2.1 MeV=c2. The
reduced χ2 of the fit for the plot as shown is 52.8=44 ¼ 1.20.

IV. SYSTEMATIC UNCERTAINTIES

In all four measurements, we take the systematic
uncertainty due to fitting as the maximum variation of
the measured parameters using different fitting functions
which produce acceptable fits to the data. For the
Σcð2455Þþ we vary the power of the polynomial back-
ground function from 2 to 4, allow the possibility of a
satellite peak due to Λcð2625Þþ → Σþ

c π
0 decays as such

decays are expected at a low level, investigate the changes
in parameters with small changes to the fitting ranges, and
also compare the results of the fit shown in Fig. 2 with the
results of a global fit to Fig. 1 which includes contributions
from Λcð2595Þþ and Λcð2625Þþ decays.
The differences in the values obtained using reasonable

variations of the Blatt-Weisskopf barrier parameter, R, were
found to be small. As the measurement of the D�þ width
indicates a possible underestimation of the detector reso-
lution by 3%, we also perform a fit using a resolution 6%
higher than that found from MC simulations and

conservatively take the change in the parameters as the
systematic uncertainty arising from the uncertainty in
the mass resolution. We similarly study the variation of
the Σcð2520Þþ measured parameters to estimate the asso-
ciated systematic uncertainties, but here we cannot reduce
the order of the polynomial background function as a first
order polynomial does not produce a satisfactory fit to
the data.
For the systematic uncertainty due to the energy scale,

we allow for the possibility that the D�þ mass is measured
up to 0.035 MeV=c2 lower than the true mass. We make the
conservative assumption that the difference between the
measured and canonical masses of the D�þ is entirely due
to a miscalibration of our photon energy scale and use MC
simulation to estimate how a change in the D�þ mass,
which is a decay with a very small four-momentum-
squared ðq2Þ associated with it, translates to a change in
mass for a particle decaying with a larger q2. The result of
this study is a possible upward shift of 0.15 MeV=c2 in
the mass of the Σcð2455Þþ and 0.3 MeV=c2 for the
Σcð2520Þþ. The systematic uncertainty estimations are
tabulated in Table II.

V. DISCUSSION

The measured intrinsic widths are consistent with the
quark model predictions [7], namely that it is the same as the
widths of their isospin partners, except for a small change due
to the increased phase-space available. The measured mass
differences are consistent with, but more precise than, the
previous measurements [6] and confirm the picture in which
the singly charged states are slightly lower in mass than their
isospin partners. According to the model first proposed by
Franklin [19] the value of the mass relationship MðΣþþ

c Þ þ
MðΣ0

cÞ − 2 ×MðΣþ
c Þ should be the same for the Σcð2455Þ

and Σcð2520Þ isotriplets. Combining our measurements for
the singly charged Σc states with those of the Particle Data
Group [6] for the others, we find values of 2.46þ0.17

−0.34 and
2.2þ1.0

−1.4 MeV=c2 for the two systems, respectively, consistent
with the model. Yang and Kim [4] further predict the mass
difference between the singly charged and neutralΣc baryons
should be the same as those between the analogousΞ0

c andΞ�
c

states, and our results are also consistent with this prediction.
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FIG. 3. The mass difference MðΛþ
c π

0Þ −MðΛþ
c Þ in the region

of the Σcð2520Þþ. The fit to the data is described in the text, and
the lower line shows its contribution from the background
function.

TABLE II. Contributions to the systematic uncertainties of the
mass difference and width measurements of the two states in
MeV=c2.

Σcð2455Þþ Σcð2520Þþ
ΔðMÞ Γ ΔðMÞ Γ

Background function þ0.00
−0.07

þ0.30
−0.04

þ0.4
−0.0

þ3.0
−0.5

Signal function þ0.06
−0.01

þ0.01
−0.33

þ0.0
−0.1

þ0.7
−0.5

Photon energy scale þ0.15
−0.00

þ0.00
−0.00

þ0.3
−0.0

þ0.0
−0.0

J. YELTON et al. PHYS. REV. D 104, 052003 (2021)

052003-6



VI. CONCLUSIONS

We measure the mass difference of the Σcð2455Þþ with
respect to theΛþ

c to beΔðMÞ¼166.17�0.05þ0.16
−0.07 MeV=c2

and its intrinsic width Γ ¼ 2.3� 0.3� 0.3 MeV=c2. For
the Σcð2520Þþ the analogous values are ΔðMÞ ¼ 230.9�
0.5þ0.5

−0.1 MeV=c2 and Γ ¼ 17.2þ2.3þ3.1
−2.1−0.7 MeV=c2. These are

the first nonzero measurements of the intrinsic widths of
these particles and show no deviation from the expectations
based upon the precise measurements of their isospin
partners made using the standard quark model.
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