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Abstract—We identify a family of binary codes whose structure
is similar to Reed-Muller (RM) codes and which include RM
codes as a strict subclass. The codes in this family are denoted
as Cn(r,m), and their duals are denoted as Bn(r,m). The length
of these codes is nm, where n ≥ 2, and r is their ‘order’. When
n = 2, Cn(r,m) is the RM code of order r and length 2m.
The special case of these codes corresponding to n being an odd
prime was studied by Berman (1967) and Blackmore and Norton
(2001). Following the terminology introduced by Blackmore and
Norton, we refer to Bn(r,m) as the Berman code and Cn(r,m) as
the dual Berman code. We identify these codes using a recursive
Plotkin-like construction, and we show that these codes have a
rich automorphism group. Applying a result of Kumar et al.
(2016) to this set of automorphisms, we show that these codes
achieve the capacity of the binary erasure channel (BEC) under
bit-MAP decoding.

I. INTRODUCTION

Reed-Muller (RM) codes [1], [2] form one of the important
and well studied code families in coding theory, and have a
rich algebraic structure. In [3], Kudekar et al. showed that
RM codes achieve the capacity of the Binary Erasure Channel
(BEC). Furthermore, Reeves and Pfister [4] have recently
showed the exciting result that RM codes achieve the capacity
of binary-input memoryless symmetric (BMS) channels.

In the present work, we identify a family of binary linear
codes (along with its dual family) which includes the RM
codes as a strict subclass. These codes are defined using a
recursive construction that is similar to the Plotkin construction
for RM codes. This family contains a code for each choice of
three integer parameters:
(i) integers n ≥ 2 and m ≥ 1, which determine the length

of the code, and
(ii) an integer r, with 0 ≤ r ≤ m, that determines the ‘order’

of the code.
We will denote the code with parameters n, r and m by
Cn(r,m). The dual code, Cn(r,m)⊥, will be denoted by
Bn(r,m). The length, dimension and minimum distance of
Cn(r,m) are[

nm,
∑r
w=0

(
m
w

)
(n− 1)w, nm−r

]
. (1)
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The dual code Bn(r,m) has code parameters[
nm,

∑m
w=r+1

(
m
w

)
(n− 1)w, 2r+1

]
. (2)

If we substitute n = 2 in (1) and (2) we obtain the parameters
of the rth order RM code of length 2m, i.e., RM(r,m), and
its dual RM(r,m)⊥ = RM(m − r − 1,m). Indeed, we will
see that the code C2(r,m) is identical to RM(r,m), and by
duality B2(r,m) = RM(m− r − 1,m).

We study various basic properties of Cn(r,m) and Bn(r,m)
in this work. A sub-class of these codes, corresponding to
the case n = p with p being an odd prime, was studied by
Berman [5], and Blackmore and Norton [6] using a group
algebra framework. To the best of our knowledge, Berman [5]
introduced and investigated the code Bp(r,m) and showed
that its minimum distance 2r+1 is better than cyclic codes of
the same length (for large values of m). Later, Blackmore and
Norton [6] showed that the minimum distance of Cp(r,m)
is pm−r and analyzed the state complexity of this code.
Blackmore and Norton refer to Bp(r,m), the code originally
designed by Berman in [5], as the Berman code. We will
follow this precedence, and we will refer to Bn(r,m) as the
Berman code with parameters n, r and m, and Cn(r,m) as
the dual Berman code.

We comment briefly on the differences with RM codes when
n ≥ 3. While RM codes are either self-orthogonal or dual-
containing, Berman codes have complementary duals when n
is odd. Also, RM codes are known to be doubly transitive;
however, Berman codes with n ≥ 3 are not. Further, the
minimum distances of Berman and dual Berman codes grow
slowly with block length N compared to RM codes. For any
choice of n ≥ 2 and any rate in (0, 1), long Berman codes
and their duals have r

m ≈
(n−1)
n . Now fixing n and letting

m→∞, using (1), (2) and the fact r ≈ m(n− 1)/n, we see
that the minimum distance dmin grows with the block length
N as

dmin (Cn(r,m)) ∼ N 1
n , dmin (Bn(r,m)) ∼ N

(n−1)
n log2 n .

In contrast, the minimum distance of RM codes (i.e., the case
n = 2) grows approximately as the square root of N .

In the current work, we define the Berman and dual Berman
codes using a recursive construction similar to the (uuu |uuu+ vvv)
Plotkin construction. We provide a patterned basis for the
dual Berman codes, and use this basis to identify some
automorphisms of Berman codes and their duals (Section II).
Finally, we utilize these automorphisms along with a result
from Kumar et al. [7] to show that these codes are capacity
achieving in the BEC under bit-MAP decoding (Section III).
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In the full version of this paper [8], we provide the proofs
of various results that are not included in this present shorter
version as well as a number of additional results including
identifying natural generator matrices of these codes, efficient
decoding algorithms up to half the minimum distance, a
discrete Fourier transform (DFT) based approach to study
a subclass of these codes, and further simulation results.
Furthermore, except double transitivity, we also show that they
satisfy all the code properties used by Reeves and Pfister in [4]
to show that RM codes achieve the capacity of binary-input
memoryless symmetric channels.

Notation: For any positive integer `, let J`K denote the set
{0, 1, . . . , ` − 1}. The notation 000 denotes a zero-vector or
a zero-matrix of appropriate size. For two vectors aaa,bbb their
concatenation is denoted by (aaa|bbb). We denote an n-length
vector aaa by its components as aaa = (ai : i ∈ JnK). For some
S ⊂ JnK, we denote the vector with components ai : i ∈ S as
aaaS . If aaa is a nm-length vector for some m ≥ 1, we also use
the concatenation representation aaa = (aaa0|aaa1| . . . |aaan−1), where
aaal : l ∈ JnK are subvectors of length nm−1. The individual
components of aaal would be then denoted as al,i : i ∈ Jnm−1K.

II. BERMAN CODES AND THEIR DUALS

A. Recursive Definition of Berman & Dual Berman Codes

We now proceed to give the definitions of the codes pre-
sented in this work. For some positive integers n ≥ 2 and m,
for some non-negative integer r such that 0 ≤ r ≤ m, define
the family of codes Bn(r,m) ⊆ Fnm2 recursively as follows.

Bn(m,m) , {000}, Bn(0,m) , {ccc ∈ Fn
m

2 :
∑
i

ci = 0}.

For m ≥ 2 and 1 ≤ r ≤ m− 1,

Bn(r,m) ,{(vvv0|vvv1| . . . |vvvn−1) : vvvl ∈ Bn(r − 1,m− 1)

∀l ∈ JnK,
∑
l∈JnK

vvvl ∈ Bn(r,m− 1)}.

We refer to the code Bn(r,m) as the Berman code with
parameters n,m, and r. We similarly define the code family
Cn(r,m) ⊆ Fnm2 recursively.

Cn(m,m) , Fn
m

2 , Cn(0,m) , {(0, . . . , 0), (1, . . . , 1)}.

For m ≥ 2 and 1 ≤ r ≤ m− 1,

Cn(r,m) , {(uuu+ uuu0|uuu+ uuu1| . . . |uuu+ uuun−2|uuu) :
uuul∈Cn(r − 1,m− 1)∀l ∈ Jn− 1K,uuu∈Cn(r,m− 1)}.

We shall refer to Cn(r,m) as the dual Berman code with
parameters n,m and r (this nomenclature will be validated
in Theorem II.1, where we show that the codes Bn(r,m) and
Cn(r,m) are dual to each other). Also, observe that when
n = 2, the code C2(r,m) is then defined as C2(r,m) = {(uuu+
uuu0|uuu) : uuu0 ∈ Cn(r − 1,m − 1),uuu ∈ Cn(r,m − 1)}, which

coincides with RM(r,m). Thus the class of codes Cn(r,m)
includes the Reed-Muller codes.
Example II.1. We give some specific examples of the codes
defined above.
• By the recursive definition, the single parity check code

is used as the building block along with a global parity
to obtain the following code for n = 3,m = 2, r = 1,

B3(1, 2) = {(vvv0|vvv1|vvv0 + vvv1) : vvv0, vvv1 ∈ B3(0, 1)}
= {(v00, v01, v00 + v01|v10, v11, v10 + v11|

v00 + v10, v01 + v11, v00 + v01 + v10 + v11) :

vij ∈ F2,∀i, j ∈ {0, 1}}.

• The code C3(1, 2) is shown below as per the recursive
construction. It is easy to verify that it is dual to B3(1, 2).

C3(1, 2) = {(u00, u00, u00|u10, u10, u10|0, 0, 0)+
(u0, u1, u2|u0, u1, u2|u0, u1, u2) :

u00, u10, u0, u1, u2 ∈ F2}.
�

It is clear that the codes Cn(r,m) and Bn(r,m) are linear.
We shall now provide various properties of these codes. The
techniques involved in the proofs (available in [8]) are similar
to those for RM codes, mainly involving induction on the
parameter m. The parameters of Cn(r,m) were previously
derived in [6, Remark 2.4], and the parameters of Bp(r,m)
for odd prime p were derived in [5, Theorem 2.2], both using
a group algebra framework.

Theorem II.1. (Basic properties of Cn(r,m) and Bn(r,m).)
1) Containment property: For 1 ≤ r ≤ m,

a) Bn(r,m) ⊂ Bn(r − 1,m).
b) Cn(r − 1,m) ⊂ Cn(r,m).

2) Dimension:

dim(Bn(r,m)) =

m∑
w=r+1

(
m

w

)
(n− 1)w,

dim(Cn(r,m)) =

r∑
w=0

(
m

w

)
(n− 1)w.

3) Duality: Cn(r,m)⊥ = Bn(r,m).
4) Minimum Distance:

dmin(Bn(r,m)) = 2r+1,∀0 ≤ r ≤ m− 1,

dmin(Cn(r,m)) = nm−r,∀0 ≤ r ≤ m.

B. A Patterned Basis for the Berman Code

Our next goal is to obtain a special patterned basis for
Bn(r,m). Towards that end, we now give some notation to
work with the indices of vectors in F

nm

2 . This notation will
also be used in the forthcoming section. Let G = JnK =
{0, 1, . . . , n − 1}. We then identify the nm coordinates of
an arbitrary vector vvv ∈ Fnm2 using the m-tuples in Gm, i.e.,
vvv = (viii : iii ∈ Gm). We also write vvv as a concatenation of
n vectors from F

nm−1

2 , denoted by vvv = (vvv0| . . . |vvvn−1). The
subvector vvvl ∈ Fn

m−1

2 is then recursively identified as follows.
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• For any iii′ ∈ Gm−1, the component of vvvl indexed by iii′

is identified as vl,iii′ = v(iii′|l) which is the component of
vvv indexed by (iii′ | l) ∈ Gm.

We also need the following definition of a patterned-vector
in F

nm

2 . For m ≥ 1 and some iii′ ∈ Gm, define the vector
cccm(iii′) ∈ Fnm2 as consisting of the entries

cm(iii′)iii =

{
1 if supp(iii) ⊆ supp(iii′) and iiisupp(iii) = iii′supp(iii)

0 otherwise,

∀iii ∈ Gm, where supp(iii) , {l ∈ JmK : il 6= 0} is the support
set. That is, the vector cccm(iii′) has 1 exactly in those coordinates
iii ∈ Gm which satisfy il = i′l for all l : il 6= 0. We give an
example to illustrate the definition of cccm(iii′).
Example II.2. Consider m = 3, n = 3, and G = {0, 1, 2}. Let
iii′ = (1, 2, 0) ∈ G3. The components of the vector ccc3(iii′) ∈ F27

2

are as follows.

ccc3(iii
′)iii =

{
1 for iii ∈ {(0, 0, 0), (1, 0, 0), (0, 2, 0), (1, 2, 0)},
0 otherwise.

�
We are now ready to show a patterned basis for Bn(r,m).

Let wH(iii) , |supp(iii)| be the Hamming weight of iii.

Lemma II.1. For m ≥ 1, and 0 ≤ r ≤ m − 1, consider the
collection of elements in Fn

m

2 given by

BBn(r,m) = {cccm(iii′) :

∀iii′ ∈ Gm such that r + 1 ≤ wH(iii′) ≤ m}. (3)

Then the collection BBn(r,m) is a basis for Bn(r,m).

Proof: We first show that the vectors in BBn(r,m) are
linearly independent. Let B′ be any non-empty subset of
vectors from BBn(r,m). Note that each vector in B′ is of the
form cccm(iii′) for some unique iii′ ∈ Gm with wH(iii′) ≥ r + 1,
by the construction of set BBn(r,m).

We will show that the F2-sum of the vectors from B′ cannot
be zero, which suffices to show that BBn(r,m) is a linearly
independent set of vectors.

Let cccm(iiid) ∈ B′ be such that wH(iiid) ≥ wH(iii′) for any
cccm(iii′) ∈ B′. Thus, cccm(iiid) is a maximal element in B′ in this
sense. Note that such a maximal element cccm(iiid) will always
exist for any non-empty B′ ⊆ BBn(r,m).

We observe the following by the definition of the vectors
cccm(iii′) ∈ BBn(r,m). For any cccm(iii′) ∈ B′, if cm(iii′)iiid = 1,
we must have supp(iiid) ⊆ supp(iii′) and iii′supp(iiid) = (iiid)supp(iiid).
By the maximality of cccm(iiid), we must have wH(iiid) = wH(iii′).
Hence, by these observations, we must have that iii′ = iiid. Thus,
the sum of vectors in B′ cannot be 000 (as the iiithd coordinate
in the sum cannot be 0). Thus, the vectors in BBn(r,m) are
linearly independent.

Also, we see that |BBn(r,m)| =
∑m
w=r+1

(
m
w

)
(n− 1)w =

dim(Bn(r,m)). Thus, showing that BBn(r,m) ⊂ Bn(r,m)
will conclude the proof. The rest of the proof is devoted to
showing this statement.

Consider an arbitrary cccm(iii′) ∈ BBn(r,m). Note that
wH(cccm(iii′)) = 2wH(iii′) ≥ 2r+1, by definition. Thus, cccm(iii′) ∈

Bn(0,m) has even weight. Thus the statement holds for r = 0
for any m. Thus, the statement holds for m = 1.

Now we prove the statement for r ≥ 1,m ≥ 2
assuming it holds for m − 1. Recall that we can use
the concatenation representation for cccm(iii′) as cccm(iii′) =
(cccm(iii′)0|cccm(iii′)1| . . . |cccm(iii′)n−1). We consider two cases.

Case (a): m − 1 ∈ supp(iii′). Let i′m−1 = l′ ∈ G \ {0}.
Thus, for some iii ∈ Gm, if im−1 ∈ G \ {l′, 0}, then
cccm(iii′)iii = 0. This means cccm(iii′)l = 000 ∈ F

nm−1

2 if l /∈
{l′, 0}. Further if l ∈ {l′, 0}, then we can observe that
cccm(iii′)l = cccm−1(iii

′
Jm−1K) ∈ F

nm−1

2 , where we recall the
notation iii′Jm−1K = (i′l : l ∈ Jm − 1K). As supp(iii′Jm−1K) =

supp(iii′) \ {m − 1}, thus r ≤ wH(iii′Jm−1K) ≤ m − 1, which
means cccm−1(iii′Jm−1K) ∈ BBn(r− 1,m− 1). By the induction
hypothesis, we thus have cccm−1(iii′Jm−1K) ∈ Bn(r − 1,m− 1).
Further,

∑
l∈JnK cccm(iii′)l = cccm(iii′)0+cccm(iii′)l′ = 000 ∈ Bn(r,m−

1). Thus the two conditions in the definition of Bn(r,m) are
satisfied, and thus cccm(iii′) ∈ Bn(r,m).

Case (b): m − 1 /∈ supp(iii′). In this case, a necessary
condition for cccm(iii′)iii = 1 is that m−1 /∈ supp(iii). This means
we have cccm(iii′)l = 000 if l 6= 0, and cccm(iii′)l = cccm−1(iii

′
Jm−1K) ∈

F
nm−1

2 for l = 0. Now, as supp(iii′Jm−1K) = supp(iii′), this
means that r + 1 ≤ wH(iii′Jm−1K) = wH(iii′) ≤ m − 1. Hence,
cccm−1(iii

′
Jm−1K) ∈ BBn(r,m − 1) and thus cccm−1(iii′Jm−1K) ∈

Bn(r,m − 1) by the induction hypothesis. By Theorem II.1
(part 1), this means cccm−1(iii′Jm−1K) ∈ Bn(r − 1,m − 1). It is
thus clear that the conditions in the definition of Bn(r,m) are
satisfied by the vector cccm(iii′). This concludes the proof.

Example II.3. For the code B3(1, 3), with the coordinates
indexed by {0, 1, 2}3, Lemma II.1 shows that the following
collection BB3

(1, 3) consisting of 20 vectors is a basis.⋃
a,b,c∈{1,2}

{ccc3((a, b, 0)), ccc3((0, a, b)), ccc3((a, 0, b)), ccc3((a, b, c))}

�

C. Some useful automorphisms of Bn(r,m) and Cn(r,m)

The results in this sub-section specify some automorphisms
of the code Bn(r,m) (and hence for Cn(r,m), by duality).

Lemma II.2. Let σ be any permutation of the set G. The
following permutation πm−1,σ on the m-tuples in Gm is an
automorphism of Bn(r,m).

πm−1,σ : (i0, . . . , im−2, im−1) 7→ (i0, . . . , im−2, σ(im−1)).

Proof: Let vvv = (vvv0| . . . |vvvn−1) be an arbitrary codeword
in Bn(r,m). We want to show that the vector vvv′, with
coordinates v′iii = vπm−1,σ(iii), also lies in Bn(r,m).

To see this, observe that if we write vvv′ as (vvv′0| . . . |vvv′n−1),
for any l ∈ JnK we have that vvv′l = vvvl′ for precisely that unique
l′ such that σ(l′) = l. Thus, the subvectors of vvv′ are precisely
the same as those in vvv, only their positions are permuted. Thus
vvv′ satisfies the two conditions in the definition of Bn(r,m).
Hence vvv′ ∈ Bn(r,m), which completes the proof.
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Lemma II.3. For any t ∈ Jm−1K, the permutation βt on Gm

defined below is an automorphism of Bn(r,m).

βt : (i0, . . . , im−1) 7→ (i0, . . . , it−1, im−1, it+1, . . . , im−2, it).

Proof: Clearly, the statement is true for r = m. Hence
we assume r ≤ m − 1. Recalling the definition of the set
BBn(r,m) in (3), to show the lemma, it is sufficient to show
that for each cccm(iii′) ∈ BBn(r,m), the permuted vector ccc′

defined below is also in BBn(r,m).

c′iii = cm(iii′)βt(iii), ∀iii ∈ G
m. (4)

We shall in fact prove that ccc′ = cccm(βt(iii
′))). The proof will

then be complete as βt is a one-one map.
Firstly we observe that the following two statements are

equivalent for any iii ∈ Gm, because βt is a self-inverse
permutation.
• supp(βt(iii)) ⊆ supp(iii′) and βt(iii)supp(βt(iii)) = iii′supp(βt(iii)),

are both true.
• supp(iii) ⊆ supp(βt(iii

′)) and iiisupp(iii) = βt(iii
′)supp(iii), are

both true.
Now, using the above equivalence and (4), we have,

c′iii =

{
1 if supp(iii) ⊆ supp(βt(iii

′)) & iiisupp(iii) = βt(iii
′)supp(iii),

0 otherwise,
(5)

for all iii ∈ Gm. Clearly, by (5), we see that ccc′ is precisely the
vector cccm(βt(iii

′)). Since wH(βt(iii
′)) = wH(iii′) ≥ r + 1, we

have that cccm(βt(iii
′)) ∈ BBn(r,m) as well. This completes the

proof.
We now summarize the results from the above two lemmas.

We use Sm to denote the symmetric group of degree m, i.e.,
Sm is the group of all permutations on JmK.

Theorem II.2. Let σ0, . . . , σm−1 be any permutations of the
set G, and let γ ∈ Sm. The following permutations on Gm

are automorphisms of Bn(r,m) and Cn(r,m).

(i0, . . . , im−1)→ (σ0(i0), . . . , σm−1(im−1)),

(i0, . . . , im−1)→ (iγ(0), . . . , iγ(m−1)).

Proof: It is sufficient to show that the permutations in
the statement are automorphisms of Bn(r,m) because of the
duality of Bn(r,m) and Cn(r,m).

Part 1): For any t ∈ Jm− 1K, the permutation

(i0, . . . , im−1)→ (i0, . . . , it−1, σt(it), it+1, . . . , im−1),

is identical with the composition βtπm−1,σtβt, where πm−1,σt
and βt are as defined in Lemma II.2 and Lemma II.3 respec-
tively. Thus, the permutation

(i0, . . . , im−1)→ (σ0(i0), . . . , σm−1(im−1)), (6)

is identical with the composition

πm−1,σm−1

( ∏
t∈Jm−1K

βtπm−1,σtβt

)
. Since the set of

automorphisms of Bn(r,m) form a group under composition,

by Lemmas II.2 and II.3, we have that (6) is an automorphism
of Bn(r,m).

Part 2): It is known (see, for example, [9]) that any
permutation γ ∈ Sm can be generated by a composition of
transpositions, where a transposition refers to a permutation
which interchanges one element of JmK with another, and
leaves the other elements as is. Observe that βt as in Lemma
II.3 is precisely the transposition that interchanges t with
m − 1. Further, a transposition that interchanges two distinct
elements t1, t2 ∈ Jm− 1K can be obtained as the composition
βt2βt1βt2 . This completes the proof following Lemma II.3 and
because the automorphisms of Bn(r,m) form a group.

III. CAPACITY-RELATED PROPERTIES

A. Rate of Bn(r,m) and Cn(r,m)

The rate of Cn(r,m) is Rn(r,m) ,
∑r
w=0 (

m
w)(n−1)

w

nm ,
which is equal to the fraction of vectors in Gm with weight
at the most r. Similar to RM codes [4], the rate of Cn(r,m)
can be seen to be equal to the cumulative distribution function
of a binomial random variable with m trials and probability
of success (n − 1)/n (please see [8] for more details). The
Berry-Esseen inequality [10] can be used to approximate
this distribution function with that of the standard Gaussian.
Let Q(x) =

∫∞
x

1√
2π
e−t

2/2dt be the tail probability of the
standard Gaussian distribution. The Berry-Esseen inequality
guarantees that there exists a constant κ > 0, that depends
only on n, such that∣∣∣Rn(r,m)−

(
1−Q

(
r−mµ√
mσ2

))∣∣∣ ≤ κ√
m
, (7)

where µ = (n−1)/n and σ2 = (n−1)/n2. We also note that
1 − Rn(r,m) is the rate of Bn(r,m). Hence, from (7), we
deduce that the rate of Bn(r,m) is Q

(
r−mµ√
mσ2

)
+O

(
1√
m

)
.

B. Achieving the BEC Capacity

Kumar, Calderbank and Pfister [7, Theorem 19] use code
automorphisms to provide a sufficient condition for a code to
achieve the capacity of BEC under bit-MAP decoding. This
condition is less demanding than requiring double transitivity,
which was the property used in [3] to prove RM codes achieve
BEC capacity. To use this result on a sequence of codes with
increasing block lengths, we require the following

1) the rates of the sequence of codes must converge to a
value in (0, 1),

2) each code in this sequence must be transitive,
3) for each code the orbit of the coordinates under a sub-

group of automorphisms (those automorphisms that fix an
arbitrarily chosen coordinate) must be sufficiently large.

We will now apply this result to the family of codes
{Cn(r,m)}. A similar result holds for {Bn(r,m)}.

1) Code Sequence with Converging Rate: For a given n ≥ 2
and R∗ ∈ (0, 1), consider a sequence of codes {Cn(rl,ml)}
with ml →∞ and rl = mlµ+Q

−1(1−R∗)
√
mlσ2+o(

√
ml).

Using (7) we note that the rate Rn(rl,ml)→ R∗ as ml →∞.
Hence, for any R∗ ∈ (0, 1) there exists a sequence of Cn(r,m)
codes with increasing lengths, and rates converging to R∗.
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2) Transitivity: We now use Theorem II.2 to observe that
for any choice of parameters n, r,m, the code Cn(r,m) is
transitive. Consider any choice of coordinates iii, jjj ∈ Gm. We
need to show that there is a code automorphism that maps iii
to jjj. Let σ0, . . . , σm−1 be permutations of the set G such that

σ0(i0) = j0, . . . , σm−1(im−1) = jm−1.

Applying Theorem II.2 for this choice of σ0, . . . , σm−1 shows
that Cn(r,m) is indeed transitive.

3) Orbits Under a Subgroup of Automorphisms: Let G0
be the subgroup of automorphisms of Cn(r,m) that fixes the
coordinate 000 ∈ Gm. We want a lower bound on the size of
the orbits of iii ∈ Gm \ {000} under the action of G0, which is

Or,m(iii), {π(iii) : π ∈ G0} .

We will identify a subset of Or,m(iii) to obtain this lower bound.
Consider any iii 6= 000 and any jjj ∈ Gm such that supp(iii) =

supp(jjj). There exist m permutations of G, σ0, . . . , σm−1, such
that

σl(il) = jl and σl(0) = 0 for all l ∈ JmK.

Using Theorem II.2, we see that the map (k0, . . . , km−1) →
(σ0(k0), . . . , σm−1(km−1)) is an automorphism of Cn(r,m)
that fixes 000 and sends iii to jjj. We thus conclude that Or,m(iii)
contains all jjj such that supp(jjj) = supp(iii).

Now, for a given iii 6= 000, consider any jjj such that wH(jjj) =
wH(iii). Clearly, there exists a permutation γ ∈ Sm such that
supp(jjj) = supp(γ(iii)). From our argument in the previous
paragraph, jjj ∈ Or,m (γ(iii)). Since γ is a code automorphism
that fixes 000, we see that γ(iii) itself belongs to Or,m (iii), and
therefore, jjj ∈ Or,m(iii). We have thus showed that for any
iii 6= 000, Or,m(iii) ⊇ {jjj ∈ Gm : wH(jjj) = wH(iii)}. Hence,

|Or,m(iii)| ≥
(

m

wH(iii)

)
(n− 1)wH(iii).

Note that for any n ≥ 3, and any iii ∈ Gm \ {000}, we have

|Or,m(iii)| ≥ 2m.

We are now ready to apply [7, Theorem 19]. Let n ≥ 3.
Consider a sequence of codes {Cn(rl,ml)} with ml →∞ and
rates converging to R∗ ∈ (0, 1). All the codes in this sequence
are transitive, and they satisfy

min
iii∈Gml\{000}

|Orl,ml(iii)| → ∞ as l→∞.

These are precisely the sufficient conditions identified in [7]
to guarantee that this sequence of codes has a vanishing bit
erasure probability under bit-MAP decoding in the BEC for
any channel erasure probability ε < (1 − R∗). Note that a
similar result holds for Berman codes {Bn(r,m)}.

IV. SIMULATION RESULT

In our simulations we have compared codes with reasonably
close rates and lengths. To account for the difference in the
rates we use ε− (1−R), instead of ε, as the horizontal axis in
our plots (where R is the code rate). Note that ε−(1−R) is the
difference between the actual channel erasure probability and
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Fig. 1. The block and bit erasure rates of B3(5, 7) and RM(4, 11) in BEC.

the capacity limit (i.e., 1− R is the highest possible channel
erasure probability that any code of rate R can withstand).

We compare the block erasure rate PB (under block-MAP
decoding) and bit erasure rate Pb (under bit-MAP decoding)
of B3(5, 7) with RM(4, 11) in Fig. 1. The parameters of these
two codes are [2187, 576, 64] and [2048, 562, 128], respec-
tively. Note the similarity in their bit erasure rate performance
for Pb ≥ 10−5.

In [8], we compare the performances of the dual Berman
code C3(5, 7) (with parameters [2187, 1611, 9]) and RM(6, 11)
(parameters [2048, 1486, 32]). While these two codes have
similar Pb, the PB curve of C3(5, 7) exhibits a high floor due
to its small minimum distance.

V. DISCUSSION

We identified a family of codes that includes the RM
codes [1], [2] (n = 2) and whose properties are similar to
RM codes. While the similarity of Cn(r,m) and Bn(r,m)
to RM codes is striking, there are some key differences as
well, especially in terms of the minimum distance and the
automorphism group. Our guarantees on capacity achievability
in the BEC are in the sense of vanishing bit erasure probability
Pb. It is not clear if these codes have vanishing block erasure
probability PB under block-MAP decoding for rates close
to capacity limit. It is possible that some of the differences
of Cn(r,m) and Bn(r,m) with RM codes might offer ad-
vantages. For large block lengths, the minimum distance of
Cn(r,m) is significantly smaller than that of RM codes. This
implies that its dual Bn(r,m) has a parity check matrix
that is considerably sparser than the parity-check matrix of
RM codes. This sparsity might be useful in designing low
complexity iterative decoders for Bn(r,m), see [11].
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