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ABSTRACT

Graph inference plays an essential role in machine learning,
pattern recognition, and classification. Signal processing
based approaches in literature generally assume some varia-
tional property of the observed data on the graph. We make
a case for inferring graphs on which the observed data has
high variation. We propose a new signal processing based
inference model and a new learning criterion that allow for
wideband frequency variation in the data and derive an algo-
rithm for graph inference. The proposed inference algorithm
consists of two steps: 1) learning orthogonal eigenvectors of
a graph from the data; 2) recovering the adjacency matrix of
the graph topology from the given graph eigenvectors. The
first step is solved by an iterative algorithm with a closed-
form solution. In the second step, the adjacency matrix is
inferred from the eigenvectors by solving a convex opti-
mization problem. Numerical results on synthetic data show
the proposed inference algorithm can effectively capture the
meaningful graph topology from observed data under the
wideband assumption.

Index Terms— Graph signal processing, Graph topology
inference, Sparse reconstruction, Graph learning.

1. INTRODUCTION

Graph Signal Processing (GSP) provides a framework for pro-
cessing data which is unstructured, complex, and massive.
Such data is ubiquitous including the data from brain net-
works [1], sensor works, gene networks and transport net-
works [2] as examples. GSP handles such complex data by ef-
fectively capturing the underlying relationship using graphs.
In most of these domains, the signal of interest is more nat-
urally indexed by the vertices of an underlying graph. The
additional information from graph topology (which possibly
encodes latent domain constraints) potentially allows better
signal processing techniques than the classical framework.
Research over the past decade has been successful in applying
conventional signal processing techniques, like rate of change
or frequency properties, to graphs [3]. Among the many sub-
fields in this research include designing graph filters, sam-
pling, graph neural networks and graph learning from data. In
the graph learning paradigm (the focus of this paper), the goal

is to infer the underlying graph structure, given the data as
signals (indexed by the vertices of such graph), with some as-
sumptions on the relationship between the graph and the sig-
nal space. Most of these assumptions are based on the graph
spectrum: this is indicative of how much a signal is allowed
to change across an edge of the graph. Graph learning has
found applications in diverse areas such as machine learning,
biological network, and sensor networks [4]. The papers [5],
[6] have surveyed most of the work so far on graph learning
from the signal processing perspective.

Graph reconstruction from the given data requires certain
assumptions on how the data is related to the graph. Global
smoothness based approaches essentially assume all observed
signals have low graph frequencies (i.e., vary smoothly over
the edges of the graph) [7], [4], [8]. Filtering based techniques
essentially assume a linear map from the unknown input to the
observed signals, and hence try to force all of the observed
data into the same graph frequency spectrum [9]. Diffusion
based approaches assume the data is generated as a smooth
diffusion process starting from a few heat sources [10] thus
implicitly force a low pass filtering on the graph signal spec-
trum.
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Fig. 1: Lateral inhibition system models.

However, to the best of our knowledge, these approaches
do not seem to allow the data to have both low and high graph
frequencies. High frequency (negative correlation/high rate
of change) across graph edges also conveys a structural rela-
tionship in the data. Hence it may not be prudent to allow
only smooth variation. In graph based image processing, the
high frequency represents the edges and transitions in the im-
age, and often needs to be retained and enhanced [11]. As
discussed in [12, pp-881], [13], one of the reasons GSP based
analysis is appealing to brain imaging techniques is its abil-
ity to capture high frequency variation. For example, in [14],
[13] the graph spectrum of brain signals during visual-motor
learning tasks was decomposed into the low, band and high
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frequency components; and it was observed that most of the
information of brain signals have both low and high graph
frequencies.

As an additional motivation for considering high frequen-
cies, we consider lateral inhibition, a mechanism that occurs
in neuro-biology and gene interactions. Lateral inhibition is a
cell to cell or neuron to neuron signal mechanism, where the
excited neuron inhibits the action of the neighboring neurons.
Figure 1 illustrates the process of lateral inhibition, where the
red nodes are capacity excited neurons that reduce the activity
of their neighbors (white nodes) [15]. While the phenomenon
of diffusion is more suitably captured by low frequencies, lat-
eral inhibition is more suitably captured by high frequency
variation on the graph. Existing methods do not seem to per-
form well when data has such high frequency variation (see
the discussions in Sections 2 and 4).

Also, allowing the observed data to have high graph fre-
quencies might result in a more compact and informative
graph structural representation, which might be practically
useful. This is the main motivation for our work in this paper.

To account for a wide range of frequencies, we propose a
new sparsity based graph learning model and a new learning
criterion. Based on this model and criterion, we proceed in
two phases - we first provide an algorithm for estimating the
eigenvectors of the graph matrix and then proceed to find the
eigenvalues from the eigenvectors in the second phase [9]. In
principle, our model in this paper is similar to the block spar-
sity models of [16], [17] where all signals are assumed to have
the same frequency support and behave smoothly with respect
to the underlying graph structure; however, the crucial differ-
ence is that we allow our data to have arbitrary frequency sup-
port anywhere within the entire frequency range. We refer to
these as wideband graph signals.

The paper is organized as follows. In Section 2, we review
graph signal processing along with notations used in the rest
of the paper. In Section 2.1, we introduce the notation, prob-
lem statement, and an overview of the proposed algorithm.
In Section 3 we give an overview of the proposed algorithm.
Subsequently, in section 4, we discuss the results obtained
using the proposed algorithm on synthetic datasets and pro-
vide a comparison with other well known graph learning al-
gorithms. Finally, Section 5 concludes the work.

2. NOTATIONS AND PROBLEM FORMULATION

We assume the set of vertices of the underlying graph G is
V = {1, 2, . . . , N}, and the set of edges is E, potentially
with each edge having some non-negative weight. We denote
by AG the adjacency matrix of the graph G: an N ×N matrix
whose entries are the weights of the corresponding edges. The
degree matrixDG is a diagonalN×N matrix whose diagonal
entries are the number of edges from a given vertex (or, for
weighted graphs, the sum of weights of edges incident on a
vertex). We denote the Laplacian matrix of the graph G as

LG = DG − AG . The subscript G is omitted if the graph is
apparent from the context.

A graph signal x ∈ RN is a mapping x : V 7→ R. Simi-
lar to traditional signals, the notion of graph frequencies and
graph Fourier transform of graph signals can be defined ([2],
[18], [3]). For a graph signal x defined on a graph G, the
Graph Fourier Transform (GFT) y of x is defined as y = V T

G x
where the VG is the eigenvector matrix of AG . The quadratic
form xTLGx captures the variation of the signal x over the
graph LG . Thus the eigenvectors of the Laplacian LG have
a natural rate of change interpretation: the eigenvectors cor-
responding to smaller eigenvalues do not vary much over the
edges of the graph; and eigenvectors corresponding to larger
eigenvalues have more variation. The number of nonzero co-
efficients in vector y is ‖y‖0. In this work, we focus on
adjacency-based graph transforms, though similar techniques
may apply to Laplacian-based transforms as well.

2.1. Problem formulation

Given the set of observations x1,x2, . . . ,xm ∈ RN from the
unknown graph, the graph learning problem is to infer the
unknown underlying graph. A popular graph learning algo-
rithm [4] tries to find a graph G such that the observations
vary smoothly (or have low variation) on the graph:

arg min
LG ,Z

‖X − Z‖2F + αTr(ZTLGZ) + β ‖LG‖2F (1)

s.t. tr(LG) = N,LG ij = LGji ≤ 0, i 6= j, LG · 1 = 0

Here X is the N × M observation matrix that has
x1,x2, . . . ,xM as its columns. The second in the objec-
tive function for 1 forces the signal on the learned graph to be
smooth (and hence contains only low frequencies [4]). The
third term is a regularization term that ensures that the entries
of LG are not too large.

As motivated in the introduction, we consider the scenario
when the observed signals are not necessarily smooth on the
underlying graph. We assume that the observed signals are
a sparse combination of graph eigenvectors VG , as described
in (2). Such a model allows for the underlying graph rep-
resentation to be compact, especially in settings like lateral
inhibition, where large variation on the graph is natural.

xi = VG yi + η, ‖yi‖0 ≤ k (2)

A constraint in (2) allows the observed data to be maximum k
linear combinations of the eigenvectors. In other words, this
model allows the graph signal xi to have at most k nonzero
frequency components; but these k components could be from
any region of the spectrum. Suppose the matrix Y is obtained
by stacking the GFTs of x1,x2, . . . ,xM in the data: Y =
(y1 y2 . . .yM ), then we have

X = VGY + η (3)

Here η is the noise in observation. Given X , mathematically,
the problem of graph learning using spectral constraints is to
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solve the optimization problem (4): we try to minimize the
error between the observed signal and the original signal X
by imposing the sparsity constraint on the observation matrix.

minimize
VG , Y

‖X − VG Y ‖2F

subject to V T
G VG = I,

‖yi‖0 ≤ k, ∀i ∈ {1, . . . ,M}

(4)

The first constraint (on VG) avoids the trivial solution and
forces orthogonality on the eigenvector matrix. Unlike the
earlier formulation in 1, our formulation in (4) does not in-
clude the quadratic variation term, hence we do not force our
solution to consist of only low frequencies. Solving (4) is not
straightforward as the objective function is non-convex due to
the product of optimization variables. Moreover, the feasible
set formed by the above constraints are non-convex due to the
sparsity and orthogonality constraints. Our approach for find-
ing the eigenbasis VG , coefficient matrix Y and graph G are
discussed in the following section.

3. ALGORITHMS FOR GRAPH LEARNING UNDER
SPECTRAL SPARSITY CONSTRAINTS

This section present our algorithm for solving the optimiza-
tion problem (4). The algorithm consists of two steps. In the
first step, we find the eigevector matrix VG , and in the sec-
ond step we find the eigenvalues of the adjacency matrix AG .
To find the eigenvector matrix, we solve (4) by the method of
alternating minimization and tackle the sub-problems individ-
ually. We first fix the eigenbasis VG and find the coefficient
matrix Y , then fix the coefficient matrix Y to find the eigen-
basis VG .
3.1. Estimating the coefficient matrix Y

Fixing the eigenbasis VG in (4) results in the convex objective
function in (5) with sparsity constraint, as in (4).

minimize
Y

‖X − VG Y ‖2F

subject to ‖yi‖0 ≤ k, ∀i ∈ {1, . . . ,M}
(5)

Though the constraint set in (5) is non-convex, several re-
laxations can be used to obtain the convex problem. Since the
matrix VG is orthogonal, the solution is obtained by taking the
top absolute k coefficients in any column of V T

GX .
However, the sparsity k may not be known in practice. We

estimate the sparsity level k by using the following technique:
for each potential sparsity level k (starting from k = 1),
we find Y as described above, and compute the pseudo er-
ror ‖X − VGY ‖2F / ‖X‖

2
F . We pick the value of k for which

the pseudo error is locally minimum.
3.2. Estimating the eigenbasis

Once the coefficient matrix Y is obtained from the previous
step, we try to find the eigenbasis VG . We frame the following
optimization problem that requires finding the nearest orthog-
onal matrix to the observation data:

minimize
VG

‖X − VG Y ‖2F

subject to V T
G VG = I

(6)

The optimization problem (6) is an orthogonal Procrustes-
problem [19]. The solution for such a problem is obtained by
evaluating the singular value decomposition of matrix XY T.
Thus a problem equivalent to the above is

max
VG

tr(Y TV T
GX) (7)

The solution for VG is given by VG = U1U
T
2 where U1 and U2

are the singular vectors of XY T: i.e. XY T = U1ΣUT
2 . The

process is iterated until the convergence criterion is met.

Algorithm for Topology Inference
Given: Observations X , sparsity k
Initialisation: Intialize VG as a random N ×N orthogonal
matrix
Step1: Estimation of the eigenbasis VG
currentObj = ‖X − VG Y ‖F , previousObj = −∞
while | currentObj− previousObj |≤ ε do
Y ← V T

GX
Y ← keep the largest k absolute coefficients.
SV D(XY >) = U1ΣUT

2

VG ← U1U
T
2 to update VG

previousObj← currentObj
currentObj← ‖X − VG Y ‖F

end while
Step2: Learning Topology from
Compute the adjacency matrix AG using equation 8

Even though we are applying the standard co-ordinate de-
scent framework, it is worthwhile to note that each of the re-
sulting sub-problems (sparse recovery problem and orthogo-
nal Procrustes problem) is very well studied and has provable
solutions. This probably explains the reasonably fast conver-
gence of the proposed iterative technique.

3.3. Estimating the adjacency matrix

Once the eigenbasis VG is known, the next step is to obtain the
graph G. To this end, we solve the constrained optimization
problem (8) that enforces the properties of a valid adjacency
matrix. This stage is similar to other such approaches in the
graph learning literature [9]. The algorithm is outlined in be-
low.

arg min
AG ,Λ

‖AG‖1 (8)

s.t. AG = VGΛV T
G , AG ≥ 0, AG1 ≥ 1

Each of our iterations in the first step of the algorithm is
bottlenecked by an SVD computation of an N × N matrix
(where N is the number of nodes in the graph). The compu-
tational complexity per iteration for our algorithm is O(N3),

5407

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on August 24,2022 at 12:28:37 UTC from IEEE Xplore.  Restrictions apply. 



which is polynomial in the number of nodes. In practice, we
observe convergence in a few iterations (about 25 iterations
on average for N = 20 node graphs).

4. RESULTS AND DISCUSSION

We evaluate our algorithm on a synthetic dataset. We first
generate a ground truth graph and synthetic dataset of graph
signals for the ground truth graph. Then we apply our al-
gorithm (and other algorithms in the literature) to compare
the results. We use the following three models for generating
the ground truth graph. 1) RBF: The N vertices are placed
randomly in the unit square, and edges weights are set to be
exp(−d(i, j)2/2σ2) where d(i, j) is the Euclidean distance
between vertices i and j, and σ = 0.5. We only keep the
edges with weights greater than 0.75. 2) ER: Erdős-Rényi
model with edge probability 0.2 is used to create edges be-
tween the nodes with probability 0.2. 3) BA: Barabasi-Albert
model (a scale-free random graph). We build the graph adding
one vertex at a time and using the preferential attachment
mechanism. When adding a new vertex, we put edges from
the new vertex with probability equal to the ratio of the degree
of the existing vertex to the total number of existing edges in
the graph. The ER and BA graphs in our experiments have
unit edge weights. Similarly to other works [9], [4], [7] we
generate graphs with nodes N = 20.

Starting with a ground truth graph, we generate M = 300
graph signals according to our model in (2). Each of the graph
signals is generated as a random sparse combination of eigen-
vectors of the graph previously generated, with the maximum
sparsity kmax = 5. The non-zero coefficients are picked uni-
formly at random from [−2,−1]∪ [1, 2]. Before applying the
learning algorithm, random Gaussian noise is added to the
graph signals to create a synthetic dataset.

(a) (b)

Fig. 2: (a) F-measure for different noise levels of different
graphs. The noise level is variance of each entry of η in (2).
(b) Plot of F-measure as a function of sparsity

The performance of the proposed technique is evaluated
with the widely used F-measure (harmonic mean of precision
and recall) [20] [4] [7]. The F-measure calculates the devi-
ation/similarity between the edges of the learned graph and
those of the ground truth graph. The higher the F-measure
is, the closer the learned and ground truth graphs are. Once
an algorithm is applied to the noisy synthetic dataset, the F-
measure is obtained. This is then averaged over 100 indepen-

dent realizations of noise, and further averaged over 100 ran-
dom graphs from a given model. The sizes of the graphs and
the number of graphs over which averaging is done are similar
to other graph learning algorithms. Based on this framework,
we perform the following experiments.

F-measure comparison on noisy dataset
Algorithm ER graph BA graph RBF graph
Proposed 0.8804 0.8964 0.9726
Dong [4] 0.3256 0.3138 0.4414

Kalofolias [7] 0.3445 0.3260 0.4793
Segarra [9] 0.2953 0.2787 0.4013

Maretic [10] 0.2903 0.3089 0.4858
Chepuri [8] 0.2117 0.2005 0.3172

Table 1: F-measure comparison on existing algorithms.

The table 1 compares the F-measure of the proposed al-
gorithm with other graph learning algorithms in the literature
on the synthetic dataset with noise level 0.3. Note that the
data used to evaluate the state-of-the-art algorithms conforms
to our model (2), and so it may not be globally smooth. It
is evident that the proposed algorithm outperforms the ex-
isting algorithms with significantly higher F-measure under
the noise perturbation: this is because the proposed algorithm
better captures the wideband graph frequency spectra than the
existing algorithms.

Figure 2a plots the F-measure for our proposed algorithm
as a function of the added noise level. It appears that our al-
gorithm performs better for RBF than for ER and BA graphs.
This is because ER and BA are unweighted graphs, and thus
their inference is prone to discretization errors in our frame-
work: the optimization problem in (8) does not impose bi-
nary constraints on the entries of AG . We observe that our
proposed algorithm is fairly robust to additive noise. Figure
2b shows the impact of the spectrum sparsity of graph signals
on the performance of the proposed algorithm. As shown, the
F-measure decreases rapidly after about 40% (8 out of 20) of
sparsity.

5. CONCLUSIONS AND FUTURE WORK

We have proposed novel model and criterion to learn graphs
from wideband graph signal data, motivated from problems
in neuro-imaging and lateral inhibition, and an efficient al-
gorithm for associating a graph topology to such data. A
comparison of our algorithm with existing graph learning al-
gorithms under different graph signal spectra is presented to
show the advantages of our method. Future research direc-
tions include testing the proposed algorithm on real datasets
from neuro-imaging, further understanding the theoretical ba-
sis of the proposed algorithm and Laplacian based reconstruc-
tion with prior knowledge on one of the eigenvectors.
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