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ABSTRACT
Ongoing with current combinations of antiretroviral drugs for the treatment of Human
Immunodeficiency Virus (HIV) infection can successfully maintain long-term suppression of HIV-
1 replication in plasma. Still, none of these therapies is capable of extinguishing the virus from the
long-lived cellular reservoir, including monocyte-derived macrophages (MDM), that means the
principal obstacle to HIV cure. MDM are widely distributed in all tissues and organs, including
central system nervous (CNS) where they represent the most frequent HIV-infected cells that
means the principal obstacle to HIV cure. Current FDA-approved antiretroviral drugs target viral
reverse transcriptase, protease, integrase, and entry processes (coreceptor or fusion blockade). It is
desirable to continue to develop new antiretrovirals directed against alternative targets in the
virus lifecycle in order to further optimize therapeutic options, overcome resistance to existing
medications, and potentially contribute to the elimination of viral reservoirs.

This review provides a comprehensive overview of the activity of antiretroviral drugs (classical
and upcoming) in monocytes-derived macrophages (MDM). Defining the antiviral activity of these
drugs in this important cellular HIV-1 reservoir provides crucial hints about their efficacy in HIV-1
infected patients.
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Introduction

The AIDS-related mortality has dropped sharply, and
AIDS has gradually become a controllable, chronic
disease. Thanks to a highly effective antiretroviral ther-
apy. Based on global AIDS response progress report,
there are nearly 17 million people receiving antiretro-
viral therapy in 2016 [1] and this number could reach
24 million by 2020.

The development of drugs for human immunodefi-
ciency virus (HIV) infection began soon after the virus
was discovered 25 years ago [2]. When used daily as
prescribed, combined antiretroviral therapy (cART)
(usually based on the administration of three drugs)
suppresses HIV replication and thus limits disease pro-
gression. As a consequence, HIV-infected patients are
now expected to live to an old age as long as an oral
HIV drug regimen can be continued. Thus, cART has
transformed HIV from a terminal illness to a chronic
disease [3].

Despite this success, the eradication of HIV from the
body is not achievable, and the main reason is the
presence of virus reservoirs. Monocyte-derived macro-
phages (MDM) are one of the major cellular targets for

HIV-1 infection and an important virus reservoir.
MDM contribute to the transmission and the patho-
genesis of HIV-1 infection throughout the progression
of HIV-1 infection, especially at late stages when CD4⫹
T lymphocytes have been depleted extensively [4–8].

HIV-infected MDM are frequently found in the
blood and generally distributed in all tissues, organ,
and compartments [7,8]. In the central nervous system
(CNS), MDM and microglia cells represent the most
common cell lineages that support virus replication,
thus being responsible for the onset of HIV-associated
dementia and the neuropathological features of HIV
encephalitis [7–10].

Tissue macrophages are critical contributors to HIV
pathogenesis, however, their specific role in HIV per-
sistence during long-term suppressive ART has been
demonstrated by Honeycutt et al. [11]. In this work,
using humanized myeloid-only mice, it was shown that
HIV infection of tissue macrophages is rapidly sup-
pressed by ART, as reflected by a rapid drop in plasma
viral load and a dramatic decrease in the levels of cell-
associated viral RNA and DNA. No viral rebound was
observed in the plasma of the ART-treated animals at
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7 weeks after ART interruption, and no replication-
competent virus was rescued from the tissue macro-
phages obtained from these animals. In contrast, in
a subset of animals, a delayed viral rebound was
observed that is consistent with the establishment of
persistent infection in tissue macrophages. These obser-
vations represent the first direct evidence, to our
knowledge, of HIV persistence in tissue macrophages
in vivo [11].

On this basis, we reviewed the activity of antiviral
compounds of clinical interest, as well as the factors
affecting their efficacy. The current studies consider the
relevance of knowing new therapeutic strategies able to
prevent HIV-1 replication in MDM, focusing also the
attention on current and original compounds. Thus,
new and innovative anti-HIV-1 therapeutic approaches
directed to HIV-1-infected MDM are briefly described.

Cellular HIV-1 reservoirs and HIV latency in
monocytes/macrophages

Monocytes are bone marrow-derived mononuclear
phagocyte cells that circulate in the blood for few
hours/days before being recruited into tissues
[9,10,12]. The expression of various chemokine recep-
tors and cell adhesion molecules at their surface allows
them to exit the bone marrow into the blood and to be
subsequently recruited from the blood into tis-
sues [9,11].

Monocytes represent approximately 10% of leuko-
cytes in the human peripheral blood, with
a considerable pool located in the spleen and lungs, as
well as homing into inflammatory sites in response to
specific chemokines [10]. Monocytes belong to the
innate arm of the immune system providing responses
against viral, bacterial, fungal, or parasitic infections
[9,13]. Their functions include the killing of pathogens
via phagocytosis, the production of reactive oxygen
species (ROS), nitric oxide (NO), myeloperoxidase,
and inflammatory cytokines [13]. Under specific con-
ditions, monocytes can stimulate or inhibit T-cell
responses during cancer as well as infectious and auto-
immune diseases. They are also involved in tissue
repair and neovascularization [14].

The failure of cART in eradicating HIV infection has
underlined the relevance of the presence of HIV-1
reservoirs in the body. HIV-1 can evade immune
response by several mechanisms, including the estab-
lishment of persistent infection within different cell
types, including memory or naive T lymphocytes and
MDM. In particular, MDM represent an important
HIV-1 cellular reservoir as they can survive to HIV-1
cytopathic effect for prolonged periods of time

(particularly microglia or alveolar macrophages) [15–
22], thus allowing HIV-1 spreading into anatomical
sanctuaries.

Studies demonstrated that HIV-1 can be detected in
circulating monocytes from patients on cART for pro-
longed periods of time [23–25]. Interestingly, these
monocytes had produced undetectable amounts of
HIV-1 RNA under basal conditions, but the virus can
reactivate following appropriate stimulation [23,25].

Another key feature of macrophages is represented
by their capability to spread the virus to CD4 + T cells.
MDM HIV-infected have been shown to fuse with
autologous and heterologous CD4 + T cells thus allow-
ing HIV-1 transmission to these cells [25–27].

HIV-1 replication in macrophages is regulated by
cytokines and other extracellular stimuli. Based on the
stimuli or cytokine profile, macrophages can be polar-
ized into either M1 (classically activated) or M2 (alter-
natively activated) [28,29]. Cassol and colleagues
reported that M1/M2 polarization of MDMs was asso-
ciated with poor CCR5-dependent HIV-1 infection as
compared to non-polarized MDMs.

Historical background of antiretroviral therapy

Antiretroviral drugs act by interfering with vital viral
replication processes and are classified according to the
step they inhibit in the viral life-cycle (Figure 1). A sub-
classification may be based on their chemical structure.
A milestone in the history of HIV disease has been the
availability of new classes of drugs, in 1995–96, allow-
ing the introduction of combination ARV therapy
(HAART) and the gradual evolution of HIV infection
into a chronical, usually nonfatal condition [30,31].
Currently, there are seven categories of ARV drugs:
Nucleoside Reverse Transcriptase Inhibitors (NRTIs),
Non-Nucleoside Reverse Transcriptase inhibitors
(NNRTIs), Protease Inhibitors (PIs), drugs that inter-
fere with viral entry (Fusion Inhibitors [FI] and CCR5
antagonists like maraviroc), Integrase Inhibitors (INIs)
and Maturation Inhibitors (MI, in late-stage clinical
trial).

Also, Integrase strand transfer inhibitors (INSTIs)
are the class of ARV drugs most recently approved by
the FDA for the treatment of HIV-1 infections. INSTIs
block the strand transfer reaction catalyzed by HIV-1
integrase and have been shown to potently inhibit
infection by wild-type HIV-1. The new INSTIs,
Bictegravir (BIC), are currently in late-stage clinical
trial [31].

There is an important topic about the ARV drug tissue
penetration. In a recent study, it was shown that for many
commonly used ARVs, drug penetration was lower in
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lymphoid tissue cells than that observed in blood cells [32].
These findings – that measuring drug concentrations in
plasma or in PBMCs does not predict those in lymphoid
compartments where most viral replication actually occurs
and that viral replication persists in the lymphatic tissue of
some patients – provide a compelling case and rationale to
develop new ART strategies that will fully suppress virus
production at its source [32]. In this way, the long-term
consequences of persistent virus production for reservoir
replenishment and tissue pathologies that restrict immune
reconstitution can be averted, and the foundations can be
laid for a potential functional cure for HIV-1 infection.

Because many of antiretroviral drugs belong to the
same drug class, if HIV becomes resistant to one drug in
a class, it may have varying degrees of resistance to other
drugs in the same family. This is called cross-resistance
and it can limit future treatment options. Cross-resistance
highlights the need for new effective therapies.

Inhibitors that target the retroviral enzyme
reverse transcriptase (RT)

Inhibitors that target the HIV-1 reverse transcriptase
(RT) enzyme hav played an indispensable role in the
treatment and prevention of HIV-1 infection. They can
be grouped into two distinct therapeutic groups,
namely the nucleoside and nucleotide RT inhibitors
(NRTIs), and the non-nucleoside RT inhibitors

(NNRTIs). NRTIs form the backbones of most first-
and second-line antiretroviral therapy (ART) regimens
formulated for the treatment of HIV-1 infection.

The activity of NRTIs depends on two factors: (1) the
intracellular concentration of their triphosphorylated
moiety since NRTIs require triphosphorylation by cellu-
lar kinases to act as competitors of the natural 2′ -deoxy-
nucleoside trisphosphates (dNTPs); (2) the concentra-
tion of the cellular dNTP pools. MDM are resting cells,
characterized by a limited DNA synthesis and conse-
quently by a low intracellular level of dNTPs
[11,30,31]. The resting status of MDM overcomes the
low affinity of most NRTIs for kinases acting at their
first phosphorylation step [11], and results in
a competition by dNTPs lower in MDM than in CD4
+ lymphocytes whose intracellular dNTPs pool is 6–20-
fold greater than those found in MDM [33,34]. These
metabolic characteristics may explain why all the NRTIs
clinically available are more active in MDM than in CD4
+ lymphocytes in in vitro biological models [11].

NNRTIs bind to a hydrophobic pocket adjacent to
the active site of reverse transcriptase and cause
a conformational change that reduces the ability of
nucleosides to be added to the growing DNA chain.
In general, the NNRTIs have a lower incidence of
adverse effects in comparison to the NRTIs. When
they were used as single agent, the drugs quickly sup-
press viral replication, but resistance and virologic
relapse soon develop [35]. With the exception of

Figure 1. Schematic representation of steps of HIV-1 life cycle and targets of the currently available antiretroviral drugs.
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etravirine and rilpivirine, resistance develops with the
substitution of a single amino acid at the NNRTI bind-
ing site.

Since the NNRTI activity is not affected by the dNTP
pools, substantial differences in the antiviral activity of
NNRTI have not been observed between MDM and CD4
+ lymphocytes [11]. Previous studies confirm these find-
ings, the anti-HIV-1 activity of NNRTIs is not modulated
by the macrophage colony-stimulating factor, which
increases the dNTPs pool in MDM and thus capable to
affect the activity of NRTIs [33].

Doravirine (DOR), a novel NNRTI, is active against
HIV-1 and the most common NNRTI-resistant var-
iants, and has a favorable, unique, and safety in vitro
resistance profile in clinical trials. Because it is not
a metabolic inducer or inhibitor [36,37], DOR is well
absorbed, exhibits moderate protein binding activity
and is not a perpetrator of pharmacokinetic drug–
drug interactions. No clinically meaningful interactions
were observed when DOR was co-administered with
atorvastatin, oral contraceptives, magnesium-based
antacids, or proton-pump inhibitors in healthy volun-
teers [36,38–40]. As a substrate of cytochrome P450
(CYP)3A4, exposure to DOR is reduced in the presence
of moderate or strong inducers of CYP3A4 [36]. It has
an elimination half-life of 12–21 h. DOR can be taken
once daily without regard to food [36,41], and its bioa-
vailability is not affected by age, gender, or moderate
hepatic impairment [36,42,43]. Drug interaction studies
have shown doravirine does not affect the pharmaco-
kinetics of dolutegravir but may have its pharmacoki-
netics altered by rifampicin (rifampin) and other
rifamycins (CYP3A inducers). No clinically significant
interactions were noted between doravirine and panto-
prazole, ledipasvir/sofosbuvir, or elbasvir/grazoprevir.

In previous studies, in a phase 2b study in treat-
ment-naive adults, DOR at 100 mg QD with emtricita-
bine (FTC) and tenofovir disoproxil fumarate (TDF)
demonstrated comparable efficacy to efavirenz with
FTC/TDF and had a favorable safety profile, with
lower rates of drug-related adverse events and CNS
events than efavirenz [36]. In the phase 3 DRIVE-
FORWARD trial, DOR at 100 mg QD demonstrated
non-inferior efficacy and a superior lipid profile com-
pared with darunavir-ritonavir after 48 weeks of com-
bination treatment with 2 NRTIs [44].

Other researches are needed to better understand
doravirine’s efficacy and safety profile when co-
administered with other agents known to be CYP indu-
cers or inhibitors.

Also, previous studies postulated that sterile alpha
motif- and histidine/aspartic acid domain-containing
protein 1 (SAMHD1) limits HIV-1 replication by

hydrolyzing deoxynucleoside triphosphates (dNTPs)
necessary for reverse transcription [45]. This report
has shown that SAMHD1 cleaves NRTI triphosphates
(TPs) at significantly lower rates than dNTPs and that
SAMHD1 depletion from monocytic cells affects the
susceptibility of HIV-1 infections to NRTIs in com-
plex ways that depend not only on the relative
changes in dNTP and NRTI-TP. The presence of
SAMHD1, or its depletion, as occurs for lentiviruses
that encode the Vpx accessory protein [46], can affect
NRTI susceptibility in multiple ways that depend not
only on the relative changes in the concentrations of
dNTPs and NRTI-TPs but also on the activation
pathways of NRTIs. This work highlights the impor-
tance of the metabolic pathways for activation of
different NRTIs to NRTI-TPs, especially in cells in
which dNTP concentrations are low and competition
with NRTI-TPs does not mask the effects of differ-
ential NRTI activation.

SAMHD1 is the dominant host factor controlling post-
entry permissivity to infection of non-dividing MDM. In
recent works, it was demonstrated that SAMHD1 phos-
phorylation status at T592 controlling antiviral activity is
naturally dynamic in primary human MDM. Also, the
dynamic phosphorylation of SAMHD1 by CDK1 is asso-
ciated with the expression of proteins typically associated
with cell cycle control. Mlcochova et al. have shown that
MDM can be stimulated to exit G0 phase and enter a G1-
like state. This transition with associated CDK1 upregula-
tion and T592 phosphorylation of SAMHD1 renders
macrophages permissive to HIV-1 [47].

Mlcochova et al. have proposed a mechanism where
ETO-induced DNA damage induces SAMHD1 depho-
sphorylation via a canonical p53 and p21 pathway in
macrophages. As a consequence of this regulation, acti-
vated dephosphorylated SAMHD1 mediates a block to
HIV-1 nuclear import and integration in MDM [48].
Therefore, topoisomerase inhibitors regulate SAMHD1
and HIV permissivity at a post-RT step, revealing
a mechanism by which the HIV-1 reservoir may be
limited by chemotherapeutic drugs [48].

Jáuregui and Landau postulated that the Growth of
MDMs under conditions that alter the cell cycle alters
SAMHD1 phosphorylation and affects their susceptibil-
ity to infection by HIV-1. In vivo, MDMs are differen-
tiated as M1, M2. Because MDMs play a role in HIV-1
replication, alterations in SAMHD1 restriction activity
could influence HIV-1 replication. While DNA damage
agents are not likely to be useful in the treatment of
HIV-1 infection, it may be possible to control the
SAMHD1 phosphorylation state by targeting intracellu-
lar signal transduction in MDMs, thereby reducing virus
loads [49].
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HIV-protease inhibitors

The PI bind competitively to the substrate site of the
viral protease, responsible for the post-translational
processing and cleavage of a gag and gag-pol polypro-
tein during budding from the infected cell. Their potent
anti-HIV activity and introduction in clinical use in
1996 was one of the main reasons for the observed
substantial falls in morbidity and mortality associated
with HIV infection in the developed world [50].

HIV PIs prevent cleavage of gag and gag–pol poly-
protein in acutely and chronically infected cells, arresting
maturation and thereby blocking the infectivity of nascent
virions [51]. PIs act during maturation of viral particles in
the late stage of HIV-1 life cycle, thus, these drugs can
inhibit the release of infectious viral particles from an
already infected cell thus preventing subsequent waves
of infection. The difference in the anti-HIV-1 activity of
PIs in HIV-1 chronically infected MDM and CD4⫹
T lymphocytes may be explained by the high and sus-
tained RNA metabolism in MDM, which affords a great
production of virus particles, even from a limited amount
of proviral DNA in these cells. Consistent with this
hypothesis, HIV-RNA production from chronically
infected MDM is not at all affected by PIs, even when
protein maturation and release of infectious virus parti-
cles are inhibited significantly [7]. This may have impor-
tant clinical implications. In fact, the high concentration
of PIs required to suppress HIV-1 replication in chroni-
cally infected MDM is often higher than through the PI
concentration in plasma of treated patients.

Integrase inhibitors

The first INIs were reported approximately 20 years ago
[52]. Approximately 40–100 integrase molecules are pack-
aged within each HIV particle. The primary role of inte-
grase is to catalyze the insertion of the viral cDNA into the
genome of infected cells, although integrase can also act as
a cofactor for reverse transcription [52–54]. Integration is
required for viral replication, because transcription of the
viral genome and the production of viral proteins requires
that the viral cDNA is fully integrated into a chromosome
[52]. Following reverse transcription, the viral cDNA is
primed for integration by integrase-mediated trimming of
the 3′-ends of the viral DNA [52]. This step is referred to as
3′-PROCESSING. It requires both fully functional inte-
grase and the integrity of the last 10–20 base pairs at both
ends of the viral cDNA. 3′-processing consists of the endo-
nucleolytic cleavage of the 3′-ends of the viral DNA. This
cleavage occurs immediately 3′ to a conserved CA dinu-
cleotide motif. Alterations of this sequence prevent inte-
grase from catalyzing 3′-processing [52].

There are totally three integrase inhibitors [raltegra-
vir (RAL); elvitegravir (EVG); dolutegravir (DTG)],
which have been approved by FDA.

Scopelliti and colleagues have shown that HIV repli-
cation is inhibited by INIs in MDM at similar, or even
lower, concentrations than those active in PBMCs. This
supports the hypothesis that RAL (and other INIs) are
able to control the spreading of HIV in MDM and in
actively replicating T cells [55].

Pollicita et al. have shown that MDMs and PBMCs
might act as reservoirs more for wild-type virus than
for resistant/low-fitness virus due to a measurable
advantage in the replication capacity of wild-type
virus compared with RAL-resistant strains in all tested
cell systems. Dolutegravir efficiently reduces HIV-1
replication in MDMs, PBMCs, and C8166 cells, with
the potential to be effective in different HIV cellular
targets, and against RAL-resistant strains harboring the
Y143 and N155 mutations [56].

Courtney et al. have found that drug penetration for
many commonly used ARVs was lower in lymphoid
tissue cells than that observed in blood cells. Indeed, in
this study, it was shown that measures of virus replica-
tion in blood do not necessarily reflect the impact of
ARVs on virus production at its principal source in
lymphatic compartments. These findings support the
hypothesis that ARV concentrations in lymphatic tissue
can be insufficient to fully suppress HIV-1 replication
and that measuring VL in PB will not necessarily reflect
virus production at its source in tissues.

BIC (Bictegravir)

In the recent work of Smith and col., based on their
antiviral analysis of the ability of these new INIs to inhibit
previously identified INIs-resistant single, double, and
triple mutants in a single-round replication assay, it
appears that BIC is more broadly effective than either of
the first-generation INIs, RAL and EVG. In terms of their
ability to inhibit INIs-resistant mutants that were tested,
BIC was significantly better than DTG [32]. These con-
clusions concerning the relative efficacies BIC against
mutants are in good agreement with the data of other
studies like Yoshinaga et al. [57] and Neogi et al. [58].
Based on these results, BIC appears to be a very promising
INIs. Nonetheless, based on experience with previous
ARV drugs, in the long term, resistant viruses will emerge.

Entry inhibitors

The envelope glycoprotein complex (Env) is responsi-
ble for the entry of HIV-1 into cells by mediating
attachment to target cells and subsequent membrane
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fusion. Env consists of three gp120 subunits that med-
iate receptor and co-receptor attachment and three
gp41 subunits responsible for membrane fusion.
Several steps of the entry process can serve as drug
targets. CCR5 antagonists prevent attachment of
gp120 to the CCR5 or co-receptor and conformational
changes within gp41 required for membrane fusion can
be inhibited by fusion inhibitors. The fusion inhibitors
(FIs) target the HIV-1 glycoprotein gp41, thus prevent-
ing the fusion between the viral and the host cell
membrane. Representative fusion inhibitors include:
the first FDA-approved HIV-1 fusion inhibitor T20
(generic name: enfuvirtide; brand name: Fuzeon)
[44,59], C34, T1249 [60,61], T2635 [62] and sifuvirtide
[63]. It has been demonstrated by using different lab-
adapted HIV-1 strains, that T-20 may efficiently pre-
vent the entry of HIV-1 into PBMC, MDM, and imma-
ture DC [64]. It is interesting to note that the T-20
susceptibility may be modulated by coreceptor specifi-
city [65]. In particular, it has been demonstrated that
CCR5-using strains are characterized by an intrinsic
resistance to T-20, and thus, their replication is sup-
pressed at concentrations of T-20, higher than those
required for CXCR4-using strains [65]. Moreover, the
clinical efficacy of T-20 is also strengthened by the fact
that the development of drug resistance [66–69] may be
associated with immunological success, despite virolo-
gical failure [70].

A new class of HIV entry inhibitors, CD4 attach-
ment inhibitors, targets the first step of entry.
Fostemsavir (FTR) is a small molecule inhibitor that
binds HIV envelope glycoprotein 120 (gp120) and pre-
vents virus from binding to the CD4 receptor. It inhi-
bits the entry of HIV into CD4 + T-lymphocytes by
blocking conformational changes in gp120. This
mechanism of inhibition is different from that of
other entry inhibitors targeting co-receptor binding
(maraviroc) or fusion (enfuvirtide). FTR is an oral
prodrug of temsavir, the active compound, with potent
activity in vitro against HIV, and pharmacokinetics that
support once-daily dosing with no need for pharmaco-
logic boosting. Initial clinical investigations have
revealed the safety and efficacy of 8-day monotherapy
with fostemsavir in HIV-infected individuals [71,72].
A Phase IIb study has shown safety, tolerability, and
equivalent efficacy of cART including fostemsavir in
comparison with a cART including ritonavir-boosted
atazanavir in a randomized active-controlled trial
[71,73,74].

The chemokine receptor CCR5 (belonging to the
family of the seven-transmembrane domain proteins)
is expressed by MDM and represents the most impor-
tant coreceptor for M-tropic HIV-1 strains to enter the

cells. CCR5 plays a crucial role in the transmission of
HIV-1 isolates that establish initial infection, persist
during the early years of infection, and predominate
in brain where HIV causes neuro-AIDS [73]. Previous
studies have shown that TAK-779 is the first non-
peptidic molecule known to block selectively the repli-
cation of CCR5-using HIV strains in MDM at low
concentrations (about 10 nM). TAK779 interacts
directly with CCR5 in a specific binding site within
the transmembrane domain helices 1, 2, 3, and 7.
TAK-779 has a high affinity for CCR5, and totally
inactive against CXCR4-using strains of HIV-1 [73,75].

Maraviroc is an allosteric modulator of CCR5 that
stabilizes CCR5 in a conformation to which HIV Env
does not bind [76–79]. Maraviroc treatment rarely causes
a tropism switch to X4 viral strains in the absence of
preexisting X4 strains [79]. Rather, some cases of mara-
viroc resistance in R5 HIV strains were reported in vitro
and in treated patients. In these instances, HIV evolved
the capacity to enter target cells by using the maraviroc-
bound form of CCR5 as a coreceptor [80–82]. Recent
clinical trials included maraviroc in an intensified regi-
men consisting of four or five antiretroviral drugs, with
the objective of limiting the establishment of the viral
reservoir in acute HIV infection, or of decreasing residual
viral replication in chronic HIV infection [83–88]. Results
of such trials have generally been disappointing, as inten-
sified regimen did not prove superiority compared to
classic regimens in containing the viral load or in decreas-
ing the HIV reservoir. Unfavorable drug interactions may
have limited the benefit of therapy intensification in some
cases [89]. A paradoxical increase in T-cell activation was
reported in one trial, possibly due to an increase in the
concentration of circulating chemokines [84]. However,
in another trial, maraviroc intensification was associated
with an improvement of the CD4 recovery slope in
patients with poor immunological restoration [83].
SurdoM et al., 2013 have shownMaraviroc is effective in-
vitro against viruses with dual-characteristics in both
MDM and lymphocytes, despite the potential X4-
mediated escape [90]. This suggests that the concept of
HIV-entry through one of the two coreceptors “sepa-
rately” may require revision, and that the use of CCR5
antagonists in patients with dual/mixed-tropic viruses
may be a therapeutic option that deserves further investi-
gations in different clinical settings.

Towards new therapeutic strategies:
maturation inhibitors

Developing inhibitors against novel targets provides
a wealth of basic mechanistic information about funda-
mental aspects of viral replication. A new class of

VIRULENCE 405



inhibitors is now emerging that targets the internal
structural precursor protein, Gag, and its function in
the final assembly of the mature, infectious virion, these
are the maturation inhibitors (MI). This new class is
typified by the compound 3-O-(3ʹ,3ʹ-dimethylsuccinyl)-
betulinic acid, known alternatively as Bevirimat (BEV)
[91–93], PA-457 [92] or DSB [93]. In this regard, the
maturation of HIV-1 particles, which is triggered by the
action of the viral PR, occurs concomitantly with virion
release from the infected cell [94–96]. PR cleaves
a number of sites in the Gag polyprotein precursor,
Pr55Gag, the major structural protein responsible for
the formation of virus particles. PR-mediated Gag clea-
vage gives rise to the matrix (MA), capsid (CA),
nucleocapsid (NC), and p6 proteins and to two small
spacer peptides, SP1 and SP2, located between CA and
NC and between NC and p6, respectively.

Initially there is rapid cleavage at the C-terminus of
SP1, followed by cleavage between MA and CA.
Additional cleavage events then occur, with the final
(slowest) reaction separating SP1 from the C-terminus
of CA [97]. This final cleavage event is critical in proper
virion morphogenesis, as disruption of this cleavage site
through mutagenesis leads to aberrant core formation
and the generation of noninfectious particles. In the
immature particle, the Gag precursor proteins are
arranged radially around the outer edge of the virus
particle, whereas in the mature virion the CA proteins
assemble into a centrally located, conical core (referred
to as the capsid) in which the viral RNA genome and
the viral enzymes RT and IN reside [97,98]. Each pro-
cessing site within the Gag and Gag-Pol polyprotein
precursors is cleaved by PR with distinct kinetics, lar-
gely due to the unique primary amino acid sequence at
each site [96]. The consequence of the differential rates
of cleavage is that Gag and Gag-Pol processing occurs
as a highly ordered cascade of cleavage events. This
highly ordered processing is required for proper
maturation. Defects in maturation can affect both
virus entry [96,99] and subsequent postentry events.
Even partial disruption of processing at several sites in
Gag leads to severely impaired virus infectivity [96,100–
102], highlighting the utility of Gag processing as
a target for antiretrovirals.

BEV, the first HIV-1 MI, was identified through
analyzing natural products coupled with an activity-
directed structural modification effort [92,93,103].
BEV, also called PA-457, is a derivative of betulinic
acid and has potent antiviral activity against multiple
wild-type and drug-resistant clinical HIV-1 isolates.
Despite potent activity against HIV-1, this antiretro-
viral drug is inactive against HIV-2. BEV disrupts
a late step in Gag processing involving conversion of

the CA precursor (CA-SP1) to mature CA [92,93,103].
Virions from BEV-treated cultures are noninfectious
and exhibit an aberrant particle morphology character-
ized by a spherical, acentric core and a crescent-shaped,
electron-dense shell lying just inside the viral mem-
brane. Although BEV specifically disrupts CA-SP1 clea-
vage, it has been shown that the compound does not
affect the viral PR function [92,93,103]. Moreover, con-
sistent with the effect on Gag processing, the determi-
nants of BEV activity map to amino acid residues
flanking the Gag CA-SP1 cleavage site [92,93,103–
107]. BEV represents a novel class of anti-HIV com-
pounds termed MIs that exploit a previously unidenti-
fied viral target.

In 2009, results from Study 204, a phase II dose-
ranging clinical trial, were presented. While not show-
ing impressive antiviral activity, a genotypic test has
been developed to predict those most likely to respond
to the drug. Later, BEV was renamed bevirimat MPC-
4326 and also is developing HIV maturation inhibitors
of its own, which are code-named MPC-9055 and
MPC-461359. Of these three drugs, MPC-4326 (bevir-
imat dimeglumine) is the furthest along in clinical
development. MPC-4326 was originally developed in
a liquid formulation. However, a tablet formulation is
now used in clinical trials.

Results from previous clinical trials of MPC-4326
suggest that the drug is generally well tolerated.
Headache is the most common side effect and even
this was mild in severity. Many anti-HIV drugs are
broken down in the liver or kidneys by different
enzymes. An advantage of MPC-4326 is that it is not
processed by the more common pathways in the liver
that often lead to significant drug–drug interactions.
MPC-4326 is processed in the liver by the same class
of enzymes (called UGTs) that metabolize some other
anti-HIV drugs such as RAL (Isentress). Very small
portion of MPC-4326 is processed by the kidneys.
This means there are few other HIV drugs that will
change the way MPC-4326 is processed in the body.
Additionally, laboratory studies suggest that MPC-4326
does not inhibit the liver enzyme cytochrome P450 3A4
which processes many anti-HIV drugs. Therefore, there
is a low likelihood for MPC-4326 to affect the proces-
sing of other anti-HIV drugs and consequently have
little impact on the levels of other anti-HIV drugs in
the body.

Mechanism-of-action studies were conducted to
ensure that inhibition of maturation was maintained
as the inhibitory mechanism. This process led itera-
tively to the identification of BMS-955176, which con-
tains major structure-activity-directed modifications to
elements peripheral to the betulinic acid core structure,
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as well as to the core itself, compared to BVM. BMS-
955176 is a second-generation MI that also inhibits this
single, specific HIV-1 PR cleavage event between CA
and SP1 in Gag, producing immature, noninfectious
virus particles. However, it exhibits potent activity
toward the polymorphic variations in Gag associated
with resistance to BVM [108–110].

In a previous work, Nowicka-Sans et al. 2016 identi-
fied and characterized BMS-955176, a second-
generation HIV-1 maturation inhibitor with improved
potency, antiviral spectrum, and polymorphic coverage
[108]. In vitro combination studies showed that BMS-
955176 MI has a potent in vitro anti-HIV-1 activity and
a greatly improved preclinical profile compared to that
of bevirimat [108].

In our laboratory, projects related to the test of the
antiviral capacity of the MI are being carried out. There
are ongoing trials in which the antiviral activity of these
inhibitors in vitro in macrophages is tested. The
research proceeds successfully but still requires more
experiments and studies since the results obtained are
good but very preliminary.

Recent strategies and challenges facing
delivery of antiretroviral therapies

Sadowski and Hashemi have observed that the develop-
ment of a routine effective cure will inevitably require the
eradication of these latently infected reservoirs [111].
Latently infected cells theoretically would be devoid of
viral proteins and antigenically indistinguishable from
non-infected cells, but some evidence suggests that
most latently infected cells produce sporadic occasional
viral transcripts, through stochastic mechanisms that
may maintain low levels of gene products that could
produce a unique cellular identity, either directly or
indirectly by affecting the expression of host cell proteins
[112]. Targeting cell receptors on HIV-infected macro-
phages is an important challenge to the feasibility of most
curative strategies for HIV/AIDS. As evidenced by the
lack of progress in HIV vaccine development, targeting
HIV proteins has been difficult. Host cell surface recep-
tors are more readily targeted regardless of HIV infection
status. The major roadblock for targeting macrophages is
the limited availability of targeting ligands. Most poten-
tial targeting ligands are small-molecule chemicals
whereby conjugation to a drug delivery carrier tends to
reduce the ability of the ligand to bind to a target cell
receptor. Little has been published in this area in general
and specifically as it relates to HIV/AIDS. A priority
must be put on the discovery of new cell-targeting ligands
for potential nanocarriers, their optimal display on drug-
loaded nanocarriers.

Lately, only a few potential cell targets on macro-
phages have been exploited due to concerns about the
potential inference with host immune function or the
lack of suitable ligands that can be conjugated to nano-
carriers. Most targeting ligands have been peptides as
the peptidyl nature makes it amenable to conjugation to
a nanocarrier [113].

Several and important progress has been made in
using human cells as drug delivery depot sites. These
approaches have utilized macrophages as drug carriers.
HIV drugs were first loaded into nanocarriers [114] or
red blood ghost cells [115] that become engulfed by
macrophages ex vivo or in vivo. The macrophages then
migrated to lymph nodes or additionally to other reticu-
loendothelial system tissues, acting as a cellular depot in
these critical sites of HIV infection where the drugs
slowly diffuse out over a period of days to weeks resulting
in sustained high local drug concentrations in the lymph
nodes or other reticuloendothelial system tissue. In
a feline immunodeficiency virus model [116], the mem-
brane-impermeable HIV drug zalcitabine-TP was first
loaded ex vivo into autologous red blood cells and the
plasma membrane of these red blood cells was then
chemically modified so macrophages would recognize
and engulf them. In a 7-month experimental feline
immunodeficiency virus infection, zalcitabine-loaded
erythrocytes protected the majority of peritoneal macro-
phages and reduced the infection of circulating lympho-
cytes. The Gendelman group has developed long-acting
/extended release nanoformulations of ritonavir, indina-
vir, and efavirenz (nanoART) [114]. They reasoned that
circulating macrophages traveling across the blood-brain
barrier could enhance nanoART brain delivery [114].
Mechanistic studies [117] showed that nanoART–macro-
phage interactions enhanced phagocytosis, secretory
functions, and cell migration, which could be exploited
to increase macrophage nanoART loading capacity.
Aouadi et al. [118] studied anti-inflammatory small inter-
fering RNA (siRNA) delivery utilizing yeast ghost cells.
Yeast ghost cells were made by chemical treatment of
yeast cell wall so that the cell surface was left with only
beta1 3-D-glucan, for which macrophages have a special
receptor. siRNA was then loaded into the ghost cells. The
ghost cells can be efficiently absorbed orally through
M-cells and, once crossed M-cells, avidly phagocytosed
by macrophages in the Peyer’s Patches. Interestingly,
macrophages in the Peyer’s Patches were able to migrate
into blood circulation and settle at various LNs. Oral
gavage of mice with the siRNA-loaded ghost cells con-
taining as little as 20 μg/kg of siRNA directed against
tumor necrosis factor alpha (TNF-α) depleted its mes-
senger RNA in macrophages recovered from the perito-
neum, spleen, liver and lung, and lowered serum TNF-α
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levels. Although not developed an HIV application, this
approach is readily translatable to the delivery siRNA
against HIV infection.

Also, other recent studies showed that a small popula-
tion of human macrophages survive acute HIV infection
and that these surviving infected cells become latently
infected, as viral replication is not detected [119]. These
the surviving cells exhibit metabolic compromise and
mitochondrial fusion, lose reliance on Mitochondrial
Oxidative Phosphorylation System, and accumulate
lipids. Most of these changes could be mimicked by
adding succinate or glutamine/glutamate to the cells,
supporting a compromised tricarboxylic acid cycle.
Despite these changes, no overall alterations in mito-
chondrial membrane potential or electron transport
chain mitochondrial expression were detected. Besides,
it was shown that while uninfected macrophages exclu-
sively use glucose and fatty acids as major sources of
energy, latently HIV-infected macrophages use gluta-
mine/glutamate as a significant source and gain the cap-
ability to shift from one metabolic source to another.
Furthermore, blocking the use of glutamate, glutamine,
or α-KG results in the specific elimination of HIV surviv-
ing reservoirs. Together, these data identify a unique
metabolic signature of latently infected cells (not repli-
cated by immune activation), which could be pharmaco-
logically targeted to eliminate HIV reservoirs [120].

Conclusions

Several researches leading to the discovery and progress
of HIV inhibitors that are now approved as anti-AIDS
drugs are a unique source of information that could, in
the future, be used in other attempts of structure-based
drug design. Undoubtedly, structural studies are only one
part of this complicated procedure. Specific assays of
a large ensemble of crystal structures (such as, for exam-
ple, the HIV PR database) can provide a surprising per-
spective to the problem of drug–target interactions and
lead to the design of more efficient drugs. The coupling of
such data with other in vitro and in vivo studies makes it
possible to enhance the process of design.

The RTIs and the protease inhibitors are able to inhi-
bit HIV replication inMDM but the limited development
of drug resistance suggests that these drugs may effi-
ciently suppress HIV replication in MDM (the main
cellular reservoir of HIV infection) for a long time.

Moreover, the crucial role of MDM as a reservoir in
the pathogenesis of HIV infection, especially in the
CNS, underlines the importance of testing in MDM
the antiviral efficacy of new drugs designed to target
different stages of the HIV lifecycle. Particular attention
has been dedicated to drugs able to target the CCR5

coreceptor selectively, the main coreceptor used by
HIV to enter MDM. The CCR5 antagonists also repre-
sent a promising approach for their ability to synergize
with T-20, the first fusion inhibitor in clinical use [121]
even under viral suppression by antiretroviral therapy.

Taken together, overall findings support the clinical
relevance of interfering with HIV replication in MDM. In
particular, the inherent properties of HIV infection of
MDM should be taken into account in designing thera-
peutic strategies aimed at achieving an optimal, therapeutic
effect in all tissue compartments where the virus hides and
replicates. MIs are a new class of HIV drugs with an
attractive clinical development profile [103]. Clinical
proof-of-concept demonstrated by the first-in-class MI
BEV and reappearance of second-generation drug candi-
dates with improved breadth and potency in clinical trials
strongly suggest that in the near futuremultipleMIs can be
approved and used for the treatment of HIV/AIDS
patients.
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