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Abstract. We prove the existence of automorphisms of Ck , k ≥ 2, having an invariant, non-
recurrent Fatou component biholomorphic to C × (C∗)k−1 which is attracting, in the sense that
all the orbits converge to a fixed point on the boundary of the component. As a corollary, we obtain
a Runge copy of C× (C∗)k−1 in Ck . The constructed Fatou component also avoids k analytic discs
intersecting transversally at the fixed point.
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Introduction

Let F be a holomorphic endomorphism of Ck , k ≥ 2. In the study of the dynamics of F ,
that is, of the behavior of its iterates, a natural dichotomy is given by the division of the
space into the Fatou set and the Julia set. The Fatou set is the largest open set where the
family of iterates is locally normal, that is, the set formed by all points having an open
neighborhood where the restriction of the iterates of the map forms a normal family. The
Julia set is the complement of the Fatou set and is the part of the space where chaotic
dynamics happens. A Fatou component is a connected component of the Fatou set.

A Fatou component � for a map F is called invariant if F(�) = �.
We call an invariant Fatou component � for a map F attracting if there exists a point

p ∈ � with limn→∞ F
n(z) = p for all z ∈ �. Note that, in particular, p is a fixed point

for F . If p ∈ � then � is called recurrent, and it is called non-recurrent if p ∈ ∂�.
Every attracting recurrent Fatou component of a holomorphic automorphism F of Ck

is biholomorphic to Ck . In fact it is the global basin of attraction of F at p, which is an
attracting fixed point, that is, all eigenvalues of dFp have modulus strictly less than 1 (see
[12] and [14]).
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As a consequence of the results obtained by T. Ueda [17] and by M. Lyubich and
H. Peters [11, Theorem 6], every non-recurrent invariant attracting Fatou component �
of a polynomial automorphism ofC2 is biholomorphic toC2. L. Vivas and the third named
author [16] produced examples of automorphisms of C3 having attracting non-recurrent
Fatou component biholomorphic to C2

× C∗.
The main result of our paper is the following:

Theorem 0.1. Let k ≥ 2. There exist holomorphic automorphisms of Ck having an in-
variant, non-recurrent, attracting Fatou component biholomorphic to C× (C∗)k−1.

In particular, this shows that there exist (non-polynomial) automorphisms of C2 hav-
ing a non-simply-connected attracting non-recurrent Fatou component. Our construction
also shows that the invariant non-recurrent attracting Fatou component biholomorphic
to C × (C∗)k−1 avoids k analytic discs which intersect transversally at the fixed point.
Moreover as a corollary of Theorem 0.1 and [17, Proposition 5.1], we obtain

Corollary 0.2. Let k ≥ 2. There exists a biholomorphic image of C × (C∗)k−1 in Ck
which is Runge.

The existence of an embedding of C× C∗ as a Runge domain in C2 was a long-standing
open question, positively settled by our construction. After a preliminary version of this
manuscript was circulated, F. Forstnerič and E. F. Wold [8] constructed other examples
of Runge embeddings of C × C∗ in C2 (which do not arise from basins of attraction of
automorphisms) using completely different techniques.

Notice that, thanks to the results obtained by J.-P. Serre [15] (see also [10, Theorem
2.7.11]), every Runge domain D ⊂ Ck satisfies H q(D) = 0 for all q ≥ k. Therefore
the Fatou component in Theorem 0.1 has the highest possible admissible non-vanishing
cohomological degree.

The proof of Theorem 0.1 is rather involved and we give an outline in the next section.
In the rest of the paper, we will first go through the proof in the case k = 2, and then show
the modifications needed for all dimensions.

The proof relies on a mixture of known techniques and new tools. We first choose a
suitable germ having a local basin of attraction with the proper connectivity and extend it
to an automorphism F of Ck . Using more or less standard techniques we extend the local
basin to a global basin of attraction � of F and then we define a Fatou coordinate. Next,
we exploit a new construction to prove that the Fatou coordinate is in fact a fiber bundle
map, allowing us to show that� is biholomorphic to C× (C∗)k−1. The final rather subtle
point is to show that � is indeed a Fatou component. We have to introduce a completely
new argument, which is based on Pöschel’s results in [13] and detailed estimates for the
Kobayashi metric on certain domains.

1. Outline of the proof in dimension 2

For simplicity, we give the outline of the proof for k = 2. We start with a germ of biholo-
morphism at the origin of the form
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FN (z, w) =

(
λz

(
1−

zw

2

)
, λw

(
1−

zw

2

))
, (1.1)

where λ ∈ C, |λ| = 1, is not a root of unity and satisfies the Brjuno condition (5.1).
Thanks to a result of B. J. Weickert [18] and F. Forstnerič [6], for any large l ∈ N there
exists an automorphism F of C2 such that

F(z,w)− FN (z, w) = O(‖(z, w)‖
l). (1.2)

These kind of maps are a particular case of the so-called one-resonant germs. Recall that
a germ of biholomorphism F of C2 at the origin is called one-resonant if, denoting by
λ1, λ2 the eigenvalues of its linear part, there exists a fixed multi-index P = (p1, p2)

∈ N2 with p1 + p2 ≥ 2 such that all the resonances λj − λ
m1
1 λ

m2
2 = 0, for j = 1, 2, are

precisely of the form λj = λj · λ
kp1
1 λ

kp2
2 for some k ≥ 1.

The local dynamics of one-resonant germs has been studied by the first named author
with D. Zaitsev [4] (see also [3]).

Let
B := {(z, w) ∈ C2

: zw ∈ S, |z| < |zw|β , |w| < |zw|β},

where β ∈ (0, 1/2) and S is a small sector in C with vertex at 0 around the positive
real axis. In [4] (see also Theorem 2.3) it has been proved that for sufficiently large l
the domain B is forward invariant under F , the origin is on the boundary of B and
limn→∞ F

n(p) = 0 for all p ∈ B. Moreover, if we set x = zw, y = w (which are
coordinates on B), the domain becomes {(x, y) ∈ C×C∗ : x ∈ S, |x|1−β < |y| < |x|β}.
Hence B is doubly connected.

Now let
� :=

⋃
n∈N

F−n(B).

The domain � is connected but not simply connected.
For a point (z, w) ∈ C2, let (zn, wn) := F n(z, w). In Theorem 5.2 we show that

� =
{
(z, w) ∈ C2

\ {(0, 0)} : lim
n→∞
‖(zn, wn)‖ = 0, |zn| ∼ |wn|

}
,

and moreover if (z, w) ∈ � then |zn| ∼ |wn| ∼ 1/
√
n.

Having a characterization of the behavior of the orbits of a map on a completely
invariant domain is however in general not enough to state that such a domain is the
whole Fatou component, as this trivial example illustrates: the automorphism (z, w) 7→

(z/2, w/2) has the completely invariant domain C∗×C∗ which is not a Fatou component
but |zn| ∼ |wn|.

In order to prove that � coincides with the Fatou component V containing it, we
exploit the condition that λ is also Brjuno (see Section 5 for details). In this case there
exist two F -invariant analytic discs, tangent to the axes, where F acts as an irrational
rotation. In particular, one can choose local coordinates at (0, 0), which we may assume
to be defined on the unit ball B of C2 and B ⊂ B, such that {z = 0} and {w = 0} are
not contained in V ∩ B. Let B∗ := B \ {zw = 0}. Now, if V 6= �, we can take p0 ∈ �,
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q0 ∈ V \ �, and a connected open set Z containing p0 and q0 and such that Z ⊂ V .
Moreover, since {F n} converges uniformly to the origin on Z, up to replacing F by one
of its iterates we can assume that the forward F -invariant setW :=

⋃
n∈N F

n(Z) satisfies
W ⊂ B∗. By construction, for every δ > 0 we can find p ∈ Z ∩� and q ∈ Z ∩ (V \�)
such that kW (p, q) ≤ kZ(p, q) < δ, where kW is the Kobayashi (pseudo)distance of W .
By the properties of the Kobayashi distance, for every n ∈ N we have

kB∗(F
n(p), F n(q)) ≤ kW (p, q) < δ.

Also, if (zn, wn) := F n(p), (xn, yn) := F n(q), then

kD∗(zn, xn) < δ, kD∗(wn, yn) < δ,

where D∗ is the punctured unit disc. Since q 6∈ �, F n(q) 6∈ B for all n ∈ N, and so (by
the above mentioned characterization of orbits’ behavior for points in �) we can ensure
that, up to passing to a subsequence, we have |xn| � |yn|. By the triangle inequality
and properties of the Kobayashi distance of D∗, the shape of B forces kD∗(xn, yn) to be
bounded from below by a constant depending only on β, leading to a contradiction (see
Theorem 5.7 for details).

Finally, in order to show that � is biholomorphic to C × C∗ we construct a fibration
from � to C in such a way that � is a line bundle minus the zero section over C, hence
trivial. In fact, for this we do not need the Brjuno condition on λ.

We first prove in Section 3 the existence of a univalent map Q on B which inter-
twines F on B with a simple overshear. The first component ψ of Q is essentially the
Fatou coordinate of the projection of F onto the zw-plane and satisfies

ψ ◦ F = ψ + 1.

The second component σ is the local uniform limit on B of the sequence {σn} defined by

σn(z, w) := λ
nπ2(F

n(z, w)) exp
(

1
2

n−1∑
j=0

1
ψ(z,w)+ j

)
,

and satisfies the functional equation

σ ◦ F = λe
−

1
2ψ σ.

Next, using dynamics, we extend such a map to a univalent map G defined on a
domain �0 ⊂ �, and we use it to prove that � is a line bundle minus the zero section
over C. Since all line bundles over C are globally holomorphically trivial, we deduce that
� is biholomorphic to C× C∗ (see Section 4 for details).

We will now go through the proof in great detail in dimension 2 and in the last section
we will give the changes needed for the higher dimensional case.

Notations and conventions in C2

We set up here some notations and conventions we shall use throughout the paper.
We let π : C2

→ C, π1 : C2
→ C, π2 : C2

→ C be defined by

π(z,w) = zw, π1(z, w) = z, π2(z, w) = w.
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If F : C2
→ C2 is a holomorphic map, we denote by F n the nth iterate of F , n ∈ N,

defined by induction as F n = F ◦ F n−1, F 0
= id. Moreover, for (z, w) ∈ C2 and n ∈ N,

we let

un := π(F
n(z, w)), Un := 1/un, zn := π1(F

n(z, w)), wn := π2(F
n(z, w)).

If f (n) and g(n) are real positive functions of n ∈ N, we write f (n) ∼ g(n) if there
exist 0 < c1 < c2 such that c1f (n) < g(n) < c2f (n) for all n ∈ N. Moreover, we
use the Landau little/big “O” notations: f (n) = O(g(n)) if there exists C > 0 such that
f (n) ≤ Cg(n) for all n ∈ N, while f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0.

2. The local basin of attraction B

In this section we recall the construction of the local basin of attraction, and we provide
the local characterization that we use in our construction.

Let FN be a germ of biholomorphism of C2, fixing the origin, of the form

FN (z, w) =

(
λz

(
1−

zw

2

)
, λw

(
1−

zw

2

))
, (2.1)

where λ ∈ C, |λ| = 1, is not a root of unity.

Definition 2.1. For θ ∈ (0, π/2) and R > 0 we let

S(R, θ) :=

{
ζ ∈ C :

∣∣∣∣ζ − 1
2R

∣∣∣∣ < 1
2R
, |Arg(ζ )| < θ

}
,

H(R, θ) := {ζ ∈ C : Re ζ > R, |Arg(ζ )| < θ}.

D. Zaitsev and the first named author proved that any small variation of FN admits a local
basin of attraction. In order to state the result in our case, let us introduce some sets:

Definition 2.2. For β ∈ (0, 1/2) we let

W(β) := {(z, w) ∈ C2
: |z| < |zw|β , |w| < |zw|β}.

For every R ≥ 0, β ∈ (0, 1/2) and θ ∈ (0, π/2), we let

B(β, θ, R) := {(z, w) ∈ W(β) : zw ∈ S(R, θ)}.

In [4, Theorem 1.1] the following is proven:

Theorem 2.3. Let FN be a germ of biholomorphism at (0, 0) of the form (2.1). Let β0 ∈

(0, 1/2) and let l ∈ N, l ≥ 4, be such that β0(l + 1) ≥ 4. Then for every θ0 ∈ (0, π/2)
and for any germ of biholomorphism F at (0, 0) of the form

F(z,w) = FN (z, w)+O(‖(z, w)‖
l)

there exists R0 > 0 such that the (non-empty) open set BR0 := B(β0, θ0, R0) is a uniform
local basin of attraction for F , that is, F(BR0) ⊆ BR0 , and limn→∞ F

n(z, w) = (0, 0)
uniformly in (z, w) ∈ BR0 .
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Definition 2.4. Let F(z,w) = FN (z, w) + O(‖(z, w)‖
l) be as in Theorem 2.3 and fix

θ0 ∈ (0, π/2). We set
B := BR0 = B(β0, θ0, R0).

In the following, we shall use some properties of B that we prove below. We start with a
lemma, allowing us to characterize the pre-images of B.

Lemma 2.5. Let F and B be as in Theorem 2.3. Let β ∈ (0, 1/2) be such that β(l + 1)
> 2 and (z, w) ∈ C2 such that (zn, wn)→ (0, 0) as n→∞. If there exists n0 ∈ N such
that (zn, wn) ∈ W(β) for all n ≥ n0, then

(1) limn→∞ nun = 1 and limn→∞ un/|un| = 1 (in particular, |un| ∼ 1/n),
(2) |zn| ∼ n−1/2 and |wn| ∼ n−1/2,
(3) for every γ ∈ (0, 1/2) there exists nγ ∈ N such that (zn, wn) ∈ W(γ ) for all n ≥ nγ .

In particular, (zn, wn) ∈ B eventually.

Proof. We can locally write F in the form

F(z,w) =

(
λz

(
1−

zw

2

)
+ R1

l (z, w), λw

(
1−

zw

2

)
+ R2

l (z, w)

)
, (2.2)

where Rjl (z, w) = O(‖(z, w)‖
l), j = 1, 2.

Since (zn, wn)→ (0, 0), we have

Un+1 = Un

(
1+

1
Un
+O

(
1
|Un|2

, |Un| ‖(zn, wn)‖
l+1
))
.

For n ≥ n0, O(‖(zn, wn)‖l+1) is at most an O(|un|β(l+1)) = O(1/|Un|β(l+1)), since
β(l + 1) > 2. Hence,

Un+1 = Un

(
1+

1
Un
+O

(
1

|Un|β(l+1)−1 ,
1
|Un|2

))
. (2.3)

Fix ε > 0. Let c := 1 + ε. Notice that, by (2.3), there exists nc ≥ n0 such that for all
n ≥ nc, |Un+1 − Un − 1| < (c − 1)/c. Arguing by induction on n, it easily follows that
for all n ≥ nc we have

ReUn ≥ ReUnc +
n− nc

c
, (2.4)

|Un| ≤ |Unc | + c(n− nc). (2.5)

Letting ε → 0+ we obtain

lim
n→∞

ReUn
n
= lim
n→∞

|Un|

n
= 1. (2.6)
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In particular, this means that limn→∞ nRe un= limn→∞ n|un| = 1. Hence, limn→∞
|un|
Re un

= 1, which implies at once that

lim
n→∞

Im un
Re un

= 0. (2.7)

Hence statement (1) follows.
Arguing by induction, we have

zn+1 = z0λ
n

n∏
j=0

(
1−

uj

2

)
+

n∑
j=0

R1
l (zj , wj )

n∏
k=j+1

λ

(
1−

uk

2

)
,

wn+1 = w0λ
n

n∏
j=0

(
1−

uj

2

)
+

n∑
j=0

R2
l (zj , wj )

n∏
k=j+1

λ

(
1−

uk

2

)
,

(2.8)

Therefore,

|zn+1| ≤ |z0|

n∏
j=0

∣∣∣∣1− uj2
∣∣∣∣+ n∑

j=0

|R1
l (zj , wj )|

n∏
k=j+1

∣∣∣∣1− uk2
∣∣∣∣. (2.9)

Taking into account statement (1), we have

lim
j→∞

(−2j) log
∣∣∣∣1− uj2

∣∣∣∣ = lim
j→∞

(−2j)
(

1
2

log
∣∣∣∣1− uj2

∣∣∣∣2)
= lim
j→∞

(−2j)
(

1
8
|uj |

2
−

1
2
Re uj

)
= 1.

Therefore,

n∏
j=0

∣∣∣∣1− uj2
∣∣∣∣ = exp

( n∑
j=0

log
∣∣∣∣1− uj2

∣∣∣∣) ∼ exp
( n∑
j=1

−
1

2j

)
∼

1
√
n
. (2.10)

Moreover, since (zn, wn) ∈ W(β) eventually, and |R1
l (zj , wj )| = O(‖(zj , wj )|

l), it fol-
lows that there exist some constants 0 < c ≤ C such that

|R1
l (zj , wj )| ≤ c|uj |

βl
≤ Cj−βl .

Hence, by (2.10), for j > 1 sufficiently large we have

|R1
l (zj , wj )|

n∏
k=j+1

∣∣∣∣1− uk2
∣∣∣∣ = |R1

l (zj , wj )| exp
( n∑
k=j+1

log
∣∣∣∣1− uk2

∣∣∣∣)

∼ |R1
l (zj , wj )| exp

(
−

1
2

n∑
k=j+1

1
k

)

∼ |R1
l (zj , wj )|

√
j
√
n
≤ C

j1/2−βl
√
n

.
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Since βl − 1/2 > 1, it follows that there exists a constant (still denoted by) C > 0 such
that

n∑
j=0

|R1
l (zj , wj )|

n∏
k=j+1

∣∣∣∣1− uk2
∣∣∣∣ ≤ C 1

√
n
.

Hence, from (2.9), there exists a constant C > 0 such that

|zn| ≤ C
1
√
n
. (2.11)

A similar argument for wn, shows that

|wn| ≤ C
1
√
n
. (2.12)

By statement (1), we have |zn|·|wn| = |un| ∼ 1/n. Since |zn| ≤ C/
√
n and |wn| ≤ C/

√
n

by (2.11) and (2.12), it follows that, in fact, |zn| ∼ 1/
√
n and |wn| ∼ 1/

√
n, proving (2).

Finally, by (2), there exist constants c, C > 0 such that |zn| ≤ C/
√
n for all n ∈ N

and |un| ≥ c/n. Fix γ ∈ (0, 1/2). Then for every n large enough,

|zn| ≤ C
1
√
n
≤

C

c1/2 |un|
1/2 < |un|

γ .

Similarly, one can prove that |wn| < |un|γ . As a consequence, eventually (zn, wn) is
contained in W(γ ) for every γ ∈ (0, 1/2). ut

Remark 2.6. From the uniform convergence of {F n} to (0, 0) in B, and from the proof
of the previous lemma, it follows that (1) and (2) in Lemma 2.5 are uniform in B.

We shall also need the following local result concerning the topology of B:

Lemma 2.7. Let F and B be as in Theorem 2.3. Then B is a doubly connected domain
(i.e., B is connected and its fundamental group is Z).

Proof. Let8 : C2
→ C2 be defined by8(z,w) = (zw,w). The conclusion then follows

since 8 : B → 8(B) is a biholomorphism and a straightforward computation shows that

8(B) = {(x, y) ∈ C× C∗ : x ∈ S(R, θ), |x|1−β0 < |y| < |x|β0}. ut

3. Local Fatou coordinates on B

In this section we introduce special coordinates on B, which will be used later on in our
construction. The first coordinate was introduced in [3, Prop. 4.3]. Here we shall need
more precise information:
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Proposition 3.1. Let F and B be as in Theorem 2.3. Then there exists a holomorphic
function ψ : B → C such that

ψ ◦ F = ψ + 1. (3.1)

Moreover

ψ(z,w) =
1
zw
+ c log

1
zw
+ v(z,w), (3.2)

where c ∈ C depends only on FN , and v : B → C is a holomorphic function such that
for every (z, w) ∈ B,

v(z,w) = zw · g(z,w) (3.3)

for a bounded holomorphic function g : B → C.

Proof. The strategy of the proof follows the one for the existence of Fatou coordinates in
the Leau–Fatou flower theorem. Given a point (z, w) ∈ B, for all n ∈ N we have

Un+1 = Un + 1+ c/Un +O(|Un|−2)

where c ∈ C depends on FN and, as usual, Un := 1/π(F n(z, w)). The map ψ is
then obtained as the uniform limit in B of the sequence of functions {ψm}m∈N, where
ψm : B → C is defined as

ψm(z, w) :=
1

π(Fm(z, w))
−m− c logπ(Fm(z, w)). (3.4)

In fact, a direct computation as in [3, Prop. 4.3] implies that there exists A > 0 such that
for all m ∈ N and all (z, w) ∈ B,

|ψn+1(z, w)− ψn(z, w)| ≤ A|Un|
−2. (3.5)

Therefore, since |Un| = 1/|un| ∼ n uniformly in B by Lemma 2.5 and Remark 2.6,
the sequence

∑n
j=0(ψj+1 − ψj ) uniformly converges in B to a bounded holomorphic

function v, that is,

v(z,w) :=

∞∑
j=0

(ψj+1(z, w)− ψj (z, w)).

Moreover, (3.2) follows from ψn − ψ0 =
∑n
j=0(ψj+1 − ψj ), and ψn ◦ F = ψn+1 + 1

yields the functional equation (3.1). Notice that (3.5) implies |ψ − ψm| ∼ 1/m.
Finally, since Un ∈ H(R0, θ0) for all n ∈ N, there exists K ∈ (0, 1) such that

ReU0 > K|U0| for all U0 ∈ H(R0, θ0). Hence, by (2.4),

|v(z,w)| ≤ A

∞∑
j=0

1
|Uj |2

≤ A

∞∑
j=0

1
(ReUj )2

≤ A

∞∑
j=0

1
(ReU0 + j/2)2

∼ A

∫
∞

0

dt

(ReU0 + t/2)2
=

2A
ReU0

≤
2A
K|U0|

,

from which (3.3) follows at once. ut
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Definition 3.2. The map ψ : B → C is called a Fatou coordinate for F .

Lemma 3.3. Let F be as in Theorem 2.3. Let ψ be the Fatou coordinate for F given by
Proposition 3.1. Then there exist R1 ≥ R0, β1 ∈ (β0, 1/2) and 0 < θ1 < θ0 such that the
holomorphic map

B(β1, θ1, R1) 3 (z, w) 7→ (ψ(z,w),w)

is injective.

Proof. First we search for β1, θ1 and R1 so that on B(β1, θ1, R1) we have good estimates
for the partial derivatives of g and v with respect to U .

Since the map χ : B 3 (z, w) 7→ (U,w) is univalent, we can consider v as a function
of (U,w) defined on

χ(B) = {(U,w) : U ∈ H(R0, θ0), |U |
β0−1 < |w| < |U |−β0}.

Denote by (H(R0, θ0) + 1) the set of points U = V + 1 with V ∈ H(R0, θ0). Let
θ1 ∈ (0, θ0) be such that H(R0+ 1, θ1) ⊂ (H(R0, θ0)+ 1). There exists δ0 > 0 such that
for every U ∈ (H(R0, θ0)+ 1) the distance from U to ∂H(R0, θ0) is greater than 2δ0.

Let β̃ ∈ (β0, 1/2). For R ≥ R0, we have

χ(B(β̃, θ1, R)) = {(U,w) : U ∈ H(R, θ1), |U |
β̃−1 < |w| < |U |−β̃},

and there exists R̃ ≥ R0 such that for all (U,w) ∈ χ(B(β̃, θ1, R̃)) and all t ∈ R,

|U + δ0e
it
|
β0−1
≤ (|U | − δ0)

β0−1 < |U |β̃−1 < |w|

< |U |−β̃ < (|U | + δ0)
−β0 ≤ |U + δ0e

it
|
−β0 ,

which implies that (U + δ0e
it , w) ∈ χ(B) for all t ∈ R and all (U,w) ∈ χ(B(β̃, θ1, R̃)),

since U + δ0e
it
∈ H(R0, θ0) for all t ∈ R. Therefore, for every (U0, w0) in

χ(B(β̃, θ1, R̃)), the Cauchy formula for derivatives yields∣∣∣∣ ∂g∂U (U0, w0)

∣∣∣∣ = 1
2π

∣∣∣∣∫
|ζ−U0|=δ0

g(ζ,w0)

(ζ − U0)2
dζ

∣∣∣∣ ≤ 1
2πδ0

sup
(U,w0)∈χ(B)

|g(U,w0)|

≤
C

2πδ0
=: C1.

Hence, setting C2 := C + C1, for every R ≥ min{R̃, 1} we have∣∣∣∣ ∂v∂U (U0, w0)

∣∣∣∣ ≤ C

|U0|2
+

1
|U0|

∣∣∣∣ ∂g∂U (U0, w0)

∣∣∣∣ ≤ C

|U0|2
+

C1

|U0|
≤
C2

R
(3.6)

for all (U0, w0) ∈ χ(B(β̃, θ1, R)). Now, since there exists K ∈ (0, 1) such that ReU >

K|U | for every U ∈ H(θ1, R), we fix β1 ∈ (β̃, 1/2) and let R ≥ R̃ be such that

K1−β1rβ1−1 > r β̃−1, ∀r ≥ R. (3.7)
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To prove the injectivity on B(β1, θ1, R1), we first prove that for (U1, w0), (U2, w0) in
χ(B(β1, θ1, R))we have (γ (t), w0) ∈ χ(B(β̃, θ1, R))where γ (t) = tU1+(1−t)U2 with
t ∈ [0, 1] is the real segment joining U1 and U2. In fact, we have γ (t) ⊂ H(θ1, R) for all

t ∈ [0, 1] sinceH(θ1, R) is convex. Moreover, since |Uj | > |w0|
1

β1−1 and ReUj > K|Uj |

for j = 1, 2, we have

|tU1+(1−t)U2|> t ReU1+(1−t)ReU2>K
(
t |w0|

1
β1−1+(1−t)|w0|

1
β1−1

)
=K|w0|

1
β1−1

for all t ∈ [0, 1], and so, by (3.7),

|w0| >

(
1
K

)β1−1

|tU1 + (1− t)U2|
β1−1 > |tU1 + (1− t)U2|

β̃−1.

On the other hand, since |Uj | < |w0|
−1/β1 , j = 1, 2, for all t ∈ [0, 1] we have

|tU1 + (1− t)U2| < t |w0|
−1/β1 + (1− t)|w0|

−1/β1 = |w0|
−1/β1 ,

hence
|tU1 + (1− t)U2|

−β̃ > |tU1 + (1− t)U2|
−β1 > |w0|.

Therefore using (3.6) we obtain

|ψ(U1, w0)− ψ(U2, w0)| =

∣∣∣∣∫
γ

∂ψ

∂U
(U,w0) dU

∣∣∣∣ = ∣∣∣∣∫
γ

[
1+

c

U
+
∂v

∂U
(U,w0)

]
dU

∣∣∣∣
≥ |U1 − U0| −

|c|

R
|U1 − U0| −

C2

R
|U1 − U0|

=

(
1−
|c|

R
−
C2

R

)
|U1 − U0|,

and we obtain the injectivity of (U,w) 7→ (ψ(U,w),w) on χ(B(β1, θ1, R)), and hence
of (z, w) 7→ (ψ(z,w),w) on B(β1, θ1, R), for R sufficiently large. ut

The next result shows the existence of another “coordinate” on B defined using the Fatou
coordinate.

Proposition 3.4. Let F and B be as in Theorem 2.3 and ψ the Fatou coordinate given
by Proposition 3.1. Then there exists a holomorphic function σ : B → C∗ such that

σ ◦ F = λe
−

1
2ψ σ. (3.8)

Moreover, σ(z,w) = w+ η(z,w), where η : B → C is a holomorphic function such that
for every (z, w) ∈ B,

η(z,w) = (zw)α · h(z,w) (3.9)

for a holomorphic bounded function h : B → C, with α ∈ (1− β0, 1) ⊂ (1/2, 1).
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Proof. For n ∈ N, consider the holomorphic function σn : B → C∗ defined by

σn(z, w) := λ
nπ2(F

n(z, w)) exp
(

1
2

n−1∑
j=0

1
ψ(z,w)+ j

)
. (3.10)

We will prove that the sequence {σn} converges uniformly in B to a holomorphic function
σ : B → C∗ satisfying the assertions of the statement.

First, if {σn} is uniformly convergent on compacta of B, then (3.8) follows from

σn ◦ F = λ
nwn+1 exp

(
1
2

n−1∑
j=0

1
ψ ◦ F + j

)
= λnwn+1 exp

(
1
2

n−1∑
j=0

1
ψ + j + 1

)

= λ exp
(
−

1
2ψ

)
λn+1wn+1 exp

(
1
2

n∑
j=0

1
ψ + j

)
= λ exp

(
−

1
2ψ

)
σn+1.

Now we show that {σn} is equibounded in B. By Proposition 3.1 we have

|ψ − 1/uj + j + c log uj | = |ψ − ψj | ∼ 1/j .

By Lemma 2.5 and Remark 2.6, |uj | ∼ 1/j uniformly in B, hence

1
ψ + j

=
uj

1− cuj log uj +O(uj )
= uj +O(u

2
j log uj ). (3.11)

Now, by statement (1) in Lemma 2.5, we have limj→∞ 1
2j Re uj =

1
2 . Therefore,

exp
(

1
2

n−1∑
j=0

Re uj

)
∼ exp

(n−1∑
j=1

1
2j

)
= O(n1/2).

Moreover, again thanks to Lemma 2.5 and Remark 2.6, there exists C > 0 such that∑
∞

j=0 |u
2
j log uj | ≤ C. Hence, there exists C′ > 0 such that∣∣∣∣exp

(
1
2

n−1∑
j=0

1
ψ(z,w)+ j

)∣∣∣∣ = ∣∣∣∣exp
(n−1∑
j=0

(
uj

2
+O(u2

j log uj )
))∣∣∣∣

≤ C′ exp
(n−1∑
j=1

1
2j

)
= O(n1/2). (3.12)

Therefore, since |wn| ∼ n−1/2, we have

|σn(z, w)| = |wn|

∣∣∣∣exp
(

1
2

n−1∑
j=0

1
ψ(z,w)+ j

)∣∣∣∣ = |wn|O(n1/2) = O(1), (3.13)

showing that the sequence {σn} is equibounded on B.
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To prove that {σn} is in fact convergent, let us first notice that

σn+1(z, w) = λ
n+1wn+1 exp

(
1
2

n∑
j=0

1
ψ(z,w)+j

)

= λn+1
[
λ̄wn

(
1−

un

2

)
+R2

l (zn, wn)

]
exp

(
1
2

n∑
j=0

1
ψ(z,w)+j

)

= σn(z, w)

(
1−

un

2

)
e

1
2(ψ(z,w)+n)+λn+1R2

l (zn, wn) exp
(

1
2

n∑
j=0

1
ψ(z,w)+j

)
.

Therefore,

σn+1(z, w)− σn(z, w) = σn(z, w)

[(
1−

un

2

)
e

1
2(ψ(z,w)+n) − 1

]
+ λn+1R2

l (zn, wn) exp
(

1
2

n∑
j=0

1
ψ(z,w)+ j

)
. (3.14)

Now we estimate the terms on the right hand side of (3.14). Fix α ∈ (1−β0, 1). Note
that α > 1/2. By (3.11), recalling that |un| ∼ 1/n, we have(

1−
uj

2

)
e

1
2(ψ(z,w)+n) − 1 =

(
1−

uj

2

)
e

1
2un+O(u

2
n log un) − 1

=

(
1−

uj

2

)(
1+

1
2
un +O(u

2
n log un)

)
− 1

= O(u2
n log un) = |un|αO

(
log n
n2−α

)
. (3.15)

Next, since (zn, wn) ∈ B, we have |R2
l (zn, wn)| = O(|un|

β0l), and by (3.12),

|R2
l (zn, wn)|

∣∣∣∣exp
(

1
2

n∑
j=0

1
ψ(z,w)+ j

)∣∣∣∣ ≤ C|un|αn1/2+α−β0l (3.16)

for some C > 0.
From (3.14), using (3.13), (3.15), (3.16), it follows that there exists a constant C′ > 0

such that for all (z, w) ∈ B,

|σn+1(z, w)− σn(z, w)| ≤ Cn|un|
α (3.17)

with Cn = C′
( log n
n2−α + n

1/2+α−β0l
)
. Therefore the sequence {σn} converges uniformly

on B to a holomorphic function σ . Let C :=
∑
∞

n=0 Cn < +∞. For all n ∈ N, we have
|un| ≤ 1/R0, hence (3.17) implies that σn− σ0 =

∑n
j=0(σj+1− σj ) converges uniformly

on B to a holomorphic function η such that η(z,w) = σ(z,w)−σ0(z, w) = σ(z,w)−w.
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Moreover, for all (z, w) ∈ B we have

|η(z,w)| ≤

∞∑
n=0

|σn+1(z, w)− σn(z, w)| ≤

∞∑
n=0

Cn|un|
α < |u0|

α
∞∑
n=0

Cn = C|zw|
α.

Finally, since σn(z, w) 6= 0 for all n ∈ N and (z, w) ∈ B, it follows that either σ ≡ 0
or σ(z,w) 6= 0 for all (z, w) ∈ B. Since (r, r) ∈ B for all r > 0 sufficiently small,
recalling that we have just proved that σ(z,w) = w + (zw)αh(z,w) with |h| ≤ C for all
(z, w) ∈ B and 2α > 1, we have

|σ(r, r)| = |r + r2αh(r, r)| ≥ r − r2αC = r(1− o(r)),

proving that σ 6≡ 0. ut

We shall now prove that the map B 3 (z, w) 7→ (ψ(z,w), σ (z,w)) is injective on a
suitable subset of B. Such a result is crucial to show that the global basin of attraction,
which we shall introduce in the next section, is biholomorphic to C× C∗.

Proposition 3.5. Let F and B be as in Theorem 2.3, let ψ : B → C be the Fatou
coordinate given by Proposition 3.1 and let σ : B → C be the second local coordinate
defined in Proposition 3.4. Then there exist R1 ≥ R0, β1 ∈ (β0, 1/2) and θ1 ∈ (0, θ0]

such that the holomorphic map

B(β1, θ1, R1) 3 (z, w) 7→ Q(z,w) := (ψ(z,w), σ (z,w))

is injective. Moreover, there exist R̃ > 1, θ̃ ∈ (0, π/2) and β̃ ∈ (0, 1/2) such that

{(U,w) ∈ C2
: U ∈ H(R̃, θ̃), |U |β̃−1 < |w| < |U |−β̃} ⊂ Q(B). (3.18)

Proof. Let R1 ≥ R0, β1 ∈ (β0, 1/2) and 0 < θ1 ≤ θ0 be given by Lemma 3.3. Thanks to
the injectivity of B(β1, θ1, R1) 3 (z, w) 7→ (ψ(z,w),w) shown in Lemma 3.3, it follows
easily that the map

B(β1, θ1, R1) 3 (z, w) 7→ (ψ(z,w), σn(z, w))

is injective for all n ∈ N, where σn is the map defined in (3.10) for n ∈ N. Since σ is the
uniform limit of the sequence {σn}, it follows that either the Jacobian of Q = (ψ, σ ) is
identically zero on B(β1, θ1, R1), or Q is injective on B(β1, θ1, R1).

We now compute the Jacobian of Q at (r, r) ∈ B(β1, θ1, R1) for r > 0 sufficiently
small. To simplify computation, we consider the holomorphic change of coordinates
χ : B(β1, θ1, R1) → C2 given by χ(z,w) =

( 1
zw
, w
)
= (U,w) and we compute the

Jacobian of Q(U,w) at (1/r2, r).
By Propositions 3.1 and 3.4, we have

Q(U,w) = (U + c logU + v(U,w),w + η(U,w)), (3.19)
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where v(U,w) = 1
U
g(U,w) and η(U,w) = 1

Uα
h(U,w), α ∈ (1 − β0, 1) with |g|, |h|

≤ C for some C > 0 on B. Hence,

Jac(1/r2,r)Q = det

(
1+ cr2

+
∂v
∂U

( 1
r2 , r

)
∂v
∂w

( 1
r2 , r

)
∂η
∂U

( 1
r2 , r

)
1+ ∂η

∂w

( 1
r2 , r

))

=

(
1+ cr2

+
∂v

∂U

(
1
r2 , r

))(
1+

∂η

∂w

(
1
r2 , r

))
−
∂v

∂w

(
1
r2 , r

)
∂η

∂U

(
1
r2 , r

)
.

First of all, note that for γ ∈ (0, 1/2), R̃ > 1 and θ̃ ∈ (0, π/2) there exists r0 > 0 such
that (1/r2, r) ∈ χ((B(γ, θ̃ , R̃))) for all r ∈ (0, r0). Hence, by (3.6), there exists C2 > 0
such that for r sufficiently small,∣∣∣∣ ∂v∂U

(
1
r2 , r

)∣∣∣∣ ≤ r2C2.

A similar argument to (3.6) for η instead of v shows that for r sufficiently small,∣∣∣∣ ∂η∂U
(

1
r2 , r

)∣∣∣∣ ≤ r2αC3

for some C3 > 0.
On the other end, it is easy to check that, for every t ∈ R, (1/r2, r(1+eit/2)) ∈ χ(B)

whenever r is positive and small enough. Hence, by the Cauchy formula for derivatives,∣∣∣∣ ∂v∂w
(

1
r2 , r

)∣∣∣∣ = 1
2π

∣∣∣∣∫
|ζ−r|=r/2

v(1/r2, ζ )

(ζ − r)2
dζ

∣∣∣∣ = r2 max|ζ−r|=r/2 |g(1/r2, ζ )|

r
≤ Cr.

Similarly, ∣∣∣∣ ∂η∂w
(

1
r2 , r

)∣∣∣∣ ≤ Cr2α−1.

Therefore,
Jac(1/r2,r)Q = 1+O(r2α−1),

showing that the Jacobian is not zero for r sufficiently small since α > 1/2. Hence Q is
injective on B(β1, θ1, R1).

Now we prove there exist R̃ > 1, θ̃ ∈ (0, π/2) and β̃ ∈ (0, 1/2) such that (3.18)
holds. The rough idea is thatQ|B is “very close” to the map (z, w) 7→

( 1
zw
−c log(zw),w

)
,

for which the statement is true, and hence (3.18) follows by Rouché’s Theorem.
Consider again the constants R1 ≥ R0, β1 ∈ (β0, 1/2) and θ1 ∈ (0, θ0] given

by Lemma 3.3, and the holomorphic change of coordinates on B̃ given by χ(z,w) =( 1
zw
, w
)
= (U,w). Then χ(B̃) = {(U,w) : U ∈ H(R1, θ1), |U |

β1−1 < |w| < |U |−β1}.
The map χ(B̃) 3 (U,w) 7→ Q(U,w) = (ψ(U,w), σ (U,w)) is given by (3.19). In

particular
ψ(U,w) = U(1+ τ(U,w)), (3.20)

where |τ | < C on χ(B̃) for someC > 0, and lim|U |→∞ τ(U,w) = 0. This implies imme-
diately that there exist R̃1 > 0 and θ̃ ∈ (0, θ0/2) such that H(R̃1, 2θ̃ ) ⊂ ψ(B̃) ⊂ ψ(B).
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To prove (3.18) it suffices to show that there exist R̃ ≥ R̃1 and β̃ ∈ (β1, 1/2) such
that for every ζ0 ∈ H(R̃, θ̃),

{ξ ∈ C : |ζ0|
β̃−1 < |ξ | < |ζ0|

−β̃
} ⊂ σ(ψ−1(ζ0)). (3.21)

In order to prove (3.21), we first show that there exist R̃2 ≥ R̃1 and β̃2 ∈ (β1, 1/2)
such that for every ζ0 ∈ H(R̃2, θ̃ ),

{ξ ∈ C : |ζ0|
β̃2−1 < |ξ | < |ζ0|

−β̃2} ⊂ π2(ψ
−1(ζ0)). (3.22)

Indeed, by (3.20), ζ0 = ψ(U,w) = U(1+τ(U,w))with |τ | < C and lim|U |→∞ τ(U,w)
= 0. Hence, if ζ0 ∈ H(R̃2, θ̃ ) for some R̃2 ≥ R̃1, then

|U | ≥
|ζ0|

1+ |τ(U,w)|
≥

R̃2

1+ C
.

Therefore, given c′ ∈ (0, 1), we can choose R̃2 ≥ R̃1 large enough that for every (U,w)
in χ(B̃) such that ψ(U,w) = ζ0 and ζ0 ∈ H(R̃2, θ̃ ), the modulus |U | is so large that
|τ(U,w)| < c′. This implies that

(1− c′)|U | < |ζ0| < (1+ c′)|U | (3.23)

for every U ∈ C such that there exists w ∈ C with (U,w) ∈ χ(B̃) and ψ(U,w) = ζ0 ∈

H(R̃2, θ̃ ).
Let β̃2 ∈ (β1, 1/2). Let r0 > 0 be such that

1
[(1+ c′)t]1−β1

<
1

t1−β̃2
<

1

[(1− c′)t]β̃2
<

1
tβ1
, ∀t ≥ r0.

Up to choosing R̃2 ≥ r0, (3.23) implies that

|U0|
β1−1 < |ζ0|

β̃2−1 < |ζ0|
−β̃2 < |U0|

−β1 (3.24)

for every U0 ∈ C such that there exists w ∈ C with (U0, w) ∈ χ(B̃) and ψ(U0, w) =

ζ0 ∈ H(R̃2, θ̃ ).
Fix ζ0 ∈ H(R̃2, θ̃ ) and fix ξ0 ∈ C such that |ζ0|

β̃2−1 < |ξ0| < |ζ0|
−β̃2 . Since there

exists (U0, w0) ∈ χ(B̃) such that ψ(U0, w0) = ζ0, it follows from (3.24) that (U0, ξ0) is
in χ(B̃). In particular, χ(B̃) ∩ {w = ξ0} 6= ∅. Set

A(ξ0) :=

{
U ∈ H(R1, θ1) :

1
|ξ0|1/(1−β1)

< |U | <
1

|ξ0|1/β1

}
= χ(B̃) ∩ {w = ξ0}.

Then

A(ξ0) 3 U 7→ ψξ0(U) := ψ(U, ξ0) = U + c logU + g(U, ξ0)/U ∈ C

is well defined and holomorphic. Moreover, up to taking R̃2 larger and θ̃ smaller, we can
assume that the set H(R̃2, θ̃ ) is contained in the image of the map χ(B̃) 3 (U,w) 7→
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U + c logU . Hence, there exists (U0, w0) ∈ χ(B̃) such that U0 + c logU0 = ζ0. Since
ζ0 = U0

(
1+ c logU0

U0

)
, it follows that |U0|(1− ε) ≤ |ζ0| ≤ |U0|(1+ ε) for some ε ∈ (0, 1)

provided that R̃2 is sufficiently large. Recalling that |ζ0|
β̃2−1 < |ξ0| < |ζ0|

−β̃2 , we have

|U0| ≥
|ζ0|

1+ ε
>

1

(1+ ε)|ξ0|1/(1−β̃2)
>

1
|ξ0|1/(1−β1)

,

where the last inequality holds provided R̃2 is sufficiently large. Similarly, one can show
that |U0| < 1/|ξ0|

1/β1 , so U0 ∈ A(ξ0).
Let δ ∈ (0, 1) be such that D(U0, δ) := {U ∈ C : |U − U0| < δ} is con-

tained in A(ξ0). Since |g(U, ξ0)|/|U | < c′, up to choosing R̃2 so large that c′ + δ <
|c|max|U−U0|=δ | logU − logU0|, it follows that for all U ∈ ∂D(U0, δ),

|ψξ0(U)− U − c logU | < c′ < |c|

∣∣∣∣log
U

U0

∣∣∣∣− δ ≤ |U + c logU − ζ0|

≤ |U + c logU − ζ0| + |ψξ0(U)− ζ0|.

Hence, Rouché’s Theorem implies that there exists U1 ∈ D(U0, δ) ⊂ A(ξ0) such that
ψ(U1, ξ0) = ψξ0(U1) = ζ0, proving (3.22).

Let K : χ(B̃) → C2 be defined by K(U,w) := (ψ(U,w),w). Then the map K is
injective and from (3.22) we obtain

χ(B(β̃2, θ̃ , R̃2)) ⊂ K(χ(B̃)). (3.25)

Let R̃ ≥ R̃2, and let ζ0 ∈ H(R̃, θ̃). Thanks to (3.25), we have (ζ0, w) ∈ K(χ(B̃)) for
every w ∈ J (ζ0), where

J (ζ0) := {w ∈ C : |ζ0|
β̃2−1 < |w| < |ζ0|

−β̃2}.

Let β̃ ∈ (β̃2, 1/2), and let ξ0 ∈ C be such that |ζ0|
β̃−1 < |ξ0| < |ζ0|

−β̃ . In particular
ξ0 ∈ J (ζ0), and setting r := min {|ζ0|

β̃−1
− |ζ0|

β̃2−1, |ζ0|
−β̃2 − |ζ0|

−β̃
} > 0, the disc

D(ξ0, r) := {ξ ∈ C : |ξ − ξ0| < r} is contained in J (ζ0). Moreover, if R̃ is sufficiently
large, then

r > 1
2 min {|ζ0|

β̃−1, |ζ0|
−β̃2}. (3.26)

Set (Ũ , w) := K(U,w). For every (Ũ , w) ∈ K(χ(B̃)), we can write

σ̃ (Ũ , w) := (σ ◦K−1)(Ũ , w) = w + η(Ũ , w),

where η(Ũ , w) = 1
Ũα
h(Ũ, w) with α ∈ (1 − β0, 1), and |h| ≤ C for some C > 0. By

(3.26), since α > 1 − β0 > 1/2, if R̃ is sufficiently large, then |η(ζ0, w)| < r for every
w ∈ J (ζ0). Therefore, for all w ∈ ∂D(ξ0, r),

|w − σ̃ (ζ0, w)| = |η(ζ0, w)| < r = |w − ξ0| ≤ |w − ξ0| + |σ̃ (ζ0, w)− ξ0|.

Hence, by Rouché’s Theorem, there exists w0 ∈ D(ξ0, r) such that σ̃ (ζ0, w0) = ξ0. By
the arbitrariness of ξ0, this implies that for every ζ0 ∈ H(R̃, θ̃),

{ξ ∈ C : |ζ0|
β̃−1 < |ξ | < |ζ0|

−β̃
} ⊂ σ̃ (ζ0, ·)(J (ζ0)) ⊂ σ(ψ

−1(ζ0)),

which finally proves (3.21). ut
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4. The topology of the global basin �

Let FN be a germ of biholomorphism of C2 at (0, 0) of the form (2.1). Thanks to a result
of B. J. Weickert [18] and F. Forstnerič [6] (see in particular [6, Corollary 2.2]), given
any l ≥ 2 there exists an automorphism F of C2 such that ‖F(z,w) − FN (z, w)‖ =
O(‖(z, w)‖l). In particular, given a unimodular number λ not a root of unity, we take
l ≥ 4 such that β0(l + 1) ≥ 4, where 0 < β0 < 1/2 is given by Theorem 2.3, and we
consider automorphisms of C2 of the form

F(z,w) =

(
λz

(
1−

zw

2

)
+ R1

l (z, w), λw

(
1−

zw

2

)
+ R2

l (z, w)

)
, (4.1)

where Rjl (z, w) = O(‖(z, w)‖
l), j = 1, 2.

Definition 4.1. Let F be an automorphism of C2 of the form (4.1). Let B be the local
basin of attraction of F given by Theorem 2.3. The global attracting basin of F is

� :=
⋃
n∈N

F−n(B).

In this section we are going to prove that the global basin � is biholomorphic to C×C∗.
We start by proving that � is not simply connected:

Proposition 4.2. The open set � is connected but not simply connected.

Proof. We see that� is the growing union of images biholomorphic toB, which is doubly
connected by Lemma 2.7. Moreover, F∗ is the identity on π1(B) and onH1(B), therefore
π1(�) = H1(�) = Z. ut

In order to prove that� is biholomorphic toC×C∗, let us consider the Fatou coordinateψ
for F given by Proposition 3.1 and the holomorphic function σ given by Proposition 3.4.
We can use the functional equation (3.1) to extend ψ to all �. Indeed, let p ∈ �. Then
there exists n ∈ N such that F n(p) ∈ B. We define

g1(p) := ψ(F
n(p))− n.

Set H := g1(B), and consider �0 := g
−1
1 (H) =

⋃
ζ∈H g

−1
1 (ζ ).

Using (3.8) we can extend σ to �0 as follows. For any p ∈ �0, we set

g2(p) := λ
n exp

(
1
2

n−1∑
j=0

1
g1(p)+ j

)
σ(F n(p))

= λn exp
(

1
2

n−1∑
j=0

1
ψ(F n(p))+ j − n

)
σ(F n(p)),

where n ∈ N is such that F n(p) ∈ B. Notice that since g1(p) ∈ H , we have Re g1(p) > 0
and the previous formula is well defined.

The next lemma shows that the map G := (g1, g2) : �0 → C2 is well defined and
holomorphic:
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Lemma 4.3. The map G := (g1, g2) : �0 → C2 is well defined, holomorphic and injec-
tive.

Proof. The mapG is holomorphic by construction and since Re g1(p) > 0 for all p ∈ �0.
The map G is well defined. Indeed, if n and m are both integers such that F n(p) and

Fm(p) belong to B, and n < m, then Fm(p) = Fm−n(F n(p)). Therefore ψ(Fm(p)) =
ψ(Fm−n(F n(p))) = ψ(F n(p)) + m − n, whence ψ(Fm(p)) − m = ψ(F n(p)) − n.
Analogously, σ(Fm(p)) = λm−n exp((1/2)

∑m−n−1
j=0 1/(ψ(F n(p))+ j))σ (F n(p)), and

so

λm exp
(

1
2

m−1∑
j=0

1
ψ(Fm(p))+ j −m

)
σ(Fm(p))

= λm exp
(

1
2

m−1∑
j=0

1
ψ(F n(p))+ j − n

)
λ
m−n exp

(
−

1
2

m−n−1∑
j=0

1
ψ(F n(p))+ j

)
σ(F n(p))

= λn exp
(

1
2

n−1∑
j=0

1
ψ(F n(p))+ j − n

)
σ(F n(p)),

and we are done.
Let us now prove the injectivity of G. Let p, q ∈ �0. By the very definition of G,

G(p) = G(q) if and only if

(ψ(F n(p)), σ (F n(p))) = (ψ(F n(q)), σ (F n(q)))

for all n ∈ N such that F n(p) and F n(q) are contained in B. By Proposition 3.5, there
exist R1 ≥ R0, β1 ∈ (β0, 1/2) and 0 < θ1 ≤ θ0 such that Q := (ψ, σ ) is injective on
B(β1, θ1, R1). Also, by Lemma 2.5, there exists n ∈ N such that F n(p), F n(q) are in
B(β1, θ1, R1). Therefore, G(p) = G(q) if and only if p = q. ut

Proposition 4.4. G(�0) = H × C∗.

Proof. Let T : C2
→ C2 be defined by

T (ζ, ξ) := (ζ + 1, λe−
1

2ζ ξ).

Notice that T is not defined at ζ = 0. However, since g1(�0) = H , the map T is well
defined and holomorphic on G(�0) and satisfies

G ◦ F = T ◦G.

Let (ζ0, ξ0) ∈ H × C∗. By induction, for n ∈ N, we have

(ζn, ξn) := T
n(ζ0, ξ0) =

(
ζ0 + n, λ

n exp
(
−

1
2

n−1∑
j=0

1
ζ0 + j

)
ξ0

)
.
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Now,

|ξn| = exp
(
−

1
2

n−1∑
j=0

Re

(
1

ζ0 + j

))
|ξ0|

= exp
(
−

1
2

n−1∑
j=1

1
j

(
1+ j−1 Re ζ0

|j−1ζ0 + 1|2

))
exp

(
−Re

ζ0

2|ζ0|2

)
|ξ0|,

which implies that

|ζn| ∼ n, |ξn| ∼ x
1
√
n
.

Therefore, given β̃ ∈ (0, 1/2), for all n sufficiently large,

|ζn|
β̃−1 < |ξn| < |ζn|

−β̃ . (4.2)

Moreover, since ζn = ζ0 + n, it follows that, given R̃ > 0 and θ̃ ∈ (0, π/2), for all n
sufficiently large,

ζn ∈ H(R̃, θ̃). (4.3)
Note that G(z,w) = Q(z,w) = (ψ(z,w), σ (z,w)) for all (z, w) ∈ B. Hence, by

Proposition 3.5, there exist β̃ ∈ (0, 1/2), θ̃ ∈ (0, π/2) and R̃ > 1 such that the set
{(U,w) ∈ C2

: U ∈ H(R̃, θ̃), |U |β̃−1 < |w| < |U |−β̃} is contained in G(B). Therefore,
from (4.2) and (4.3), it follows at once that H × C∗ ⊆ G(�0), and in fact equality holds
since �0—and hence G(�0)—is not simply connected. ut

We finally have all ingredients to prove the final result of this section.

Proposition 4.5. � ' C× C∗.
Proof. Consider again H := g1(B) and set Hn := H − n. Since ψ(B) ⊂ H , we clearly
have

⋃
n∈NHn = C. For each n, define ϕn : g−1

1 (Hn)→ C2 by

ϕn(z, w) := G(F
n(z, w))− (n, 0).

Note that g1(F
n(z, w)) = g1(z, w) + n, hence F n is a fiber preserving biholomorphism

from g−1
1 (Hn) to �0. Therefore, by Proposition 4.4,

ϕn : g
−1
1 (Hn)→ Hn × C∗

is a fiber preserving biholomorphism. Moreover, for each p ∈ �, if F n(p) ∈ �0 we have

G(F n+1(p)) = G(F(F n(p))) = T (G(F n(p))).

Now, take ζ ∈ Hn ∩ Hn+1 and let w ∈ C∗. Note that ζ 7→ λe
1

2(ζ+n) is a never vanishing
holomorphic function on Hn ∩Hn+1. Hence, thanks to the previous equation, we have

ϕn ◦ ϕ
−1
n+1(ζ, w) = (G ◦ F

n) ◦ (G ◦ F n)−1T −1(ζ + n+ 1, w)− (n, 0) = (ζ, λe
1

2(ζ+n)w).

This proves that � is a fiber bundle over C with fiber C∗ and with transition functions

ζ 7→ λe
1

2(ζ+n) on Hn ∩ Hn+1. In particular, � is a line bundle minus the zero section
over C. Since H 1(C,O∗C) = 0, that is, all line bundles over C are (globally) holomorphi-
cally trivial, we conclude that � is biholomorphic to C× C∗. ut
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5. The global basin � and the Fatou component containing B

Let F be an automorphism of the form (4.1) as in the previous section, let B be the local
basin of attraction given by Theorem 2.3 and � the associated global basin of attraction.
Since B is connected by Lemma 2.7, and {F n} converges to (0, 0) uniformly on B, there
exists an invariant Fatou component, which we denote by V , containing B, and we clearly
have � ⊆ V .

The aim of this section is to characterize � in terms of orbits behavior, and to prove
that � = V under a generic condition on λ.

We use the notations introduced in the previous sections. We start with the following
corollary of Lemma 2.5.

Corollary 5.1. Let F be an automorphism of C2 of the form (4.1). Suppose that {(zn, wn)
:= F n(z0, w0)}, the orbit under F of a point (z0, w0), converges to (0, 0). Then (z0, w0)

∈ � if and only if (zn, wn) is eventually contained in W(β) for some—and hence any—
β ∈ (0, 1/2) such that β(l + 1) > 2.

Proof. If (zn, wn) ∈ W(β) eventually for some β ∈ (0, 1/2) with β(l + 1) > 2
then, by Lemma 2.5, (zn, wn) ∈ B eventually, and hence (z0, w0) ∈ �. Conversely, if
(z0, w0) ∈ �, then (zn, wn) ∈ W(β0) eventually and β0(l+1) ≥ 4, and hence Lemma 2.5
implies that (zn, wn) ∈ W(β) eventually for any β ∈ (0, 1/2) such that β(l+1) > 2. ut

We can now prove the following characterization of �.

Theorem 5.2. Let F be an automorphism of C2 of the form (4.1). Then

� =
{
(z, w) ∈ C2

\ {(0, 0)} : lim
n→∞
‖(zn, wn)‖ = 0, |zn| ∼ |wn|

}
,

where (zn, wn) = F n(z, w).

Proof. If (z, w) ∈ �, then eventually (zn, wn) ∈ W(β0), and hence |zn| ∼ |wn| by
Lemma 2.5. On the other hand, if (zn, wn) → (0, 0) and |zn| ∼ |wn|, it follows that for
every β ∈ (0, 1/2), (zn, wn) ∈ W(β). Indeed, let 0 < c1 < c2 be such that c1|zn| <

|wn| < c2|zn| eventually. Let β ∈ (0, 1/2). Then for n large,

|zn|
(1−β)/β < c1|zn| < |wn|,

that is, |zn| < |un|β , and similarly it can be proved that |wn| < |un|β . Hence, by Corol-
lary 5.1, (z, w) ∈ �. ut

In order to show that, under some generic arithmetic assumptions on λ, � coincides with
the Fatou component which contains it, we need to prove some preliminary results.

Lemma 5.3. Let χ be a germ of biholomorphism of C2 at (0, 0) given by

χ(z,w) = (z+ A(z,w),w + B(z,w)),

where A and B are germs of holomorphic functions at (0, 0) with A(z,w) =

O(‖(z, w)‖h) and B(z,w) = O(‖(z, w)‖h) for some h ≥ 2. Let β ∈ (0, 1/2). As-
sume that β(h + 1) > 1. Then for any β ′ ∈ (0, β) there exists ε > 0 such that for every
(z, w) ∈ W(β) with ‖(z, w)‖ < ε we have χ(z,w) ∈ W(β ′).
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Proof. Let us write (z̃, w̃) = χ(z,w). Then z̃ = z+ A(z,w) and w̃ = w + B(z,w).
Fix r > 0, β ∈ (0, 1/2) such that β(h + 1) > 1, and β ′ ∈ (0, β). By definition, for

‖(z, w)‖ < r , if (z, w) ∈ W(β), then there exists a constant C > 0 such that |A(z,w)| ≤
C|zw|βh and |B(z,w)| ≤ C|zw|βh. Hence, for all (z, w) ∈ W(β) with ‖(z, w)‖ < r ,

|z̃| ≤ |z| + |A(z,w)| < |zw|β + C|zw|βh = |zw|β(1+ o(|zw|β(h−1))),

and similarly |w̃| < |zw|β(1+ o(|zw|β(h−1))). Therefore, since β(h+ 1) > 1,

|z̃w̃| ≥ |zw| − |z| |B| − |w| |A| − |AB| ≥ |zw| − 2C|zw|β(h+1)
− C2
|zw|2hβ

= |zw|(1+ o(|zw|β(h+1)−1)).

It thus follows that, for (z, w) ∈ W(β) sufficiently close to (0, 0), we have

|z̃| < |zw|β(1+ o(|zw|β(h−1))) ≤ |z̃w̃|β
1+ o(|zw|β(h−1))

1+ o(|zw|β(h+1)−1)
≤ |z̃w̃|β(1+ o(1))

< |z̃w̃|β
′

.

Since a similar argument holds for w̃, the statement is proved. ut

Remark 5.4. Note that the previous lemma does not hold without the hypothesis β(h+1)
> 1. Consider for instance the holomorphic map χ(z,w) = (z+w2, w). Then the points
of the form (−w2, w) belong toW(β) for all β < 1/3 but χ(−w2, w) = (0, w) 6∈ W(β ′)
for any β ′ ∈ (0, 1/2).

To state and prove Theorem 5.7 we also need one more assumption, namely an arithmetic
condition on the eigenvalue λ.

Let λ ∈ C be such that |λ| = 1. Recall that λ is called Siegel if there exist c > 0 and
N ∈ N such that |λk − 1| ≥ ck−N for all k ∈ N, k ≥ 1 (such a condition holds for θ in a
full Lebesgue measure subset of the unit circle; see, e.g., [13]). More generally, one says
that a number λ is Brjuno if

∞∑
k=0

1
2k

log
1

ω(2k+1)
< +∞, (5.1)

where ω(m) = min2≤k≤m |λ
k
− λ| for any m ≥ 2. Roughly speaking, the logarithm of

a Brjuno number is badly approximated by rationals (see [5] or [13] for more details).
Siegel numbers are examples of Brjuno numbers.

Lemma 5.5. Let F be given by (2.2). If λ is Brjuno, then there exists a germ of biholo-
morphism χ of C2 at (0, 0) of the form χ(z,w) = (z, w)+O(‖(z, w)‖l) such that

F̃ (z̃, w̃) := (χ ◦ F ◦ χ−1)(z̃, w̃) = (λz̃+ z̃w̃A(z̃, w̃), λw̃ + z̃w̃B(z̃, w̃)), (5.2)

where A,B are germs of holomorphic functions at (0, 0).
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Proof. Thanks to the fact that λ is Brjuno, the divisors λk−λ and λk−λ are “admissible”
in the sense of Pöschel [13] for all k ∈ N, k ≥ 2. Hence, by [13, Theorem 1], there exist
δ > 0 and an injective holomorphic map ϕ1 : Dδ → C2, where Dδ := {ζ ∈ C : |ζ | < δ},
such that ϕ1(0) = (0, 0), ϕ′1(0) = (1, 0) and

F(ϕ1(ζ )) = ϕ1(λζ ) (5.3)

for all ζ ∈ Dδ . Since F is tangent to {w = 0} up to order l, it follows from the proof of
[13, Theorem 1] that ϕ1 can be chosen of the form ϕ1(ζ ) = (ζ, 0)+O(|ζ |l). In particular,
up to shrinking δ, we can write ϕ1(Dδ) implicitly as w = ψ1(z) for some holomorphic
function ψ1 defined on Dδ and such that ψ1(ζ ) = O(|ζ |

l).
Similarly, λk − λ and λk − λ are admissible divisors in the sense of Pöschel for all

k ∈ N, k ≥ 2, and hence there exist δ′ > 0 and a holomorphic function ψ2 : Dδ′ → C
with ψ2(ζ ) = O(|ζ |l) such that F leaves invariant the local curve C := {(z, w) : z =
ψ2(w)} and the restriction of F to C is a λ-rotation.

We can therefore define (z̃, w̃) := χ(z,w) = (z − ψ2(w),w − ψ1(z)). By construc-
tion, χ is a germ of biholomorphism at (0, 0) and χ(z,w) = (z, w) + O(‖(z, w)‖l).
Moreover, the conjugate germ F̃ (z̃, w̃) := (χ ◦ F ◦ χ−1)(z̃, w̃) satisfies our conclusion.
Indeed, z̃ = 0 corresponds to z − ψ2(w) = 0, and since F leaves such a curve invariant
and it is a λ-rotation on it, it follows that F̃ (0, w̃) = (0, λw̃). A similar argument proves
that F̃ (z̃, 0) = (λz̃, 0). ut

The last ingredient in the proof of Theorem 5.7 is the following fact, which can be easily
proved via standard estimates:

Lemma 5.6. Let D∗ = {ζ ∈ C : 0 < |ζ | < 1}. Let kD∗ denote the hyperbolic distance
in D∗. Let

g(ζ, ξ) := 2π max
{
−

1
log |ζ |

,−
1

log |ξ |

}
.

Then for all ζ, ξ ∈ D∗,∣∣∣∣log
log |ζ |
log |ξ |

∣∣∣∣− g(ζ, ξ) ≤ kD∗(ζ, ξ) ≤ ∣∣∣∣log
log |ζ |
log |ξ |

∣∣∣∣+ g(ζ, ξ).
Now we can state and prove the main result of this section:

Theorem 5.7. Let F be an automorphism of C2 of the form (4.1). If λ is Brjuno, then
� = V .

Proof. Assume that the statement is not true, i.e. there exists q0 ∈ V \ �. Let p0 ∈ �,
and let Z be an open connected set containing p0 and q0 and such that Z ⊂ V .

By Lemma 5.5, since λ is Brjuno, there exists an open neighborhood U of (0, 0) and
a biholomorphism χ : U → χ(U) such that (5.2) holds for all (z̃, w̃) ∈ χ(U). Up to
rescaling, we can assume that

B2
:= {(z̃, w̃) ∈ C2

: |z̃|2 + |w̃|2 < 1} ⊂ χ(U).
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Since {F n} converges uniformly to (0, 0) on Z, up to replacing F with Fm for some fixed
m ∈ N, we may assume that Q :=

⋃
n∈N F

n(Z) satisfies Q̃ := χ(Q) ⊂ B2.
The z̃-axis and the w̃-axis are F̃ -invariant and F̃ is a rotation once restricted to the

axes, therefore
Q̃ ⊂ B2

∗ := B
2
\ ({z̃ = 0} ∪ {w̃ = 0}).

Given a complex manifold M , we denote by kM its Kobayashi distance. By con-
struction, for every δ > 0, one can find p ∈ Z ∩ � and q ∈ Z ∩ (V \ �) such that
kQ(p, q) ≤ kZ(p, q) < δ. Let p̃ := χ(p) and q̃ := χ(q). Hence, k

Q̃
(p̃, q̃) < δ. Thus,

since F̃ (Q̃) ⊂ Q̃ by construction, and Q̃ ⊂ B2
∗, it follows that for all n ∈ N,

kB2
∗
(F̃ n(p̃), F̃ n(q̃)) ≤ k

Q̃
(F̃ n(p̃), F̃ n(q̃)) < δ. (5.4)

Now, since q 6∈ �, by Lemma 2.5 there is no β ∈ (0, 1/2) with β(l + 1) > 2 such that
{F n(q)} ⊂ W(β) eventually. We claim that the same happens to {F̃ n(q̃)}. Indeed, if there
existed β ∈ (0, 1/2) with β(l + 1) > 2 such that {F̃ n(q̃)} ⊂ W(β) eventually, taking β ′

in (0, β) with β ′(l + 1) > 2, Lemma 5.3 applied to χ−1(z̃, w̃) = (z̃, w̃)+O(‖(z̃, w̃)‖l)

would imply that {F n(q)} ⊂ W(β ′) eventually, contradicting our assumption.
Therefore, fixing β ∈ (0, 1/2) with β(l + 1) > 2, we can assume, without loss of

generality, that there exists an increasing subsequence {nk} ⊂ N tending to∞ such that,
setting (z̃n(q̃), w̃n(q̃)) := F̃ n(q̃), for all nk we have |z̃nk (q̃)| ≥ |z̃nk (q̃)w̃nk (q̃)|

β , that is,

|w̃nk (q̃)| ≤ |z̃nk (q̃)|
(1−β)/β . (5.5)

On the other hand, by Lemma 2.5, {F n(p)} ⊂ W(β) eventually for all β ∈ (0, 1/2) such
that β(l+1) > 2. Hence, by Lemma 5.3, {F̃ n(p̃)} ⊂ W(β ′) eventually for all β ′ ∈ (0, β).
Since this holds for all β ∈ (0, 1/2) such that β(l + 1) > 2, we obtain {F̃ n(p̃)} ⊂ W(β)
eventually. Therefore, again by Lemma 2.5, there exist 0 < c < C and ñ > 0 such that
for all n ≥ ñ,

c|z̃n(p̃)| ≤ |w̃n(p̃)| ≤ C|z̃n(p̃)|. (5.6)

Consider the holomorphic projections π1 : B2
∗ → D∗ given by π1(z̃, w̃) = z̃, and

π2 : B2
∗ → D∗ given by π2(z̃, w̃) = w̃. By the properties of the Kobayashi distance,

kD∗(πj (A), πj (B)) ≤ kB2
∗
(A,B) for all A,B ∈ B2

∗. Hence, by (5.4), for all nk ,

kD∗(z̃nk (p̃), z̃nk (q̃)) < δ, kD∗(w̃nk (p̃), w̃nk (q̃)) < δ. (5.7)

Thanks to (5.6) and Lemma 5.6, since the orbit of p̃ converges to the origin, there exists
k0 ∈ N such that for all nk ≥ k0,

kD∗(z̃nk (p̃), w̃nk (p̃)) ≤

∣∣∣∣log
log |z̃nk (p̃)|
log |w̃nk (p̃)|

∣∣∣∣+ g(z̃nk (p̃), w̃nk (p̃)) < δ.

Hence, by (5.7) and the triangle inequality, for all nk ≥ k0,

kD∗(z̃nk (q̃), w̃nk (p̃)) ≤ kD∗(z̃nk (q̃), z̃nk (p̃))+ kD∗(z̃nk (p̃), w̃nk (p̃)) < 2δ. (5.8)
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On the other hand, let k1 ∈ N be such that, for all nk ≥ k1,

g(z̃nk (q̃), w̃nk (q̃)) < δ,

where g is the function defined in Lemma 5.6. By the same lemma and (5.5),

kD∗(z̃nk (q̃), w̃nk (q̃)) ≥

∣∣∣∣log
log |z̃nk (q̃)|
log |w̃nk (q̃)|

∣∣∣∣− g(z̃nk (q̃), w̃nk (q̃))
≥ log

(
log |z̃nk (q̃)|

(1−β)/β

log |z̃nk (q̃)|

)
− δ = log

1− β
β
− δ. (5.9)

The triangle inequality, together with (5.8) and (5.9), implies that for nk ≥ max{k0, k1},

kD∗(w̃nk (p̃), w̃nk (q̃)) ≥ kD∗(z̃nk (q̃), w̃nk (q̃))− kD∗(z̃nk (q̃), w̃nk (p̃))

≥ log
1− β
β
− 3δ.

Therefore, by (5.7),

4δ ≥ log
1− β
β

,

giving a contradiction since (1− β)/β > 1 is fixed and δ > 0 is arbitrary. ut

6. The proof of Theorem 0.1 for k = 2

Let F be an automorphism of the form (4.1), and assume that λ is Brjuno. By Theo-
rem 5.7, � is an invariant attracting Fatou component at (0, 0) and � is biholomorphic to
C× C∗ by Proposition 4.5.

7. The case k ≥ 3

In the general case, k ≥ 3, we start with a germ of biholomorphism of Ck at the origin of
the form

FN (z1, . . . , zk) =

(
λ1z1

(
1−

z1 · · · zk

k

)
, . . . , λkzk

(
1−

z1 · · · zk

k

))
, (7.1)

where

• each λj ∈ C, |λj | = 1, is not a root of unity for j = 1, . . . , k,
• the k-tuple (λ1, . . . , λk) is one-resonant with index of resonance (1, . . . , 1) ∈ Nk in

the sense of [4, Definition 2.3], that is, all the resonances λj − λ
m1
1 · · · λ

mk
k = 0, for

j = 1, . . . , k, are precisely of the form λj = λj · (λ1 · · · λn)
k for some k ≥ 1,

• the k-tuple (λ1, . . . , λk) is admissible in the sense of Pöschel (see [13]), that is,
∞∑
n=0

1
2n

log
1

ωj (2n+1)
< +∞ for j = 1, . . . , k

where ωj (m) = min2≤h≤m min1≤i≤k |λ
h
j − λi | for any m ≥ 2.
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Thanks to a result of B. J. Weickert [18] and F. Forstnerič [6], for any large l ∈ N there
exists an automorphism F of Ck such that

F(z1, . . . , zk)− FN (z1, . . . , zk) = O(‖(z1, . . . , zk)‖
l). (7.2)

Moreover, thanks to [4, Theorem 1.1], given β ∈ (0, 1/k) and l ∈ N, l ≥ 4 such that
β(l + 1) ≥ 4, for every θ ∈ (0, π/2) there is R > 0 such that the open set

B := {(z1, . . . , zk) ∈ Ck : u := z1 · · · zk ∈ S(R, θ), |zj | < |u|
β for j = 1, . . . , k}

is non-empty, forward invariant under F , the origin is on the boundary of B and we have
limn→∞ F

n(p) = 0 for all p ∈ B, uniformly on compacta. Arguing as in Lemma 2.5
we find that for each p ∈ B, we have limn→∞ nun = 1 and |πj (F n(p))| ∼ n−1/k for
j = 1, . . . , k, where πj is the projection on the j th coordinate. Moreover, the analogue
of the statement of Proposition 3.1 holds for k ≥ 3 (see also [3]), allowing us to define a
local Fatou coordinate ψ : B → C such that ψ ◦F = ψ + 1 with the required properties.

Now we need k− 1 other local coordinates σ2, . . . , σk . For 2 ≤ j ≤ k, σj : B → C is
defined as the uniform limit on compacta of the sequence {σj,n}n where

σj,n(z1, . . . , zk)

:= (λj . . . λk)
−n5j (F

n(z1, . . . , zk)) exp
(
k − j + 1

k

n−1∑
m=0

1
ψ(z1, . . . , zk)+m

)
,

and 5j : Ck → C is defined as 5j (z1, . . . , zk) := zj · · · zk . The map σj satisfies the
functional equation

σj ◦ F = λj · · · λke
−
k−j+1
kψ σj .

Let � :=
⋃
n≥0 F

−n(B). Arguing as in dimension 2, one can prove that H k−1(�,C)
6= 0. Using the functional equation we can extend ψ to a map g1 : �→ C. Moreover, set
H := g1(B) and �0 := g

−1
1 (H). For j = 2, . . . , k, we can extend σj to �0 by setting,

for any p ∈ �0,

gj (p) = (λj · · · λk)
n exp

(
−
k − j + 1

k

n−1∑
m=0

1
g1(p)+ j

)
σj (F

n(p))

where n ∈ N is such that F n(p) ∈ B. As in dimension 2, the map �0 3 p 7→ G(p) :=

(g1(p), . . . , gk(p)) ∈ H × Ck−1 is univalent with image H × (C∗)k−1. In fact, we can
use coordinates

(u, y2, . . . , yk) := (z1 · · · zk, z2 · · · zk, . . . , zk)

in B so that we have

B = {u ∈ S(R, θ) : |u|1−kβ < |yk| < |u|
β , |u|1−jβ < |yj | < |u|

β
|yj+1|

for j = 2, . . . , k − 1}.
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Following the proof of Proposition 4.4, since, for p ∈ �0, limn→∞ nun = 1 and
|5j (F

n(p))| ∼ n−(k−j+1)/k for j = 2, . . . , k, one can see that for any a ∈ H and
bk ∈ C∗ there is a point p ∈ �0 such that g1(p) = a and gk(p) = bk . Now fix a ∈ H
and bk ∈ C∗. Using

|u|1−(k−2)β < |yk−1| < |u|
β
|yk|

one sees that C∗ ⊆ gk−1(g
−1
1 (a)∩g−1

k (bk)), and with the same argument one recursively
proves that C∗ ⊆ gj−1(g1

−1(a) ∩ gj
−1(bj )) for j = 2, . . . , k − 2. Therefore G(�0) =

H × (C∗)k−1, and as in Proposition 4.5 we see that g1 : � → C is a holomorphic fiber
bundle map with fiber (C∗)k−1. Since the transition functions belong to GLn(C), by
[7, Corollary 8.3.3] we find that � is biholomorphic to C× (C∗)k−1.

Finally, assuming the k-tuple (λ1, . . . , λk) is admissible in the sense of Pöschel [13],
we can locally choose coordinates as in Lemma 5.5 so that the Fatou component V con-
taining � cannot intersect the coordinate axes in a small neighborhood of the origin.
Hence using the estimates for the Kobayashi distance as done in Theorem 5.7, one can
show that V = �.
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[15] Serre, J.-P. : Une propriété topologique des domaines de Runge. Proc. Amer. Math. Soc. 6,
133–134 (1955) Zbl 0064.07906 MR 0067488

[16] Stensønes, B., Vivas, L.: Basins of attraction of automorphisms in C3. Ergodic Theory Dy-
nam. Systems 34, 689–692 (2014) Zbl 1294.37021 MR 3233711

[17] Ueda, T.: Local structure of analytic transformations of two complex variables I. J. Math.
Kyoto Univ. 26, 233–261 (1986) Zbl 0611.32001 MR 0849219

[18] Weickert, B. J.: Attracting basins for automorphisms of C2. Invent. Math. 132, 581–605
(1998) Zbl 0932.37028 MR 1625716

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1382.32001&format=complete
http://www.ams.org/mathscinet-getitem?mr=3700709
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1436.32041&format=complete
http://www.ams.org/mathscinet-getitem?mr=4052195
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0952.32012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1612730
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0685.32001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1045639
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1301.32013&format=complete
http://www.ams.org/mathscinet-getitem?mr=3213832
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1149.37027&format=complete
http://www.ams.org/mathscinet-getitem?mr=2437071
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0597.32011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0879908
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0708.58003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0929658
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0064.07906&format=complete
http://www.ams.org/mathscinet-getitem?mr=0067488
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1294.37021&format=complete
http://www.ams.org/mathscinet-getitem?mr=3233711
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0611.32001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0849219
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0932.37028&format=complete
http://www.ams.org/mathscinet-getitem?mr=1625716

	1. Outline of the proof in dimension 2
	2. The local basin of attraction B
	3. Local Fatou coordinates on B
	4. The topology of the global basin 
	5. The global basin  and the Fatou component containing B
	6. The proof of Theorem 0.1 for k=2
	7. The case k3
	References

