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We estimate the number of migrants and refugees that died while trying
to enter the European Union, during a period of 25 years. Only a subset of at-
tempts with at least one casualty are reported by at least one media source. In
order to obtain the estimate, we propose a regression-extrapolation approach,
for joint estimation of population size (here, the number of deadly individual
or group attempts) and the sum of an accompanying trait (here, the number
of deaths) over the population. The trait is measured only for a biased sam-
ple of individuals, that are repeatedly observed. Closed-form expressions are
derived for the estimator and its standard error. Our findings are that about
40,000 have died from January 1993 to March 2019, during about 5500 at-
tempts to enter the European Union. The number of deaths has been steadily
increasing over time, and so has the number of deaths per attempt. About 20%
of attempts with at least one casualty have not been recorded by any media
source, and slightly less than 10% of deaths have thus been overlooked by
media.

1. Introduction. Migration regulation is a controversial and politically sensitive theme.
Border control is central in the political debate (Buonfino (2004), Marino (2016), Celata and
Coletti (2016)), which is also strongly shaped by media (e.g., Herbers (2016), Vieira (2016)).
According to the 1951 Refugee Convention, every human has the right to look for a shelter
safe from war, ungrounded persecutions, life threats for their beliefs, political views, or for
love. In this work, we focus on the specific phenomenon of refugees and migrants trying to
enter “Fortress Europe” (Marino and Dawes (2016), Junemann, Scherer and Fromm (2017)).
Restrictive policies of European states make it difficult for many refugees and migrants to
enter Europe legally and safely. This makes movement of refugees also a public health issue
(Smith and Daynes (2016)). Data from UNITED for Intercultural Action (see Section 2)
collect information about attempts to enter the European Union (EU) that lead to at least
one casualty, the number of casualties of each event, and the media sources that reported the
event.

In our application, unlike similar problems, our aim is not only to estimate a population
size (the number events in which there was at least one death in trying to reach the EU), but
also to estimate the fotal of an accompanying covariate: the number of deaths. Here, we define
total as the sum of the covariate over observed and unobserved elements of the population. To
the best of our knowledge, capture—recapture methods have never been used for this scope,
and qualitative and quantitative measurements taken during sightings have only been used to
improve population size estimates (e.g., by conditioning on covariates).

Population size estimation methods are on the other hand not new to be used for inves-
tigating social phenomena. A recent review can be found in Silverman (2020). Examples
of population size estimation methods for social phenomena include human rights viola-
tions (Mitchell et al. (2013), Sadinle (2018)), modern slavery (Bales, Hesketh and Silverman
(2015)), drug abuse (e.g., Farcomeni and Scacciatelli (2013), Overstall et al. (2014), Huggins,
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Yip and Stoklosa (2016); a review can be found in Hay and Richardson (2016)), homelessness
(Coumans et al. (2015)), drink and driving (Bohning and van der Heijden (2019)), counting
victims during conflicts (Manrique-Vallier, Ball and Sulmont (2019)), adolescent pregnancy
(Sukraz et al. (2020)), human trafficking (Bales, Murphy and Silverman (2020)).

In order to perform simultaneous estimation of a population size and sum of an accompa-
nying trait, we propose a regressive approach based on conditioning the distribution of the
target trait on the number of times an event is reported. At the first stage, population size is
estimated as usual. Note that, unlike many papers focused on multiple systems estimation, we
will have a preference for Chao’s estimator (Chao (2001), Chao and Colwell (2017)) rather
than loglinear models; but any population size estimator can be used at the first stage. At the
second stage a regression model is specified for a function of the expected value of the target
trait. Extrapolation allows then to obtain a total estimator. The law of large numbers guaran-
tees consistency as long as the population size estimator is consistent and the model is well
specified. While the flexible framework allows us to specify models that are more complex
than classical polynomial generalized linear models (e.g., include spline smoothers or specify
general distributions for the outcome), we will see that in our application there seems to be
little sensitivity to model specification.

The rest of the paper is as follows: in the next section, we give a brief description of the
available data. In Section 3, we describe our proposed regression-extrapolation approach for
two-stage estimation of population size and total, mentioning also some possible direct exten-
sions. A closed-form expression for the standard error of the estimator is given in Section 3.1.
A simulation study is reported in Section 4, where we illustrate superiority with respect to two
possible natural alternatives. The migrants’ data is analysed in Section 5. Finally, Section 6
gives some concluding remarks and outlines routes for further work.

The data, an R implementation of our method, and code for reproducing the data analysis
is available online as supplementary material (Farcomeni (2022)).

2. Data description. Data have been collected by UNITED for Intercultural Action,
http://www.unitedagainstracism.org, a European network of more than 560 organizations
against nationalism, racism, fascism and in support of migrants, refugees, and minorities.
The campaign “Fortress Europe No More Deaths” has collected data about 36,570 deaths of
refugees and migrants that occurred while trying to enter Europe irregularly, between January
1993 and March 2019. The list is about single or group attempts to enter EU, in most cases
by sea, but also by land (e.g., while trying to climb the fence of one of European enclaves in
Africa), or air. The causes of death are not detailed in the data. It is reported by the network
that most deaths are due to drowning in the Mediterranean. Others are due to shootings at
borders, killings by traffickers, starvation, and other reasons.

From January 1993 to March 2019, n = 4333 events were recorded by at least one of a list
of sources (newspapers, news channels, NGOs, etc.). We define an event as a single or group
attempt to enter the EU, during which at least one death occurred. The target population size
N > n is the number of events that occurred in the period, also those that were not recorded
by any sources. We have recorded #n;, the number of media sources reporting the occurrence
of the ith event, for i =1, ...,4333. Additionally, for each event, we also have recorded a
target trait: the number of deaths X;. In Figure 1, we report the scatter plot of n; versus X;,
after jittering both count variables. Our main task is joint estimation of N, the total number of
events occurring between January 1993 and March 2019; and S = vazl X, the total number
of deaths associated to those events.

The median number of casualties is 1, with a mean of 8 and a standard deviation of 28.
A total of 57 recorded events are associated with more than 100 casualties, with the maximum
of 1050 on April, 19, 2015, due to a major shipwreck in the Sicily canal. Unsurprisingly,
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FIG. 1. Number of deaths as a function of the number of sources reporting each event, between January 1993
to March 2019. Both count variables are jittered.

there is a positive association between the number of sources and the number of casualties
(p < 0.001), but with a small effect: a truncated Poisson regression estimates an increase in
the number of sources reporting the event of only 2% per each 10 additional casualties. The
figure increases to 3% after removing the outlier.

Obviously, and admittedly, not all events have been recorded by UNITED for Intercultural
Action. For those, we do not have information on the number of casualties. If our task was
only that of estimating the total number of events (e.g., shipwrecks), we would have several
methods at our disposal. On the other hand, our main task is that of estimation of the total
number of casualties associated to observed and unobserved events.

3. A regression-extrapolation approach. Let n; > 0 denote the number of sources re-
porting the ith event, i =1, ..., N, where without loss of generality n; > Ofori =1,...,n.
Let also X; denote a quantitative trait (here, the number of deaths) recorded for the ith event,
i=1,..., N. We observe couples (n;, X;), for i =1,...,n. The quantity of primary inter-
est is the vector (N, S = f(N, X)) for some known function f (-, -). In our application (and
in several other cases), S = lN: 1 Xi, which we will use henceforth for ease of notation.
Generalization to any function f(-,-) for which contributions of observed and unobserved
individuals can be separated is straightforward. As noted below, consistency is guaranteed
(under certain assumptions) as long as this function only involves a sum of the unobserved
values of X;. Note further that in our application X; > 1 for all i =1,..., N, since we are
interested in events with at least one casualty.

The fundamental problem with our task is that not only N is unknown and we only have
observed a biased sample, but also X; is unobserved for all cases for which n; = 0. We have
observed s =) 7_, X;.

An obvious naive approach would be to proceed by estimating event-specific observation
probabilities p; = Pr(n; > 0) and then the sum of interest S through the Horvitz—Thompson
(HT) estimator

n
3.1 Sur =Y _ Xi/Ppi.
i=1
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There are several problems with this naive approach, linked mainly to the fact that also X; is
random. Consequently, even if p; is estimated without bias, the naive HT estimator ignores
the (conditional) distribution of X;, and (3.1) might be improved upon by conditioning. We
illustrate this in simulation below.

Another possibility would be to exploit the Royle (2009) method of augmentation in a
Bayesian framework. This method involves sampling the unobserved values of X; condition-
ally on the current value for the population size N. Clearly, a by-product of this approach is
an estimate of X; for each unobserved unit, which can be directly used to obtain S. A limita-
tion is that this approach involves specification of a parametric marginal distribution for X;,
and while the posterior mean for the population size might not be too sensitive to misspec-
ification, it is intuitive that the posterior mean for the total might be quite sensitive instead.
Furthermore, it can be seen in simulation that even when the model is correctly specified,
augmentation leads in general to slightly larger estimation errors.

Our proposal stems from the following reasoning: let so = E[X;|n; = 0]. Under the as-
sumption that N — n is large, the law of large numbers guarantees that S = > | X; + (N —
n)sg. Consequently, one could proceed by estimating N and sy and obtain

n
(3.2) S=(N-mio+ > Xi.
i=1

In order to put forward a joint estimate for N and sg, one should deal with the joint dis-
tribution of X; and n;, w(X;, n;). The latter can be parameterized as 7 (X;|n;)m (n;). Clearly,
7 (n;) can be used as usual to estimate N without using X; as a covariate. This is particularly
convenient, as readily available software can be used for N. The second term can be used to
estimate so = [ xm(x|n; = 0)dx, if w(x|n; = 0) is an absolutely continuous density, or, as in
our case

o0
S0 = ZxPr(x|n,- =0)

x=1

if it is discrete. Estimation of s¢ is not at first sight straightforward since it involves condi-
tioning on an event, n; = 0, that is never observed. A simple solution is given by a regression-
extrapolation approach. A generalized linear model can be estimated if we assume X; follows
an exponential family distribution conditionally on #n;, and that

(3.3) 8(ElXilni, ¢1) = ¢ (ny),

where g(-) is a known link function and ¢ (-) is known up to a finite dimensional parameter
(e.g., a polynomial linear transformation o + f1n; + ,aniz or even an additive component
s(n;), which can be estimated via splines and then extrapolated after Taylor expansion). Then,
by extrapolation, §o = g_1 (dA) (0)). It is straightforward to check that in case ¢ (n;) = « for all
n; > 1, then (3.2) recovers the naive Horvitz—Thompson estimator. In our case, for instance,
one could estimate a truncated Poisson GLM with log link predicting X; as a polynomial
function of n;, and then extrapolate a prediction at n; = 0, which can be plugged in (3.2).

Note that extension of this simple approach to more general (continuous or discrete, and
even multivariate) outcomes is straightforward. The approach is also easily generalized to
take into account overdispersion, for instance, due to unobserved heterogeneity. In general,
one could specify

g(ElXilni, ¢, al) = ¢ (n;) + i,
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with «; ~ F(0) for, some known distribution function F (-). Common choices include Gaus-
sian assumptions (e.g., o; ~ N(u, 02)). A more flexible specification could be based on
a latent class model, according to which «; = &;, with probability 7, for j =1,...,k;
where &£; € R and k is a user-specified number of latent classes. More simply, one could
specify a parametric distribution for X;, which is flexible enough to capture overdispersion
and other features of the data. Examples include the Conway—Maxwell-Poisson distribution
(e.g., Anan, Bohning and Maruotti (2017)) or mixtures that can deal with one-inflaction (e.g.,
Bohning and van der Heijden (2019)).

3.1. Standard errors. Approaches for standard error estimation of N are well known and
depend on the method used. Let now V(]\A/ ) denote the variance of the estimator of N used
in the first step. In this section, we derive the variance estimator for 3‘, V(S). To do so, note
that (van der Heijden et al. (2003), Bohning (2008))

(3.4) V(S) = Eo[V(SIn)] + Va[E(SIn)].
To derive V(S‘ |n), we use the law of total variance once again, and obtain

N)] + VN|:E((1<7—H)§0+ZX,~

i=1

V(Sin) = E [v((z\? —mso+ Y X;

i=1

N)]

After some algebra, it is straightforward to check that the first addend of (3.4) can be consis-
tently estimated by the expression

(N —n)2V Soln) + 53V (N|n),

where V (5p|n) is a direct by-product of the regression estimator (in case of identity transfor-
mation it will just correspond to the variance of the intercept in a linear regression model)
and V(N |n), as discussed above, is a standard by-product of population size estimators.

We now focus on the second addend of (3.4). First, we let §; = I (n; > 0) denote the
indicator that the ith unit is observed, i = 1, ..., N; where without loss of generality §; = 1
for i =1,...,n. Let also w; = Pr(§; = 1), where an estimate w; is also a by-product of
classical methods for population size estimation. Furthermore, given that the HT estimator is
consistent one can approximate N =Y 7_, §; /w;.

Now, expressing S = ZlNzl(Si/ﬁji —8,-)§0+va:1 §iXi=Y1_1(8i /Wi —8)So+ 21 i Xi,
and approximately considering §y as a constant with respect to n, after some algebra one can
approximate the second addend of (3.4) by

no, A 2
S0 A ~ N

Z(T — S0+ Xi) w; (1 —w;).
wi

i=1

4. Simulation study. In this section we report a brief simulation study where we com-
pare our approach with two alternatives. Furthermore, we validate the approach for estimation
of the standard error of S proposed in (3.4).

We proceed by generating N X; values from a Poisson with parameter A,. We then gener-
aten;,i =1,..., N, from a Poisson with parameter

4.1 rexp(B(log(X; + 1) —log(ry + 1))).

After data generation, we ignore cases with n; = 0 and proceed to estimation of S using a
naive HT approach (ignoring dependence between counts and totals), Royle (2009) augmen-
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tation method, and our proposal. Given that the performance of estimators for S depends on
N, to make the comparison more fair we use N obtained from augmentation in (3.2). We
compute four regression-extrapolation estimates, with g(-) being the identity link function
and ¢ (n;) being constant, linear, quadratic, or cubic. The final estimate is selected by max-
imising the adjusted R2. The procedure is repeated B = 1000 times, for any combination of
N = {1000, 5000}, A = {0.5, 1}, Ay ={0.5, 1}, and g = {—1, 0, 1}. Furthermore, we inves-
tigate also the case in which the relationship between n; and X; is reversed, so that n; is
generated from a Poisson with parameter A, and X; from (4.1). Consequently, we evaluate a
total of 48 scenarios.

For each scenario, we report the square root of the Median Square Error (MSE) in Tables 1
and 2.

It shall be noted that our approach always outperforms augmentation and HT when g # 0.
When 8 = 0 the HT approach is optimal since the model is well specified, but our proposal is
associated with only a minor increase in the MSE; while augmentation often leads to a much
larger MSE.

In order to validate our estimator for the standard error of S we report in Table 3, for each
scenario, the standard deviation of the estimates and the mean estimated standard error. For
reasons of space, we restrict to linear and quadratic specifications for ¢ (-).

It can be seen that average estimated standard errors and actual standard deviations of
the estimates are fairly close in all scenarios, taking into account the fact that there is some
extra variability due to the fact that S itself is not fixed across iterations within the same
scenario.

TABLE 1
Square root of median squared errors for estimating S though our approach (S’ ), Horvitz—Thompson (HT), and
augmentation in simulated scenarios, when n; is generated from (4.1). Results are based on B = 1000 replicates

N A Ax B S HT Augmentation
1000 0.5 0.5 —1 113.34 207.32 170.98
5000 0.5 0.5 -1 342.57 1040.02 946.49
1000 1.0 0.5 -1 59.93 163.62 139.11
5000 1.0 0.5 —1 159.83 794.00 711.95
1000 0.5 1.0 -1 183.95 385.99 314.09
5000 0.5 1.0 -1 535.22 1807.75 1524.90
1000 1.0 1.0 —1 89.52 256.39 179.40
5000 1.0 1.0 -1 292.35 1225.88 1021.40
1000 0.5 0.5 0 42.83 39.22 88.57
5000 0.5 0.5 0 94.10 88.42 189.75
1000 1.0 0.5 0 20.80 19.83 39.67
5000 1.0 0.5 0 46.11 43.83 92.19
1000 0.5 1.0 0 75.66 70.91 174.29
5000 0.5 1.0 0 172.74 163.61 373.43
1000 1.0 1.0 0 36.71 35.81 78.03
5000 1.0 1.0 0 83.25 79.81 182.80
1000 0.5 0.5 1 152.38 175.43 287.87
5000 0.5 0.5 1 452.19 982.48 1308.34
1000 1.0 0.5 1 59.54 151.47 230.33
5000 1.0 0.5 1 182.32 851.15 1042.42
1000 0.5 1.0 1 203.94 224.83 427.74
5000 0.5 1.0 1 681.67 1319.25 1937.42
1000 1.0 1.0 1 80.05 231.77 378.07
5000 1.0 1.0 1 233.39 1302.29 1667.77
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TABLE 2
Square root of median squared errors for estimating S though our approach (S‘ ), Horvitz—Thompson (HT) and
augmentation in simulated scenarios, when X; is generated from (4.1). Results are based on B = 1000 replicates

N A Ax B S HT Augmentation
1000 0.5 0.5 —1 202.00 242.55 189.57
5000 0.5 0.5 -1 736.95 1225.55 1095.12
1000 1.0 0.5 -1 339.19 485.63 374.40
5000 1.0 0.5 —1 1295.21 2446.80 2189.12
1000 0.5 1.0 -1 115.19 210.41 177.89
5000 0.5 1.0 -1 479.57 1066.24 991.61
1000 1.0 1.0 —1 200.85 422.65 359.43
5000 1.0 1.0 -1 921.98 2132.27 1985.97
1000 0.5 0.5 0 43.39 40.43 89.36
5000 0.5 0.5 0 96.55 89.02 199.37
1000 1.0 0.5 0 81.62 77.98 177.48
5000 1.0 0.5 0 171.71 165.41 395.52
1000 0.5 1.0 0 21.34 20.63 41.76
5000 0.5 1.0 0 48.92 46.88 89.79
1000 1.0 1.0 0 38.61 37.07 80.89
5000 1.0 1.0 0 87.28 83.85 187.17
1000 0.5 0.5 1 275.92 263.24 388.43
5000 0.5 0.5 1 747.32 1304.22 1586.38
1000 1.0 0.5 1 395.67 525.81 777.16
5000 1.0 0.5 1 1010.36 2605.01 3162.70
1000 0.5 1.0 1 68.51 148.70 197.12
5000 0.5 1.0 1 152.16 733.87 842.52
1000 1.0 1.0 1 100.03 297.10 393.97
5000 1.0 1.0 1 230.43 1466.76 1684.33

5. Data analysis. In this section, we estimate the number of casualties of refugees and
migrants that occurred in the period 01/1993-03/2019 while trying to enter the European
Union.

We define an event as an attempt to irregularly enter the European Union by a single or a
group of persons, leading to at least one death. As stated in Section 2, these events have been
reported by at least one of several sources during the observation period.

We compare our method with the HT approach (3.1), and with Royle augmentation
method. For the HT approach and for our method, the number of events N is estimated
using Chao lower bound estimator (Chao (1987)), which (using function closedp.0 in
R package Rcapture, see Rivest and Baillargeon (2019)) is seen to be the preferred es-
timator in terms of Bayesian Information Criterion (BIC) among a series of possible ones.
Chao’s estimator is N = 5508, with a standard error of 77.4. For Royle’s method, as noted
above, an estimator for the number of events is the primary target. For these data, the poste-
rior mean is 5543, with a 95% credibility interval of (5365, 5583). In both cases, it can be
concluded that over the period more than one thousand events might have been overlooked.
We also implement a ratio regression approach as in Béhning (2016), based on the Conway—
Maxwell-Poisson distribution, to find a similar estimate N = 5535. Finally, a referee asked
to check for one-inflation in the counting distribution (Béhning and van der Heijden (2019),
Bohning and Friedl (2021)), which might be ruled out. For instance, for the One-Inflated-
Zero-Truncated Negative Binomial model (Godwin (2017)), the proportion of one-inflation
is estimated as 10~7, with a standard error of the same magnitude.

In Table 4, we report the estimates for the number of casualties S obtained as a by-product
of Royle’s augmentation method (Royle), with the Horvitz—Thompson (HT) estimator, using
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TABLE 3
Standard deviation sd(-) and average estimated standard error \/'V (-) for linear (S’]) and quadratic (3'2)
regression-extrapolation estimators, when n; is generated from (4.1). Results are based on B = 1000 replicates

N A Ax B sd(8y) VVSD) sd($2) VV(S)
1000 0.5 0.5 -1 56.19 52.54 88.04 97.33
5000 0.5 0.5 -1 120.84 113.07 173.86 198.21
1000 1.0 0.5 —1 38.17 29.14 47.45 40.58
5000 1.0 0.5 —1 84.47 66.05 102.72 90.41
1000 0.5 1.0 -1 89.83 87.91 121.43 132.46
5000 0.5 1.0 —1 198.34 194.78 255.43 281.18
1000 1.0 1.0 —1 65.71 54.85 77.26 68.88
5000 1.0 1.0 -1 147.37 124 .37 169.55 154.78
1000 0.5 0.5 0 89.18 79.32 183.66 184.54
5000 0.5 0.5 0 174.09 168.35 371.09 359.75
1000 1.0 0.5 0 41.75 35.57 60.91 57.17
5000 1.0 0.5 0 92.44 76.94 129.23 120.25
1000 0.5 1.0 0 142.98 133.42 269.15 270.94
5000 0.5 1.0 0 285.27 284.21 535.23 531.92
1000 1.0 1.0 0 66.49 61.37 90.38 88.35
5000 1.0 1.0 0 150.33 132.64 200.87 186.18
1000 0.5 0.5 1 62.70 59.03 157.67 138.00
5000 0.5 0.5 1 139.83 126.52 288.55 265.72
1000 1.0 0.5 1 33.35 25.41 48.37 42.26
5000 1.0 0.5 1 76.00 56.29 103.27 90.21
1000 0.5 1.0 1 96.93 96.99 194.43 182.90
5000 0.5 1.0 1 231.38 211.63 395.99 362.82
1000 1.0 1.0 1 53.49 44.89 68.56 61.89
5000 1.0 1.0 1 122.88 100.13 150.68 133.19
TABLE 4

Estimates of the number of casualties between 1993 and March 2019, with 95% CI and BIC. For the Royle
method, we report posterior mean and 95% credibility interval. Our proposal is based on a polynomial
specification for ¢ (-), where the degree of the polynomial is reported in the second column. LM indicates a
linear regression model for the log-counts, NB a negative binomial assumption for the same

Method Degree S 2.5% CI 97.5% CI BIC
Royle - 47,762 47,551 48,028 -

HT - 46,486 44,005 48,967 -
Proposal(LM) 0 39,286 37,482 41,091 14,309.35
Proposal(LM) 1 39,002 37,215 40,789 14,282.33
Proposal(LM) 2 38,858 37,079 40,637 14,280.13
Proposal(LM) 3 38,615 36,840 40,391 14,273.00
Proposal(LM) 4 38,869 37,077 40,660 14,273.26
Proposal(LM) 5 40,228 38,393 42,063 14,216.61
Proposal(LM) 6 39,792 37,967 41,617 14,222.89
Proposal(NB) 0 45,311 42,981 47,642 18,278.98
Proposal(NB) 1 41,356 39,334 43,378 18,164.44
Proposal(NB) 2 40,815 38,806 42,823 18,157.75
Proposal(NB) 3 40,372 38,347 42,397 18,162.84
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a simple polynomial regression on log(x;) (Proposal (LM)) and using a polynomial GLM
after assuming that x; — 1 is a negative binomial (Proposal (NB)). For methods based on
our proposed approach we report also the degree of the polynomial predictor, where a 0
indicates that the regression model includes only the intercept, a 1 that right-hand side of the
model is o + Bin;, a 2 indicates @ + Bin; + ,82ni2, and so on. We additionally report 95%
confidence intervals (CI) and BIC, where appropriate. Our proposal gives fairly stable results
with respect to the degree of the polynomial and model specification. This is confirmed also
using other specifications for our regression-extrapolation approach, which are not reported
for ease of presentation.

Our final estimate for S is smaller than the one obtained using the competitors by about
15%. We speculate this is due to the presence of a fraction of events with many deaths. To
support this claim, it shall be noted that when data are restricted to 2015, when a major
shipwreck occurred in the Sicily canal, Royle and HT methods indicate that the total number
of deaths in that year is about twice the recorded ones. This does not occur with our proposed
method (see Figure 2, right upper panel), regardless of how we specify it.

The observed number of casualties per event is estimated as about 7. It shall be noted that
the estimated number of casualties per nonreported event is just about 3, which is reasonable
as events with lower number of casualties are less likely to be recorded.
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FIG. 2. Observed and estimated events, deaths, and casualties per event by year. Events are estimated using
Chao’s estimator, casualties using our proposal with logarithmic transformation, and polynomial regression. The
degree of the polynomial is chosen using BIC.
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We conclude with an evaluation of data and estimates over time, for the years 1993 to
2018. We exclude 2019 as we have only partial data for that year. In Figure 2, we report
observed and estimated events and deaths by year, and their ratio. Events are estimated using
Chao’s estimator, casualties using our proposal with logarithmic transformation and polyno-
mial regression. The degree of the polynomial is chosen using BIC. It can be seen that in the
last few years the number of deaths has increased both due to an increase in the number of
events with at least one casualty, and an increase in the number of deaths per event. The latter
has been steadily increasing over time.

In conclusion, it can be estimated that about 40,000 people have died in the 25 years
between 1993 and 2019. Number of events per year, number of deaths per year, and number
of deaths per event have all been clearly and steadily increasing in the recent past, indicating
that the problem is becoming worse over time.

6. Conclusions. It is stated in Last and Spijkerboer (2014) that “existing estimates are
insufficient for documenting how many people have died trying to cross the southern EU
external borders”. Critiques involve both data collection mechanisms and methods (Laczko
et al. (2016)). It is therefore widely acknowledged that the true number of deaths is likely to
be substantially higher than the official estimates. For example, the official UNHCR estimate
for the period 1998-2011 is 13,500 deaths, while our data record 15,727, and our estimate is
as high as 18,134. The increase in number of events and deaths after 2012 has likely widened
this gap. Indeed, in Esperti (2019) an estimate of 15,062 is reported for the period 2014-
2018, while our data record 17,363, and our estimate is 18,320. The main issues with official
estimates in our opinion are that they (i) clearly underestimate the number of casualties, (ii)
are often not up to date, (iii) are often not accompanied by a confidence interval. This work
is an attempt at providing adequate estimates, with sufficiently narrow confidence intervals.
Our estimates have good theoretical properties under reasonable assumptions. The use of
current media content as source of data partially solves issues with costs and accuracy of data
collection mechanisms; and would allow institutions to constantly have timely estimates.
Data collection and analysis could in principle be set up in real time.

We estimated that about 40,000 human beings have died trying to enter the European
Union, during about 5500 tragic attempts, in the period between January 1993 and March
2019. This is a staggering number. The resulting figure of 1600 per year is furthermore mis-
leading, as recently the number of deaths per year has increased. As we could see from
Figure 2, the number of events (e.g., shipwrecks) with at least one casualty has been recently
increasing over time and the number of deaths per event has simultaneously increased over
time. This is a trend that must be reverted. Refugee lives matter, and something must be done
to drastically decrease the risks of injuries or death associated with migration or asylum seek-
ing. This should be a widely accepted idea, regardless of the migration policy of each nation,
or of the fact that refugee status is finally granted or denied. A general discussion about policy
is given in Amenta, Di Betta and Ferrara (2021). A list of possible actions has been put for-
ward by Shilhav (2017), and these include but are not limited to: the design of laws that aim
at increasing the benefit that migration can carry for those that are moving across borders as
well as for the communities and countries of origin, transit, and destination; the promotion of
development aid in the countries of origin; avoidance of agreements that reduce EU respon-
sibility for hosting and protecting asylum seekers and refugees. Importantly, both at a EU
and member state level, it would be crucial to provide regular and safe pathways for refugees
and migrants, with mechanisms for relocation that respect their needs and choices. The role
of nongovernmental actors like Migrant Offshore Aid Station, Emergency, Médecins Sans
Frontieres, Save the Children, SOS Med, Sea-Watch, and Pro-Activa Open Arms might also
be crucial until institutions do not act systemically (e.g., Cusumano (2017), Stierl (2018)).
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To the best of our knowledge, we have proposed the first method for joint estimation
of a population size and total based on a biased sample. Nonetheless, we have compared
with two approaches (HT and Royle method) for which the total is a direct by-product of
the population size estimator. These have been seen in simulation to have larger MSE, and
to overestimate the total in the real data application when the target trait had a fraction of
outliers. HT is a special case of our proposal. Our approach is flexible in that any population
size estimation method can be used at the first stage, and it requires only the specification
of a regressive equation linking the expected value of the observed trait and the number of
repeated observations of each individual. The idea to use regression is clearly also related
to the ratio regression method for estimation of population size (Bohning (2016)). All in
all, our regression-extrapolation approach relies on assumptions about the distribution of X;
conditional on #n;; but in our application results are stable with respect to this choice. A
limitation of our method, which relies on the law of large numbers for its validity, is that
it is somehow restricted to estimation of the total, or mean, of a continuous or binary trait.
Generalization to general summaries/functions of the target trait is straightforward only as
long as they involve a summation might involve quantile regression; but the properties of the
resulting estimator are grounds for further work. Another open issue is model choice, in those
cases in which some sensitivity is found with respect to model specification. A promising but
not yet fully explored approach in the population size estimation area seems to be use of the
Focused Information Criterion (Bartolucci and Lupparelli (2008), Farcomeni (2018)).
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SUPPLEMENTARY MATERIAL

Supplement A: Data and code (DOI: 10.1214/21-A0AS1593SUPP; .zip). Zip file with
list of deaths as published by UNITED for Intercultural Action, and R code for each proposed
estimator and for reproducing data analysis.
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