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Abstract. Phytoplankton primary production is a key oceanographic process. It has relationships with marine-
food-web dynamics, the global carbon cycle and Earth’s climate. The study of phytoplankton production on a
global scale relies on indirect approaches due to the difficulties of field campaigns. Modeling approaches require
in situ data for calibration and validation. In fact, the need for more phytoplankton primary-production data was
highlighted several times during the last decades.

Most of the available primary-production datasets are scattered in various repositories, reporting heteroge-
neous information and missing records. We decided to retrieve field measurements of marine phytoplankton
production from several sources and create a homogeneous and ready-to-use dataset. We handled missing data
and added variables related to primary production which were not present in the original datasets. Subsequently,
we performed a general analysis highlighting the relationships between the variables from a numerical and an
ecological perspective.

Data paucity is one of the main issues hindering the comprehension of complex natural processes. We believe
that an updated and improved global dataset, complemented by an analysis of its characteristics, can be of interest
to anyone studying marine phytoplankton production and the processes related to it. The dataset described in this
work is published in the PANGAEA repository (https://doi.org/10.1594/PANGAEA.932417) (Mattei and Scardi,
2021).

1 Introduction

Phytoplankton primary production is a pivotal process in
biological oceanography. It accounts for roughly 98 % of
marine-system autotrophic production and 50 % of global
productivity (Carvalho et al., 2017; Field et al., 1998). Ac-
cordingly, this process provides the main source of energy
for structuring the marine food webs (Duarte and Cebrián,
1996; Kwak and Park, 2020a). Furthermore, it influences the
absorption of carbon dioxide from the atmosphere and the
flux of carbon to the deep ocean, generating a process known
as biological pump (Giering et al., 2014; Longhurst and Glen
Harrison, 1989). The estimated global phytoplankton pro-
duction is comprised of between 30 and 70 Gt C yr−1 (Carr et
al., 2006; Friedrichs et al., 2009; Saba et al., 2010; Siegel et
al., 2013), i.e., most probably still larger than global anthro-

pogenic CO2 emissions (roughly 37 Gt CO2 yr−1) (Caldeira
and Duffy, 2000; Falkowski and Wilson, 1992; Jackson et al.,
2019; Peters et al., 2020; Sabine et al., 2004).

These features highlight the strong link between phyto-
plankton production and both ecosystem services and Earth’s
climate (Barange et al., 2014; Behrenfeld et al., 2006; Blan-
chard et al., 2012a; Blythe et al., 2020). This link in turn
reflects the central role of this biological process not only in
the oceans’ dynamics but also in those of the whole geobio-
sphere.

The availability of remotely sensed information allowed
for the study of phytoplankton production at a global scale,
providing a synoptic view of several ocean features, such
as chlorophyll a surface concentration, sea surface tem-
perature (SST) and photosynthetic active radiation (PAR)
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(Groom et al., 2019; Platt and Sathyendranath, 1988; Sam-
martino et al., 2018; Westberry and Behrenfeld, 2014). Sev-
eral models which exploit satellite information to estimate
primary production have been proposed (e.g., Behrenfeld and
Falkowski, 1997; Friedrichs et al., 2009; Mattei and Scardi,
2020; Westberry and Behrenfeld, 2014). In fact, estimators
of this process provide valuable tools to assess characteris-
tics and patterns of global phytoplankton production, which
in turn could provide insights into the dynamics of several
phenomena, e.g., fishery yields and climate change effects
(Fox et al., 2020; Richardson and Schoeman, 2004; Russo et
al., 2019).

Nevertheless, the lack of field data negatively affects the
power and the reliability of both satellite information and
model estimates. In fact, these data are essential to calibrate
satellite sensors and develop primary-production estimators.

The most complete and freely accessible phytoplank-
ton production dataset is available at http://sites.science.
oregonstate.edu/ocean.productivity/field.data.c14.online.php
(last access: 26 January 2020). From now on we will refer
to these data as the Ocean Productivity dataset. This dataset
contains data from several oceanographic cruises accounting
for roughly 3000 production profiles. Accordingly, this
dataset has been widely used to develop several models
(Behrenfeld and Falkowski, 1997; Scardi, 2001), since
it contains depth-resolved 14C phytoplankton production
estimates coupled with chlorophyll a profiles, SST and PAR
measurements. Such data are crucial for both studying phy-
toplankton production and developing models for estimating
this process. Despite being a precious source of information,
these field data cover only some ocean basins, are affected
by missing values and have not been updated since 1994
(orange dots in Fig. 1). As the amount and quality of field
data are paramount characteristics to understanding the
dynamics of natural processes, we wanted to create a new
global dataset expanding both the temporal and the spatial
coverage of the previously cited one. Moreover, we decided
to associate more production-related information to each
record, e.g., production-to-biomass ratio, bottom depth of
the sampling station, distance from the coastline, etc. The
extra information could be extremely valuable for analysis
and modeling purposes, especially when machine-learning
techniques come into play (Peters et al., 2014; Recknagel,
2001).

In order to retrieve phytoplankton production data, we
consulted several sources which provide freely accessible in-
formation such as PANGAEA, the Biological and Chemi-
cal Oceanography Data Management Office and the National
Centers for Environmental Information (a complete list of
the exploited datasets with their respective references can be
found in the Supplement).

To select suitable data, we adopted only four compul-
sory criteria that the newly found information had to meet.
The first two criteria were related to the spatiotemporal
context of the observations. Accordingly, we kept only the

data for which date (yyyy-mm-dd) and geographical coordi-
nates (latitude and longitude) of the field measurements were
recorded. The third fundamental requirement was the pres-
ence of depth-resolved 14C measurements, i.e., phytoplank-
ton production profiles. Depth-resolved data are more infor-
mative with respect to the depth-integrated ones, since they
provide information not only on the production magnitude
but also on its vertical distribution. The final requirement
was the measurement of chlorophyll a profiles associated
with the production data. Chlorophyll a is the most abun-
dant pigment in photosynthetic organisms, and it is respon-
sible for light energy absorption. The concentration of this
pigment is intimately related to phytoplankton productivity,
i.e., the production of organic matter. In fact, the energy gath-
ered from sunlight allows for fixing carbon dioxide into mat-
ter. Even if several studies suggest that the chlorophyll-to-
carbon ratio could be extremely variable depending on phys-
ical forces and phytoplankton physiological adaptation (Huot
et al., 2007; Westberry et al., 2008), chlorophyll a is one of
the most commonly used proxies for phytoplankton biomass,
which in turn is a key parameter for studying phytoplankton
production. This is especially true when the relationship be-
tween the pigment and the biomass is not explicitly formu-
lated, i.e., in the machine-learning field. Furthermore, chloro-
phyll a can be easily measured with probes during sam-
pling cruises, and its surface concentration has also been es-
timated from remote-sensing platforms since 1978 thanks to
the Coastal Zone Color Scanner (CZCS). The former feature
is important to exploit these measures to develop production
models, while the latter is crucial in a synoptic application of
these estimators.

On the other hand, we did not discard records lacking other
variables, such as SST or PAR. In fact, if these measurements
were not available, we filled the gaps by using interpolation
techniques or retrieving the missing information from satel-
lite platforms (see Sect. 2.1).

Retrieving phytoplankton production data that were not
present in the Ocean Productivity dataset and the gap-filling
operation allowed for expanding both the spatial and the tem-
poral coverage of this dataset. Spatial and temporal variabil-
ity are important features in dealing with global assessments
of natural processes such as phytoplankton primary produc-
tion. The new dataset comprised 6084 production profile col-
lected between 1958 and 2017, 2214 of which derived from
the Ocean Productivity dataset. The need for a larger amount
of data related to the phytoplankton production process was
already highlighted by several studies which either devel-
oped or compared primary-production models (Campbell et
al., 2002; Carr et al., 2006; Friedrichs et al., 2009; Lee et
al., 2015; Saba et al., 2010; Scardi, 1996). In fact, from the
latter type of studies emerged a high level of uncertainty in
determining global phytoplankton production. The range of
estimated global production which resulted from compari-
son papers was extremely large, highlighting how challeng-
ing modeling this process on a large scale could be.
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Additionally, we enriched the new dataset with several
qualitative and quantitative variables. These variables were
either derived from the existing one, retrieved from satel-
lite platforms or extracted from freely accessible dataset (see
Sect. 2.2).

Once the new dataset was structured, we highlighted its
characteristics using several descriptive techniques and ana-
lyzed the results from an ecological perspective (Sect. 3).

2 Materials and methods

2.1 Data merging and reconstruction

As stated in the previous section, the most complete dataset
of phytoplankton primary production was freely download-
able from the Ocean Productivity website. It contained
roughly 3000 production profiles (Fig. 1, orange dots) associ-
ated with ancillary information such as chlorophyll profiles,
SST and PAR measurements. We used this dataset as start-
ing point and searched for data that could improve its spatial
and temporal coverage. We conducted our searches mainly
on the PANGAEA and NOAA websites, which are freely ac-
cessible data repositories. Each dataset that we used in this
work has been cited as specified by the repository or the
owners (see Supplement). We limited our search to datasets
which contained depth-resolved measurements of net phyto-
plankton production such as 14C associated with the respec-
tive chlorophyll a concentration. The main reasons for this
choice were the additional vertical distribution information
provided by phytoplankton profiles with respect to depth-
integrated estimates and the biomass proxy provided by the
chlorophyll concentration. This feature allowed for analyz-
ing several characteristics of phytoplankton production, thus
contributing to a deeper understanding of the whole process.

The retrieved data were incorporated into the new dataset
only if the geographic coordinates and the sampling date had
been recorded. These data allowed for accounting for both
the spatial and temporal variability of phytoplankton produc-
tion in the analysis.

For each retrieved dataset that met our requirements, the
first step was to merge it with the Ocean Productivity one.
From the latter dataset we kept the following variables:
date of the sampling (yyyy-mm-dd), geographical coordi-
nates of the sampling station (latitude and longitude and
degrees), day length as hours of the photoperiod (h), sam-
pling depth (m), Pbopt (mg C mg Chl a−1 h−1), SST (◦C),
surface PAR (Einstein m−2 d−1), sampling depth chloro-
phyll a concentration (mg m−3), sampling depth daily pri-
mary production (mg C m−3 d−1) and integrated daily pri-
mary production (mg C m−2 d−1). To perform the merging
procedure, we filled all the gaps in the newly retrieved data
relative to the abovementioned variables. We computed the
day length from the latitude and the day of the year of
the sampling. SST missing values were filled using MODIS
daily data for observations from 2003 to the present (MODIS

Aqua Mapped Daily 4 km (https://doi.org/10.5067/MODSA-
1D4D9, NASA OBPG, 2020), multiple-sensor daily data for
records from 1981 to 2003 and the 1981–1990 mean for the
data prior to 1981 (Copernicus SST) (Merchant et al., 2019).
We also used the MODIS values for filling the PAR gaps
from 2003 to the present. The profiles previous to this date
that lacked PAR measures were discarded, since daily PAR
estimates are available only through the MODIS platform
(late 2002 to the present). Discarding these data, the Ocean
Productivity dataset dropped from roughly 3000 profiles to
2214. We estimated the Pbopt parameter using the procedure
proposed by Behrenfeld and Falkowski (1997a). Finally, we
estimated the missing values in chlorophyll a and primary-
production profiles with a depth-weighted average of adja-
cent values. Once the merging procedure was finished, the
new dataset contained 37 722 records from 6084 profiles with
respect to the 14 300 and 2214 of the old one (Fig. 1).

2.2 Ancillary data association

We added several variables related to phytoplankton primary
production to the dataset (Tables 1 and 2). These variables
can be divided into three groups: (i) data extracted from
freely available datasets, (ii) numerical measures computed
from the existing ones and (iii) categorical data derived from
the previous two groups.

Among the variables that belong to the first group,
we list the bottom depth (m) and the statistics re-
lated to it. We retrieved the bathymetry information
from the GEBCO website (General Bathymetric Chart
of the Oceans; https://doi.org/10.5285/c6612cbe-50b3-0cff-
e053-6c86abc09f8f, GEBCO Compilation Group, 2021). We
queried the GEBCO dataset using the geographic coordinates
of the sampling stations to extract the bottom depth data. We
also exploited up to eight neighbor pixels to compute the bot-
tom depth variance of the sampling-point neighborhood.

We retrieved information about the mixed-layer depth
(MLD) using the Levitus model datasets (Levitus et al.,
1994; Levitus and Boyer, 1994), which are freely avail-
able on the Levitus web page (https://psl.noaa.gov/data/
gridded/data.nodc.woa94.html, last access: 26 January 2020,
NOAA/OAR/ESRL PSL, 2021)

The last data that we gathered from an external dataset
were the distance from the coastline (km). The 0.04 ◦

distance dataset was downloaded from the NASA web-
site (https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/,
NASA Ocean Biology Processing Group (OBPG) and
Stumpf, 2012).

The second group of new variables was computed from
information already present in the new production dataset at
this stage. We computed the day of the year from the date,
i.e., the first day of January and the last day of December
were represented by 1 and 365 respectively.
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Figure 1. Map of the 6084 phytoplankton production profiles comprised in the new dataset. In orange are the profiles derived from the Ocean
Productivity dataset (2214), and in red are the newly retrieved ones (3870).

We also estimated the euphotic-zone depth and the total
chlorophyll a in the euphotic zone (mg Chl a m−2) using a
model developed by Morel and Berthon (1989).

Moreover, we extracted both the max sampling depth of
non-null production values (m) and the depth at which maxi-
mum production occurred for each profile (m), thus creating
two new variables.

We estimated depth-integrated chlorophyll a and depth-
integrated primary production (IPP) by the trapezoidal
integration of in situ measurements (mg Chl a m−2 and
mg C m−2 d−1 respectively). Subsequently, we estimated the
production-to-biomass ratio by dividing the depth-integrated
phytoplankton production by the depth-integrated chloro-
phyll a concentration (mg C d−1 / mg Chl a).

The last group of variables were generated by dividing the
production profiles in classes on the basis of the previously
computed variables. We created the hemisphere variable by
assigning each profile to the Northern Hemisphere, Southern
Hemisphere or Equator on the basis of the sampling latitude.
We also created a season variable on the basis of the date and
Northern Hemisphere season. We divided the year into four
groups of 3 months each starting from January and tagged
them as winter, spring, summer and fall respectively.

For numerical data, we applied the Jenks optimization al-
gorithm (Jenks, 1967) to define the boundaries of six classes
from very low to huge (very low, low, moderate, high, very
high and huge). Then we used these boundaries to assign
each pattern to one of the six classes. It is important to note
this class segmentation is relative to our data rather than
an absolute classification criterion. Finally, we added two
columns to provide information about the nature of the SST
and PAR measures. These flag columns specify if the vari-
able’s value is either in situ (flag value= 0) or reconstructed
(flag value= 1), and these are placed near the flagged vari-
able.

Finally, we investigated the relationship between the vari-
ables which are more intimately related to phytoplankton pri-
mary production, i.e., SST, PAR, chlorophyll a, max sam-
pling depth, max production depth and the production-to-
biomass ratio. We produced heatmaps to provide an insight
into the categorical variables and performed a principal-
component analysis (PCA) for their numerical counterparts.

3 Results and discussion

With this work we aimed at building a global phytoplank-
ton production dataset updating the Ocean Productivity one.
Moreover, we wanted to expand the available information by
associating several variables related to primary production.
The data underlying this article are available in the article’s
online Supplement.

The comprehension of natural phenomena deeply relies on
available data. These complex processes often involve non-
linear and not well-known relationships among their compo-
nents. Accordingly, we believe that one crucial way to en-
hance our understanding of natural systems is provided by
gathering information and then analyzing it.

In this framework, we extended both the spatial and the
temporal coverage of the Ocean Productivity dataset. These
two features are paramount to boosting our knowledge about
the spatiotemporal distribution of phytoplankton production.
In fact, the former allows for taking temporal trends into
account in the processes which are linked with climate-
related issues and food web dynamics. The Ocean Produc-
tivity dataset contained data from cruises carried out between
1958 and 1994, which is a large span of time, but it has not
been updated since then. Our data retrieval added 23 422 new
patterns from 3870 production profiles which in most cases
do not overlap with the Ocean Productivity dataset’s tem-
poral coverage. In fact, 2210 of the 3870 new phytoplank-
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Table 1. Production dataset numerical variables.

No. Variable name Short name Units Method/sensor

1 Count – – –

2 Event – – –

3 Short reference – – –

4 Paper DOI – – –

5 Data DOI/data link – – –

6 Profile number – – –

7 Date – yyyy-mm-dd –

8 Year – – –

9 Month – – –

10 Day of the year – – –

11 Latitude – ◦ –

12 Longitude – ◦ –

13 Day length – h From day of the year and latitude

14 Bottom depth – m GEBCO
(https://www.gebco.net/data_and_products/∗)

15 Bottom depth standard deviation Bottom depth SD m GEBCO
(https://www.gebco.net/data_and_products/∗)

16 Mixed-layer depth MLD m Levitus et al. (1994); Levitus and Boyer (1994)

17 Distance from coastline – km NASA website
(https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/∗)

18 Euphotic-zone depth Zeu m Morel and Berthon (1989)

19 Sampling depth – m –

20 Max sampling depth – m –

21 Max production depth – m –

22 Sea surface temperature SST ◦C In situ, MODIS Aqua
(https://oceancolor.gsfc.nasa.gov/data/aqua/∗)

23 Sea surface temperature flag SST flag – –

24 Surface photosynthetic active radiation Surface PAR Einstein m−2 d−1 In situ, MODIS Aqua
(https://oceancolor.gsfc.nasa.gov/data/aqua/∗)

25 Surface photosynthetic-active-radiation flag PAR flag – –

26 Pbopt – mg C mg Chl a−1 h−1 Behrenfeld and Falkowski (1997a)

27 Depth-resolved Chl a – mg m−3 In situ

28 Depth-integrated Chl a – mg Chl a m−2 Trapezoidal integration

29 Total Chl a – mg Chl a m−2 Morel and Berthon (1989)

30 Depth-resolved primary production – mg C m−3 d−1 In situ

31 Depth-integrated primary production – mg C m−2 d−1 Trapezoidal integration

32 Production-to-biomass ratio P/B mg C d−1 / mg Chl a –
∗ last access: 26 January 2020.

ton profiles, i.e., roughly 57 % of the total, were collected
between 1995 and 2017. Even if roughly 43 % of the new
profiles share the time coverage with the Ocean Productiv-
ity ones, the majority of these data do not overlap with the
spatial coverage of the older dataset, thus enhancing the het-
erogeneity of the data.

Although the Ocean Productivity dataset was the most
comprehensive source of information about phytoplankton
primary production, the bulk of its data were restricted to
three main regions. These areas were the northwestern At-
lantic, the eastern equatorial Pacific and the northeastern Pa-
cific along the western coast of the United States. The other
ocean basins were undersampled or not sampled at all (Fig. 1,
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Table 2. Production dataset categorical variables.

No. Variable name Short name Units Method/sensor

33 Hemisphere – – –
34 Northern Hemisphere season – – –
35 Bottom depth magnitude – Very low to huge Jenks (1967)
36 Bottom depth SD magnitude – Very low to huge Jenks (1967)
37 Mixed-layer depth magnitude MLD magnitude Very low to huge Jenks (1967)
38 Distance from coastline magnitude – Very low to huge Jenks (1967)
39 Euphotic-zone depth magnitude – Very low to huge Jenks (1967)
40 Max sampling depth magnitude – Very low to huge Jenks (1967)
41 Max production depth magnitude – Very low to huge Jenks (1967)
42 Sea surface temperature magnitude SST magnitude Very low to huge Jenks (1967)
43 Surface photosynthetic-active-radiation magnitude Surface PAR magnitude Very low to huge Jenks (1967)
44 Pbopt magnitude – Very low to huge Jenks (1967)
45 Surface Chl a magnitude – Very low to huge Jenks (1967)
46 Depth-integrated Chl a magnitude – Very low to huge Jenks (1967)
47 Total Chl a magnitude – Very low to huge Jenks (1967)
48 Depth-integrated primary-production magnitude – Very low to huge Jenks (1967)
49 Production-to-biomass ratio magnitude – Very low to huge Jenks (1967)

orange markers). The new data improved the global cover-
age of the previous dataset. Several profiles were added in
the Arctic Ocean, specifically in the Chukchi Sea, the Beau-
fort Sea, the Greenland Sea, the North Sea, the Norwegian
Sea, the Barents Sea and the Kara Sea. In the Pacific Ocean
the newly represented areas were the Bering Sea, the Gulf
of Alaska, and the areas off of the Oregon and California
coasts in addition to a few production profiles gathered off
the eastern coast of New Zealand. In the western Atlantic,
new information was available for the Gulf of St. Lawrence,
the Florida coast and the Caribbean Sea. In the central At-
lantic the newly represented areas were located southeast of
Ireland, south of Cabo Verde and off of the Gulf of Guinea
with a few records in the Bay of Biscay, off of the coast of
Morocco and in the Mediterranean Sea. Few of the data in the
Indian Ocean were present in the old dataset, but we recon-
structed missing information and added new profiles from
different datasets. The Southern Ocean remains strongly un-
dersampled, with the addition of a few production profiles.

The temporal and spatial coverage of a dataset are crucial
features. The first one allows for taking the evolution of the
studied process into account. This aspect is important in any
type of assessment work, especially in a climate change con-
text. In the phytoplankton production framework, the tempo-
ral span covered by the available in situ data could be used
to study several aspects. For example, repeated observations
through the years for the same area could highlight tempo-
ral patterns of the investigated region. Moreover, this feature
could be used to investigate the relationships between phy-
toplankton production and large-scale phenomena, e.g., El
Niño–Southern Oscillation (ENSO). From a spatial perspec-
tive, the larger the global oceans area represented in the
dataset is, the larger the spatial variability of the phytoplank-

ton production process taken into account is. This feature is
crucial, since both depth-resolved and depth-integrated phy-
toplankton production estimates are deeply influenced by the
geographic characteristics of the investigated area, e.g., lat-
itude, distance from the coastline and bottom depth. There-
fore, to deepen the understanding of this biological process,
we need to gather and analyze information from different ar-
eas. Finally, if we want to exploit a dataset to perform any
global assessment of the phytoplankton primary production
or tackle production-climate-related issues, we need an in-
formation pool that takes into account as much variability of
the process as possible (Behrenfeld et al., 2016; Gibert et al.,
2018; Hays et al., 2005).

One of the fields which heavily relies upon the amount
and quality of the data is modeling. Several studies stressed
how most of the limits in modeling phytoplankton production
depend upon the data availability (Campbell et al., 2002; Carr
et al., 2006; Mattei and Scardi, 2020; Scardi, 2001). For these
reasons, we believe that the enhancement of both spatial and
temporal coverage of a freely available production dataset is
an important contribution to modern oceanography.

Not only did we limit our work to homogenize several data
sources into a single one, but also we enhanced the amount
of phytoplankton-related available information. This type of
information could be useful for boosting our understanding
of primary production. Moreover, the ancillary data could be
extremely valuable to model development, especially when
machine-learning techniques come into play. In fact, these
approaches allow for the use of variables as predictors even if
the relationship with the target variable (primary production
here) is not known (Catucci and Scardi, 2020; Franceschini
et al., 2019; Olden et al., 2008; Peters et al., 2014; Recknagel,
2001).

Earth Syst. Sci. Data, 13, 4967–4985, 2021 https://doi.org/10.5194/essd-13-4967-2021



F. Mattei and M. Scardi: Collection and analysis 4973

The first two descriptors added to the new dataset were the
hemisphere of the sampling station and sampling season, in-
dicated as the Northern Hemisphere season. These two vari-
ables provided an insight into the global temporal and spatial
distribution of the data (Fig. 2).

The spatial distribution of the records was strongly un-
balanced towards the Northern Hemisphere compared to
the Southern Hemisphere (5578 vs. 478 production profiles,
Fig. 2a). This feature highlights the importance of gather-
ing more data in the Southern Hemisphere. In particular,
the Southern Ocean is one of the least well-known areas
of the global ocean, and the uncertainty related to this lack
of knowledge negatively affects our understanding of both
global phytoplankton production and the carbon cycle (Ar-
rigo et al., 2008; Caldeira and Duffy, 2000; Moigne et al.,
2016; Reuer et al., 2007).

On the other hand, the temporal variability in the new
dataset is more balanced with respect to the spatial one. Ac-
cordingly, the number of profiles sampled during the North-
ern Hemisphere winter, spring, summer and fall are respec-
tively 1701, 1802, 1589 and 992. This is an important fea-
ture, especially for the areas characterized by seasonal pat-
terns which influence not only the magnitude of primary
production but also its distribution along the water col-
umn (Falkowski and Raven, 2007a). Therefore, when both
the depth-integrated and the depth-resolved perspectives are
taken into account, this temporal variability is doubly valu-
able.

We also added information related to the bathymetry of the
sampling area. We queried the GEBCO dataset to extract the
bottom depth of sampling stations. Afterwards, we applied
the Jenks optimization algorithm to partition the data into six
classes (Fig. 3).

The majority of the observations were collected in areas
shallower than 416 m (Fig. 3a). This feature highlights that
the continental-shelf areas are the most frequently sampled
ones. The second class in terms of abundance was the very
high one, while the other classes had less than 1000 profiles
each. In Fig. 3b we can notice that almost all the sampling
stations had a very low bottom depth variance in their neigh-
borhood; thus the area of the sampling was homogenously
deep. Bathymetry-related information could help in under-
standing the geomorphological region of the ocean where the
sampling station was situated, i.e., coastal, continental shelf
or open ocean.

The depth information could help us analyze the profiles’
characteristics, since it could be interpreted as a proxy for
several features such as nutrient availability and water col-
umn dynamics. In fact, even if the depth is not directly related
to phytoplankton production, it is an important physical de-
scriptor of the ocean system in which this biological process
occurs.

The MLD data were retrieved from the Levitus dataset.
These estimates provide a seasonal indication for the water
column mixing status, which is related to both the magnitude

and the vertical distribution of phytoplankton production. We
also added the distance from coastline as ancillary informa-
tion. This distance provides an insight into how many fac-
tors like terrestrial runoff, rivers and waste water discharges
could affect the primary production. It is well known that
coastal areas are characterized by higher levels of primary
production mainly due to nutrient inputs from natural and an-
thropogenic sources (Paerl et al., 1990; Teixeira et al., 2018;
Wollast, 1998).

Figure 4a shows that 96.4 % of the sampling stations pre-
sented a very low to moderate MLD. The distance from the
coastline showed the same pattern with the bulk of the pro-
files comprising the first two classes (Fig. 4b). The main rea-
son for adding these variables to our dataset is their rela-
tionship with nutrient availability which generally became
scarcer as the distance from the coastline and the bottom
depth augment. Moreover, the available nutrients are dis-
tributed in different concentrations along the water column
according to the MLD magnitude (Falkowski and Raven,
2007a; Huisman and Weissing, 1995; Jäger et al., 2008). The
latter feature is one of the factors influencing the vertical dis-
tribution of phytoplankton production.

Another group of variables was extracted directly from the
sampling data. We created the maximum sampling depth as
the depth at which the deepest water sample was collected
(Fig. 5a). Usually, this depth corresponds to the 1 % of the
surface irradiance, but it was not specified in all the retrieved
data. We also introduced the maximum production depth,
which is the depth where the maximum depth-resolved pro-
duction value occurred, i.e., the peak of the production profile
(Fig. 5b).

The majority of the records showed very low to high pro-
duction profile depth. In fact, these four classes included
94.3 % of the records. Among these classes the most repre-
sented was the very low one (to 33 m). This feature reflected
again the higher number of coastal profiles with respect to
the open-ocean ones. The profile peak depth showed an even
stronger decreasing trend with respect to profile depth. In
fact, 76.7 % of the patterns were characterized by a peak in
the first two classes. The decrease in primary production with
depth is mainly justified by the light attenuation along the
water column, which is one of the main physical forces in-
fluencing phytoplankton production. In fact, even if deeper
waters are usually nutrient rich, while the shallower ones are
nutrient depleted, the photosynthetic process cannot prescind
from light availability.

SST and surface PAR variables were already present in
the Ocean Productivity dataset but showed several missing
data. As described in the Sect. 2.1, we filled the gaps where
possible in both the old and the new data. The results of the
Jenks algorithm on SST and PAR variables are presented in
Fig. 6.

SST and surface PAR showed different patterns with re-
spect to the previously discussed variables. The bulk of the
records showed moderate values of SST (roughly 50 % of
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Figure 2. (a) Number of profiles gathered in the two hemispheres or at the Equator (5578, 478 and 28 respectively). (b) Number of profiles
sampled in Northern Hemisphere winter (January to March), spring (April to June), summer (July to September) and fall (October to
December).

Figure 3. (a) Bottom depth and (b) its variance classes. The bar color intensity reflects the magnitude of the class values.

the production profiles), while the lowest and highest val-
ues were the least abundant. The surface PAR classification
showed a different pattern in which the very low values were
the majority followed by the very high and the huge values.

These two parameters exert an important influence on phy-
toplankton primary production, and they have been key fac-
tors in modeling this biological process. In fact, SST affects
physiological characteristics of phytoplankton, influencing
its primary productivity, and PAR represents the share of so-
lar energy that is used for CO2 fixation.

Unfortunately, most of the time these parameters are mea-
sured only at surface level, while it could be extremely use-
ful to have depth-resolved in situ measurements for studying
phytoplankton production from a depth-resolved perspective.

One of the most important variables related to phytoplank-
ton production is the depth-resolved chlorophyll a concen-
tration. It was one of the compulsory requirements for inclu-
sion in the gathered dataset. Even if the relationship is not
straightforward, it is often used as phytoplankton biomass
proxy. Several works pointed out that other variables could
be a more precise proxy (Huot et al., 2007; Westberry et al.,
2008), but it is often difficult if not impossible to compute

them for old data, thus limiting the effectiveness of the new
candidates.

Starting from the chlorophyll a profiles, we also com-
puted the depth-integrated values using a trapezoidal inte-
gration. We exploited the depth-integrated value to compute
a production-to-biomass ratio and as source of information
for the dataset analysis.

The classification of surface chlorophyll a concentration
(Fig. 7a) showed that 78.7 % of the phytoplankton profiles in
the dataset fell in the very low class, and the first three classes
comprised 98.5 % of the records. Surface chlorophyll a con-
centration is one of the main variables used to predict phyto-
plankton production, since it is related to the biomass of these
autotrophic organisms. Moreover, this variable is retrievable
through remote-sensing platforms, thus allowing for a quasi-
synoptic application of production estimators.

The segmentation of the integrated chlorophyll a concen-
tration (Fig. 7b) showed a similar pattern compared to the
surface one. In fact, the first three classes were the most abun-
dant (98.2 %), but Fig. 7b shows a larger number of low and
moderate values than Fig. 7a (27.4 % vs. 19.8 %).

We considered the availability of phytoplankton produc-
tion profiles as compulsory information for the newly re-
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Figure 4. (a) MLD (m) and coastal-distance (km) magnitude. The bar color intensity reflects the magnitude of the class values.

Figure 5. (a) Maximum profile depth and (b) maximum production depth classes. The bar color intensity reflects the magnitude of the class
values.

trieved data. The reason for this requirement was twofold:
firstly, we wanted to keep all the information already present
in the Ocean Productivity dataset, which contained depth-
resolved measurements of phytoplankton production. Sec-
ondly, we believed that the study of phytoplankton produc-
tion could benefit from the coupled information of magni-
tude and its distribution along the water column while only
taking the former into account. Starting from the depth-
resolved production data (mg C m−3 d−1), we computed the
depth-integrated production using a trapezoidal integration
(mg C m−2 d−1). Subsequently, we computed a production-
to-biomass ratio using depth-integrated phytoplankton pro-
duction and depth-integrated chlorophyll a. The segmenta-
tion in classes of IPP and production-to-biomass ratio is
shown in Fig. 8.

Both IPP and production-to-biomass ratio classifications
showed the same pattern. Accordingly, the larger the class
values are, the lower the numerosity of the class is. The first
class comprised 67.3 % and 59.5 % of the profiles for IPP and
the production-to-biomass ratio respectively.

IPP is an important measure in global assessments of phy-
toplankton production. It provides a bidimensional view (lat-
itude vs. longitude) of the oceanic production, which in turn
influences several biological and non-biological processes in

the biosphere, e.g., energy flow into the marine food webs,
fish landings and CO2 absorption (Anderson et al., 2018;
Barange et al., 2014; Blanchard et al., 2012b; Caldeira and
Duffy, 2000; Carvalho et al., 2017; Kwak and Park, 2020b;
Maureaud et al., 2017; Shurin et al., 2006). On the other
hand, depth-resolved production provides more insights into
the phytoplankton production process characteristics, which
in turn could lead to better estimates of IPP (Mattei et al.,
2018).

The production-to-biomass ratio could convey valuable in-
formation about the physiological state of the phytoplankton,
which in turn is influenced by biotic and abiotic forcing. This
ratio can be also used to further analyze the profiles’ char-
acteristics and to decide whether they are suitable or not for
specific purposes, e.g., modeling phytoplankton primary pro-
duction (Mattei and Scardi, 2020; Scardi, 2001).

Subsequently, we selected a subset of these variables and
described their relationships with the depth-integrated phy-
toplankton production (see heatmaps, Figs. 9–15).

In the integrated production vs. bottom depth, the very
low production class was the most abundant in all the depth
ranges (Fig. 9). This feature was prominent in the very
low and very high bottom depth classes, which comprised
roughly 60 % of the very low production profiles. In very
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Figure 6. (a) Sea surface temperature and (b) photosynthetic-active-radiation classes. The bar color intensity reflects the magnitude of the
class values.

Figure 7. (a) Surface chlorophyll a and (b) depth-integrated chlorophyll a classes. The bar color intensity reflects the magnitude of the class
values.

shallow areas the production could be limited to a small
portion of the water column, thus often resulting in low in-
tegrated production values. On the other hand, open-ocean
areas are usually nutrient depleted; thus phytoplankton pro-
duction is limited even if other environmental conditions are
favorable. Shallower sampled areas showed higher levels of
depth-integrated production. This was manifest for the very
low class, which showed a noticeable amount of profiles for
each production class and the bulk of largest depth-integrated
values, i.e., 67.7 %, 81.6 % and 100 % of the high, very high
and huge production profiles respectively. The latter feature
was mainly due to land inputs to coastal areas which, when
associated with favorable physical conditions, lead to high
production levels. The blue heatmap highlighted the high po-
tential of shallower areas in contrast with the low one of the
open-ocean zones.

The grey heatmap complement the information of the blue
one by taking into account the local variance of the bottom
depth (Fig. 10).

The very low bottom depth variance comprises the both
very low and huge production profile. The low level of vari-
ance characterizes coastal areas, in which bottom depth is
consistently low, and the open-ocean zones, in which the bot-

tom depth was consistently high. Progressively larger vari-
ance values showed the transition from shallower to deeper
areas, which corresponds to a decrease in depth-integrated
production. This is consistent with our previous analysis and
with phytoplankton ecology.

Subsequently, we analyzed the relationship between inte-
grated production and the profile depth (Fig. 11).

The yellow-to-orange heatmap showed that the bulk of
high production profiles were in the first two profile depth
classes. Shallow production profiles are usually the ones
closer to the coastline or upwelling zones. These areas are
nutrient rich even in surface waters, where light availability
is high, thus allowing for a high level of production. More-
over, high levels of production in shallow waters enhance
the light attenuation phenomenon, reducing the column water
area suitable for primary production. Conversely, the deeper
the phytoplankton profile is, the lower the depth-integrated
production is. Low-nutrient conditions lead to low phyto-
plankton biomasses values and thus to a deeper light pene-
tration along the water column. The latter feature allows for
the structuring of deeper production profiles. Although these
profiles occupy a large portion of the water column, the total
profile production is limited by the scarce nutrient level.
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Figure 8. (a) Depth-integrated phytoplankton primary production and (b) production-to-biomass ratio classes. The bar color intensity reflects
the magnitude of the class values.

Figure 9. IPP vs. bottom depth. The blue heatmap highlight the difference in production potential between coastal and open-ocean areas.

Continuing our analysis of the relationship between depth-
resolved features and the magnitude of depth-integrated pro-
duction, we took into account the production peak depth
(Fig. 12).

The production distribution along the water column is in-
fluenced by physiological and physical forcing. The opti-
mum between light and nutrient availability determines the
depth at which the maximum production occurs (Falkowski
and Raven, 2007b). Since light availability exponentially de-
creases with depth, shallow peaks reflect either a condition
of low irradiance or high irradiance and high nutrients. Both
of these situations lead to surface production peaks which
are associated with a wide range of integrated-production
magnitudes. The yellow-to-green heatmap highlighted how
the high depth-integrated magnitudes are associated only
with shallow-peak profiles. This feature reflected the rela-
tionship between phytoplankton physiological needs and the

light extinction behavior. Deep production peaks indicate a
nutrient paucity condition in shallow waters which shifts
the optimum condition near the nutricline depth. From the
integrated-production perspective, low values were associ-
ated with shallow peaks in conditions of low PAR or low
nutrients even in deeper areas of the water column. The high-
est levels of production were coupled with surface or subsur-
face peaks, while deeper peaks (high to huge) represented
9 % of the total profiles and showed only very low to mod-
erate depth-integrated production with the exception of three
production profiles.

Among the physical forcing that influences phytoplankton
production, we explored the characteristics of SST and PAR
(Figs. 13 and 14). It is worth stressing that the segmentation
derived from the Jenks algorithm is relative to our data. For
instance, the procedure was influenced by the underrepresen-
tation of circumpolar areas, especially in the colder months.
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Figure 10. IPP vs. bottom depth variance. The grey heatmap shows the relationship between the variance of the bottom depth and the IPP.

Figure 11. IPP vs. profile depth. The yellow-to-orange heatmap highlights the relationship between the depth-integrated phytoplankton
production and the production profile depth.

The red heatmap showed that very low and low levels of
SST were associated mainly with a low primary-production
magnitude. The same pattern characterized very high and
huge levels of SST. These features are related to primary-
production seasonality induced by physical forcing. The for-
mer situation referred to cold seasons in which the nutrient
levels in the water column is high but not enough solar radia-
tion is available for the photosynthetic organisms. The latter
reflects a strong shallow stratification of the water column
which is typical of warm seasons or areas constantly sub-
jected to high levels of irradiance. This leads to low nutrient
concentration in shallow waters, which in turn severely limits

the primary producers. Moderate levels of SST were associ-
ated with a wider range of values and comprised the larger
levels of phytoplankton production. This feature could be as-
sociated with the transition between cold and warm seasons.
In this period of the year the environmental conditions are
optimal for primary production, since the high nutrient con-
centration accumulated during the cold season became ex-
ploitable due to the increasingly available solar radiation.

The first feature highlighted by the purple heatmap
(Fig. 14) was the large share of very low integrated-
production profiles in each PAR class. This is mainly related
to the nutrient availability, since low nutrient concentration
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Figure 12. IPP vs. maximum primary-production depth. The yellow-to-green heatmap shows how the magnitude of IPP is related to the
depth at which the maximum production occurs.

Figure 13. IPP vs. SST. The red heatmap represents the relationship between depth-integrated production and SST.

leads to very low production levels independently from the
physical forcing.

Not surprisingly, very high and huge levels of PAR were
associated with larger magnitudes of integrated production,
since the photosynthesis is intimately related to the solar ra-
diation.

Another striking aspect was the wide range of phyto-
plankton responses to very low PAR magnitudes. In fact,
all the production levels are well represented in this PAR
class, showing that the geographical characteristics of the
area deeply influence the primary producers. Accordingly, a
constant nutrient input from terrestrial runoff can boost the

primary production especially in shallower layers of the wa-
ter column where usually it is nutrient limited.

The last relationship that we analyzed was the one between
IPP and depth-integrated chlorophyll a (Fig. 15).

The pattern that emerged from the green heatmap (Fig. 15)
was one proportional to moderate chlorophyll a values. Ac-
cordingly, the higher the integrated production is, the higher
the integrated chlorophyll a is. The bulk of the profiles were
comprised in the very low and low integrated chlorophyll a

classes; 3992 profiles (65.6 % of the total patterns) from very
low and low chlorophyll a concentration were coupled with
very low production, while 1227 (20.1 % of the total patterns)
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Figure 14. IPP vs. PAR. The purple heatmap shows how integrated phytoplankton production and PAR are related to each other.

Figure 15. IPP vs. chlorophyll a. The green heatmap relates the depth-integrated phytoplankton production to the chlorophyll a magnitude,
which is one of the most used proxies for phytoplankton biomass.

were associated with low production. Conversely, higher lev-
els of integrated chlorophyll a were characterized by a larger
share of high production profiles. This was not surprising,
since chlorophyll a is the principal photosynthetic pigment,
and its raise is caused by physiological needs of phytoplank-
ton or biomass augmentation.

The final analysis we carried out was a PCA to spot and
analyze general patterns in the dataset. We selected the fol-
lowing 12 variables to perform the PCA: day length, bottom
depth, bottom depth variance, MLD, distance from coastline,
SST, PAR, surface chlorophyll a, integrated chlorophyll a,

surface phytoplankton production, integrated phytoplankton
production and the production-to-biomass ratio (Fig. 16).

We used type one scaling, since our main focus was on the
position of the profiles. Using this type of scaling the distance
between the objects in the plot approximate their Euclidean
distances in full-dimensional space. The variance explained
by the first and the second axis was 0.26 and 0.15 respec-
tively. The relatively low share of explained variance high-
lights the high complexity of the data which encompass large
levels of spatial and temporal variability. Nevertheless, the
ordination allowed for spotting and showing several features
of the production dataset. From a general point of view high
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Figure 16. Principal-component analysis of 0.26 and 0.15 explained variance from the first two axes respectively. The dimensionality
reduction provided by the PCA allowed for the visualization of several data patterns despite the strong spatiotemporal variability of the
dataset.

levels of surface and depth-integrated chlorophyll a are as-
sociated between them. The same remark is valid for phyto-
plankton production. Moreover, is not surprising that chloro-
phyll a concentration and phytoplankton production mea-
sures point in the same direction along the first axis. Another
feature that is consistent with the results previously presented
was the inverse relationship between bottom depth and coast-
line distance with respect to primary-production magnitude.

Since the various oceans showed different characteristics,
we decided to analyze the PCA output also from each specific
macro-area perspective (Fig. 17).

The Arctic Ocean (Fig. 17a) presented the narrowest cloud
of points among the basins. This could be the result of the
low number of records collected in this region and the pe-
culiar characteristics of the area which hinder the sampling
procedures. The Arctic Ocean data are characterized by a low
level of SST and PAR throughout the year with the exception
of short periods of time.

The Indian Ocean showed two groups of samples. This
feature was the result of the monsoon system that character-
izes this basin. The wind blows from the northeast during
cooler months and from the southwest during the warmest
months of the year (Dickson et al., 2001). Moreover, the plot
(Fig. 17c) shows that this is not a highly productive area inde-
pendent from the environmental conditions. In fact, the bulk
of the points were placed in the opposite direction of both
chlorophyll a concentration and phytoplankton production
levels.

A large amount of information was associated with the
Atlantic Ocean and Pacific Ocean (Figs. 17b and d respec-
tively), since they were the most sampled areas. Accordingly,
they showed the largest range of sampled conditions with
high and low levels for almost every environmental and bio-

logical variable. This feature is also influenced by the spatial
extent of these two basins which cover a considerable por-
tion of Earth’s oceans. Moreover, almost every profile associ-
ated with a high level of phytoplankton production or chloro-
phyll a concentration was recorded in these basins that en-
compass highly productive areas including several upwelling
zones.

4 Data availability

The dataset described in this work is published in the
PANGAEA repository (https://doi.org/10.1594/PANGAEA.
932417) (Mattei and Scardi, 2021). A PDF file containing
the supplementary data information is available in the data
repository.

5 Conclusions

The data paucity is one of the most important issues related
to several disciplines, and ecology is no exception. This is
especially true if the task to tackle is understanding the dy-
namics of a complex biological process, such as phytoplank-
ton primary production, on a global scale. Moreover, several
researchers during the last decades highlighted how the lack
of data is the main constraint for modeling phytoplankton
production.

In this framework, we believe that building a new, ho-
mogenous and ready-to-use dataset, associated with a general
analysis of its features, could play an important role in the
study of phytoplankton production especially if combined
with related and complementary published works (e.g., Kulk
et al., 2020; Bouman et al., 2018). For this reason, we re-
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Figure 17. Principal-component analysis results for each ocean. (a) The Arctic Ocean shows a condensed cloud of points highlighting the
narrow range of recorded measures due to the peculiarity of this ocean. (b) The Atlantic Ocean presents the most dispersed cloud of points
and the largest in situ measures of primary production. (c) The Indian Ocean shows two distinct groups of points which highlight how
the monsoon system influences this area. (d) The Pacific Ocean is characterized by a wide range of sampled environmental and biological
variables which depend on the large spatial extent of this basin and the considerable number of patterns gathered during the years.

trieved phytoplankton production data from heterogeneous
sources and created a new global dataset. We also applied
several data analysis and visualization techniques to spot and
discuss both the dataset characteristics and the variables’ re-
lationships.

Furthermore, enriching the dataset with ancillary data re-
lated to phytoplankton production could be extremely use-
ful in improving our understanding of this pivotal process,
e.g., in a machine-learning context.

Despite the new dataset still being unbalanced from a spa-
tial and temporal perspective and the need for new data never
being fully satisfied, we believe that this dataset represents a
crucial improvement on the previous ones.
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