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ABSTRACT 

In a high mobility wireless channel, the Doppler effect is compounded and must be 

corrected by using pilot-aided symbols. The pilot symbol rate depends on the severity of 

the Doppler effect. There are existing algorithms such as differential decision-feedback 

(D-DF) and double-differential decision-feedback (DD-DF) for single-input single-output 

(SISO) systems to improve channel tap estimation. Such algorithms improve the bit error 

rate (BER) performance of pilot symbol aided decision feedback demodulation. In this 

thesis, the use of minimum mean square error (MMSE) estimation was implemented to 

further improve channel tap estimation for the D-DF and DD-DF algorithms. 

BER performance showed significant improvement for higher order modulation 

schemes. On the other hand, implementation of the new algorithm on quadrature phase-

shift keying (QPSK) showed negligible improvement. Also, the MMSE algorithm is not 

very effective for cases with very high Doppler frequency shifts.  

Finally, it was observed that the performance improvement due to MMSE 

estimation decreases as the signal-to-noise ratio increases. To counter this, adaptive 

tolerances, tied to the variance of channel tap estimation, were found to provide better 

channel estimation surge detection capabilities. Such implementation dramatically 

improved the bit error rate performances for D-DF with the MMSE algorithm but was not 

effective for the DD-DF algorithm.  
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EXECUTIVE SUMMARY 

In a high mobility wireless channel, the Doppler effect is compounded and must be 

corrected by using pilot-aided symbols. The pilot symbol rate depends on the severity of 

the Doppler effect. There are existing algorithms such as differential decision-feedback 

(D-DF) and double-differential decision-feedback (DD-DF) for single-input single-output 

(SISO) systems to improve channel tap estimation. Such algorithms improve the bit error 

rate (BER) performance of pilot symbol aided decision feedback demodulation. The 

thesis on "Doppler Effects on Single-Carrier Signals Operating in Fading Channel" 

presented the performance of differential decision-feedback and double-differential 

decision-feedback algorithms in fading channels for quadrature phase-shift keying 

(QPSK), 16-quadrature amplitude modulation (16-QAM) and 64-quadrature amplitude 

modulation (64-QAM) . In this thesis, the use of minimum mean square error (MMSE) 

estimation was implemented to further improve the channel tap estimation for differential 

and double-differential decision-feedback algorithms. The implementation of MMSE 

estimation requires statistical information on the channel tap and these are obtained from 

the estimates provided by the D-DF  and DD-DF  algorithms.  

BER showed significant improvement for higher order modulation schemes such 

as 16-QAM, 64-QAM and 256-QAM. On the other hand, implementation of the new 

algorithm on modulation schemes like QPSK showed negligible improvement. The 

MMSE algorithm proved to be not effective for cases with very high Doppler frequency 

shifts.  

Finally, it was observed that the performance improvement due to MMSE 

estimation decreases as signal-to-noise ratio increases. To counter this, adaptive 

tolerances were used to detect large changes in channel estimation. Since the channel is 

expected to be slow fading within the pilot symbol frame, the adaptive tolerances, tied to 

the variance of channel tap estimation, were found to provide better surge detection 

capabilities. Such implementation dramatically improved the BER performances for the 

D-DF with MMSE algorithm but was not effective for the DD-DF  algorithm. 
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I. INTRODUCTION 

A. OVERVIEW 

Digital communication has always been challenging in a high mobility fading 

environment. On top of the typical additive white Gaussian noise (AWGN) model, the 

realistic environment complicates the channel model by introducing multi-path effects. 

The multiple paths create varying magnitude and phase over time and space. The high 

mobility scenario creates channel that vary quickly over time. This makes demodulation 

very difficult. Although the varying magnitude does cause severe attenuation at times, 

known as deep fades, such effects are temporal and cause relatively low bit errors. The 

key contribution to the bit errors are phase errors that could shift the data information 

phase dramatically over time and cause erroneous demodulation. In order to compensate 

for the phase changes, pilot symbols are embedded in the data stream for channel 

estimation. If the pilot symbol rate is lower than the coherence time, the channel would 

be fading slowly between two pilot symbols. Within this frame, the channel tap phase 

error could be assumed to vary slowly. Even with the simple use of the channel tap phase 

error from the pilot symbol, the bit error rate performance is still very poor. Therefore, 

there is a need for better channel estimation techniques. 

One such technique is the use of differential decision-feedback (D-DF) and 

double-differential decision-feedback (DD-DF) algorithms [1]. The differential and 

double-differential decision-feedback algorithms use the channel tap phase error estimate 

from previous symbols rather than from the pilot symbol. After determining the latest 

channel tap phase estimate from the decoded symbol, assuming that there is no decoding 

error, the channel tap estimate is updated for the next symbol. This allows for a more 

accurate estimate, especially when the data symbol is spaced far in time from the pilot 

symbol. 
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B. OBJECTIVE 

In this thesis, the key objective is to study the feasibility of using minimum mean 

square error on the differential and double-differential decision-feedback algorithms to 

improve the overall bit error rate performance of single-input single-output (SISO) 

communications in high mobility fading environments. Simulation was carried out to 

study the performances obtained with and without minimum mean square error 

estimation. Simulations on modulations such as QPSK, 16-QAM, 64-QAM and 256-

QAM were developed in MATLAB and used as a baseline for comparison. Once the 

minimum mean square error estimate is incorporated, new algorithms to further enhance 

the bit error rate performances could be developed. 

C. OUTLINE 

This thesis consists of four main chapters. The first chapter provides an overview 

of the impetus and objectives of the thesis, while Chapter II begins the theoretical review 

of fading channels and pilot symbol-aided decision feedback demodulation. This chapter 

also reviews previous work on differential and double-differential decision-feedback 

algorithms. Chapter III begins with the study of minimum mean square error and the 

orthogonality principle and proceeds to discuss the implementation of minimum mean 

square error onto differential and double-differential decision-feedback algorithms. The 

new algorithms were further enhanced with adaptive tolerance, which made use of 

channel tap estimate variance to identify surges in channel tap estimates probably due to 

erroneous demodulation.  
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II. REVIEW OF PREVIOUS WORK 

A. FADING CHANNEL AND PILOT SYMBOL DECISION FEEDBACK 
DEMODULATION 

1. Fading Channel Overview 

In a multipath environment, the transmitted signal travels through several 

different paths before arriving at the receiver. The different paths arise from the signal 

reflecting and refracting around obstacles in its own respective paths. This gives rise to 

several copies of the original signal with different delay, phase shift and attenuation. 

These multipath copies combine at the receiver with a combined signal envelope that can 

either be modeled as a Raleigh, Rician or Nagakami fading process and a phase shift of 

uniform distribution. The types of fading processes are defined by different conditions 

such as the presence of the line-of-sight path. When there is a direct line-of-sight between 

the transmitter and the receiver, the fading process can be modeled as Rician fading. On 

the other hand, a Rayleigh fading process results from non-line-of-sight communication 

and is one of the worst types of fading. The amplitude of such fading is defined by the 

density function with normalized channel tap such that ( )2 1hΕ = where h  is the 

complex path attenuation, often referred to as the channel tap, 

 ( ) 2

2 x
hf x xe−= . (1) 

The fading channel effect is defined in terms of time-varying and space-varying 

effects. The space-varying effect arises from the multipath effect and can be measured by 

the multipath delay spread of the fading channel, denoted by dτ . The multipath delay 

spread is defined as the difference between the maximum and minimum time delay. The 

coherence bandwidth cB  is computed as the inverse of the multipath delay spread. When 

the coherence bandwidth is larger than that of the signal, the fading process is defined as 

frequency-selective fading.  
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The time-varying effect arises mainly from the Doppler frequency shift df  due to 

motion of the transmitter, receiver or the obstacles within the path of propagation. This 

time-varying effect affects both the amplitude and phase shift of the received signal. The 

phase shift affects the channel estimation interval, also known as pilot symbol interval. 

Using the pilot symbols, we can correct the aggregated phase shift. A good indication of 

this time-varying effect is the coherence time cT  which is related to the Doppler spread 

Df . The Doppler spread is defined as the difference between the maximum of both 

positive Doppler shifts and negative Doppler shifts, and the coherence time cT  is 

calculated from 

 1
4c

D

T
f

= . (2) 

The coherence bandwidth is calculated using the formula 1
c

d
B τ= , where dτ  is 

the maximum channel path delay. In summary, the fading channel can then be classified 

based on the coherence time and coherence bandwidth. When the coherence time cT  is 

shorter than the channel estimation interval, the channel is defined as slow fading, 

relatively unchanging within the channel estimation interval. Otherwise, it is considered 

as fast fading. On the other hand, if the coherence bandwidth is larger than the signal 

bandwidth, the channel is flat, or frequency non-selective, fading. This case is also 

applicable for scenarios where there is only one resolvable path. [1] 

2. Clark-Doppler Power Spectrum 

The multipath autocorrelation and Doppler profiles are essential in the 

understanding of a fading channel and can be determined from the channel impulse 

response. The overall channel impulse response is comprised of several complex channel 

taps, denoted by ( ),h tτ , where τ  is the path delay and t  is the time to which the channel 

varies. Replacing the channel impulse response with the summation of the ith resolvable 

paths ( ) ( )( )i i
i

h t tδ τ τ−∑ , the autocorrelation function is given by 
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( ) ( ) ( )

( ) ( ) ( )( )

*
1 2 1 2

*
1 2 1

, '; , , ',

.

h

i i i
i

R t t h t h t

h t h t t

τ τ τ τ

δ τ τ

⎡ ⎤= Ε ⎣ ⎦
⎡ ⎤= Ε −⎣ ⎦∑

 (3) 

Given that the channel can be modeled as a wide-sense stationary (WSS) process 

and is ergodic, as well as assuming flat fading and only one ith resolvable path, the 

autocorrelation simplifies to 

 ( ) ( ) ( )*
2 1 1 2h i iR t t h t h t⎡ ⎤− = Ε ⎣ ⎦ . (4) 

The Clark-Doppler power spectrum can be derived under the assumption that the 

fading channel is flat and that the paths that arrive at the receiver are in a single plane. If 

there is only one resolvable path, the Clark-Doppler power spectrum provides the 

autocorrelation function of a fading channel. The multipath autocorrelation function for 

random horizontal arrival angles is given as 

 ( ) ( )0' 2 'h dR t PJ f tπ=  (5) 
where 2 1't t t= −  is the time difference between any arbitrary times, 1t and 2t , P  is the 

total received power 2
kh⎡ ⎤Ε ⎣ ⎦ , 0J  is the zero order Bessel function of the first kind and 

df  is the Doppler frequency[1]. 

3. Pilot Symbol-Aided Decision Feedback Demodulation 

In order to perform coherent demodulation, the phase shifts due to the fading 

channel must be estimated and corrected before demodulation. If the phase errors are 

allowed to accumulate without any correction, the decoded symbol will be in error. One 

common means of phase correction is through the use of pilot symbols. With the proper 

selection of pilot symbols and their intervals, the fading channel can be estimated. This 

channel tap can then be used to correct for any phase shift caused by the channel. The 

pilot symbol interval should be less than the coherence time in order for the channel to be 

relatively static, or slow fading. On the other hand, the pilot symbol rate must also be 

much smaller than the data rate to maximize data throughput. The channel estimation 

from the pilot symbol pj
p ph h e θ= , where ph  is the attenuation and pθ  is the phase shift 

due to the channel for the pilot symbol, can be used to correct the data symbol until the 

next pilot symbol is transmitted. The bit error rate performances of different modulation 



 
 
 

 

 6

schemes with pilot symbol-aided decision feedback are shown in Figure 1.  The 

parameters for the simulations were a symbol rate of 1,000,000 symbols per second (1 

Msps), a Doppler shift of 50 Hertz and a pilot symbol interval of 50 symbols.  
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Figure 1.   BER of Pilot Symbol-Aided Decision Feedback Demodulation. 

B. DIFFERENTIAL DECISION-FEEDBACK (D-DF) AND DOUBLE-
DIFFERENTIAL DECISION-FEEDBACK (DD-DF) ALGORITHMS 

1. Differential Decision-Feedback Algorithm 

The differential decision-feedback algorithm provides a more updated estimate of 

the channel tap phase compared to simply using the pilot symbol to estimate the channel 

tap phase. Still using the pilot symbols, the channel estimate can be used to correct the 

phase errors in the symbol following the pilot symbol. The algorithm, instead of using the 

same channel tap phase estimation 
*

pj
p ph h e θ−=  for the entire frame of symbols until 

the next pilot symbol also uses the previous channel tap phase error 
^

1lε −  to provide an 

update to the estimate. This results in lower bit error probability since the demodulation 
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is now dependent on the change in phase error, which is a much smaller value than the 

actual phase error. Given that the previous symbol is detected correctly, the previous 

channel tap estimate is used on the next symbol. Hence, defining the lth transmitted 

symbol as ls , the symbol to be decoded lX  is 

 ( ) ( )( )
^

^ ^11 1
* llj lp l l

jj e j
p pl l l l l l lX h h h e s N e h e s e

ε ε εθ ε ε
−− −

⎛ ⎞
−⎜ ⎟+ ⎝ ⎠= + = + Ν  (6) 

where  lj
l lh h e ε=  is the lth symbol channel tap and lN  is the complex noise for  lth 

symbol, 
^

pj
l lN e θ−Ν = . It can be seen from equation (6) that the decoded symbol lX  only 

has the phase error of 
1

^
l l

ε ε ε
−

Δ = −  after correcting with the pilot symbol's channel tap 

phase estimate pθ and the phase error estimate of the (l-1)th symbol 
1

^
l

ε
−

. 

The block diagram of the differential decision-feedback algorithm is shown in 

Figure 2. The differential decision-feedback algorithm can be represented by the blocks 

highlighted within the dotted box, which is inserted between the matched filter and the 

detector in a typical demodulator. The demultiplexer identifies the pilot symbol from the 

other symbols. The phase information from the pilot symbol and the other symbols are 

sent to the phase error estimator, where the channel tap phase error is estimated. The 

output of the phase error estimator, which is the new channel phase error estimate, is 

added to the pilot symbol phase error for the next symbol's phase correction. Also, the 

phase error estimator uses a fixed tolerance to detect spurious channel estimates. If the 

channel phase estimate exceeds the fixed tolerance, it is considered as erroneous, likely 

due to an error in decoding, and the previous channel estimate is used instead. Finally, 

according to Figure 2, the phase estimate from the pilot symbol and the channel tap phase 

estimate of the (l-1)th symbol are subtracted from the next symbol. 
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Figure 2.   Block Diagram of Complex Pilot Symbol Demodulator with D-DF 
Algorithm. 

2. Double-Differential Decision Feedback Algorithm 

To further enhance the channel tap phase estimation, instead of using just the 

previous symbol's channel tap estimate, the channel estimation for the (l-2)th symbol can 

also be used. This double differential decision-feedback algorithm corrects the current 

phase by 
^ ^

1 22 l lpθ θ ε ε− −= + − , where 
^

1lε −  and 
^

2lε − are the post-estimated differential 

Doppler phase error of (l-1)th and (l-2)th symbols, respectively, and pθ  is the phase shift 

estimated by using the pilot symbol. This approach assumes that there is a simple linear 

relationship between the current Doppler phase error and the past two estimated phase 

errors. The block diagram of the double differential decision-feedback algorithm is 

shown in Figure 3. The block diagram is similar to the differential decision-feedback 

algorithm except that the (l-2)th symbol is also sent to the phase error estimator to 

determine the channel tap phase error.  

 

 

 

 

Figure 3.   Block Diagram of Complex Pilot Symbol Demodulator with DD-DF 
Algorithm. 
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C. REVIEW OF PAST WORK 

1. Doppler Effects on Single-Carrier Signals Operating in Fading 
Channel Overview 

The thesis on "Doppler Effects on Single-Carrier Signals Operating in Fading 

Channel" [2] presents the performance of differential decision-feedback and double-

differential decision-feedback algorithms in fading channels for QPSK, 16-QAM and 64-

QAM modulations. Variations in pilot symbol interval, data rates and Doppler shifts were 

used to compare their impact on the algorithms. It was shown in the thesis that the 

differential decision-feedback algorithm performs remarkably well in all scenarios with 

the expected behavior of increasing bit error rates with increasing pilot symbol intervals 

and higher Doppler frequency shifts. The bit error rates with the implementation of the 

double-differential decision-feedback algorithm, however, showed less than expected 

performance, with generally similar or worse-off performance as compared to the 

differential decision-feedback algorithm.  

2. Review of MATLAB Simulation Code and Simulation Results 

a. Simulation Approach 

MATLAB was used to implement the D-DF and DD-DF algorithms and 

validate their performance. The MATLAB communication toolbox was used to simplify 

the modeling of modulation, demodulation processes and the channel. A Rayleigh fading 

channel with additive white Gaussian noise (AWGN) was used as the model's channel. 

As part of the demodulation process, the differential decision-feedback and double-

differential decision-feedback algorithms were also modeled. To ensure that the 

simulated bit error rates were accurate, sufficient data points are required. To ensure 

accuracy, up to 350 simulation trials of 10,000 symbols each were performed. 



 
 
 

 

 10

b. Code Changes and Improvements 

After scrutinizing and reproducing the MATLAB codes provided in the 

thesis, some errors were found and they are listed as follows: 

(1)..The number of trials does not always end with more than 350 trials. 

This was due to the conditions provided in the WHILE loop that determines the number 

of trials. While it is ideal to have a very high number of data points for accuracy, it turned 

out that 20,000,000 data points were generally sufficient for most cases. Hence, the code 

was improved to at least run 2,000 trials of 10,000 symbols each and, at the same time, 

the change in the resulting bit error rates after each trial was also used as a criterion for 

limiting the number of trials. The criterion of checking the changes in the bit error rates 

between two trials was put in place to increase the number of trials beyond 2,000 in the 

case when there were still significant changes in bit error rates. In other words, if the 

changes in bit error rates between two trials were still significant, the number of trials 

would continue after 2,000. In most cases, except for those with high b oE N , the 

simulations ended with 2,000 trials. For those that exceeded the number of trials, some 

went as high as 7,000 trials. 

(2)  In the MATLAB code for the differential decision-feedback 

algorithm, the current symbol's post-estimated Doppler phase error was formulated by 

using only the previous symbol's channel tap. According to the algorithm, the post-

estimated Doppler effect should be based on the previous symbol's estimated phase error 

and the pilot symbol phase. The corrected code has similar performance. The 'wrong' 

code used the channel tap estimation from the previous symbol and, since the fading 

channel is slow, the marginal differences in the channel tap are close to the correction 

given by the differential decision-feedback algorithm. The double differential decision-

feedback algorithm coding was correct with no need for any changes. Therefore, by using 

the minimum mean square error approach to estimate the current symbol's channel tap, 

performance is expected to improve. 
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(3)  Another observation from the MATLAB code in the thesis was that 

the tolerance used to identify channel tap surges resulting from decoding error had 

greater tolerances for the transitions between angles near the π and -π boundary. The 

previous conditions set for the tolerances were to compare absolute difference between 

the current channel tap phase error estimate with the previous estimate. However, this 

simple implementation does not work when the channel tap phase error estimates changes 

between angles near the π and -π boundary. Due to the way MATLAB calculates the 

angle of a complex number, when the angle is more than π, it returns a negative angle. 

The difference in the bit error rate performances is shown in Figure 4. It can be seen that 

there is a significant difference in bit error performances, especially for large b oE N . 

The parameters for the simulations were a symbol rate of 1,000,000 symbols per second 

(1 Msps), a Doppler shift 50 Hertz and a pilot symbol interval of 50 symbols.  
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Figure 4.   Comparison between Previous and Final Amended D-DF Codes. 
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(4)  The final difference discovered was the performance between the 

differential decision-feedback and double-differential decision-feedback algorithms. As 

the number of trials increased, the differences in performance between the two algorithms 

narrow. This shows that there are marginal differences between the two algorithms. The 

double-differential decision-feedback algorithm does result in higher bit error rates at 

lower signal-to-noise ratios compared to the differential decision-feedback algorithms, 

especially for higher order modulation schemes. This is consistent with the conclusion 

shown in [2]. The conclusion that performance is worse for in the higher signal-to-noise 

ratios is only valid for certain modulation schemes, mainly those with higher order 

modulations. The bit error rates obtained by executing the simulation provided by the 

thesis updated with the changes mentioned above are shown in Figure 5. The bit error 

rate performances of the amended D-DF and the DD-DF codes are shown where there is 

an insignificant performance difference for QPSK. 
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Figure 5.   Comparison between Amended D-DF Codes and DD-DF. 
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III. DIFFERENTIAL DECISION-FEEDBACK AND DOUBLE 
DIFFERENTIAL DECISION-FEEDBACK WITH MMSE FOR SISO 

A. MINIMUM MEAN SQUARE ERROR FILTERING 

1. Introduction 

With the intent of further enhancing the channel tap phase estimation, the linear 

minimum mean square error (MMSE) filtering approach was implemented on the phase 

error estimate. The concept was to use the channel estimates from the pilot symbol and 

subsequent estimations from the differential decision-feedback and double differential 

decision-feedback algorithms to obtain the actual channel tap estimate. Other than the 

channel tap phase estimate from the pilot symbol, the rest of the channel tap phase 

estimates from the other symbols would contain errors. These errors can be reduced 

based on the orthogonality principle. The minimum mean square error approach uses the 

estimates' statistical properties to better approximate the actual channel tap conditions. 

2. Mean Square Signal Estimation and Orthogonality Principle 

The minimum mean square approach attempts to remove noise from a signal by 

minimizing the expected value of the squared difference between the actual signal and 

the noisy signal. If the noisy signal is x  and the original signal is s , the minimum mean 

square approach would provide an estimate 
^
d  where 

2^
s d

⎧ ⎫
Ε −⎨ ⎬
⎩ ⎭

 is minimized. 

The orthogonality theorem states that, given estimation error 
^

s dε = − , a matrix a 

that minimizes the error 
2^

s d
⎧ ⎫

Ε −⎨ ⎬
⎩ ⎭

can be chosen such that  { } 0ix εΕ =  for all samples 

of i [3]. In other words, the aim of the matrix a is to ensure that the error is orthogonal to 

the received signal, giving rise to the lowest expected error. 
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Using both concepts, we can use the relationship between the channel estimate 

from the pilot symbol and the differential decision-feedback and double differential 

decision-feedback algorithms to estimate the actual channel tap. Let the actual channel 

tap be 
~
h  and the estimated channel tap be 

^
h  and 

^ ~
h h ε= + . Therefore, the matrix opth , 

where 
~ ^

opth h= h  that minimizes the mean square error between the estimated channel tap 

and the actual channel tap is obtained as follows (derived from [3]). ^
h

R  is the 

autocorrelation function of the actual channel tap and 
~^
hh

r  is the cross-correlation between 

the estimated and actual channel tap. The complex conjugate is added and necessary for 

complex signals. The symbols ~
h

μ  and ^
h

μ  represent the means of the actual and estimated 

channel tap, respectively. Finally, using equation (7), the channel tap estimate with 

minimum mean square error is obtained and denoted by esth  (see Appendix A for 

derivation): 

  

 
^ ~^

~ ^

*

^
.

hh
opt

h

est opt opt
h h

R

μ μ

=

= + −

h r

h h h h
 (7) 

3. Application to Pilot Symbol-Aided Decision Feedback Demodulation 

The autocorrelation function of the channel tap can be estimated from the pilot 

symbol. Based on the Clark-Doppler power spectrum approach, the autocorrelation of the 

channel tap is a Bessel function of zero order multiplied by the received power and is 

calculated from 

 ( )~

2~

0( ) 2 d
h

R t h J f tπ
⎡ ⎤

= Ε ⎢ ⎥
⎣ ⎦

 (8) 

where the total received estimated power 
2

h⎡ ⎤Ε ⎢ ⎥⎣ ⎦
 is obtained from the pilot symbol's 

channel tap estimate. 
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Assuming that the errorε  has a uniform distribution and is zero at the pilot 

symbol's channel tap, we can derive the relationship between 
~
h  and 

^
h⎡ ⎤Ε ⎢ ⎥⎣ ⎦

as  

 
[ ]

^ ~

^ ~ ^ ~
.

h h

h h h h

ε

ε

= +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Ε = Ε +Ε ⇒ Ε = Ε⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (9) 

The cross-correlation between the estimated channel tap from the differential 

decision-feedback and double differential decision-feedback algorithms and the actual 

channel tap can be derived from Equation (8). This assumes that the errorε  is 

independent of the channel tap. The cross-correlation between the estimated channel tap 

from the differential decision-feedback and double differential decision-feedback 

algorithms is given by 

 

( ) ( ) ( )( ){ }
( ) ( ) ( )( )( ){ }

( ) ( ) ( )( ){ }
( )

~^

~

~

**

*

2~

0 (2 ) .

hh

h

h
mh h

i h n h n i

h n h n i n i

R i h n i n i

R i h J f iε ε

ε

ε

μ μ π μ μ

= Ε +

= Ε + − +

= −Ε + +

⎡ ⎤
= − = Ε −⎢ ⎥

⎣ ⎦

r

 (10) 

4. Application to Differential Decision-Feedback and Double Differential 
Decision-Feedback  

The application of the minimum mean square error onto the differential decision-

feedback and double differential decision-feedback algorithms requires the 

autocorrelation function of the channel tap and the estimated channel tap as well as the 

means for both of them. The autocorrelation of the channel tap is simply the zero-order 

Bessel function multiplied by the received channel tap while the autocorrelation of the 

estimated channel tap can be obtained from the set of estimated channel tap. To ensure 

that the autocorrelation function is accurate, the entire frame between two pilot symbols 

is used to determine both the autocorrelation function and the channel tap mean. 
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Using the channel estimates from the differential decision-feedback or double 

differential decision-feedback algorithms, we can obtain the autocorrelation and mean 

information and the minimum mean square error algorithm can be implemented. It is also 

observed that since the channel tap magnitude is small and the autocorrelation is small, 

the minimum mean square filter tends to amplify the magnitude of the channel tap 

estimate as the algorithm is implemented. Therefore, since we are only interested in the 

phase error, the opth  is normalized by the maximum magnitude of the channel taps within 

the entire frame.  

The new estimated channel tap is then applied to the demodulation of the lth 

symbol directly as 
~

lh  to correct the phase error introduced due to the fading channel. 

Since the minimum mean square error estimate of the channel phase error is more likely 

to be correct, there is no further compensation required, and the phase error estimation 

can be used directly for the demodulation. To balance the complexity and accuracy of the 

minimum mean square error algorithm, the length of opth  is selected to be three. In Table 

1, the average minimum mean square error of channel tap magnitude and phase of 10,000 

symbols at b oE N = 10 dB, used in conjunction with the differential decision-feedback 

algorithm is shown. Since only the phase is used in the minimum mean square error 

algorithm, the opth  length of three is ideal. 

Table 1.   Tabulation of Channel Tap Magnitude and Phase Error. 

Filter length Ave. Channel Tap Phase Error Ave. Channel Tap Mag. Error 

2 0.2745 21.6862 

3 -0.1589 28.6622 

4 -0.2005 35.4068 

5 -0.2093 39.3442 
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To prevent an erroneous demodulation from affecting the channel estimate in both 

the differential decision-feedback and double differential decision-feedback algorithms, 

tolerances can be included to detect drastic changes in the channel estimates. Since we 

know that the phase errors do not vary significantly between a few symbols, these 

tolerances are required to make sure that the current minimum mean square error estimate 

does not deviate dramatically from the previous estimate. If the new estimate from the 

minimum mean square error algorithm is within tolerance, the received symbol can be 

decoded using this new channel tap estimate. Otherwise, the previous channel tap 

estimate from the previous symbol is used instead. In other words, if the current estimate 

exceeds the tolerance, the previous minimum mean square error estimate from l-1th 

symbol is used for decoding.  

When the new channel tap is used for demodulation, a new channel tap estimate 

for the next symbol is obtained and used subsequently. This results in an implementation 

where the channel estimate is constantly updated at each symbol's demodulation with 

minimum mean square error estimation. The functional block diagram of the new 

algorithm is shown in Figures 6 and 7. The MMSE estimator is added after the 

differential decision-feedback or double-differential decision-feedback algorithm. A 

buffer at the beginning of the MMSE block shown in Figure 7 is used to collect all 

decoded symbols with the respective channel estimates between two pilot symbols. This 

information is collected into a single frame and sent to the MMSE estimator. The MMSE 

estimator uses this information to determine the channel tap estimate's autocorrelation 

and carry out the MMSE calculations. The output of the MMSE estimator is opth . The 

current and the past two channel tap estimates are then multiplied with opth  to obtain the 

new channel estimate. The tolerance comparator then checks the new estimate against the 

previous symbol's MMSE estimate. If the new estimate exceeds the tolerance, the 

previous MMSE estimate is used instead. The symbols are then compensated with the 

new channel tap phase estimate, and the updated symbol is sent to the detector for 

decision. 
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Figure 6.   Functional Block Diagram of the D-DF/DD-DF with MMSE. 

 
Figure 7.   Functional Block Diagram of the MMSE Algorithm. 

To determine the effectiveness of the new algorithm, it was implemented and 

evaluated with a sample data of 10,000 complex QPSK symbols, which was the sample 

size of a single trial. The parameters used for simulation were a symbol rate of 1,000,000 

symbols per second (1 Msps), a Doppler shift of 50 Hertz and a pilot symbol interval of 

50 symbols. The effectiveness of the new algorithm is shown in Figures 8 and 9. The 

Rayleigh channel tap generated by the simulation is shown in Figure 8. This was before 

additive white Gaussian noise (AWGN) is added. The channel tap estimated without and 

with minimum mean square error implementation is shown in Figure 9. The impact of the 

minimum mean square error algorithm on the channel tap phase is shown in Figure 10. 

The phase errors shown are between channel tap estimates of two pilot symbols. The 

change in the channel tap phase error estimate in Figure 10c is much less than in Figure 

10b. The large transients in Figure 10(a) indicate the transition between π and -π . 
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Figure 8.   Channel Tap for 10,000 Symbols Generated by Simulation. 
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Figure 9.   Channel Tap Magnitude for 10,000 Symbols Generated by D-DF 

without MMSE (Left) and with MMSE (Right). 
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Figure 10.   Comparison of Channel Tap Phase Errors Estimate (in Radians) (a) for 
10,000 symbols, (b) without MMSE and (c) with MMSE for 50 Symbols. 

B. SIMULATION RESULTS FOR CASES WITH LOW DOPPLER 
FREQUENCY SHIFT 

1. Simulation Overview 

Similar to [2], the communications toolbox in MATLAB was used to determine 

the performance of differential decision-feedback and double-differential decision-

feedback with MMSE for single carrier and single-input single-output (SISO) systems. 

Adapted from the MATLAB codes provided in [2], MMSE algorithms were added to the 

demodulation process. Performances with and without the MMSE implemented were 
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derived for QPSK as a baseline and extended to 16-QAM, 64-QAM and 256-QAM. The 

latter modulations were selected based on their relevance to fourth generation mobile 

communications systems such as Long Term Evolution (LTE) and WiMAX. 

The parameters used for simulations were selected to give the best performance 

when comparing D-DF and DD-DF with and without MMSE. The symbol rate, Doppler 

shift and pilot symbol interval were selected to be within the coherence bandwidth and 

time, giving rise to slow frequency non-selective (flat) fading. The parameters used were 

a symbol rate of 1,000,000 symbols per second (1 Msps), a Doppler shift of 50 Hz and a 

pilot symbol interval of 50 symbols. A minimum of 2,000 trials, each with 10,000 

symbols, was used to determine the bit error rate for each b oE N . The b oE N  ranges 

from 10 to 60 dB. 

2. QPSK 

The differential decision-feedback algorithm with MMSE introduced showed 

insignificant improvement to the bit error rate (BER) performances. This could be due to 

the fact that the differential decision-feedback algorithm is already very effective in 

ensuring that the phase correction is sufficient to rotate the received symbol into the 

correct decision region. In this case, the MMSE was unable to enhance the estimation 

further. The BER plot of differential decision-feedback with and without MMSE 

implemented is shown in Figure 11. The conclusion is the same for double differential 

decision-feedback as shown in Figure 12. 
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Figure 11.   BER of QPSK with D-DF Algorithm with and without MMSE Filter. 

10 15 20 25 30 35 40 45 50 55 60
10-7

10-6

10
-5

10-4

10-3

10-2

10-1

Eb/No(dB)

P
b

Rs=1Msps, Doppler freq=50Hz and Pilot Symbol Interval=50

 

 

Ideal QPSK with Fading
QPSK with DD-DF
QPSK with DD-DF (with MMSE)

 
Figure 12.   BER of DD-DF Algorithm with and without MMSE Filter. 
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3. QAM 

Extending the studies to QAM, we implemented the minimum mean square error 

algorithm for 16-QAM, 64-QAM and 256-QAM with differential decision-feedback and 

double differential decision-feedback algorithms. The 64-QAM and 256-QAM were 

studied since they are used in the newer communications standards such as WiMax and 

LTE. The performances were compared, and it was shown that with higher order 

modulations, which are most susceptible to phase errors, the minimum mean square error 

filter was proven to be effective. 

a. 16-QAM 

When minimum mean square error is applied to the 16-QAM modulation, 

there is approximately 0.5 dB improvement to the performance obtained through the 

differential decision-feedback and 1 dB improvement with the double differential 

decision-feedback algorithm as shown in Figures 13 and 14, respectively. One common 

characteristic of the new bit error performances with the new minimum mean square 

error algorithm is that the performance with higher signal-to-noise ratios, generally after 

35 dB, is worse than the performance without the minimum mean square error 

implementation. This could be due to the fact that at larger b oE N , the channel estimate 

from the differential decision-feedback and double differential decision-feedback 

algorithms is relatively noise-free, and the minimum mean square error algorithm may 

have overcompensated for the phase errors. In other words, at larger b oE N , the variance 

of the channel estimate reduces dramatically and, therefore, the tolerances to detect 

surges in channel estimate need to be reduced accordingly. Comparing both differential 

decision-feedback and double differential decision-feedback algorithms with minimum 

mean square error estimation, we see that the bit error rate performance of the double 

differential decision-feedback algorithm is worse than that of the differential decision-

feedback algorithm as shown in Figure 15. 
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Figure 13.   BER of 16-QAM with D-DF Algorithm with and without MMSE Filter. 
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Figure 14.   BER of 16-QAM with DD-DF Algorithm with and without MMSE 

Filter. 
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Figure 15.   Comparison of 16-QAM with D-DF and DD-DF Algorithms both with 

MMSE Filter. 

b. 64-QAM 

When the minimum mean square error algorithm is applied to 64-QAM 

with differential decision-feedback and double differential decision-feedback, there is a 

greater improvement to the bit error rates. It can be observed that there is a 2-3 dB 

improvement in bit error rates at the lower region of b oE N . The performances of 64-

QAM with differential decision-feedback and double differential decision-feedback with 

minimum mean square error implementation are shown in Figures 16 and 17. Also, the 

bit error rates at the higher region of b oE N are slightly higher than that of the 

differential decision-feedback algorithm. The other observation is that the bit error rates 

of double differential decision-feedback with minimum mean square error at higher 

b oE N are decreasing and approaching the performances without minimum mean square 

error. The comparison of both differential decision-feedback and double differential 

decision-feedback with minimum mean square error is shown in Figure 18. 
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Figure 16.   BER of 64-QAM with D-DF Algorithm with and without MMSE Filter. 
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Figure 17.   BER of 64-QAM with DD-DF Algorithm with and without MMSE 

Filter. 
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Figure 18.   Comparison of 64-QAM with D-DF and DD-DF Algorithms both with 
MMSE Filter. 

c. 256-QAM 

As for 256-QAM, the minimum mean square error algorithm is highly 

effective for the double differential decision-feedback algorithm. Similar to previous 

cases, when minimum mean square error is implemented for the differential decision-

feedback algorithm, the bit error rates at higher b oE N are worse, as shown in Figure 19. 

In fact, as the order of modulation increases, the degradation in performances at higher 

b oE N is worse. On the other hand, for double differential decision-feedback with 

minimum mean square error, the performance degradation at higher b oE N caused by the 

new algorithm reduces with higher order of modulation. Even so, there is a slight 

compromise in performance at the lower b oE N . The bit error performance of double 

differential decision-feedback with minimum mean square error is shown in Figure 20. In 

fact, the minimum mean square error algorithm with double differential decision-

feedback  was so effective in improving the bit error rates that the improvement could be 
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up to 15 dB as compared to the demodulation without minimum mean square error. 

When compared to the bit error rate performance of the differential decision-feedback 

algorithm, there is only approximately 5 dB improvement, as shown in Figure 21. 
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Figure 19.   BER of 256-QAM with D-DF Algorithm with and without MMSE 

Filter. 
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Figure 20.   BER of 256-QAM with DD-DF Algorithm with and without MMSE 

Filter. 
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Figure 21.   Comparison of 256-QAM with D-DF and DD-DF Algorithms both with 

MMSE Filter. 
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d. 512-QAM and 1024-QAM 

Similar to the case at 256-QAM, the bit error rate performances for double 

differential decision-feedback with the minimum mean square error algorithm performed 

the best as compared to the other algorithms at lower b oE N  as shown in Figures 22 and 

23. The bit error rates also tapered off at a higher level for larger b oE N . The parameters 

used for the simulations in Figures 22 and 23 were a symbol rate of 1,000,000 symbols 

per second (1 Msps), a Doppler shift of 50 Hertz, and a pilot symbol interval of 50 

symbols.  
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Figure 22.   BER of 512-QAM with D-DF and DD-DF Algorithms with and without 

MMSE Filter. 
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Figure 23.   BER of 1024-QAM with D-DF and DD-DF Algorithms with and 

without MMSE Filter. 

4. Comparison of the Minimum Mean Square Error Implementation on 
Differential Decision-Feedback and Double-Differential Decision-
Feedback Algorithms 

Comparing the performances of differential decision-feedback and double-

differential decision-feedback with and without minimum mean square error, we 

conclude that the minimum mean square error algorithm is effective for all modulations 

at lower b oE N . However, the effectiveness degrades with increasing b oE N . The 

effectiveness of the minimum mean square error algorithm for different b oE N and 

modulation schemes with differential decision-feedback is shown in Table 2. The 

effectiveness of the minimum mean square error algorithm for the double-differential 

decision-feedback algorithm is shown in Table 3. The most effective algorithms for the 

different modulation schemes are shown in Table 4. 
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Table 2.   Tabulation of MMSE Effectiveness on D-DF (Y= Effective; N= Not Effective). 

SNR (dB) 10 15 20 25 30 35 40 45 50 55 60 

QPSK Y Y Y Y Y Y Y Y Y N N 

16-QAM Y Y Y Y Y Y N N N N N 

64-QAM Y Y Y Y Y Y N N N N N 

256-QAM Y Y Y Y Y Y N N N N N 

512-QAM Y Y Y Y Y Y Y Y N N N 

1024-QAM Y Y Y Y Y Y Y Y N N N 

 
 
 

Table 3.   Tabulation of MMSE Effectiveness on DD-DF (Y= Effective; N= Not Effective). 

SNR (dB) 10 15 20 25 30 35 40 45 50 55 60 

QPSK Y Y Y Y Y N N N N N N 

16-QAM Y Y Y Y Y Y Y Y N N N 

64-QAM Y Y Y Y Y Y Y Y N N N 

256-QAM Y Y Y Y Y Y Y Y Y Y Y 

512-QAM Y Y Y Y Y Y Y Y Y Y Y 

1024-QAM Y Y Y Y Y Y Y Y Y Y Y 
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Table 4.   Tabulation of Most Effective Algorithms for Different Modulations. 

Modulation Most Effective Algorithm 
(Low SNR) 

Most Effective Algorithm 
(High SNR) 

QPSK D-DF with MMSE D-DF 

16-QAM D-DF with MMSE D-DF 

64-QAM D-DF with MMSE D-DF 

256-QAM DD-DF with MMSE D-DF 

512-QAM DD-DF with MMSE D-DF 

1024-QAM DD-DF with MMSE D-DF 

 

C. SIMULATION RESULTS FOR CASES WITH HIGH DOPPLER 
FREQUENCY SHIFTS 

1. Simulation Overview 

Using the same simulation code and packages as in the previous section, we 

repeated the simulations for QPSK and 64-QAM were repeated but with high Doppler 

shifts. This results in a channel that is rapidly changing and, depending on the channel 

estimation time used, the channel can be fast fading between two pilot symbols. Two 

different Doppler frequency shifts (100 Hz and 200 Hz) were tested to fully understand 

the performances of the algorithms. For both cases of Doppler frequency shifts, the 

symbol rate was reduced to 10,000 symbols per second (10 ksps). This results in a longer 

time period between two pilot symbols, causing it to be closer to the coherence time. This 

causes the channel to approach a fast fading channel. The coherence times for Doppler 

shift of 100 Hz and 200 Hz are 12.5 and 25 symbols, respectively. Therefore, for both 

cases of Doppler frequency shifts, the pilot symbol intervals of 6, 12, 25 and 50 symbols 

were used to test the algorithms.  
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Due to the high bit error rates, the number of trials and the sample size per trial 

were reduced to 2,000 trials and 1,000 symbols per trial. This resulted in a total of 

2,000,000 symbols, which provided sufficiently accurate bit error rates. The bit error 

rates presented had very slight differences, and to clearly distinguish the performance 

differences, the bit error rate plots were magnified in the y-axis to distinguish the 

performances of different algorithms. 

Since the correlation between the channel taps of two symbols in a fast fading 

channel is low and MMSE is computed based on correlation of past samples, MMSE is 

expected to provide poor performance and create more errors than correct them. 

Therefore, the only means to combat fast fading channels is to reduce throughput and 

transmit pilot symbols more frequently or to use dedicated pilot channels in the case of 

orthogonal frequency division multiplexing (OFDM). 

2. QPSK with High Doppler Frequency Shifts of 100 Hz 

For QPSK, the performance of the double-differential decision-feedback 

algorithm is better than that of the differential decision-feedback algorithm, as shown in 

Figures 24 to 27. At a pilot symbol interval of six, the bit error rate performances for all 

the algorithms are similar. For Doppler frequency shifts of 100 Hz, the minimum mean 

square error algorithm is not effective for all pilot symbol intervals of 12 and above. In 

such extreme cases where the fading channel is much faster than the channel estimation 

rate, the minimum mean square filtering seemed to create more errors than correction. In 

addition, as the pilot symbol interval increased, the minimum mean square error 

implementation resulted in poorer performance, as shown in Figure 26. Also, at a pilot 

symbol interval of six as shown in Figure 24, the bit error rate performance is much 

better. This is expected since throughput is sacrificed for better bit error rate 

performance. 
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Figure 24.   BER of QPSK with 100 Hz Doppler Shift and Pilot Symbol Interval of 
six. 
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Figure 25.   BER of QPSK with 100 Hz Doppler Shift and Pilot Symbol Interval of 

12. 
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Figure 26.   BER of QPSK with 100 Hz Doppler Shift and Pilot Symbol Interval of 

25. 
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Figure 27.   BER of QPSK with 100 Hz Doppler Shift and Pilot Symbol Interval of 

50. 
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3. QPSK with High Doppler Frequency Shifts of 200 Hz 

Similar to the previous scenario, the performance of the double-differential 

decision-feedback algorithm is better than that of the differential decision-feedback 

algorithm, and the minimum mean square error algorithm is not effective especially for 

pilot symbol intervals above six symbols, as can be seen in Figures 28 to 31. However, 

generally, the difference between the bit error rate performance of the double-differential 

decision-feedback algorithm and the differential decision-feedback algorithm is higher 

for lower Doppler frequency shifts. The maximum improvement of the double-

differential decision-feedback algorithm for a Doppler shift of 100 Hz is approximately 

10% better than that of the differential decision-feedback algorithm. At 200 Hz, the 

maximum is only 5%. 
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Figure 28.   BER of QPSK with 200 Hz Doppler Shift and Pilot Symbol Interval of 

six. 
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Figure 29.   BER of QPSK with 200 Hz Doppler Shift and Pilot Symbol Interval of 

12. 
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Figure 30.   BER of QPSK with 200 Hz Doppler Shift and Pilot Symbol Interval of 

25. 
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Figure 31.   BER of QPSK with 200 Hz Doppler Shift and Pilot Symbol Interval of 

50. 

4. 64-QAM with High Doppler Frequency Shifts of 100 Hz 

As for 64-QAM, the bit error rate performances of the double-differential 

decision-feedback algorithm are most effective at higher b oE N . At lower b oE N , the 

differential decision-feedback algorithm performed slightly better than the double-

differential decision-feedback algorithm. The minimum mean square error algorithm for 

both differential decision-feedback and double-differential decision-feedback algorithms 

was not effective in improving the bit error rate, similar to the QPSK case with long pilot 

symbol intervals. However, for 64-QAM, the double-differential decision-feedback with 

minimum mean square error algorithm performed better than differential decision-

feedback with the minimum mean square error algorithm. This is consistent with the 

findings when lower Doppler shifts were used. Double-differential decision-feedback 

with the minimum mean square error algorithm generally performed better at higher 

order modulation schemes. The bit error rate performances for 64-QAM for the four 

different pilot symbol intervals are shown in Figures 32 to 35.  
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Figure 32.   BER of 64-QAM with 100 Hz Doppler Shift and Pilot Symbol Interval 

of 12. 
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Figure 33.   BER of 64-QAM with 100 Hz Doppler Shift and Pilot Symbol Interval 

of 12. 
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Figure 34.   BER of 64-QAM with 100 Hz Doppler Shift and Pilot Symbol Interval 

of 25. 
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Figure 35.   BER of 64-QAM with 100 Hz Doppler Shift and Pilot Symbol Interval 

of 50. 



 
 
 

 

 42

5. 64-QAM with High Doppler Frequency Shifts of 200 Hz 

The conclusion for 64-QAM at a Doppler shift of 200 Hz is similar to that with 

the Doppler shift of 100 Hz. However, the difference between the two differential 

decision-feedback algorithms at lower b oE N decreases with an increasing pilot symbol 

interval. In the case where the pilot symbol interval is 50, the bit error rate performance 

difference is almost negligible. The bit error rate performances for 64-QAM with a 

Doppler shift of 200 Hz for the four different pilot symbol intervals are shown in Figures 

36 to 39.  
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Figure 36.   BER of 64-QAM with 200 Hz Doppler Shift and Pilot Symbol Interval 

of six. 
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Figure 37.   BER of 64-QAM with 200 Hz Doppler Shift and Pilot Symbol Interval 

of 12. 
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Figure 38.   BER of 64-QAM with 200 Hz Doppler Shift and Pilot Symbol Interval 

of 25. 
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Figure 39.   BER of 64-QAM with 200 Hz Doppler Shift and Pilot Symbol Interval 

of 50. 

 

D. ADAPTIVE TOLERANCES TO DETECT SURGES IN CHANNEL 
ESTIMATION 

1. Effectiveness of Adaptive Tolerances for Low Doppler Frequency 
Shifts 

As mentioned previously, as b oE N increases, the channel estimate becomes less 

noisy, resulting in lesser variance. Therefore, to prevent the minimum mean square error 

from over-estimating and compensating for the phase error, the tolerances can be reduced 

accordingly. One of the means to adaptively adjust the tolerances is to make use of the 

variance of the channel tap phase errors within the frame. The use of this methodology 

dramatically reduces the bit error rates for higher b oE N , as seen in Figure 40. It also 

reduces the bit error rates slightly for the lower b oE N  levels. The tighter the tolerances, 

the better the performance. A tolerance factor is simply the factor that is multiplied by the 
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variances. In other words, if the variance of the channel tap estimate is hσ , then the 

tolerance used would be hkσ , where k  is the adaptive tolerance factor. As seen in Figure 

40, there is marginal benefit in reducing the adaptive tolerance factor below 0.1. 
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Figure 40.   64-QAM with D-DF with MMSE Filter with Various Adaptive 
Tolerance Factors. 

With the double-differential decision-feedback with a minimum mean square 

error filter, the implementation of adaptive tolerance worked well at lower b oE N  levels 

but was not effective at higher b oE N  levels as shown in Figure 41. 



 
 
 

 

 46

10 15 20 25 30 35 40 45 50 55 60
10-6

10
-5

10
-4

10-3

10-2

10
-1

10
0

Eb/No(dB)

P
b

Rs=1Msps, Doppler freq=50Hz and Pilot Symbol Interval=50

 

 

Ideal 64QAM with Fading
64QAM with DD-DF
64QAM with DD-DF (with MMSE)
64QAM with DD-DF (with MMSE and k factor=0.1)

 
Figure 41.   64-QAM with DD-DF with MMSE Filter with Adaptive Tolerance 

Factor of 0.1. 

Extending the adaptive tolerance to 256-QAM, we find that the performance of 

the MMSE with adaptive tolerance is better than the algorithm with just differential 

decision-feedback, as shown in Figure 42. On the other hand, similar to the case for 64-

QAM, the implementation of adaptive tolerance onto the double-differential decision-

feedback algorithm is not ideal. The bit error rate performance is similar to the case with 

differential decision-feedback at low b oE N  but is much worse at high b oE N  as shown 

in Figure 43. In fact, it is worse than the performance of double-differential decision-

feedback with the minimum mean square error algorithm. 

Therefore, in summary, the adaptive tolerance approach is only effective for the 

differential decision-feedback with minimum mean square error algorithm. When it is 

applied to the double-differential decision-feedback with minimum mean square error 

algorithm, the bit error rate is worse than having a fixed tolerance of 0.1. It was also  

 

 



 
 
 

 

 47

observed that with tighter tolerance factors such as 0.01, the bit error rate decreases, as 

shown in Figure 44, and does not show major improvement as compared to tolerance 

factor of 0.1.  
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Figure 42.   256-QAM with D-DF with MMSE Filter with Adaptive Tolerance 

Factor of 0.1. 
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Figure 43.   256-QAM with DD-DF with MMSE Filter with Adaptive Tolerance 

Factor of 0.1. 
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Figure 44.   256-QAM with DD-DF with MMSE Filter with Adaptive Tolerance 

Factor of 0.01. 

With 512-QAM and 1024-QAM, the adaptive tolerance is also very effective in 

reducing the bit error rate performance throughout the entire range of b oE N , except for 

the higher b oE N on 1024-QAM modulation.  The effectiveness of adaptive tolerance 

decreases at higher b oE N for higher modulations, as can be seen in Figures 45 and 46. 
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Ideal 512QAM with Fading
512QAM with D-DF
512QAM with D-DF (with MMSE)
512QAM with D-DF (with MMSE and k Factor=0.1)

 
Figure 45.   512-QAM with D-DF with MMSE Filter with Adaptive Tolerance 

Factor of 0.1. 
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Ideal 1024QAM with Fading
1024QAM with D-DF
1024QAM with D-DF (with MMSE)
1024QAM with D-DF (with MMSE and k Factor=0.1)

 
Figure 46.   1024-QAM with D-DF with MMSE Filter with Adaptive Tolerance 

Factor of 0.1. 
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2. Comparison of the Minimum Mean Square Error Implementation on 
Differential Decision-Feedback and Double-Differential Decision-
Feedback Algorithm With Adaptive Tolerances 

To understand the effectiveness of adaptive tolerance on the various algorithms, 

the effectiveness of adaptive tolerances on the differential decision-feedback and double-

differential decision-feedback algorithms with minimum mean square error are shown in 

Tables 5 to 7. When the use of adaptive tolerance improved the bit error rate 

performance, it is labeled as 'Y*', meaning it is effective with improvement. If it caused 

the performance to decrease, it is labeled as 'N*', meaning that is not effective and caused 

performance degradation. The use of adaptive tolerance improved the minimum mean 

square error algorithm for the differential decision-feedback algorithm with minimum 

mean square error but reduced the performance of the double-differential decision-

feedback with minimum mean square error algorithm. The update of the most effective 

algorithm for the 64-QAM to 1024-QAM is shown in Table 7. The use of adaptive 

tolerance improved the overall performance of the differential decision-feedback with 

minimum mean square error algorithm, especially for 256-QAM and 512-QAM, making 

it the most effective algorithm for all SNR. 

 

Table 5.   Tabulation of Adaptive Tolerance Effectiveness on D-DF with MMSE 
(Y= Effective; Y*=Effective with Improvement; N= Not Effective). 

SNR (dB) 10 15 20 25 30 35 40 45 50 55 60 

64-QAM D-DF Y Y Y Y Y Y Y* N N N N 

256-QAM D-DF Y Y Y Y Y Y Y Y Y* Y* Y* 

512-QAM D-DF Y Y Y Y Y Y Y Y Y* Y* Y* 

1024-QAM D-DF Y Y Y Y Y Y Y Y Y* N N 
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Table 6.   Tabulation of Adaptive Tolerance Effectiveness on DD-DF with MMSE 
(Y= Effective; N= Not Effective; N*=Not Effective with Degradation ). 

SNR (dB) 10 15 20 25 30 35 40 45 50 55 60 

64-QAM Y Y Y Y Y Y Y N* N N N 

256-QAM Y Y Y Y Y N* N* N* N* N* N* 

 

Table 7.   Tabulation of Most Effective Algorithms for Different Modulations. 

Modulation Most Effective Algorithm 
(low SNR) 

Most Effective Algorithm 
(High SNR) 

64-QAM D-DF with MMSE/Adaptive Tol D-DF 

256-QAM D-DF with MMSE/Adaptive Tol D-DF with MMSE/Adaptive Tol

512-QAM D-DF with MMSE/Adaptive Tol D-DF with MMSE/Adaptive Tol

1024-QAM D-DF with MMSE/Adaptive Tol D-DF 

 

3. Effectiveness of Adaptive Tolerances for High Doppler Frequency 
Shifts 

As with the high Doppler frequency shifts of 100 Hz and 200 Hz, the performance 

of 64-QAM with a symbol rate of 100 ksps was obtained. The pilot symbol intervals used 

were 12, 25 and 50 symbols. 

For a Doppler frequency shift of 100 Hz,   as can be seen from Figures 47 to 50, 

although the adaptive tolerance did improve the bit error rate performance of the 

differential decision-feedback with minimum mean square error algorithm, the 

improvement was not sufficient to compensate for the degradation caused by the 

Minimum Mean Square algorithm. In all cases of different pilot symbol intervals, the use 

of adaptive tolerance helped improve the bit error rate performances of both the 

differential decision-feedback with minimum mean square error and double-differential 

decision-feedback with minimum mean square error algorithms.  
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Figure 47.   64-QAM with 100 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

6 and Adaptive Tolerance Factor of 0.1. 
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Figure 48.   64-QAM with 100 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

12 and Adaptive Tolerance Factor of 0.1. 
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Figure 49.   64-QAM with 100 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

25 and Adaptive Tolerance Factor of 0.1. 
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Figure 50.   64-QAM with 100 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

50 and Adaptive Tolerance Factor of 0.1. 
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As for the case with 200 Hz Doppler frequency shift, the adaptive tolerance was 

only able to improve the differential decision-feedback with minimum mean square error 

algorithm. The use of adaptive tolerance on the double-differential decision-feedback 

with minimum mean square error algorithm degraded the bit error rate performances for 

all different values of pilot symbol interval. At this high Doppler frequency shift, the 

channel is fast fading and rapidly changing with respect to the pilot symbol interval; 

hence, the use of adaptive tolerance may be too restrictive, rejecting several legitimate 

changes to the channel estimate. The bit error rate performances of 64-QAM with pilot 

symbol intervals of 6, 12, 25 and 50 symbols for all four different algorithms, differential 

decision-feedback and double-differential decision-feedback, with and without minimum 

mean square error, are shown in Figures 51 to 54. 
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Figure 51.   64-QAM with 200 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

6 and Adaptive Tolerance Factor of 0.1. 
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Figure 52.   64-QAM with 200 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

12 and Tolerance Factor of 0.1. 
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Figure 53.   64-QAM with 200 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

25 and Tolerance Factor of 0.1. 
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Figure 54.   64-QAM with 200 Hz Doppler Frequency Shift, Pilot Symbol Interval of 

50 and Tolerance Factor of 0.1. 
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IV. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSION 

The previous chapters show that the differential decision-feedback and double-

differential decision-feedback algorithms are already very effective in estimating the 

channel tap phase errors for each symbol. With the inclusion of minimum mean square 

error filtering, the new algorithm does improve the bit error rate performances, especially 

at lower b oE N . Although the performance is greatly improved at lower b oE N , the 

minimum mean square error algorithm tends to introduce some errors at the higher 

b oE N , causing the bit error rate performances to taper off at a fixed value. At higher 

b oE N  levels, the basic differential decision-feedback algorithm is the most effective. 

The implementation of minimum mean square error estimation also dramatically 

improved the bit error rate performances when used with the double-differential decision-

feedback algorithm. This combination of the double-differential decision-feedback 

algorithm with minimum mean square error estimation provided the best performance at 

low b oE N  for higher order modulations, such as 256-QAM and above. Otherwise, for 

lower order modulations, the differential decision-feedback with minimum mean square 

error algorithm provides the best performance.  

For cases with high Doppler frequency shifts, the most effective algorithm is 

double-differential decision-feedback. The use of minimum mean square error degraded 

the performance and resulted in higher bit error rates than the simpler differential 

decision-feedback and double-differential decision-feedback algorithms. This was 

expected since the correlation between channel taps is low and using past channel tap 

estimates to determine the current channel tap estimate tends to introduce errors. 

The use of adaptive tolerances, based on the channel estimate's variance, proved 

to be effective in improving the bit error rate performances for the differential decision-

feedback with minimum mean square error algorithm. When used in conjunction with the 
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differential decision-feedback with minimum mean square error algorithm, it is generally 

the most effective for all modulation schemes. The use of adaptive tolerances is, 

however, not useful for the double-differential decision-feedback with minimum mean 

square error algorithm as it tends to introduce many errors at high b oE N  levels. It is 

also worse than the performance of adaptive tolerance used with the differential decision-

feedback with minimum mean square error algorithm. 

B. RECOMMENDATIONS 

Studies on different error correction coding schemes implemented with the 

algorithms introduced in this thesis could provide insight on the performance of such 

algorithms in practical systems. 

Another area of studies is to extend these algorithms to multiple-input multiple-

output (MIMO) communication systems. 
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APPENDIX A - MINIMUM MEAN SQUARE ERROR 

A. GENERAL DERIVATION [5] 

Given the observation ( ) ( )1 , ... , x x n , the original signal, s x ε= + , where ε  is the 

error between the original signal and the observation, could be estimated by  s  with the 

linear estimator of the form ( )0
1

n

i
i

s h h x i
=

= +∑  such that ( ){ }2
s sΕ −  is minimized by the 

choice of the ih  for 1,...,i n= . 

Differentiating ( ){ }s sΕ −  with respect to each jh  for 1,...,j n= , results in 

( )

( ) ( )

0
1

*

0
1

0

0, 1,...,

n

i
i

n

i
i

s h h x i

x j s h h x i j n

=

=

⎧ ⎫⎛ ⎞Ε − − =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪Ε − − = =⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

∑

∑
    (A.1) 

These two conditions are called the orthogonality conditions. Simplifying both 

equations, we obtain the following: 

( )0
1

n

s i x i
i

h hμ μ
=

= −∑         (A.2) 

( ) ( )
*

1

, , 1, 2,...,
n

i x sx j
i

h C i j j nσ
=

= =∑       (A.3) 

where  

( ) ( ) ( ) ( ) ( ){ }
( ) [ ] ( ) ( ){ }

,x x i x j

ssx j x j

C i j x i x j

s x j

μ μ

σ μ μ

⎡ ⎤ ⎡ ⎤= Ε − −⎣ ⎦ ⎣ ⎦

⎡ ⎤= Ε − −⎣ ⎦
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B. APPLICATION TO CHANNEL TAP ESTIMATION 

Since the desired estimator, 
^
h , is given by the relationship 

^ ~
h h ε= + , where 

~
h  is 

the observation, the following is obtained by replacing ( ),xC i j  with ^
h

R  and  ( )
*

sx jσ with 

~^
hh

r  in Equation (A.3). Letting 
1

n

opt i
i

h
=

= ∑h , the new channel tap estimate, esth  could be 

obtained through the following Equations (A.4) and (A.5) 

^ ~^

*

hh
opt

h
R =h r          (A.4) 

~ ^0 opt
h h

h μ μ= −h         (A.5) 

~ ^

^ ^

0
1

n

est i opt opt
h hi

h h μ μ
=

= + = + −∑h h h h h       (A.6) 

Combining the equations as shown above, the final minimum mean square 

estimator for the channel tap is ~ ^

^

est opt opt
h h

μ μ= + −h h h h  (as shown in Equation (7) in 

Chapter III). 
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APPENDIX B - MATLAB SOURCE CODES 

A. DIFFERENTIAL DECISION-FEEDBACK AND DOUBLE-
DIFFERENTIAL DECISION-FEEDBACK  

1. Differential Decision-Feedback 

function r = D_DF_demod(m, hmod, hdemod, pilotSymbol, pilotInterval) 
% edited from Jeff Smith 
% NPS  
% Demodulates using D-DF algorithm 
 
Tol = .1; 
r = zeros(1,length(m));     % represents the demodulated received message 
zpilot = modulate(hmod,pilotSymbol);  
for n = 1:length(m) 
    if rem(n,pilotInterval) == 1    % identify the pilot symbols 
        r(n) = pilotSymbol;         % let received symbol be pilot symbol 
        h = m(n) / zpilot;          % determine channel tap 
        e = angle(h);            % calculate channel tap phase error 
        e1 = 0; 
        a = abs(h);                 % calculate channel tap magnitude 
        f(n) = h; 
    else 
        r(n) = demodulate(hdemod,m(n)/a*conj(h)/abs(h)*exp(-1i*e1)); 
        z = modulate(hmod,r(n));                            % calculate new channel tap 
        h1 = m(n) / z;                                       
        eh = -e+angle(h1); 
        if or(abs(eh-e1)< Tol, and(and(abs(eh)>(pi-Tol),abs(e1)>(pi-Tol)),or(abs(eh-e1-

2*pi)< Tol,abs(eh-e1+2*pi)< Tol)))  
            e1 = eh; 
        end 
     end 
end 
end 
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2. Double-Differential Decision-Feedback 

function r = DD_DF_demod(m, hmod, hdemod, pilotSymbol, pilotInterval) 
% adapted from Jeff Smith 
% NPS  
% Demodulates using DD-DF algorithm 
 
Tol = .1; 
r = zeros(1,length(m));     % represents the demodulated received message 
zpilot = modulate(hmod,pilotSymbol);     
for n = 1:length(m) 
    if rem(n,pilotInterval) == 1    % identify the pilot symbols 
        r(n) = pilotSymbol;         % let received symbol be pilot symbol 
        h = m(n) / zpilot;          % determine channel tap 
        e = angle(h);            % calculate channel tap phase error 
        e1 = 0; 
        e2 = 0; 
        a = abs(h);                 % calculate channel tap magnitude 
    else 
        r(n) = demodulate(hdemod,m(n)/a*conj(h)/abs(h)*exp(-1i*(2*e1-e2)));     
        z = modulate(hmod,r(n));                            % calculate new channel tap 
        h1 = m(n) / z;                                       
        eh = -e+angle(m(n)/z); 
        if or(((abs(eh-e1))< Tol),and(and(abs(e1+e)>(pi-Tol),abs(eh+e)>(pi-Tol)),or(abs(eh-

e1-2*pi)< Tol,abs(eh-e1+2*pi)< Tol))) 
            e2 = e1; 
            e1 = eh; 
        end 
    end   
end 
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B. DIFFERENTIAL DECISION-FEEDBACK AND DOUBLE-
DIFFERENTIAL DECISION-FEEDBACK WITH MINIMUM MEAN 
SQUARE ERROR  

1. Differential Decision-Feedback With MMSE 

function r = D_DF_demod_MMSE_AT(m, hmod, hdemod, pilotSymbol, pilotInterval, 
Rs) 

% Written by Gabriel Tham 
% Used parts of the code from Jeff Smith 
% NPS  
% Demodulates using D-DF algorithm with MMSE 
 
Tol = .1; 
r = zeros(1,length(m));     % represents the demodulated received message 
f = zeros(1,length(m));     % records all phase errors 
min_filter_length = 3; 
zpilot = modulate(hmod,pilotSymbol);    
PS_Num = 0; 
for n = 1:length(m) 
    if and(PS_Num >=1, rem(n,pilotInterval) == 1) 
        Tol2 = Tol; 
        hopt2 = MMSE(f(n-pilotInterval:n-1), min_filter_length-1, Rs); 
        h_upd=(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval:n-

pilotInterval+1)) + hopt2(1)*f(n-pilotInterval+1) + hopt2(2)*f(n-pilotInterval); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+1)/a*conj(h_upd)/abs(h_upd)); 
        f(n-pilotInterval+1) = h_upd; 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+1)/z_temp;   
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+1) = r_temp; 
            f(n-pilotInterval+1) = h_upd; 
            f(n-pilotInterval+2) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval:n-1), min_filter_length, Rs); 
        for i = min_filter_length:pilotInterval 
            h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i-1)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i-1)/z_temp;     
            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i-1) = r_temp; 
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                f(n-pilotInterval+i-1) = h_upd; 
                f(n-pilotInterval+i) = h_temp;      % update the next symbol channel with the 

latest estimate (may take out later) 
            else if n-pilotInterval+i-1 == 3 
                h_upd =(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-2)) + hopt2(1)*f(n-pilotInterval+i-2) + hopt2(2)*f(n-
pilotInterval+i-3); 

                r_temp = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i-1)/z_temp;  
                r(n-pilotInterval+i-1) = r_temp; 
                f(n-pilotInterval+i) = h_temp; 
                f(n-pilotInterval+i-1) = h_upd; 
                else 
                    h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-4:n-pilotInterval+i-2)) + hopt(1)*f(n-pilotInterval+i-2) + hopt(2)*f(n-
pilotInterval+i-3) + hopt(3)*f(n-pilotInterval+i-4); 

                    r_temp = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                    z_temp = modulate(hmod,r_temp); 
                    h_temp = m(n-pilotInterval+i-1)/z_temp;  
                    r(n-pilotInterval+i-1) = r_temp; 
                    f(n-pilotInterval+i) = h_temp; 
                    f(n-pilotInterval+i-1) = h_upd; 
                end 
            end 
        end 
    end    
    if rem(n,pilotInterval) == 1    % identify the pilot symbols 
        r(n) = pilotSymbol;         % let received symbol be pilot symbol 
        h = m(n) / zpilot;          % determine channel tap 
        e = angle(h);            % calculate channel tap phase error 
        e1 = 0; 
        a = abs(h);                 % calculate channel tap magnitude 
        pilot_channel = h; 
        f(n) = pilot_channel; 
        original_chan(n) = f(n); 
        PS_Num = PS_Num + 1; 
    else 
        r(n) = demodulate(hdemod,m(n)/a*conj(h)/abs(h)*exp(-1i*e1));  
        z = modulate(hmod,r(n));                            % calculate new channel tap 
        h1 = m(n) / z; 
        eh = -e+angle(h1); 
        if or(abs(eh-e1)< Tol, and(and(abs(eh)>(pi-Tol),abs(e1)>(pi-Tol)),or(abs(eh-e1-

2*pi)< Tol,abs(eh-e1+2*pi)< Tol)))  
            f(n) = h1; 
            e1 = eh; 
        else 
            f(n) = h1; 
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        end 
    end 
end 
if mod(n,pilotInterval)~= 0 
    pilotInterval = mod(n,pilotInterval); 
end 
        Tol2 = min(Tol_factor*var(f(n-pilotInterval:n-1)),Tol); 
        hopt2 = MMSE(f(n-pilotInterval+1:n), min_filter_length-1, Rs); 
        h_upd = f(n-pilotInterval+1)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+1:n-

pilotInterval+2)) + hopt2(1)*f(n-pilotInterval+2) + hopt2(2)*f(n-pilotInterval+1); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+2)/a*conj(h_upd)/abs(h_upd)); 
        f(n-pilotInterval+2) = h_upd; 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+2)/z_temp;                 
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+2) = r_temp; 
            f(n-pilotInterval+2) = h_upd; 
            f(n-pilotInterval+3) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval+1:n), min_filter_length, Rs); 
        for i = min_filter_length:pilotInterval 
            h_upd =f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-pilotInterval+i-

2:n-pilotInterval+i)) + hopt(1)*f(n-pilotInterval+i) + hopt(2)*f(n-pilotInterval+i-1) + hopt(3)*f(n-
pilotInterval+i-2); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i)/z_temp;                 
            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i) = h_upd; 
                f(n-pilotInterval+i+1) = h_temp; 
            else if n-pilotInterval+i == 3 
                h_upd = f(n-pilotInterval)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+i-2:n-

pilotInterval+i-1)) + hopt2(1)*f(n-pilotInterval+i-1) + hopt2(2)*f(n-pilotInterval+i-2); 
                r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i)/z_temp;  
                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i+1) = h_temp; 
                f(n-pilotInterval+i) = h_upd; 
                else 
                    h_upd = f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 

                    r_temp = demodulate(hdemod,m(n-
pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
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                    z_temp = modulate(hmod,r_temp); 
                    h_temp = m(n-pilotInterval+i)/z_temp;  
                    r(n-pilotInterval+i) = r_temp; 
                    f(n-pilotInterval+i+1) = h_temp; 
                    f(n-pilotInterval+i) = h_upd; 
                end 
            end 
        end 
end 
 

2. Double-Differential Decision-Feedback With MMSE 

function r = DD_DF_demod_MMSE(m, hmod, hdemod, pilotSymbol, pilotInterval, Rs) 
% Written by Gabriel Tham 
% Used parts of the code from Jeff Smith 
% NPS  
% Demodulates using DD-DF algorithm with MMSE 
 
Tol = .1; 
r = zeros(1,length(m));     % represents the demodulated received message 
f = zeros(3,length(m));     % records all phase errors 
min_filter_length = 3; 
zpilot = modulate(hmod,pilotSymbol);    
PS_Num = 0; 
for n = 1:length(m) 
    if and(PS_Num >=1, rem(n,pilotInterval) == 1) 
        Tol2 = Tol;  
        hopt2 = MMSE(f(n-pilotInterval:n-1), min_filter_length-1, Rs); 
        h_upd =(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval:n-

pilotInterval+1)) + hopt2(1)*f(n-pilotInterval+1) + hopt2(2)*f(n-pilotInterval); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+1)/a*conj(h_upd)/abs(h_upd)); 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+1)/z_temp;                 
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+1) = r_temp; 
            f(n-pilotInterval+1) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval:n-1), min_filter_length, Rs); 
        for i = min_filter_length:pilotInterval 
            h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i-1)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i-1)/z_temp;                 
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            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-
Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i-1) = r_temp; 
                f(n-pilotInterval+i) = h_temp;      % update the next symbol channel with the 

latest estimate (may take out later) 
            else if n-pilotInterval+i-1 == 3 
                h_upd =(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-2)) + hopt2(1)*f(n-pilotInterval+i-2) + hopt2(2)*f(n-
pilotInterval+i-3); 

                r_temp = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i-1)/z_temp;  
                r(n-pilotInterval+i-1) = r_temp; 
                f(n-pilotInterval+i) = h_temp; 
                f(n-pilotInterval+i-1) = h_upd; 
                else 
                    h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-4:n-pilotInterval+i-2)) + hopt(1)*f(n-pilotInterval+i-2) + hopt(2)*f(n-
pilotInterval+i-3) + hopt(3)*f(n-pilotInterval+i-4); 

                    r(n-pilotInterval+i-1) = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                    z_temp = modulate(hmod,r(n-pilotInterval+i-1)); 
                    h_temp = m(n-pilotInterval+i-1)/z_temp;  
                    f(n-pilotInterval+i) = h_temp; 
                    f(n-pilotInterval+i-1) = h_upd; 
                end 
            end 
        end 
    end    
    if rem(n,pilotInterval) == 1    % identify the pilot symbols 
        r(n) = pilotSymbol;         % let received symbol be pilot symbol 
        h = m(n) / zpilot;          % determine channel tap 
        e = angle(h);            % calculate channel tap phase error 
        e1 = 0; 
        e2 = 0; 
        a = abs(h);                 % calculate channel tap magnitude 
        f(n) = h; 
        PS_Num = PS_Num + 1; 
    else 
        r(n) = demodulate(hdemod,m(n)/a*conj(h)/abs(h)*exp(-1i*(2*e1-e2)));    % 

demodulate with channel tap info and removed a 
        z = modulate(hmod,r(n));                            % calculate new channel tap 
        h1 = m(n) / z;                                       
        eh = -e+angle(m(n)/z); 
        if or(((abs(eh-e1))< Tol),and(and(abs(e1+e)>(pi-Tol),abs(eh+e)>(pi-Tol)),or(abs(eh-

e1-2*pi)< Tol,abs(eh-e1+2*pi)< Tol))) 
            f(n) = h1; 
            e2 = e1; 
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            e1 = eh; 
            h=h1; 
        else 
            f(n) = f(n-1); 
         end 
    end   
end 
if mod(n,pilotInterval)~= 0 
    pilotInterval = mod(n,pilotInterval); 
end 
        Tol2 = Tol; %min(10*var(f(n-pilotInterval:n-1)),Tol); 
        hopt2 = MMSE(f(n-pilotInterval+1:n), min_filter_length-1, Rs); 
        h_upd = f(n-pilotInterval+1)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+1:n-

pilotInterval+2)) + hopt2(1)*f(n-pilotInterval+2) + hopt2(2)*f(n-pilotInterval+1); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+2)/a*conj(h_upd)/abs(h_upd)); 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+2)/z_temp;                 
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+2) = r_temp; 
            f(n-pilotInterval+2) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval+1:n), min_filter_length, Rs); 
        for i = min_filter_length:pilotInterval 
            h_upd =f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-pilotInterval+i-

2:n-pilotInterval+i)) + hopt(1)*f(n-pilotInterval+i) + hopt(2)*f(n-pilotInterval+i-1) + hopt(3)*f(n-
pilotInterval+i-2); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i)/z_temp;                 
            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i) = h_upd; 
                f(n-pilotInterval+i+1) = h_temp; 
            else if n-pilotInterval+i == 3 
                h_upd = f(n-pilotInterval)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+i-2:n-

pilotInterval+i-1)) + hopt2(1)*f(n-pilotInterval+i-1) + hopt2(2)*f(n-pilotInterval+i-2); 
                r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i)/z_temp;  
                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i+1) = h_temp; 
                f(n-pilotInterval+i) = h_upd; 
                else 
                    h_upd = f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 
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                    r(n-pilotInterval+i) = demodulate(hdemod,m(n-
pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 

                    z_temp = modulate(hmod,r(n-pilotInterval+i)); 
                    h_temp = m(n-pilotInterval+i)/z_temp;  
                    f(n-pilotInterval+i+1) = h_temp; 
                    f(n-pilotInterval+i) = h_upd; 
                end 
            end 
        end 

 end 
 

3. Minimum Mean Square Error Filter 

function [output] = MMSE(channel_est, order, Rs) 
% Written by Gabriel Tham 
% NPS 
% provides the MMSE estimate of the channel tap based on past channel tap 
% estimates from channel estimation 
 
    filter_size = 1; 
    hopt = zeros(1, order); 
    output = zeros(1, length(channel_est)); 
    channel_est = transpose(channel_est); 
    channel_est_zeromean = channel_est - mean(channel_est); 
    Cov = xcorr(channel_est_zeromean, 'biased'); 
    Cov_s = Cov((length(Cov)+1)/2:((length(Cov)+1)/2)+order-1); 
    Cov_ch_est = toeplitz(Cov_s(1:order)); 
    for k = 2:1:order 
        Cov_ch_est(k,1) = (Cov((length(Cov)+1)/2-order+1)); 
    end 
    for i = 1:1:order-1 
        filter_size = [filter_size besselj(0,2*pi*50*i/Rs)]; 
    end 
    mean_chan = mean(channel_est); 
    error = channel_est-channel_est(1); 
    mean_err = mean(error); 
    Cov2 = mean(abs(channel_est(1)).^2)*conj(filter_size)-((mean_chan-

mean_err)*mean_err); 
    Cov2_est = Cov2(1:order); 
    if Cov_ch_est == zeros(order, order) 
        hopt(1) = 1; 
        output = hopt; 
    else 
        hopt = inv(Cov_ch_est)*transpose(Cov2_est); 
        output = hopt./(norm(hopt)); 
    end 
end 
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C. DIFFERENTIAL DECISION-FEEDBACK AND DOUBLE-
DIFFERENTIAL DECISION-FEEDBACK WITH MINIMUM MEAN 
SQUARE ERROR AND ADAPTIVE TOLERANCE 

1. Differential Decision-Feedback With MMSE and Adaptive Tolerance 

% Written by Gabriel Tham 
% NPS  
% Demodulates using D-DF algorithm with MMSE and adaptive tolerance used 
 
function r = D_DF_demod_MMSE_AT(m, hmod, hdemod, pilotSymbol, pilotInterval, 

Rs, Tol_factor) 
% NPS  
% Demodulates using D-DF algorithm with MMSE and Adpative Tolerance 
 
Tol = .1; 
r = zeros(1,length(m));     % represents the demodulated received message 
f = zeros(1,length(m));     % records all phase errors 
min_filter_length = 3; 
zpilot = modulate(hmod,pilotSymbol); 
PS_Num = 0; 
for n = 1:length(m) 
    if and(PS_Num >=1, rem(n,pilotInterval) == 1) 
        Tol2 = min(Tol_factor*var(f(n-pilotInterval:n-1)),Tol); 
        hopt2 = MMSE(f(n-pilotInterval:n-1), min_filter_length-1, Rs); 
        h_upd =(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval:n-

pilotInterval+1)) + hopt2(1)*f(n-pilotInterval+1) + hopt2(2)*f(n-pilotInterval); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+1)/a*conj(h_upd)/abs(h_upd)); 
        f(n-pilotInterval+1) = h_upd; 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+1)/z_temp;   
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+1) = r_temp; 
            f(n-pilotInterval+1) = h_upd; 
            f(n-pilotInterval+2) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval:n-1), min_filter_length, Rs); 
        for i = min_filter_length:pilotInterval 
            h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i-1)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i-1)/z_temp;     
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            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-
Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i-1) = r_temp; 
                f(n-pilotInterval+i-1) = h_upd; 
                f(n-pilotInterval+i) = h_temp; 
            else if n-pilotInterval+i-1 == 3 
                h_upd =(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-2)) + hopt2(1)*f(n-pilotInterval+i-2) + hopt2(2)*f(n-
pilotInterval+i-3); 

                r_temp = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i-1)/z_temp;  
                r(n-pilotInterval+i-1) = r_temp; 
                f(n-pilotInterval+i) = h_temp; 
                f(n-pilotInterval+i-1) = h_upd; 
                else 
                    h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-4:n-pilotInterval+i-2)) + hopt(1)*f(n-pilotInterval+i-2) + hopt(2)*f(n-
pilotInterval+i-3) + hopt(3)*f(n-pilotInterval+i-4); 

                    r_temp = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                    z_temp = modulate(hmod,r_temp); 
                    h_temp = m(n-pilotInterval+i-1)/z_temp;  
                    r(n-pilotInterval+i-1) = r_temp; 
                    f(n-pilotInterval+i) = h_temp; 
                    f(n-pilotInterval+i-1) = h_upd; 
                end 
            end 
        end 
    end    
    if rem(n,pilotInterval) == 1    % identify the pilot symbols 
        r(n) = pilotSymbol;         % let received symbol be pilot symbol 
        h = m(n) / zpilot;          % determine channel tap 
        e = angle(h);            % calculate channel tap phase error 
        e1 = 0; 
        a = abs(h);                 % calculate channel tap magnitude 
        pilot_channel = h; 
        f(n) = pilot_channel; 
        original_chan(n) = f(n); 
        PS_Num = PS_Num + 1; 
    else 
        r(n) = demodulate(hdemod,m(n)/a*conj(h)/abs(h)*exp(-1i*e1));    % demodulate 

with channel tap info and removed a 
        z = modulate(hmod,r(n));                            % calculate new channel tap 
        h1 = m(n) / z; 
        eh = -e+angle(h1); 
        if or(abs(eh-e1)< Tol, and(and(abs(eh)>(pi-Tol),abs(e1)>(pi-Tol)),or(abs(eh-e1-

2*pi)< Tol,abs(eh-e1+2*pi)< Tol))) % updated with more accurate measure of Tol 
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            f(n) = h1; 
            e1 = eh; 
        else 
            f(n) = h1; 
        end 
    end 
end 
if mod(n,pilotInterval)~= 0 
    pilotInterval = mod(n,pilotInterval); 
end 
        Tol2 = min(Tol_factor*var(f(n-pilotInterval:n-1)),Tol); 
        hopt2 = MMSE(f(n-pilotInterval+1:n), min_filter_length-1, Rs); 
        h_upd = f(n-pilotInterval+1)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+1:n-

pilotInterval+2)) + hopt2(1)*f(n-pilotInterval+2) + hopt2(2)*f(n-pilotInterval+1); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+2)/a*conj(h_upd)/abs(h_upd)); 
        f(n-pilotInterval+2) = h_upd; 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+2)/z_temp;                 
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+2) = r_temp; 
            f(n-pilotInterval+2) = h_upd; 
            f(n-pilotInterval+3) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval+1:n), min_filter_length, Rs); 
        for i = min_filter_length:pilotInterval 
            h_upd =f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-pilotInterval+i-

2:n-pilotInterval+i)) + hopt(1)*f(n-pilotInterval+i) + hopt(2)*f(n-pilotInterval+i-1) + hopt(3)*f(n-
pilotInterval+i-2); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i)/z_temp;                 
            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i) = h_upd; 
                f(n-pilotInterval+i+1) = h_temp; 
            else if n-pilotInterval+i == 3 
                h_upd = f(n-pilotInterval)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+i-2:n-

pilotInterval+i-1)) + hopt2(1)*f(n-pilotInterval+i-1) + hopt2(2)*f(n-pilotInterval+i-2); 
                r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i)/z_temp;  
                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i+1) = h_temp; 
                f(n-pilotInterval+i) = h_upd; 
                else 
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                    h_upd = f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-
pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 

                    r_temp = demodulate(hdemod,m(n-
pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 

                    z_temp = modulate(hmod,r_temp); 
                    h_temp = m(n-pilotInterval+i)/z_temp;  
                    r(n-pilotInterval+i) = r_temp; 
                    f(n-pilotInterval+i+1) = h_temp; 
                    f(n-pilotInterval+i) = h_upd; 
                end 
            end 
        end 
end 
 

2. Double-Differential Decision-Feedback With MMSE and Adaptive 
Tolerance 

% Written by Gabriel Tham 
% NPS  
% Demodulates using DD-DF algorithm with MMSE and adaptive tolerance used 
 
function r = DD_DF_demod_MMSE_AT(m, hmod, hdemod, pilotSymbol, pilotInterval, 

Rs, Tol_factor) 
% NPS  
% Demodulates using DD-DF algorithm with MMSE 
 
Tol = .1; 
r = zeros(1,length(m));     % represents the demodulated received message 
f = zeros(3,length(m));     % records all phase errors 
min_filter_length = 3; 
zpilot = modulate(hmod,pilotSymbol);  
PS_Num = 0; 
for n = 1:length(m) 
    if and(PS_Num >=1, rem(n,pilotInterval) == 1) 
        Tol2 = min(Tol_factor*var(f(n-pilotInterval:n-1)),Tol); 
        hopt2 = MMSE(f(n-pilotInterval:n-1), min_filter_length-1, Rs); 
        h_upd =(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval:n-

pilotInterval+1)) + hopt2(1)*f(n-pilotInterval+1) + hopt2(2)*f(n-pilotInterval); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+1)/a*conj(h_upd)/abs(h_upd)); 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+1)/z_temp;                 
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+1) = r_temp; 
            f(n-pilotInterval+1) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval:n-1), min_filter_length, Rs); 
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        for i = min_filter_length:pilotInterval 
            h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i-1)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i-1)/z_temp;                 
            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i-1) = r_temp; 
                f(n-pilotInterval+i) = h_temp;   
            else if n-pilotInterval+i-1 == 3 
                h_upd =(f(n-pilotInterval)+f(n))/2-(hopt2(1)+hopt2(2))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-2)) + hopt2(1)*f(n-pilotInterval+i-2) + hopt2(2)*f(n-
pilotInterval+i-3); 

                r_temp = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i-1)/z_temp;  
                r(n-pilotInterval+i-1) = r_temp; 
                f(n-pilotInterval+i) = h_temp; 
                f(n-pilotInterval+i-1) = h_upd; 
                else 
                    h_upd =(f(n-pilotInterval)+f(n))/2-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-4:n-pilotInterval+i-2)) + hopt(1)*f(n-pilotInterval+i-2) + hopt(2)*f(n-
pilotInterval+i-3) + hopt(3)*f(n-pilotInterval+i-4); 

                    r(n-pilotInterval+i-1) = demodulate(hdemod,m(n-pilotInterval+i-
1)/a*conj(h_upd)/abs(h_upd)); 

                    z_temp = modulate(hmod,r(n-pilotInterval+i-1)); 
                    h_temp = m(n-pilotInterval+i-1)/z_temp;  
                    f(n-pilotInterval+i) = h_temp; 
                    f(n-pilotInterval+i-1) = h_upd; 
                end 
            end 
        end 
    end    
    if rem(n,pilotInterval) == 1    % identify the pilot symbols 
        r(n) = pilotSymbol;         % let received symbol be pilot symbol 
        h = m(n) / zpilot;          % determine channel tap 
        e = angle(h);            % calculate channel tap phase error 
        e1 = 0; 
        e2 = 0; 
        a = abs(h);                 % calculate channel tap magnitude 
        f(n) = h; 
        PS_Num = PS_Num + 1; 
    else 
        r(n) = demodulate(hdemod,m(n)/a*conj(h)/abs(h)*exp(-1i*(2*e1-e2))); 
        z = modulate(hmod,r(n));                            % calculate new channel tap 
        h1 = m(n) / z;                                       
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        eh = -e+angle(m(n)/z); 
        if or(((abs(eh-e1))< Tol),and(and(abs(e1+e)>(pi-Tol),abs(eh+e)>(pi-Tol)),or(abs(eh-

e1-2*pi)< Tol,abs(eh-e1+2*pi)< Tol))) 
            f(n) = h1; 
            e2 = e1; 
            e1 = eh; 
            h=h1; 
        else 
            f(n) = f(n-1); 
         end 
    end   
end 
if mod(n,pilotInterval)~= 0 
    pilotInterval = mod(n,pilotInterval); 
end 
        Tol2 = min(Tol_factor*var(f(n-pilotInterval:n-1)),Tol); 
        hopt2 = MMSE(f(n-pilotInterval+1:n), min_filter_length-1, Rs); 
        h_upd = f(n-pilotInterval+1)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+1:n-

pilotInterval+2)) + hopt2(1)*f(n-pilotInterval+2) + hopt2(2)*f(n-pilotInterval+1); 
        r_temp = demodulate(hdemod,m(n-pilotInterval+2)/a*conj(h_upd)/abs(h_upd)); 
        z_temp = modulate(hmod,r_temp); 
        h_temp = m(n-pilotInterval+2)/z_temp;                 
        if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

         r(n-pilotInterval+2) = r_temp; 
            f(n-pilotInterval+2) = h_temp; 
        end 
        hopt = MMSE(f(n-pilotInterval+1:n), min_filter_length, Rs); 
        for i = min_filter_length:pilotInterval 
            h_upd =f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-pilotInterval+i-

2:n-pilotInterval+i)) + hopt(1)*f(n-pilotInterval+i) + hopt(2)*f(n-pilotInterval+i-1) + hopt(3)*f(n-
pilotInterval+i-2); 

            r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
            z_temp = modulate(hmod,r_temp); 
            h_temp = m(n-pilotInterval+i)/z_temp;                 
            if or(abs(angle(h_temp)-angle(h_upd)) < Tol2, and(and(abs(angle(h_temp))>(pi-

Tol2), abs(angle(h_upd))>(pi-Tol2)), or(abs(h_temp-h_upd-2*pi)< Tol2,abs(h_temp-
h_upd+2*pi)< Tol2))) 

                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i) = h_upd; 
                f(n-pilotInterval+i+1) = h_temp; 
            else if n-pilotInterval+i == 3 
                h_upd = f(n-pilotInterval)-(hopt2(1)+hopt2(2))*mean(f(n-pilotInterval+i-2:n-

pilotInterval+i-1)) + hopt2(1)*f(n-pilotInterval+i-1) + hopt2(2)*f(n-pilotInterval+i-2); 
                r_temp = demodulate(hdemod,m(n-pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 
                z_temp = modulate(hmod,r_temp); 
                h_temp = m(n-pilotInterval+i)/z_temp;  
                r(n-pilotInterval+i) = r_temp; 
                f(n-pilotInterval+i+1) = h_temp; 
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                f(n-pilotInterval+i) = h_upd; 
                else 
                    h_upd = f(n-pilotInterval)-(hopt(1)+hopt(2)+hopt(3))*mean(f(n-

pilotInterval+i-3:n-pilotInterval+i-1)) + hopt(1)*f(n-pilotInterval+i-1) + hopt(2)*f(n-
pilotInterval+i-2) + hopt(3)*f(n-pilotInterval+i-3); 

                    r(n-pilotInterval+i) = demodulate(hdemod,m(n-
pilotInterval+i)/a*conj(h_upd)/abs(h_upd)); 

                    z_temp = modulate(hmod,r(n-pilotInterval+i)); 
                    h_temp = m(n-pilotInterval+i)/z_temp;  
                    f(n-pilotInterval+i+1) = h_temp; 
                    f(n-pilotInterval+i) = h_upd; 
                end 
            end 
        end 
end 
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