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Abstract

From any given Iterated Function Svstem. a small set of balls that cover the
fractal attractor can be simply determined. This gives a priori bounds ou
the region of space in which the attractor may be constructed.




As Barnsley. Demko and others have shown [1, 2. G. 4]. one effective
method for producing fractal shapes (in anv number of dimensions) is with
Iterated Function Systems (IFSs). using the “Chaos Game™ algorithm (or
some deterministic algorithm). This approach has been used for producing
naturalistic shapes [4]. finding fractal interpolants to given data [6. p. 274]
and fractal approximations of given functions [8]. and even for visualizing
arbitrary discrete sequences [7]. Indeed. anyv contractive IFS will give an
attractor (usually of iractal dimension): thus it is possible to generate IFSs at
random to explore the graphical possibilities, as is done in some educational
software [3]. Similarly. because the attractor depends continuously on the
parameters in the IFS [1]. a small data sets from any source could be encoded
as [FSs for visualization,

In implementing the IFS method. one important question is the prediction
u priori of the region of space containing the fractal attractor. Without such
a prediction. one could only approximately estimate the spatial extent based
ou calculating several points of the attractor. with no guarantee that these
points are near the bounds. If as a result the portion of space represented
in the computation of the attractor is too small. the result will not vield
thie whole attractor. If the portion of space represented is overly large. then
much computational space is wasted. reducing the effective resolution of the
computed attractor. Another concern is when the space has natural limits,
for example the space of colors in Red-Green-Blue-space representable on a
video monitor is limited {(more or less) to a unit cube. Then the question
becomes whetlier the attractor {or its projection onto the limited dimensions)
will fit in the space.

Here a simple algorithm is given to compute. directly from the IFS. a set
of balls whose union contains the attractor as a subset {see Figure 1). The
radii of the balls are minimal in a certain restricted sense. This gives reliable
bounds on the region of space that must be considered in constructing the
fractal. The method is general, independent of the particular space and
metric. We first describe the set of balls. then show how to compute their
radii and prove that the algorithm works. and lastly give a detailed example.

An IFS consists of a set of » contraction mappings u; : X — X on
a metric space X with metric d : X x X = R. (For the "Chaos Game”
algorithm. probabilities p, are associated with each mapping: this idea has
been extended to conditional probabilities [3]. Here only the former case is
considered. where the attractor is independent of the non-zero p,.) Assume




that for each contraction u, the contractivity ratio 0 < s, < 1 and the fixed
point X, are known. where bv definition s, satisfies d{w,(x), u,(y)) < s, d(x.y)
for all points x,y € X and x; satisfies x, = w;(x,). The action of the I[FS 11"
on a set S of points in X is defined as

wW(s) = |Jwi(s) (1)

1=1

where each contraction w, is applied to the set S in a pointwise sense. The
attractor A is the set of points in X satisfving

=11"(4)

—
[

That is. the attractor consists of i smaller “copies™ of itself.

We seck to cover each of the n “copies™ with a closed ball B, centered
ou the corresponding fixed point x,. so the radius r, must be chosen large
enough that B; D w,(A4). Call the union E of these balls the “envelope.” in
that £ D A by (2). Then relative to each x,. everv point in the envelope will
be within a distance R, = max,(d,; + r,). where d,; = d{x,.x,). because for
any point X in B,. d{x,.x) < d,, +d(x,.x) < d,;+r,. Applying w, to such a
point x will give an nnage point y. where d(x,.y) < s;d(x,.x) < s;R,. Hence
if the radii r, are chosen to satisfv

r, = s,max{d,, +r,) (3
JEY

fori.j=1...n then B, will contain the image w,(E) of the envelope and so
E will contaiu its own image under the IFS:

EO>WI(E) . (4)

Iterating the IFS from anv starting set (E in particular) vields a sequence of
sets that converges to the attractor. Since (4) implies E D W E) for auy
positive integer k. the envelope E. subject to (3). does indeed contain the
attractor. But how can the r, be calculated from (3)?

When n = 2 the radii can be determined algebraically. Solving the pair
of equations (3) gives:

51(1 =+ Sg)

L dy2
1— 358
s2(1 + s1) .
ry = —m———ldyy (3)
1— 58,

2




But for n > 2 there is apparently 1o closed-form general solution. and the r,
must be found algorithmically. (If one wished to minimize calculating at the
expense of overestimating. one could use r, = dymarSmar/{1l — $mas). 1.€.. the
envelope as if all fixed points were equidistant at the maximum separation
and with all s; equal to the largest.)

A natural approach for n > 2 is to start with the pairwise estimates

si{l+s,)

ru = ' . d'] (G}
1—s,s,

(i L -

r, = maxr, {v1
1+

but in most cases the r,m will not satisfy (3). The exceptional case 1« when
ry = ryg for every i.j # ik # i.ie. when for each ball all the pairwisc
estimates for that ball give the same size. (This case is not alwayvs apparent
from the attractor: Figure 1 shows such an example.) Otherwise. some of
the 7'}” will be too small to contain sowe unmages u',(B;”) of the other balls.
Thien the obvious iterative scheme to try is

(ks

:ma.\:a,(_(I,J+rj) Loy =1.0n . {8
J7

(k1)
Il

. . .. k .
Because this approach never overestimates the radii (r'*" < 7,) and the iter-

ates are nondecreasing. the algorithm must converge. What is not so obvious
is that this process alwavs suceeds in at most n — 1 iterations. as shown be-
low. (This would not be true without (7).) In fact. there is a direct algorithm
{not iterative) that is more efficient.

The kev idea that allows the direct algorithm is that the distances d,, can
be rescaled to account for the contractivities s,. and the scaled distances D,
can be used to order the contractions w,. Let

(14s,)(14+s;)

Dy= gt —td, . iy=lon (9)

(While D,; is clearly symmetric and non-negative. it is not a metric because
it doesn’t satisfv the triangle inequality.) Now reorder (and relabel) the wu,
by decreasing maximum scaled distance. so that

i<j = mkz}.\:D,kZmIaxD], Lot kidl=1...n . (10)

3




In the new order. use the pairwise formula (3) for the first two radii. Then
proceed in order based on the previous results. letting

r,:s,m?x(du-é-r}) Co1=3...n . {11)
Jl

This is the direct algorithm. which. as shown below. solves (3): an imple-
mentation in the C programming language is given in the Appendix.

First note that in the exceptional case mentioned above (after 7). all the
D,, (for i # j) are equal. Iu this case, the direct algorithm will obtain the
correct 1, regardless of the order in which thev are computed. If not all the
D,, are equal. then some of the r, will need to be larger than the pairwis

. 1 . . . .
estimates rf ' and hence larger than the r,, in (G). so in general (3) implies

D,, (12

fori.yg=1...n

For the general case. the proof is by induction. showing that each new o,
computed 1equires no adjustment of those previously computed. Clearly 1.
rs from (3) satisfv (3) for the subset . j = 1,2, Now assume the first m — 1
radii. in the order (10). satisfv (3). and hence (12). for 1.y = 1...m — 1.
Choose r,, by (11). and let & be the value of the index j iu (11) for wlich
the maximum is achieved. Then by (12) and the ordering (10)

Sk

e > D, . (13,
L Z 1+ st in {loi

Algebraic manipulation of (13) gives
ry 2 Sk{(l + '3’17:)(11;171 + '5mrk] = Sk(dkm + )',,,) (14'

so the new r,, requires no alteration of ry.
Similarlv.fort £ k.t < m

5,
rl > tm
- 1+,

51+ sy, -

__L__-_-._....ld”" (1;))
1 - Sm

since s; < 1. Combining (13) with
r 2 Sx(d:k+7‘k) (16)
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vields

Sv{(l + sm)dvm + S (dy + rk)}

T >
2 sr[dlm + S (dip, + rk)] = 5,(dip + Tm) fl

7
by the triangle inequality. Hence the new r,, requires no adjustment of anv r,
for : < m.and (3) is satisfied for .. = 1 ... m: this completes the proof. Note
also that because of how the direct algorithim works. the iterative algorithi,
will compute at least two of the r, (ry.rz in the order (10)) in the initial step.
and will find at legst one of the other r, at each successive step. and so can
take at most n — 1 iterations to arrive at thie answer.

Can radii smaller than these r, be used and still have the B, cover the
attractor? For any particular IFS. the answer is probably ves (as illustrated
in Figure 2). The approach given here uses onlv minimal information about
the IFS: the ordering of thie w, based on the maximal scaled distan o~ the
s,. and for each 1 one determining distance d,, (where the maxinmum 111
1s achieved). Using more information it may be possible to reduce the size
of the B,. But if one considers the set of all the 1FSs for which the ditecr
algorithm vields the same r, in the same wav (i.e.. same ordered s, and same
n—1 determining distances). theu the ry are minimal for that set of attractors
{see Figure 3). In fact. one can construct one member of that set such that
cach image w,(A4) of the atrractor includes a point at a distance r, from the
fixed point r,.

To construct this IFS. let X = R with the Euclidean metric dir. 41 =
lr =yl Let w,(x) = —s,0 + (1 + <,)r,. and let r; = 0. ry = d}s. sav. They
the attractor includes the extremal points v,y = &) ~ 1. 2,0 = 2y + 1. sinee
T = wy(re) and Xe = wata ). Place cach succeding 1y, at the determining
distance d,,; from the determining point ry. in the opposite direction from
Ter. (Figure 4 illustrates the construction.) Then the attractor will include
Tem = Ty £ Py = Wa (2er). Thus for this one-dimensional attractor 4. cacl
image w,;{A4) will include a point (x,,) a distance r, from z,. so no smaller r,
would suffice.

As an example, consider the now familiar black spleenwort fern fractal of
[4]. The IFS for the fern {in two dimensions) consists of affine contractions.
each of which has the form

I a, b; x €, \
"'(y)z(fx f")(y)+(f=) ' e




or more ompactly
wix)=Mx+Db, . (1%

where 3, is the matrix and b, is the offset vector. The various coustants are
given in [4]. but in terms of scaling and rotating each axis. using p. ¢. 6. ¢.

where a = pcosf. b = —gsino. ¢ = psinf. d = gcoso. The following table
is adapted from {4. p. 1977}
NMap | Scalings Rotations | Translations |
! 78 4, 8, o, |e 1
1 0 0.16 0 0 0 0
2 108 08 -25 23 0 16
3 03 034 49 49 0 10
4 0.3 037 120 -50 0 G644

where angles are given in degrees. The contractivity ratio s, for an affine
map w, i1s the largest singular value of the matrix M,. In the first three niaps
above. both axes rotate together. and so s, is the larger of p,. ¢, In wy. the
differential rotation causes a skewing effect. and the singular values of A/,
must be found. The simplest wav for a real 2 x 2 matrix is first o factor ow
a pure rotation to give a svinetric matrix (5). then diagonahim 1t to find
1ts eigenvectors {Ay. As) as showy below:

- ];

G = arctan (————) {20
o+

e[ h - cosa sitia Y, 21

- hok —sina  cosn

1 2]

J o= 7 arctan (g —'1.*) (22

Ar O cos g sinJ g o 3 —sin g o3,

0 A —sin.} cos .j sin.J  cos.J ’

Then s = max(|A,].|A;]). This approach also has a nice geometrical inter-
pretation: the effect of multiplving a vector x by Af is to take components
of x in the eigenvector directions. which are at an angle .J relative to the
coordinate axes. scale each component by the corresponding A. and rotate
the resulting vector by a.

Proceeding as above gives sy = 0.379. The fixed point x, for each map




can be found by solving
(I-—A\l,)x,=b, \{24’

This gives the necessary starting information, summarized as “Input”™ in the
table below. For affine maps in higher dimensions. the contractivity ratios
are found by singular value decomposition. but for nonlinear maps the ratios
and fixed points may be more difficult to find.

Running the direct algorithm program (“envelope™) from the Appendix
on this input gives the following results:

% envelope 4

Map 1. Enter scale, x, y: .16 00

Map 1: s = 0.160000, x = 0.000000, y = 0.000000

Map 2. Enter scale, x, y: .85 2.45967 10.004734

Map 2: s = 0.850000, x = 2.459670, y = 10.004734

Map 3. Enter scale, x, y: .34 -0.601889 1.883961

Map 3: s = 0.340000, x = -0.601889, y = 1.883961

Map 4. Enter scale, x, y: 0.379216 0.155336 0.630251

Map 4: s = 0.3738216, x = 0.155336, y = 0.630251
radii in sorted order(orig order](sorted link):
r1{2](->2): 16.700212

r2[4](->1): 9.993765

r3{3](->1): 8.628835

r4a[1](->1): 4.320459

yA

These results are illustrated in Figure 3. and tabulated below (including the
D values used in re-ordering and the determining distances):
Input Output ]

i 8, X, Y, D-order Doz et r,
11016 0 0 4 Dy9: 2539 dyp: 1030 4.32
21085 2460 10.005 1 Dy 3635 dag: 965 16.70
31034 -0602 1.884 3 D3y: 30.26 d3: 868  8.G3
410379 0.155 0.630 2 D4y 3635 dgp: 965 999
(While in this example the determining distance for each map derives from
the same pair that gives the waximum D, that is not always the case.) Then.
If we had no idea how big the fern attractor was. we could use a comiputational
space extending from r,,, = rs — 19 = =14.24 t0 Ty = 72 + 1y = 19.106




and Ymin = Y4 — r5 = —9.36 10 Ymar = Y2 + 72 = 26.70 to contain the entiye
envelope. As it turns out. this is far more space than necessary for the fern
itself, but there are many other IFSs. equivalent as far as the direct algorithin
is concerned, with much larger attractors {e.g.. what if , = o» = 17735
instead).

To summarize, given any IFS (along with the contractivities aud fixed
points of each of its constituent contraction mappings). an envelope cau be
constructed of one hall for eachh map. centered on the corresponding fixed
point. (In the case of affine maps in two dimensions. an explicit procedure
for finding the contractivities and fixed points was given.) We have proven
that the radii of the balls can be calculated by a simple algorithm (direct
or iterative) such that the envelope covers thie entire attractor. The spatial
extent of the envelope thus gives a reliable bound on that of the attracror. (In
addition. if the balls are disjoint. the attractor is totallv disconnected.) While
the radii found by the direct algorithm mayv not be minimal for the particular
IFS. thev are minimal for the set of all IFSs with conivalent imformation tin
the sense described above).
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APPENDIX
/*

The following program in C implements the direct algorathm
for determining the "envelope” of an attractor of an Iterated
Function System on R"2, given the contractivities si and the
fixed points (xi,yi).

written by David Canright, March 1993.

*/

#include <stdio.h>

#include <math.h>

int npts, i, j, m, n, index[64], link[64];

double d[64][64]), x[64], y[64), s[64], r(64], Dmax[64],

t, tmax, dx, dy,
int input(int argc, char =*argv(]);

main(int argc, char =argv([]) {

npts = input(argc, argv); /% get si, xi, yi */
/* compute distances dij & maximal scaled Dij =/




for (i = 1; i <= npts; i++) Dmax[i] =
for (i = 1; i <= npts; i++) {
for (j = i+1; j <= npts; j++) {

x = x[i]-x[j]; dy = y[i]~y[j];
d[i][j] d(j1{i] = t = sqrt(dx=dx+dy=dy);
= (1.+s[i))*(1. +s{33>/(1 -s[il»s[j]) = t;
1f (t > Dmax[i]) Dmax[i] = t;
if (t > Dmax[j]) Dmax{j] = t;
}

}
/* Sort by scaled distances; index pocints to old order */
index[1] =
for (i = 2; 1 <= npts; i++) {
for (m=41i; m > 1 &% Dmax[i] > Dmax[index[m-1]]; m--)
index[m] = index[m-1];
index[m] = i;

}

/* Direct algori:hm; link points to determining distance */
i = index[1]); j = index[2]; 1link[1] = 2; link[2] =
r(1] = ( s[11/(1.+s[i]) ) =* Dmax[i];
r{2] = ( s[jl/(1.4s(3]) ) » Dmax[j];
for (m=3; m <= npts: m++) {
i = index([m];
tmax = O.;
for (n = 1; n < m; n++) {
j = index([n];
if ( (¢t = d[1]1(j) + r[n]) > tmax )
{ tmax = t; link{m] =n; }
}
rim] = s{i] * tmax;
1
printf(”"radii in sorted order[orig order](sorted link):\n"),
for (i = 1; i <= npts; i++)
printf (" r%d%d) (->%d): %4f\n",i,index[i),1link{i],r(3] );
return(0);

}

f
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/* Input function: gets si, xi, yi, or uses random numbers =/
/* optional arguments: number of maps, seed for random */
int input(int argc, char =*argv[]) {

double norm;

char line[81], getmore = 1;

npts = 3; /% default */
if (argc > 1) sscanf(argv(1],"%d",&npts);
if (argc > 2) sscanf(argv[2],"id", &i);

srand(i);
norm = 1./(MAXINT); /* machine-dep. const., to normalize =/
for (1 = 1; i <= npts; i++) {

s[i) = norm*rand(); /* random by default */

x[i] = norm*rand();

y{i] = norm*rand();

/* get numbers from stdin until blank line, then random */
if (getmore) {
printf("Map %d. Enter scale, x, y: ",i);
gets(line);
if (line[0]) {
sscanf(line,"A1f4ALE4LL"  s+1i,x+1,y+1);

if(s[i]<0.)s{i] = -s[i]; /* enforce 0 <= s < 1 */
while(s[i])>=1.) s[i] == 0.1,
}

else getmore = O,

}
printf("Map 4d: s = 4f, x = %Uf, y = %f\n",1,s(i],x[i],y[i]);
}

return(npts);

}

11




FIGURE CAPTIONS

Figure 1. An attractor of an IFS is shown with its envelope of three disks. as

computed by the direct algorithm. (This IFS uses affine maps. with s; = 2.
s2= 3. 83 =3.%X; = (0,0). x2 = (4.0). and x3 = (0.3).

Figure 2. For an equilateral Sierpinski’'s Triangle (where u,(x) = %x + %x, I
the r; = d,; by this method: in this particular case the radii could be half as
large.

Figure 3. Same s, and x, as the previous figure. but here w,(x) = ~1x+3x,:
in this case the r; found above are minimal.

Figure 4. A one-dimensional attractor constructed from the following or-
dered data: s; = % S9 = % S3 = l dig = 1. and dj3 = % The r, are minimal

for such attractors.

Figure 5. Barnsley’s fern [4] and its envelope (see text).
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