

Calhoun: The NPS Institutional Archive DSpace Repository

Estimating the Spatial Extent of Attractors of Iterated Function System

Canright, D.

Monterey, California. Naval Postgraduate School
http://hdl.handle.net/10945/70942

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

AD-A265 856 || ||||||||||LII

NPS-MA-93-017
 NAVAL POSTGRADUATE SCHOOL Monterey, California

ESTIMATING THE SPATIAL EXTENT OF ATTRACTORS OF ITERATED FUNCTION SYSTEMS
 by
 D. Canright

Technical Report For Period
January 1993 -April 1993

Approved for public release; distribution unlimited
Prepared for: Naval Postgraduate School Monterey, CA 93943

93-13560
|||||||||||||||

NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

Rear Admiral T.A. Mercer
Superintendent

Harrison Shull
Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate School and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.
This report was prepared by:

Assistant Professor of Mathematics

Reviewed by:

RICHARD FRANKE
Chairman

Released by:

REPORT DOCUMENTATION PAGE						form Aprouent OMBNC OVO OISR					
1a REPORT SECURITY CLASSIFICAIIONUnclassified				- Restricive markacs							
2a SECURITY CIASSIFICAIION AUTHORITY											
2b ofclassification/downgrading scheoule											
4 Performing organization report number(S) NPS-MA-93-017				5 MONIIORING ORGANIZATION REPORI NUNEIRIS: NPS-MA-93-017							
6a NAME OF PERFORMING ORGANIZATION Naval Postgraduate School			$\begin{gathered} 60 \text { Office SrMBOT } \\ \text { if applicate) } \\ \text { MA } \end{gathered}$	$\begin{gathered} \text { 7a Name or MONitoring organ } 7 \text { Alion } \\ \text { Naval Postgraduate School } \end{gathered}$							
6c ADDRESS (City. State, and IIP Code) Monterey, CA 93943				$\begin{gathered} 70 \text { ADDRE Ss (City Slate and Rif Code) } \\ \text { Monterey, CA } 93943 \end{gathered}$							
				 OM, N							
BC ADDRESS (City, State, and 21P (ode) Monterey, CA 93943				PROGRAM ELEMENI NO	porotect NOSK NO	$\prod_{\mathrm{NO}}^{\mathrm{Nas}}$	Toce un				
11 Tilize (inctude Security Classification)Estimating the Spatial Extent of Attractors of Iterated Function Systems											
${ }^{12}$ D. Cas Cantight ${ }^{\text {P/ }}$											
				14 DATE Or affort iYedr. Month Day) 27 April 93							
16 SUPPLEMENTARY NOTA ${ }^{\text {a }}$											
			18 SURJECT TERNS (Continue on reverse if necessary and identify by block number) Iterated Function System, fractal attractor								
	GROUP	SU8 Group									

19 agstract (Continue on reverse if necessary and rientify by block number)

From any given Iterated Function System, a small set of balls that cover the fractal attractor can be simply determined. This gives a prior tounds on the region of space in which the attractor may be constructed.

228 NMME Or Responsible inolvilial D. Canright	

Estimating the Spatial Extent of Attractors of Iterated Function Systems

D. Canright
Mathematics Dept., Code MA/Ca Naval Postgraduate School
Monterey, CA 93943

April 27. 1993

DTIC QUALITY INSTECTED 2.

Abstract

From any given Iterated Function System. a small set of balls that cover the fractal attractor can be simply determined. This gives a priori bounds on the region of space in which the attractor may be constructed.

As Barnsley. Demko and others have shown [1, 2, G. 4]. one effective method for producing fractal shapes (in any number of dimensions) is with Iterated Function Systems (IFSs), using the "Chaos Game" algorithm (or some deterministic algorithm). This approach has been used for producing naturalistic shapes [4], finding fractal interpolants to given data [6. p. 274] and fractal approximations of given functions [8], and even for visualizing arbitrary discrete sequences [$\overline{6}]$. Indeed, any contractive IFS will give an attractor (usually of iractal dimension): thus it is possible to generate IFSs at random to explore the graphical possibilities, as is done in some educational software [5]. Similarly. because the attractor depends continuously on the parameters in the IFS [1]. a small data sets from any source could be encoded as IFSs for visualization.

In implementing the IFS method. one important question is the prediction a priori of the region of space containing the fractal attractor. Without such a prediction. one could only approximately estimate the spatial extent based on calculating several points of the attractor. with no guarantee that these points are near the bounds. If as a result the portion of space represented in the computation of the attractor is too small. the result will not yield the whole attractor. If the portion of space represented is overly large, then much computational space is wasted. reducing the effective resolution of the computed attractor. Another concern is when the space has natural limits. for example the space of colors in Red-Green-Blue-space representable on a video monitor is limited (more or less) to a unit cube. Then the question becomes whether the attractor (or its projection onto the limited dimensions) will fit in the space.

Here a simple algorithm is given to compute directly from the IFS. a set of balls whose union contains the attractor as a subset (sce Figure 1). The radii of the balls are minimal in a certain restricted sense. This gives reliable bounds on the region of space that must be considered in constructing the fractal. The method is general, independent of the particular space and metric. We first describe the set of balls. then show how to compure their radii and prove that the algorithm works. and lastly give a detailed example.

An IFS consists of a set of n contraction mappings $u_{i}: \mathbf{X} \rightarrow \mathbf{X}$ on a metric space \mathbf{X} with metric $d: \mathbf{X} \times \mathbf{X} \rightarrow \mathcal{R}$. (For the "Chaos Game" algorithm. probabilities p, are associated with each mapping; this idea has been extended to conditional probabilities [3]. Here only the former case is considered. where the attractor is independent of the non-zero p_{1}.) Assume
that for each contraction u_{1} the contractivity ratio $0 \leq s_{1}<1$ and the fixed point \mathbf{x}_{1} are known. where by definition s_{1} satisfies $d\left(u_{;}(\mathbf{x}), u_{1}(\mathbf{y})\right) \leq s_{1} d(\mathbf{x}, \mathbf{y})$ for all points $\mathbf{x}, \mathbf{y} \in \mathbf{X}$ and \mathbf{x}_{i} satisfies $\mathbf{x}_{1}=u_{i}\left(\mathbf{x}_{i}\right)$. The action of the IFS 11^{-} on a set S of points in \mathbf{X} is defined as

$$
\begin{equation*}
W^{(S)} \equiv \bigcup_{i=1}^{n} u_{i}(S) \tag{1}
\end{equation*}
$$

where each contraction $w_{\text {, is }}$ isplied to the set S in a pointwise sense. The attractor A is the set of points in X satisfying

$$
\begin{equation*}
A=W \cdot(-A) \tag{2}
\end{equation*}
$$

That is. the attractor consists of 1 smaller "copies" of itself.
We seek to cover each of the n "copies" with a closed ball B_{1} centered on the corresponding fixed point \mathbf{x}_{1}, so the radius r_{1} must be chosen large enough that $B_{i} \supset u_{i}(-A)$. Call the mion E of these balls the "envelope." in that $E \supset A$ by (2). Then relative to cach \mathbf{x}_{1}. every point in the envelope will be within a distance $R_{i}=\max ,\left(d_{1}+r_{j}\right)$, where $d_{1 j} \equiv d\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)$. becanse for any point \mathbf{x} in $B_{j} . d\left(\mathbf{x}_{1} \cdot \mathbf{x}\right) \leq d_{1}+d\left(\mathbf{x}_{j} \cdot \mathbf{x}\right) \leq d_{1}+r_{j}$. Applying $u_{\text {, }}$ to such a point \mathbf{x} will give an image point \mathbf{y}. Where $d\left(\mathbf{x}_{1}, \mathbf{y}\right) \leq s_{i} d\left(\mathbf{x}_{i}, \mathbf{x}\right) \leq s_{i} R_{2}$. Hence if the radii r, are chosen to satisfy

$$
\begin{equation*}
r_{1}=s_{1} \max _{j \neq}\left(d_{1 j}+r_{j}\right) \tag{3}
\end{equation*}
$$

for $i, j=1 \ldots$ then B_{1} will contain the image $u_{i}(E)$ of the envelope and so E will contain its own image under the IFS:

$$
\begin{equation*}
E \supset \|^{\circ}(E) \tag{t}
\end{equation*}
$$

Iterating the IFS from any starting set (E in particular) yields a sequence of sets that converges to the attractor. Since (t) implies $E \supset \Pi^{-1}(E)$ for any positive integer k. the envelope E. subject to (3). does indeed contain the attractor. But how can the r, be calculated from (3)?

When $n=2$ the radii can be determined algebraically: Solving the pair of equations (3) gives:

$$
\begin{align*}
& r_{1}=\frac{s_{1}\left(1+s_{2}\right)}{1-s_{1} s_{2}} d_{12} \\
& r_{2}=\frac{s_{2}\left(1+s_{1}\right)}{1-s_{1} s_{2}} d_{12} \tag{5}
\end{align*}
$$

But for $n>2$ there is apparently no closed-form general solution. and the r, must be found algorithmically, (If one wished to minimize calculating at the expense of overestimating, one could use $r_{1}=d_{\max } s_{\max } /\left(1-s_{\max }\right)$. i.e.. the envelope as if all fixed points were equidistant at the maximum separation and with all s_{i} equal to the largest.)

A natural approach for $n>2$ is to start with the pairwise estimates

$$
\begin{align*}
r_{i j} & \equiv \frac{s_{i}\left(1+s_{j}\right)}{1-s_{1} s_{j}} d_{i j} \tag{0}\\
r_{1}^{(1 i} & =\max _{j \neq 1} r_{i j} \tag{i}
\end{align*}
$$

but in most cases the $r_{i}^{(1)}$ will not satisfy (3). The exceptional case is when $r_{i j}=r_{k}$ for every $i . j \neq i . k \neq i$ i.e.. when for each ball all the pairwise estimates for that ball give the same size. (This case is not always apparent from the attractor: Figure 1 shows such an example.) Otherwise. some of the $r_{2}^{(1)}$ will be too small to contain some images $u^{r}\left(B_{j}^{(1)}\right)$ of the other balls. Then the obrious iterative scheme to try is

$$
\begin{equation*}
r_{i}^{(k+1)}=\max _{j \neq i} s,\left(d_{2 j}+r_{j}^{(k)}\right) \quad . \quad i . j=1 \ldots n \tag{8}
\end{equation*}
$$

Because this approach never orerestimates the radii $\left(r_{i}^{(k)} \leq r_{t}\right)$ and the iterates are nondecreasing. the algorithm must converge. What is not so obrious is that this process always sucecels in at most $n-1$ iterations. as shown below. (This would not be true without (7).) In fact. there is a direct algorithm (not iterative) that is more efficient.

The key idea that allows the direct algorithm is that the distances d_{1}, can be rescaled to account for the contractivities s_{1}. and the scaled distances $D_{1 j}$ can be used to order the contractions u_{1}. Let

$$
\begin{equation*}
D_{i j} \equiv \frac{\left(1+s_{i}\right)\left(1+s_{j}\right)}{1-s_{1} s_{j}} d_{1 j} \quad, \quad i, j=1 \ldots n \tag{9}
\end{equation*}
$$

(While $D_{i j}$ is clearly symmetric and non-negative. it is not a metric because it doesn't satisfy the triangle inequality.) Now reorder (and relabel) the $u_{\text {, }}$ by decreasing maximum scaled distance. so that

$$
\begin{equation*}
i<j \Rightarrow \max _{k} D_{1 k} \geq \max _{l} D_{j 1} \quad . \quad i . j . k . l=1 \ldots n \tag{10}
\end{equation*}
$$

In the new order, use the pairwise formula (5) for the first two radii. Then proceed in order based on the previous results. letting

$$
\begin{equation*}
r_{1}=s_{1} \max _{1<1}\left(d_{i 3}+r_{3}\right) \quad, \quad i=3 \ldots n \tag{11}
\end{equation*}
$$

This is the direct algorithm. which. as shown below. solves (3): an implementation in the C programming language is given in the Appendix.

First note that in the exceptional case mentioned above (after $\overline{7}$). all the $D_{i j}($ for $i \neq j$) are equal. In this case, the direct algorithm will obtain the correct r, regardless of the order in which they are computed. If not all the D_{1} are equal. then some of the r, will need to be larger than the paimw. estimates $r_{1}^{(1)}$. and hence larger than the r, in (6). so in general (3) implies

$$
\begin{equation*}
r_{1} \geq \frac{s_{1}}{1+s_{1}} D_{1 j} \tag{12}
\end{equation*}
$$

for $i . j=1 \ldots n$.
For the general case, the proof is by induction. showing that each new 1 , computed requires no adjustment of thone prerionsly computed. Cleanly n_{1}. r, from (5) satisfy (3) for the subset $i, j=1,2$. Now assume the first $m-1$ radii. in the order (10). satisfy (3) and hener (12). for $i . j=1 \ldots m-1$. Choose r_{m} by (11) and let k be the value of the index j in (1l) for which the maximum is achieved. Then by (12) and the ordering (10)

$$
\begin{equation*}
r_{k} \geq \frac{s_{k}}{1+s_{k}} D_{k \cdots} \tag{13}
\end{equation*}
$$

Algebraic manipulation of (13) gives

$$
r_{k} \geq s_{k}\left[\left(1+s_{m}\right) d_{k m}+s_{m} r_{k}\right]=s_{k}\left(d_{k m}+r_{m}\right)
$$

so the new r_{m} requires no alteration of r_{k}.
Similarly: for $i \neq k, i<m$

$$
\begin{align*}
r_{1} & \geq \frac{s_{1}}{1+s_{1}} D_{1 m} \\
& >\frac{s_{1}\left(1+s_{m}\right)}{1-s_{m}} d_{1 m} \tag{15}
\end{align*}
$$

since $s_{i}<1$. Combining (15) with

$$
\begin{equation*}
r_{1} \geq s_{1}\left(d_{i k}+r_{k}\right) \tag{16}
\end{equation*}
$$

yields

$$
\begin{align*}
r, & >s_{1}\left[\left(1+s_{m}\right) d_{1 m}+s_{m}\left(d_{1 k}+r_{k}\right)\right] \\
& \geq s_{1}\left[d_{1 m}+s_{m}\left(d_{k n}+r_{k}\right)\right]=s_{1}\left(d_{1 m}+r_{m}\right) \tag{115}
\end{align*}
$$

by the triangle inequality. Hence the new r_{m} requires no adjustment of any r, for $i<m$. and (3) is satisfied for $1, j=1 \ldots m$: this completes the proof. Note. also that because of how the direct algorithm works. the iteratie algorithat will compute at least two of the $r_{1}\left(r_{1}, r_{2}\right.$ in the order (10$)$) in the initial step. and will find at least one of the other r, at each successive step. and wh can take at most $n-1$ iterations to arrive at the answer.

Can radii smaller than these r, be used and still have the B_{1} covel the attractor? For any particular IFS. the answer is probably yes (as illustrated in Figure 2). The approach given here ures only minimal information alont the IFS: the ordering of the w, based on the maximal scaled distan as: the s_{1} : and for each i one detemining distance d_{k} (where the maximum in in is achieved). Using more infomation it may be possible to redner the size of the B_{i}. But if one consider the set of all the IFSs for whith the dinet algorithm yelds the same r, in the same way (i.e. same ordered s, and san, $n-1$ determining distances) then the r, are mimmal for that set of athatem(see Figure 3). In fact. one can construct one member of that set such that each inage $u_{i}(. t)$ of the attractor includes a point at a distanee r, from the fixed point x_{2}.

To construct this IFS. let $\mathbf{X}=\mathcal{R}$ with the Euclidean metric dor. 1) $=$ $|x-y|$. Let $w_{i}(x)=-s_{1}, x+\left(1+s_{1}, r_{1}\right.$, and let $r_{1}=0, r_{2}=d_{12}$. say. Than the attractor includes the extremal points $r_{1}=x_{1}-r_{1}, x_{2}=x_{2}+r_{2}$. sine $x_{1}=u_{1}\left(x_{c_{2}}\right)$ and $x_{\epsilon 2}=u_{2}\left(x_{1}\right)$. Plare each succeding x_{m} at the determining distance $d_{m k}$ from the determining point r_{k}. in the opposite direction from $x_{c k}$. (Figure 4 illustrates the construction.) Then the attractor will inched. $r_{c m}=x_{m} \pm r_{m}=u_{m}\left(r_{c k}\right)$. Thus for this one-dimensional attractor A. each image $u_{i}(A)$ will include a point $\left(x_{a}\right)$ a distance r, from x_{1}, so no smaller r, would suffice.

As an example. consider the now familiar black spleenwort fern fractal of [4]. The IFS for the fern (in two dimensions) consists of affine contractions. each of which has the form

$$
u_{r}\binom{x}{y}=\left(\begin{array}{ll}
a_{2} & b_{2} \tag{18}\\
c_{2} & d_{1}
\end{array}\right)\binom{x}{y}+\binom{\epsilon_{2}}{f_{2}}
$$

or me:e umpactly

$$
\begin{equation*}
u_{i}(\mathbf{x})=M_{1} \mathrm{x}+\mathrm{b}_{1} \tag{19}
\end{equation*}
$$

where M_{1} is the matrix and b_{1} is the offset vector. The various constants are given in [4]. but in terms of scaling and rotating each axis. using p. q. A. o. where $a=p \cos \theta \cdot b=-q \sin 0, c=p \sin \theta \cdot d=q \cos 0$. The following iable is adapted from [4. p. 1977]:

Map	Scalings		Rotations	Translations		
1	p_{1}	q_{1}	θ_{1}	o_{1}	e_{1}	f_{1}
1	0	0.10	0	0	0	0
2	0.85	0.85	-2.5	-2.5	0	1.6
3	0.3	0.34	49	49	0	1.6
4	0.3	0.37	120	-50	0	0.44

where angles are given in degrees. The contractivity ratios, for an ather map u, is the largest singular value of the matrix M_{2}. In the first the maje above both axes rotate together. and so s, is the larger of $p_{1} . q_{1}$. In u_{4}. the differential rotation causes a skewing effect. and the singular value of N; must be fomd. The simplest way for a real 2×2 matrix is firs - facton ont a pure rotation to give a symmetric matrix (S) , then diagonatir it to find its eigenvertors $\left(\lambda_{3}, \lambda_{2}\right)$ as shown below:

$$
\begin{align*}
a & =\arctan \left(\frac{c-h}{a+1}\right) \tag{20}\\
S \equiv\left(\begin{array}{cc}
a & h \\
h & k
\end{array}\right) & =\left(\begin{array}{cc}
\cos a & \sin a \\
-\sin \theta & \cos \theta
\end{array}\right) \cdot M \tag{21}\\
3 & =\frac{1}{2} \arctan \left(\frac{2 h}{g-k}\right) \tag{122}\\
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) & =\left(\begin{array}{cc}
\cos 3 & \sin 3 \\
-\sin 3 & \cos 3
\end{array}\right) S\left(\begin{array}{cc}
\cos 3 & -\sin 3 \\
\sin 3 & \cos 3
\end{array}\right) \tag{123}
\end{align*}
$$

Then $s=\max \left(\left|\lambda_{1}\right| \cdot\left|\lambda_{2}\right|\right)$. This approach also has a nice geometrical interpretation: the effect of multiplying a vector \mathbf{x} by M is to take components of \mathbf{x} in the eigenvector directions. which are at an angle 3 relative to the coordinate axes. scale each component by the corresponding λ. and rotate the resulting vector by a.

Proceeding as above gives $s_{4}=0.379$. The fixed point \mathbf{x}, for each map
can be found by solving

$$
\begin{equation*}
\left(I-M_{1}\right) \mathbf{x}_{t}=\mathbf{b}_{1} \tag{24}
\end{equation*}
$$

This gives the necessary starting information. summarized as "Input" in the table below. For affine maps in higher dimensions. the contractivity ratios are found by singular value decomposition. but for nonlinear maps the ratioand fixed points may be more difficult to find.

Ruming the direct algorithm program ("envelope") from the Appendix on this input gives the following results:

```
% envelope 4
Map 1. Enter scale, x, y: . }160
Map 1: s = 0.160000, x = 0.000000, y = 0.000000
Map 2. Enter scale, x, y: . }852.45967 10.00473
Map 2: s = 0.850000, x = 2.459670, y = 10.004734
Map 3. Enter scale, x, y: . 34 -0.601889 1.883961
Map 3: s = 0.340000, x = -0.601889, y = 1.883961
Map 4. Enter scale, x, y: 0.379216 0.155336 0.630251
Map 4: s = 0.379216, x = 0.155336, y = 0.630251
radij in sorted order[orig order](sorted link):
    r1[2](->2): 16.700212
    r2[4](->1): 9.993765
    r3[3](->1): 8.628835
    r4[1](->1): 4.320459
%
```

These results are illustrated in Figure $\overline{3}$. and tabulated below (including thr D values used in re-ordering and the determining distances):

Input				Output				
1	s_{1}	x_{1}	y_{1}	D-order	$D_{\max }$	$d_{d \ell t}$	r_{1}	
1	0.16	0	0	4	$D_{12}: 25.59$	$d_{12}: 10.30$	4.32	
2	0.85	2.460	10.005	1	$D_{24}: 36.35$	$d_{24}:$	9.65	16.70
3	0.34	-0.602	1.884	3	$D_{32}: 30.26$	$d_{32}:$	8.68	8.63
4	0.379	0.155	0.630	2	$D_{42}: 36.35$	$d_{42}:$	9.65	9.99

(While in this example the determining distance for each map derives from the sarne pair that gives the maximum D, that is not always the case.) Then. If we had no idea how big the fern attractor was. we could use a computational space extending from $x_{m}=r_{2}-r_{2}=-14.24$ to $x_{\text {max }}=r_{2}+r_{2}=19.16$
and $y_{\min }=y_{4}-r_{4}=-9.36$ to $y_{\max }=y_{2}+r_{2}=26.70$ to contain the entile envelope. As it turns out, this is far more space than necessary for the ferm itself, but there are many other IFSs. equivalent as far as the direct algorithm is concerned, with much larger attractors (e.g.. What if $\theta_{2}=0_{2}=17 . j$ instead).

To summarize, given any IFS (along with the contractivities and fixed points of each of its constituent contraction mappings). an envelope can be constructed of one ball for each map. centered on the corresponding fixed point. (In the case of affine maps in two dimensions, an explicit procedur for finding the contractivities and fixed points was given.) We have poren that the radii of the balls can be calculated by a simple algonithm (dimet or itcrative) such that the envelope covers the entire attractor. The spatial extent of the envelope thus gives a reliable bound on that of the attractor. (ha adidition. if the balls are disjoint, the attractor is totally disconnected.) Whise the radii found by the direct algorithm may not be minimal for the partiontan IFS. they are minimal for the set of all IFSs with enmalent infomation in the sense described above).

ACKNOWLEGEMENTS

Thanks to Aaron Schusteff and Ismor Fischer for stmulating. informatio discussions and helpfud suggestions.

References

[1] Michael F. Bamsles: Fractals Everyuhere Academic Pres/Hamomi Brace Jovanovich. Boston. 1958
[2] Michael F. Barnsley and Stephen Demko. Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London A. 390:243 275, 1985.
[3] Michael F. Barnsley. John H. Elton. and Douglas P. Hardin. Recurrent iterated function systems. Constructive Approximation. 5:3-31. 1989.
[4] Michael F. Barnsley. V. Ervin. D. Hardin. ans J. Lancaster. Solution of an inverse problem for fractals and other sets. Proc. Nat. Acard Scr U.S.A., 83:1975-1978. 1986.
[5] David Canright. FrEd: the Fractal Editor shareware available as FREDEX.EXE from CompuServe IBM.App forum. Graphics library: 1992.
(6) Stephen Demko. Laurie Hodges. and Bruce Naylor. Construction of frattal objects with iterated function systems. Computer Graphacs. 19:271 278. $198{ }^{\circ}$.
[7] H. Jocl Jeffrey. Chaos game visualization of seguences. Computer: and Graphics. 16(1):25-33. 1992.
[8] William Douglas Withers. Newton's method for fractal appmoximation Constructive Approximation. 5:151-170. 1989

APPENDIX

/*
The following program in C implements the direct algorithm for determining the "envelope" of an attractor of an Iterated Function System on $R^{-} 2$, given the contractivities si and the fixed points (xi,yi).
written by David Canright, March 1993.
*/
\#include <stdio.h>
\#include <math.h>
int npts, i, j, m, n, index[64], link[64];
double $d[64][64], x[64], y[64], s[64], r[64], \operatorname{Dmax}[64]$,
t, tmax, $d x, d y ;$
int input(int argc, char *argv[]);
main(int argc, char *argv[]) \{
npts $=$ input (argc, argv); /* get si, xi, yi */
/* compute distances dij 2 maximal scaled Dij */

```
for (i = 1; i <= npts; i++) Dmax[i] = 0.;
for (i = 1; i <= npts; i++) {
    for (j = i+1; j <= npts; j++) {
        dx = x[i]-x[j]; dy = y[i]-y[j];
        d[i][j] = d[j][i] = t = sqrt(dx*dx+dy*dy);
        t = (1.+s[i])*(1.+s[j])/(1.-s[i]*s[j])* t;
            if (t > Dmax[i]) Dmax[i] = t;
            if (t > Dmax[j]) Dmax[j] = t;
            }
    }
/* Sort by scaled distances; index points to old order */
index[1] = 1;
for (i = 2; i <= npts; i++) {
    for (m = i; m > 1 && Dmax[i] > Dmax[index[m-1]]; m--)
        index[m] = index[m-1];
    index[m] = i;
    }
/* Direct algori:hm; link points to determining distance */
i = index[1]; j = index[2]; link[1] = 2; link[2] = 1;
r[1] = (s[i]/(1.+s[i]) ) * Dmax[i];
r[2] = ( s[j]/(1.+s[j]) ) * Dmax[j];
for (m=3; m <= npts: m++) {
    i = index[m];
    tmax = 0.;
    for (n = 1; n < m; n++) {
        j = index[n];
        if ( ( }t=d[i][j] +r[n])> tmax 
            { tmax = t; link[m] = n; }
        }
    r[m] = s[j] * tmax;
    }
printf("radii in sorted order[orig order](sorted link):\n");
for (i = 1; i <= npts; i++)
    printf("r%d[%d](->%d): %f\n",i,index[i],link[i],r[i] );
return(0);
}
```

```
/* Input function: gets si, xi, yi, or uses random numbers */
/* optional arguments: number of maps, seed for random */
int input(int argc, char *argv[]) {
double norm;
char line[81], getmore = 1;
npts = 3; /* default */
if (argc > 1) sscanf(argv[1],"%d",&npts);
if (argc > 2) sscanf(argv[2],"%d",&i);
srand(i);
norm = 1./(MAXINT); /* machine-dep. const., to normalize */
for (i = 1; i <= npts; i++) {
        s[i] = norm*rand(); /* random by default */
        x[i] = norm*rand();
        y[i] = norm*rand();
/* get numbers from stdin until blank line, then random */
    if (getmore) {
        printf("Map %d. Enter scale, x, y: ",i);
        gets(line);
        if (line[0]) {
                sscanf(line,"%lf%lf%lf",s+i,x+i,y+i);
                if(s[i]<0.)s[i] = -s[i]; /* enforce 0 <= s < 1 */
                while(s[i]>=1.) s[i] *= 0.1;
                }
            else getmore = 0;
            }
        printf("Map %d: s = %f, x = %f, y = %f\n",i,s[i],x[i],y[i]);
        }
return(npts);
}
```


FIGURE CAPTIONS

Figure 1. An attractor of an IFS is shown with its envelope of three disks. as computed by the direct algorithm. (This IFS uses affine maps. with $s_{1}=\frac{5}{5}$. $s_{2}=\frac{1}{3}, s_{3}=\frac{1}{2}, \mathbf{x}_{1}=(0,0) . \mathbf{x}_{2}=(4,0)$. and $\mathbf{x}_{3}=(0.3)$.

Figure 2. For an equilateral Sierpinskis Triangle (where $u_{i}(\mathbf{x})=\frac{1}{2} \mathbf{x}+\frac{1}{2} \mathbf{x}_{1}$). the $r_{i}=d_{i j}$ by this method: in this particular case the radii could be half as large.

Figure 3. Same s_{1} and \mathbf{x}_{1} as the previous figure but here $u ;(\mathbf{x})=-\frac{1}{2} \mathbf{x}+\frac{3}{2} \mathbf{x}$, in this case the $r_{\text {}}$ found above are mimimal.

Figure 4. A one-dimensional attractor constructed from the following ondered data: $s_{1}=\frac{1}{3} \cdot s_{2}=\frac{1}{4} \cdot s_{3}=\frac{1}{2} \cdot d_{12}=1$, and $d_{13}=\frac{1}{2}$ The r, are mimimal for such attractors.

Figure 5. Barnsleys fern [t] and its envelope (see text).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Director(2)Defense Tech Information Center
Cameron Station
Alexandria, VA 22314
Research Office (Code 81)(1)
Naval Postgraduate School
Monterey, CA 93943
Library (Code 52)(2)Naval Postgraduate School
Monterey, CA 93943
Professor Richard Franke(1)
Department of MathematicsNaval Postgraduate SchoolMonterey, CA 93943
Dr. Neil L. Gerr(1)
Mathematical Sciences Division
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000
Dr. Richard Lau(1)
Mathematical Sciences Division
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000
Aaron Schusteff (1)
Department of Mathematics
University of Califomia
Los Angeles, CA 90024
Ismor Fischer(1)Department of MathematicsNaval Postgraduate SchoolMonterey, CA 93943
Professor David Canright(15)Department of MathematicsNaval Postgraduate SchoolMonterey, CA 93943

