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Abstract

From any given Iterated Fnuction System. a small set of balls that cover the.
fractal attractor call )e simply determined. This gives a priori bounds oni
the region of space in which the attractor may be constructed.



As Barnsley. Demko and others have shown [1, 2. 6. 4],. one effective,
method fur producing fractal shapes (in any number of dimensions) is with
Iterated Function Systems (IFSs). using the "Chaos Gamer algorithm (or
some deterministic algorithm). This approach has been used for producing
naturalistic shapes [4], finding fractal interpolants to given data [6, p. 274)
and fractal approximations of given functions [8), and even for visualizing
arbitrary discrete s,'quences [7]. Indeed, any contractive IFS will give an
attractor (usually of fractal dimension): thus it is possible to generate IFSs at
random to explore the graphical possibilities, as is done in some educational
software [5]. Similarly. because the attractor depends continuously on the
parameters in the IFS [1]. a small data sets from any source could be encoded
as IFSs for visualization.

In implementing the IFS method. one important question is the predict ion
a priori of the region of space containing the fractal attractor. \Vithout such
a prediction, one could only approximately estimate the spatial extent based
on calculating several points of the attractor. with no guarantee that these
points are near the bounds. If as a result the portion of space represented
in the computation of the attractor is too small. the result will not yield
the whole attractor. If the portion of space represented is overly large. theii
much computational space is wa.sted. reducing the effective resolution of the,
computed attractor. Another concern is when the space has natural limits.
for example the space of colors in Red-Green-Blue-space representable on a
video monitor is limited (more or less) to a unit cube. Then the question
becomes whether the attractor (or its projection onto the limited dimensions)
will fit in the space.

Here a simple algorithm is given to coml)ute. directly from the IFS. a set
of balls whose union contains the attractor as a subset (see Figure 1). The
radii of the balls are minimal in a certain restricted sense. This gives reliable
bounds on the region of space that must be considered in constructing the
fractal. The method is general, independent of the particular space and
metric. We first describe the set of balls, then show how to compute their
radii and prove that the algorithm works, and lastly give a detailed example.

An IFS consists of a set of n contraction mappings w, : X -- X on
a metric space X with metric d : X x X -4 R. (For the "Chaos Game"
algorithm, probabilities p, are associated with each mapping: this idea has
been extended to conditional probabilities [3]. Here only the former case is
considered. where the attractor is independent of the non-zero p,.) Assume
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that for each contraction w', the contractivity ratio 0 < s, < 1 and the fixed
point x, are known, where by definition s, satisfies d(u,,(x), t',(y)) < sd(x.y)
for all points x,y E X and x, satisfies x, = w,(x,). The action of the IFS I1"
on a set S of points in X is defined as

II(S) U u,(S) (1)
2=1

where each contraction w, is applied to the set S in a pointwise sense. The
attractor A is the set of points in X satisfying

.4 = W(A) (2i

That is. the attractor consists of ii smaller "copies of itself.
\Ve seek to cover each of the n -'copies" with a closed ball B, centered

on the corresponding fixed point x,. so the radius r, must be chosen large
enough that Bi D u'!(A). Call the union E of tl'ese balls the -'envelope." in
that E D .4 by (2). Then relative to each x,. every point in the envelope will
be within a distance R, = maxw (d/, + r, ). where d,) = d(x,.x 3 ). because for
an-)" point x in B . . d(x,.x) 1,) + d(x1 .x) ,S d,1 + rj. Applying ZI', to such a
point x will give an image point y. where (d(x, . y) : s,d(x,. x) • 6,R,. Henc'
if the radii r, are chosen to satisfy

r, = ., 1n(ax(dj + I, ) (3)

for i..j = 1 .1 then B, will contain the image 0 ,(E) of the envelope and so

E will contain its own image under the IFS:

E D If(E) (4)

Iterating the IFS from any starting set (E in particular) yields a sequence of
sets that converges to the attractor. Since (4) implies E D 11'4(E) for ally
positive integer k. the envelope E. subject to (3). does indeed contain the
attractor. But how can the r, be calculated from (3)?

When n = 2 the radii can be determined algebraically. Solving the pair

of equations (3) gives:

SIG +=2 d12S201 + SO)dJ21 -- s1,s2
s2(1 + s1)

r½ = )d12  .(5)

1 - sI S
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But for n > 2 there is apparently uo closed-form general solution, and the r,
must be found algorithmically. (If one wished to minimize calculating at the
expense of overestimating, one could use r, = d,,,,mSa/(1 - S ma:). i.e.. the

envelope as if all fixed points were equidistant at the maximum separation
and with all si equal to the largest.)

A natural approach for n > 2 is to start with the pairwise estimates

s,(1 + s8)d.) (6)

', = inax r,(7i

but inl mlost cases the r") will not satisfy (3). The exceptional case is when
rj = r1,. for every 1. j # /." # *. i.e.. when for each ball all the pairwvisc
estimates for that ball give the same size. (This case is not always apparent
from the attractor: Figure 1 shows such an example.) Otherwise. sonie of

(I) I
the r7,( will be too small to contain sonic images i',(B; ) of the other balls.
Then the obvious iterative schene to try is

(k+ 1) =.=1...
=iiaxs,(d/,, +?' S

Because this approach never overestimates the radii (r, k, < r,) and the iter-
ates are nondecreasing. the algorithm must converge. \Vhat is not so obvious
is that this process always suceeds in at most n - 1 iterations, as shown be-
low. (This would not be true without (7).) In fact. there is a direct algorithm
(not iterative) that is more efficient.

The key idea that allows the direct algorithm is that the distances d/, can
be rescaled to account for the contractivities s,. and the scaled distances D,J
can be used to order the contractions iv,. Let

D M(I + S') (I + S d I ..n1-- 5+,)l51 d,, ,j=1...n .(9)

1 -- S,Sj

(While D,j is clearly symmnnetric and non-negative, it is not a metric because
ii doesn't satisfy the triangle inequality.) Now reorder (and relabel) the U.,
by decreasing maximum scaled distance. so that

i<j =I maxD,4. > maxDi i,j.k.I n=1...n (10)
k I
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In the new order. use the pairwise formula (5) for the first two radii. Theln
proceed in order based on the previous results. letting

r, = s, nax(d, + rj) i = 3... ni(11
1<1

This is the direct algorithm. which. as shown below, solves (3): an imple-
mentation in the C programming language is given in the Appendix.

First note that in the exceptional case mentioned above (after 7), all the
D,, (for i # j) are equal. In this case. the direct algorithm will obtain the
correct r, regardless of the order in which they are computed. If not all th,.
D,, are equal, then some of the r, will need to be larger than the l)airwi-
estimates 1"( 1). and hence larger than the r, ill (6). so in general (3) implies

> , D, ((12)r+ S'

for ?i = 1... .
For the general case. the proof is by indiction. showing that eachl new 1,

comUputed lequires no adjustment of those previously Comluted. Clearly rl.
7'. from (5) satisfy (3) for the subset i.j = 1, 2. Now assume the first Il - 1
radii. ini the order (10). satisfy (3). and hence (12). for i.j = ... i - 1.
Choose r,, by (11). and let k be the value of the index j in (11 for which
the maximum is achieved. Thlen by (12) and the ordering (10)

s 4.

1+ Sk

Algebraic manipulation of (13) gives

1'k > S,.(1 + ,). ,,, + ,Sr,,'k] = 50(dkm + I'm) (14

so the new r,, requires no alteration of '..
Similarly. for i # k.Vi < m

rf > • Di,,
- l s,

1 + s,

1 -- ,,

since si < 1. Combining (15) with

r, > s,(d,,. + 7*.) (1G)
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yields

T, > s,[(I + s + .m(d~k + rk)]

> s,[d,e, + S.(k•., + rk)] = s,(d,,, + rl) 17)

by the triangle inequality. Hence the new r, requires no adjustment of any r,
for i < m. and (3) is satisfied for t,j = 1 .. rm: this completes the proof. Note
also that because of how the direct algorithmr works. the iterative algorithn.
will compute at least two of the r, (r1 , r 2 in the order (10)) in the initial step.
and will find at least one of the other r, at each successive step. arid so cani
take at most n - 1 iterations to arrive at the answer.

Can radii smaller than these r, be used and still have the B, cowcr t,
attractor? For any particular IFS. the answer is probablyl yes (as illustrate,
in Figure 2). The approach given here uses only ininimlal informatioi; abmI
the IFS: the ordering of the u, based on the maximal scaled distai ,-: th,.
, an(d for each one determini ng distanice d,. (where the nIaxiNImIII II 11!
is achieved). Using more infoul iiiat ion it mllav be possilble to reduc,, th,. -i/
of the B, But if one (considers, tilie set of all the IFSs for which the (lIi,.T
algorithm yields the same r, in the same way (i.e.. same ordered s, and s,.ii,
1- 1 determining distaiicest. theii the r, are 1i1i11111al for that set ofattr~ictor
(see Figure 3). In fact. one call construct one niember of that set sl(ch thal
each image 11',(.4) of the at tractor IhRhICdes a poillt at a distance r, fromi th'
fixed point .r,.

To construct this IFS. let X = R with the Euclidean metric ((. .r =
Ix - Y1. Let w,(.r) = -. ,.r + (1 + •,)x,. and let x, = 0..r. = d1 .,. say. Th"i'
the attractor includes the extremial points .r,= .= - /'..... = .r, r.+ Iisi .
Y(I = 1C (.r,.2) and .r,.2 = u' 2 (.r, 1. Place each succeding .r,, at thle d(eteri ,inili
distance d,,, , from the determining 1oli t .r•.. in the oplposite' direction fiom
.ck. (Figure 4 illustrates the construction.) Then the attractor will includ,t
X.tl, = x , r,,, = ',,(.ra.). Thus for this one-dimensional attractor .4. each
image z',(A) will include a point (.r,,) a distance r, from x,. so no snialler r,
would suffice.

As an example. consider the now familiar black spleenwort ferni fractal of
[4]. The IFS for the fern (in two dimensions) consists of affine contractions.
each of which has the form

Y C d, y



or rone, mnnpactly
w,(x) = .11,x + b, (19

where -\I, is the matrix and b, is the offset vector. The various constants are
given ill [4]. but in terms of scaling and rotating each axis. using p. q. 0. c).
where a = pcos0. b = -q sin o, c =psin0. d = qcoso. The following tabhc
is adapted from [4, p. 19771:

Map 1 Scalings Rotations TranslationlS
I pA q, J9, o, e,

1 0 O.1G 0 0 0 0

2 0.83 0.85 -2.5 -2.5 0 1.0
3 0.3 0.34 49 49 0 1 .G

4 0.3 0.37 120 -50 0 0.44
where angles are givei in degrees. The contractivity ratio ,s, for an
map iu, is the largest singular value of the matrix .11,. In the firs,.t thri1.'e' flid] -

above, both axes rotate togeth e . and so s, is the larger of p,. (,. In It_ th.

diffetleitial lotation causes, a skewing effect. allnt the singular v'a Ut,, of A1 ;
nuist 1 v found. The simIh.Lt way for a rial 2 x 2 matrix is first - fawt), (1i

a plre rotation to givt, a symnetri matrix (S). thel diagonal!7, it to, fi i.d
its eigenvectors,, (A,. A2,) as shuowi below:

0 = aretai ( (-20

¢== ( q / ( I0° o sin" (I 21
Ii A -Sill() CU"()/

I (2b\)
2 arctami 122
23= (y22A

A, 0 = co . (i sill05cos3 - sill.] (23 :
0 A-2 ) = ( --Si,. CO c 3 ) sin.3 cos .3

Then ,s max(JAII. )A.I). This approach also has a nice geometrical inter-
pretation: the effect of multiplying a vector x by .A1 is to take components
of x in the eigenvector directions. which are at an angle .3 relative to the
coordinate axes. scale each component by the corresponding A. and rotate
the resulting vector by o.

Proceeding as above gives s4 = 0.379. The fixed point x, for each map
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call be found by solving

(I - 1,) x, = b, (24'

This gives the nec=2ssarv starting information, summarized as -Input- in the
table below. For affine maps in higher dimensions, the contractivitv ratioU
are found by singular value decomposition. but for nonlinear maps the ratfin
and fixed points may be more difficult to find.

Running the direct algorithm program (-envelope") from the Appendix
on this input gives the following results:

Y. envelope 4
Map 1. Enter scale, x, y: .16 0 0
Map 1: s = 0.160000, x = 0.000000, y = 0.000000
Map 2. Enter scale, x, y: .85 2.45967 10.004734
Map 2: s = 0.850000, x = 2.459670, y = 10.004734
Map 3. Enter scale, x, y: .34 -0.601889 1.883961
Map 3: s = 0.340000. x = -0.601889, y = 1.883961
Map 4. Enter scale, x, y: 0.379216 0.155336 0.630251
Map 4: s = 0.379216, x = 0.155336, y = 0.630251
radii in sorted order[orig order](sorted link):
rl[2] (->2): 16.700212
r2[4J(->1): 9.993765
r313](->1): 8.628835
r4[11(->1): 4.320459

',

Thcse results are illustrated in Figuric 3. and tabulated below (including th,
D values used in re-ordering and the determining distances):

Input Out put
I S, X, y, D-order Dllax dd,t r
1 0.16 0 0 4 D 12: 25.59 d12: 10.30 4.32
2 0.83 2.460 10.003 1 D 24: 36.33 d 24 : 9.65 16.70
3 0.34 -0.602 1.884 3 D32: 30.26 d32: 8.68 8.63
4 0.379 0.155 0.630 2 D 42: 36.35 d42: 9.65 9.99

(WVbile in this example the determining distance for each map derives from
the sa.,e pair that gives the maximum D. that is not ahways the case.) Then.
If we had no idea how big the fern attractor was, we could use a coniputatioil;d

space extending from .rn,,,, = X.-) - r. = -14.24 to .r,,,, = .Y, + r. = 19,1(6



and y,,in = y4 - r 4 = -9.36 to yn,, y2 + r2 = 26.70 to contain the eClt ie
envelope. As it turns out, this is far more space than necessary for the fern
itself, but there are many other IFSs. equivalent as far as the direct algorithmi
is concerned, with much larger attractors (e.g.. what if 02 =
instead).

To summarize, given any IFS (along with the contractivities and fix\ed
points of each of its constituent contraction mappings). an envelope can b.
constructed of one ball for each map. centered on the corresponding fixd
point. (In the case of affine maps in two dimensions. an explicit procedui
for finding the contractivities and fixed points was given.) Wc have t)1 mv,

that the radii of the balls can be calculated by a simple algorithm (dii,,r
or iterative) such that the envelope covers the entire attractor. The spatia]
extent of the envelope thus gives a reliable bound on that of the attractor. (In
addition, if the balls are disjoint, the attractor is totally disconnected.) Whil,
the radii found by the direct algorithin may not be minimal for the partjiculd l
IFS. they are minimal for the set of all IFSs with euivaleinti Ifnfomat i 01M
the sense described above).
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APPENDIX

The following program in C implements the direct algorithm
for determining the "envelope" of an attractor of an Iterated
Function System on R-2, given the contractivities si and the
fixed points (xi,yi).

written by David Canright, March 1993.

#include *stdio.h>
#include <math.h>

int npts, i, j, m, n, index[64], link[64J;
double d[64][64], x[64), y[64), s[64], r[64], Dmax[64],

t, tmax, dx, dy;
int input(int argc, char *argv[]);

main(int argc, char *argv[]) {

npts = input(argc, argv); /* get si, xi, yi ,/
/* compute distances dij & maximal scaled Dij */



for (i = 1; i <= npts; i++) Dinax~i] 0.-
for (i =1; i <= npts; i++) {

for (j i+1; j <= npts; j++){
dx x~i]-xEj]; dy =y~iJ-yljJ;
d~i][j) = d~jJ Li) t = sqrt(dx*dx+dy*dy);
t = (1+- t;.sj)/1-~i*~]
if (t > Dmax~i]) Dmax[i) = t
if (t > Dinax~j]) Dmax~j] = t

1* Sort by scaled distances; index points to old order *

index~l) = 1;
for (i = 2; i <= npts; i++){

for (mn = i; m > I kk Dmax~iJ > Dinax~index~rn-1],- mn--)
index~m] = index~in-13;

index Cm] =i

/* Direct algori-hrn; link points to determining distance *
i = index~l]; i = index[2]; link~l] =2; link[2] 11-
r[11 ( s~i)/(1.+s~iJ) ) * Dmnax~i];
r[2) = ( s[j]I(l.+s~j]) ) * Dmax~j];
for (mn=3; m, <= npts: m++){

i =index~mn];
tmax = 0.;
for (n = 1; n < m; n++){

j = index~n];
if ((t = d [i] [j] + r[n] ) >tmax)

{tinax =t; link~rn] = n;}

r~m] =s~i] *tniax;

printf("radii in sorted order~orig order](sorted link) :\n");
for (i = 1; i <= npts; i++)

printf(" r'/d['/d)(->Yd): Yf\n",i,indexti3,link~i] ,r~i] )
return(0);
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/* Input function: gets si, xi, yi, or uses random numbers *

/* optional arguments: number of maps, seed for random
* mit input(int argc, char *argv[]){

double norm;
char line[813, getmore = 1;

npts = 3; /* default */
if (argc >1) sscanf(argv[1],"%d".&npts);
if (argc > 2) sscanf(argv[23,"7d",&i);
srand(i);
norm = ./(MAXINT); /* machine-dep. const., to normalize ~
for (i =1; i <= npts; i++) {

sri] norm*rando; /* random by default *
x[i) norm*rando;
yri] norrn*rand();

1* get numbers from stdin until blank line, then random *
if (getmore) {

printf ("Map $/.d. Enter scale, x, y: "4i);
gets (line);
if (line[O])

sscanf(line,"'/.lf`/lf`/`lf",s+i,x+i,y+i);
if(s~i]<0.)s[i] = -s[i]; /* enforce 0 <= s < 1 *
while(s~i]>=1.) s[i] 0.1;
I

else getmore = 0;

printf ("Map %d: s = f, x = %f, y = %f\n",i,s~i],xri],y[i]);
I

return(npts);



FIGURE CAPTIONS
Figure 1. An attractor of an IFS is shown with its envelope of three dis-.-, a."
computed by the direct algorithm. (This IFS uses affine maps. with ", = "

1 I

= •, s3 = •, x1 = (0,0). x 2 = (4,0). and x 3 = (0.3).

Figure 2. For an equilateral Sierpinski's Triangle (where u,,(x) = ix + ix,
the r, = d,j by this method: in this particular case the radii could be half as
large.

Figure 3. Same s, and x, as the previous figure, but here u',(x) = -!x-,- •x,
in this case the r, found above are minimal.

Figure 4. A one-dimensional attractor constructed from the following ,, -
dered data: S1 = .53= .. s = . (112 = 1. and (d13 = The r, are mininmifor such attractors.

Figure 5. Barnsley's fern [4] and its envelope (see text).
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