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Abstract 

Background: The role of chest radiography in COVID‑19 disease has changed since the beginning of the pandemic 
from a diagnostic tool when microbiological resources were scarce to a different one focused on detecting and moni‑
toring COVID‑19 lung involvement. Using chest radiographs, early detection of the disease is still helpful in resource‑
poor environments. However, the sensitivity of a chest radiograph for diagnosing COVID‑19 is modest, even for expert 
radiologists. In this paper, the performance of a deep learning algorithm on the first clinical encounter is evaluated 
and compared with a group of radiologists with different years of experience.

Methods: The algorithm uses an ensemble of four deep convolutional networks, Ensemble4Covid, trained to detect 
COVID‑19 on frontal chest radiographs. The algorithm was tested using images from the first clinical encounter of 
positive and negative cases. Its performance was compared with five radiologists on a smaller test subset of patients. 
The algorithm’s performance was also validated using the public dataset COVIDx.

Results: Compared to the consensus of five radiologists, the Ensemble4Covid model achieved an AUC of 0.85, 
whereas the radiologists achieved an AUC of 0.71. Compared with other state‑of‑the‑art models, the performance of a 
single model of our ensemble achieved nonsignificant differences in the public dataset COVIDx.

Conclusion: The results show that the use of images from the first clinical encounter significantly drops the detec‑
tion performance of COVID‑19. The performance of our Ensemble4Covid under these challenging conditions is con‑
siderably higher compared to a consensus of five radiologists. Artificial intelligence can be used for the fast diagnosis 
of COVID‑19.
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Key points

• The sensitivity of COVID-19 detection using conven-
tional CXR depends on the evolution of the disease.

• Compared to a group of radiologists, AI achieves a 
higher sensitivity at the onset of the disease.

• This ability for early detection of COVID-19 could 
be applied in settings lacking resources, providing an 
immediate radiological report for each patient stud-
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ied with CXR. Assistance with this tool could also be 
supplied by teleradiology in places where there is a 
lack of microbiological testing.

Background
The emergence of the Coronavirus Disease 2019 
(COVID-19) has dramatically changed the way of life of 
millions of people worldwide, putting public health at 
risk and overburdening health systems. The number of 
cases worldwide is over 70 million, and the number of 
direct deaths is around 4.7 million as of September 2021 
[1]. Early detection of Covid-19 cases remains crucial to 
reducing transmission rates and adopting appropriate 
treatment measures [2].

The standard method for COVID-19 diagnosis is 
reverse transcription-polymerase chain reaction (RT-
PCR) [3]. At the beginning of the pandemic, when RT-
PCR tests were scarce, imaging tests were crucial for 
diagnosing COVID-19. However, though chest computed 
tomography (CT) [4] or radiograph [5, 6] have been rele-
vant throughout the evolution of the pandemic, the initial 
focus on identifying COVID-19 through lung involve-
ment has changed. At the same time, different laboratory 
tests became increasingly available. Currently, a chest 
radiograph (CXR) is the recommended imaging test for 
the initial assessment of patients with respiratory symp-
toms suspected to be caused by SARS-COV-2 infection 
[7]. The primary role is now to be a biomarker of a higher 
severity level of lung damage and a follow-up tool for that 
lung involvement over time, including the speed of lung 
spreading. The relevance of those clinical variables has 
motivated the development of different artificial intelli-
gence algorithms for automated detection of COVID-19 
chest involvement [8–11].

There are many previously reported results for 
COVID-19 detection using AI with chest radiographs. 
Initially, many studies were limited to small datasets or 
used publicly available images of variable quality [12, 13]. 
Still, other recent studies have used more extensive and 
more consistent datasets producing more reliable results 
[10]. An earlier diagnosis of COVID-19 would allow us 
to anticipate care at a higher therapeutic level [14, 15]. 
Still, the predictive power of CXR in the initial stages, 
either for radiologists or for an AI algorithm, is lower. We 
hypothesize that our AI algorithm can still detect radio-
logical signs of COVID-19 in chest CXRs performed in 
the initial stages of the disease, with a performance that 
could be competitive against radiologists. Although in 
developed countries, COVID-19 diagnosis does not 
currently depend on imaging techniques as it did dur-
ing the first stage of the pandemic, a reliable AI algo-
rithm could be of substantial help for world places where 

analytic resources are systematically scarce. However, in 
the post-pandemic future, it could be helpful to differen-
tiate between COVID-19 in the very early stages of the 
disease and other diseases evolving with similar clinical 
features for highly demanded and overloaded emergency 
and radiology departments. That algorithm would be a 
relevant clinical tool for triaging respiratory patients. 
Therefore, based on CXR images, our objective was to 
compare the performance for detecting COVID-19 of 
an automated AI algorithm with the radiologists’ inter-
pretation. But, unlike other related algorithms, our CXR 
images correspond to the first one performed on patients 
with suspected COVID-19 pneumonia for both positive 
and negative cases. On the other hand, in our research, 
negative cases were patients who never showed positive 
in any RT-PCR test during the same period of the study 
reducing the possibility of bias compared to previous 
works in which non-COVID-19 cases were selected from 
pre-pandemic era patients [9, 16]

Materials and methods
The checklist for Artificial Intelligence in Medical Imag-
ing (CLAIM) has been added as an Additional file 1 [17] 
as suggested by Roberts et al. in [18].

Data
Our retrospective study included patients from the pub-
licly available BIMCV-COVID19 + [19] and BIMCV-
COVID19- [20] datasets for positive and negative 
patients, respectively. The source of this data is the 
Medical Imaging Databank in Valencian Region (Spain) 
(BIMCV) which includes 23 hospitals from 18 health 
departments.

The datasets contained CXR images of COVID-19/
non-COVID-19 patients along with polymerase chain 
reaction (RT-PCR), immunoglobulin G (IgG), and immu-
noglobulin M (IgM) diagnostic antibody tests and radi-
ographic reports. The CXR images were acquired using 
radiological equipment from 20 different vendors, ensur-
ing large variability in the dataset. Patients were consecu-
tively recruited between April and June 2020 (period of 
observation) who met the following inclusion criteria: 
(a) having an RT-PCR and/or IgM or IgG serological test 
for clinical suspicion of SARS-COV-2 infection, and (b) 
having a first portable or standing chest X-ray performed 
less than one week from the date of the microbiological 
or serological test. Patients under 18  years of age were 
excluded. Our gold standard test to discriminate between 
patients with and without acute SARS-CoV-2 infection 
was RT-PCR; however, given the limitations of the test 
and in-line with recommendations proposed in [21] sero-
logical tests (Ig) were also used. Therefore, patients with 
at least one positive RT-PCR, IgM, or IgG test during the 
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observation period were classified as positive for SARS-
COV-2 infection (hereafter "positive"). Patients with 
negative results in all serological or microbiological tests 
performed during the observation period were classified 
as patients without SARS-COV-2 infection (hereafter 
"negative"). A patient could have several studies and diag-
nostic tests with different outcomes during this period.

Datasets
The study included 6,962 patients (4,566 positive and 
2,396 negative) after excluding patients under 18  years 
old. A random split was carried out to get a training set 
independent from the test set. The training set included 
3,647 positive patients (9,188 frontal CXR) and 1,908 
negative patients (2,551 frontal CXR). The independent 
test set included the remaining patients who were a) 310 
patients positive for SARS-CoV-2 infection whose CXR 
images met the requirements of being from the first clini-
cal encounter and belonged to patients with a positive 
test within plus/minus one day, and b) 527 negative cases 
whose images corresponded to the first clinical encoun-
ter. It is important to emphasize that only the images 
from the first clinical encounter were retained for the test 
set since we were concerned with the early diagnosis of 
COVID-19. Figure  1 shows the detailed breakdown of 
the data. Notice that the number of frontal CXR is higher 
than the number of patients because one patient might 
have undergone several different clinical studies on the 
first day, and a clinical study may contain several frontal 
CXR. Notice that all frontal CXRs from all the clinical 
encounters were included in the training set. This setting 
increases the number of available training images, which 
is critical when training deep neural network models.

Finally, a subset of 225 positive and 255 negative stud-
ies was randomly sampled from the test set for radiolo-
gists’ evaluation.

A detailed demographic description of the training and 
test datasets is presented in Table 1. The table shows no 
significant age and gender deviations between training 
and test groups and between positive and negative cases. 
The higher number of radiographs for the positive train-
ing patients is caused by the follow-up studies made on 
this particular group. Notice that this is not the case for 
the positive test patients because only the images from 
the first clinical encounter are used for evaluation. A fac-
tor that could bias the result is the different quality of 
the images captured from either mobile or fixed devices. 
Table 1 also shows the fraction of images obtained using 
mobile devices, which is similar for the distinct groups. 
Finally, the table also shows a higher incidence rate for 
the male group (p < 0.05), which is consistent with other 
previous studies [22].

Deep learning model
Like other works in the literature, our approach is 
based on the use of deep convolutional neural net-
works that are available as pre-trained models [23]  to 
apply transfer learning techniques. Four different well-
known convolutional architectures pre-trained with 
the ImageNet dataset [24] were used. In particular, the 
ResNet50 [25], Densenet121 [26], InceptionV3 [27] and 
InceptionResNetV2 [28] were chosen.

Before feeding the images into the model, the images 
are preprocessed by normalizing the pixel intensi-
ties using the maximum pixel value of each image and 
resizing them to a fixed resolution of 256 × 256 pixels. 
A convolutional layer with three channels at the begin-
ning of the network was added to adapt these architec-
tures to the gray-level CXR images. This layer serves as 
a pseudo-color conversion to fit the pre-trained input 
layer that expects color images. Moreover, a GlobalA-
veragePooling [29] and a Dense layer were added to the 
top of the pre-trained network with a sigmoid activa-
tion function to provide a score.

After all these modifications, the network was finally 
optimized by minimizing the binary cross-entropy 
using an Adam optimizer, learning rate annealing, and 
a batch size of 24 samples. The optimization was per-
formed over a fixed number of 50 epochs with a learn-
ing rate of 0.001 for the first 25 epochs and 0.0001 for 
the last epochs. This network was fully trained end-
to-end, including all the pre-trained network weights, 
using the Keras library [30].

A critical issue for training convolutional neural 
networks is choosing suitable data augmentation poli-
cies for the problem. In this sense, the RandAugment 
technique [31] was explored with the following K = 9 
policies: AutoContrast, Equalize, Rotate, Contrast, 
Brightness, Sharpness, Cutout, TranslateX,and Trans-
lateY. Moreover, RandAugment requires to specify two 
main parameters: N  , the number of policies applied 
simultaneously, and M , the strength of these augmen-
tations. RandAugment always selects a transformation 
with a uniform probability of 1/K  . Therefore, given N 
transformations for a training image, RandAugment 
may apply KN  different policies. Different values for 
the N ∈ {4, 5, 6} and M ∈ {25, 30} parameters were used, 
being 30 the maximum strength defined for each aug-
mentation. In total, different combinations of 4 topolo-
gies, 3 values of N  and 2 values of M , were used to train 
a total number of 24 models. The possible values of the 
N  and M were selected using a validation set extracted 
from the training set following an 80/20 partition. To 
this end, the area under the ROC curve (AUC) over the 
validation set was chosen as the metric to optimize.
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Comparison with radiologists
Five radiologists with 1, 3, 6, 12, and 14 years of experi-
ence, and recent intensive experience with COVID-19 
CXR interpretation, provided evaluations to benchmark 
the model’s performance using a smaller subset of 225 
positive and 255 negative test patients, as shown in Fig. 1.

Radiologists were blinded to any clinical characteris-
tics and had access to the complete radiologic study (i.e., 

radiologists could review both frontal and lateral projec-
tions). Radiologists provided an overall subjective inter-
pretation of COVID-19 probability by using several labels 
following the COVID-19 BSTI reporting templates [32]: 
1: Normal, 2: probable COVID-19, 3: Indeterminate for 
COVID-19, and 4: Other Non-COVID-19 abnormalities. 
The agreement among radiologists was measured using 
Fleiss’ kappa statistic, which is a generalization of Cohen’s 

Fig. 1 Flowchart for data curation and data partition
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kappa for multiple raters and ratings [33]. We tested the 
null hypothesis ( α = 5%) that the underlying value of 
kappa is 0, which suggests an agreement by chance.

A three-point COVID-19 scoring system was derived 
using the radiologists’ labels:

• Score 0 for the Normal and other Non-COVID-19 
abnormalities labels.

• Score 1 for the intermediate probability of COVID-
19.

• Score 2 for the high probability of COVID-19.

The radiologists’ scores were given a threshold at inter-
mediate values between the three scores (between 0 and 
1 and between 1 and 2) to get two distinct operating 
points of sensitivity and specificity. A consensus radi-
ologist interpretation was also obtained by averaging the 
scores of individual radiologists.

Comparison with state‑of‑the‑art AI algorithm using 
a public dataset
The AUC performance may change depending on the cri-
teria used to build the training and test datasets. Hence, 
we have validated our training methodology using one of 

the most extensive open access benchmarks, COVID-19 
datasets: the COVIDx dataset [12], for an objective com-
parison with other state-of-the-art methods. The COV-
IDx dataset comprises 13,975 CXR images across 13,870 
patient cases. The COVIDx dataset has many COVID-
19 positive samples obtained from five different publicly 
available data repositories of variable quality. The dataset 
has three other classes: normal, pneumonia, and COVID-
19. Following the methodology of Wang et  al. [12], the 
performance of a single model using the Densenet121 
architecture was evaluated using the sensitivity and the 
positive predictive value using the same dataset parti-
tions and training the model from scratch for a fair com-
parison. Confidence intervals were obtained using 2,000 
bootstrap samples [34].

Results
Performance of deep learning model
Table 2 summarizes the best results over the test set for 
each different neural network architecture. The Ran-
dAugment was applied with the best parameters N and 
M obtained using a validation subset for each topol-
ogy. The best result was obtained for the Densenet121 
model with N = 4 and M  = 30 with an AUC of 0.845. A 

Table 1 Detailed dataset description

Age variables are presented as the mean and standard deviation and also using 10% and 90% quantiles. For the number of female cases, absolute and percentage 
values are shown. Quantiles are also used for the number of chest radiographs per patient

Training/validation Test

Overall Total Covid19‑pos Covid19‑neg Total Covid19‑pos Covid19‑neg

Num patients 6339 5555 3647 1908 784 296 488

Age (mean ± std) 63 ± 18 63 ± 18 62 ± 17 63 ± 18 62 ± 18 62 ± 17 62 ± 19

Age (quantiles) 64 (38–86) 64 (38–86) 64 (40–86) 64 (37–87) 64 (38–86) 64 (38–83) 64 (38–87)

Female sex 3188 (50%) 2761(50%) 1754(48%) 1007(53%) 427 (54%) 151 (51%) 276 (56%)

AP, PA Chest radio‑
graphs per patient

1 (1–4) 1 (1–4) 2 (1–5) 1 (1–1) 1 (1–1) 1 (1–1) 1 (1–1)

Num. images 12,599 9855 2744 946 347 599

Num. images 
acquired with a 
mobile device

3699 (29%) 2970 (30%) 729 (27%) 230 (24%) 78 (22%) 152 (25%)

Table 2 Results over the 836 test images for the different architectures and RandAugments parameters

The threshold over the scores used to obtain the sensitivity, specificity, true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) shown in 
the table is the one that maximizes the Youden index

Neural Net N M AUC Sensitivity (%) Specificity (%) TP TN FP FN Accuracy (%)

ResNet50 6 25 0.833 75 77 233 407 119 77 76.5

Densenet121 4 30 0.845 76 78 237 414 112 73 77.8

InceptionV3 4 30 0.830 80 73 250 382 144 60 75.6

InceptionResNetV2 4 30 0.822 74 76 229 400 126 81 75.2

Ensemble4Covid 0.856 78 81 242 425 101 68 79.8
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linear ensemble of these four models, named as Ensem-
ble4Covid, achieved a final AUC of 0.856. The threshold 
value over the scores used to obtain the different metrics 
shown in the table is the one that maximizes the Youden 
index [35] in the Ensemble4Covid ROC curve (maximizes 
the sum of sensitivity and specificity).

Figures 2 and 3 show three representative examples of 
true positive and false positive cases. A Grad-CAM heat-
map [36] that highlights the feature importance is shown 
for each image. The Grad-CAM algorithm shows where 
the network is looking for a particular class. For this rea-
son, only examples of positive predictions are displayed.

Table  3 displays the AUC results for different test 
groups using the Ensemble4Covid model. The perfor-
mance was better in men (AUC 0.88 vs. 0.83) and slightly 
lower in patients younger than 40  years (AUC 0.82 vs. 
0.86).

Comparison with radiologists
A comparison between the radiologists and the ensem-
ble neural network on the radiologists’ test set (225 
positive and 255 negative COVID-19 patients) is pro-
vided in Table  4. The agreement among radiologists 
using the Fleiss’ Kappa test is significantly above chance 
( κ = 0.35± 0.05 , α = 0.05 ). The table shows the specific-
ity and sensitivity for each decision threshold. The sensi-
tivity of the Ensemble4Covid model is provided for each 
mean specificity value.

A consensus obtained by averaging the scores of the 
radiologists was obtained. Figure  4 compares the ROC 
curves of the Ensemble4Covid model and the five radi-
ologists’ agreement. It also displays the results for each 
radiologist. The five radiologists’ consensus achieved an 
AUC of 0.71.

Comparison with state‑of‑the‑art artificial intelligence 
models
Table  5 displays the sensitivity and positive predictive 
value (PPV) of a single Densenet121 model compared 
with the COVID-Net results reported in Wang et  al. 
[12]. The results show no significant statistical differ-
ence between the results presented in [12] and a trained 
Densenet121 model using the COVIDx dataset with 
the methodology described in the Materials and Meth-
ods section. The sensitivity achieved by the AI methods 
in the COVIDx dataset is much higher than the results 
achieved by the radiologists and our Ensemble4Covid 
method on our dataset (Table  3). This result indicates 
that the performance of the algorithms may be affected 
by the difficulty of the particular dataset and the estab-
lished standard.

Discussion
Early detection of COVID-19 remains crucial, both for 
isolation and reduction of infections and for enabling 
patient monitoring and avoiding a fatal evolution [37]. 
CXR is not currently a suitable test for the early detection 
of COVID-19 disease [38]. However, CXR is an inexpen-
sive, widely available, and highly requested test (espe-
cially in emergency departments) for any patient with 
rapid onset respiratory symptoms [39].

Our AI tool applied to CXR has reached a sensitivity 
value of 85% (79–89%) to detect COVID-19 for a speci-
ficity value of 70% (64–75%), higher than a group of five 
radiologists regardless of their experience in the CXR 
technique within an emergency environment.

Applying this tool systematically to all CXR performed 
in any health center would allow detection of the disease 
early without other tests [40]. Likewise, we have expe-
rienced continuous outbreaks of new variants whose 
severity, infectious potential, and symptoms are initially 
uncertain and need to be intensively investigated for 
weeks or months. In this context, the RT-PCR test may 
be less sensitive [41].

Moreover, if presented in an atypical manner, both 
clinical suspicion and the request for microbiological 
tests would be delayed. But whatever the clinical setting 
was, in the face of chest symptoms, CXR is usually car-
ried out by default and before any microbiological tests, 
thus being COVID-19 potentially detectable through the 
AI tool.

On the other hand, in settings, countries, or situa-
tions with limited resources, it can be challenging to get 
the result of an RT-PCR test in a reasonable time when 
an early diagnosis is needed for patient-placement deci-
sions. The AI algorithm systematically applied to CXR 
in this context could be a handy screening tool [38]. This 
assessment could also be carried out using teleradiology 
if the appropriate infrastructure was available.

The sensitivity of the Ensemble4Covid method is lower 
than that of other previously published algorithms [10, 
12]. But in our research, the AI was evaluated just with 
the first radiological exam when pulmonary findings are 
less conspicuous than at a more advanced stage of the 
disease. However, we believe that our results are worth 
considering despite that apparent worse sensitivity 
because the validation conditions used in this research 
are closer to a real application scenario, where an early 
diagnosis is required. The advantage of AI may lie in its 
ability to identify changes in medical images before they 
become visible to the human eye. That would be the case 
with COVID-19 patients before abnormal lung densities 
were conspicuous in CXR.

Nevertheless, we have to recognize some limitations 
in our results. First, we do not know whether AI detects 
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Fig. 2 Grad‑CAM heatmaps for True Positive COVID‑19 predictions. The red intensity on the right images indicates the image regions that are 
important for the positive prediction. These regions correspond to patchy consolidations and ground‑glass opacities, with a peripheral, bilateral 
distribution (a) or a mid and lower zone predominance on the right lung (b, c)
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Fig. 3 Grad‑CAM heatmaps for False Positive COVID‑19 predictions. The red intensity of the images on the right indicates the important regions for 
a false positive prediction. These regions correspond to multiple consolidations with no zone predominance in the right lung (a), a unilateral right 
lower lung opacity and the contralateral soft tissues in the axillary region (b), superimposition of the scapula in the right lung periphery along with 
the left lower lobe vessels behind the heart (c)



Page 9 of 12Albiol et al. Insights into Imaging          (2022) 13:122  

pneumonia or other abnormalities because no lung 
parenchymal segmentation was performed in training. 
These abnormalities may include pathology at differ-
ent levels, e.g., cardiovascular and even extrapulmonary 
findings, such as data indicative of male sex or obesity, 
related to a worse prognosis of COVID-19 [42, 43].

This issue could make our AI vs. radiologist diagnostic 
performance unreliable and explain the significant dif-
ference in favor of AI. If this is the case, the comparison 
of sensitivities and specificities between AI and radiolo-
gists would be limited. But, in the end, the tool would still 
improve COVID-19 detection, as other publications with 
similar methodology have highlighted [44], especially for 
less experienced radiologists.

Accordingly, even if the AI performance was based 
on detecting extrapulmonary features indicative of 

Table 3 Performance of Ensemble4Covid for different age and sex groups over the 836 test images

Values in parenthesis are 95% confidence intervals

Age group Sex group

 < 40 [40–60]  > 60 Male Female

Num. patients 102 245 437 357 427

Num. images 109 257 470 381 455

AUC 0.82 (0.73–0.90) 0.86 (0.81–0.90) 0.86 (0.83–0.90) 0.88 (0.85–0.92) 0.83 (0.79–0.86)

Table 4 Radiologists’ specificity and sensitivity results for each 
threshold

The sensitivity of the Ensemble4Covid model for the same mean specificity is 
also displayed. Values in parenthesis are 95% confidence intervals

Reader Threshold Specificity Sensitivity Ensemble4Covid 
sensitivity

Reader 1 High 98% (96–99%) 20% (14–25%) 31% (21–41%)

Low 86% (82–90%) 35% (28–41%) 66% (58–76%)

Reader 2 High 96% (94–98%) 19% (14–24%) 41% (33–48%)

Low 87% (83–91%) 32% (27–39%) 65% (55–73%)

Reader 3 High 98% (96–99%) 15% (10–20%) 31% (21–41%)

Low 88% (84–92%) 25% (19–31%) 62% (53–71%)

Reader 4 High 86% (81–90%) 51% (44–58%) 66% (58–76%)

Low 70% (64–75%) 61% (55–68%) 85% (79–89%)

Reader 5 High 82% (77–86%) 56% (50–62%) 76% (67–82%)

Low 67% (61–73%) 69% (63–75%) 85% (81–90%)

Fig. 4 Sensitivity and specificity for each radiologist with 95% confidence intervals with the ROC curves for the Ensemble4Model (with 95% 
confidence bands) and the five radiologists’ consensus. Each reader shows two operating points depending on the threshold over the scores
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vulnerability to COVID-19, it could also be suitable 
for clinical decision-making. As a result, an AI result 
suggesting COVID-19 could recommend closer clini-
cal and radiological follow-up in patients with negative 
microbiological tests or radiological reports in the dis-
ease’s early days. Future research will further elaborate 
on the findings that the tool is considering to reach its 
verdict.

Second, the software has been trained and tested in 
patients from the same centers. To determine if our 
results can be generalized, future studies will try to 
validate them using CXR performed by different radio-
logical equipment in diverse sociodemographic popula-
tions and with different disease prevalence than those 
of the sample we used for training the algorithm [45]. 
However, the AUC parameter chosen to determine 
the tool diagnostic performance would vary minimally 
when applied in populations with a different disease 
prevalence.

A third limitation is that only CXR findings have 
been used in our analysis, without demographic or 
lab data that could improve the model’s capability. The 
radiologist’s assessment was also carried out under 
non-normal conditions to avoid biases in the pure 
interpretation of images, i.e., without clinical-analytical 
information.

A fourth limitation is that the tool’s contribution to 
radiologists in clinical practice has not been assessed 
either. Therefore, we cannot rule out that the higher 
sensitivity of the AI could fade away in usual working 
environments, regardless of whether our data seemed 
to support that the AI improves the results even for 
radiologists with a higher level of expertise. This limi-
tation could be overcome by prospectively testing the 
tool in an actual clinical situation.

The fifth limitation is that although the sample of 
positive and negative patients is similar in terms of 
age (Table  1), recruitment period (Fig.  1), and clini-
cal suspicion of COVID-19, precise information on 

the symptoms and signs for COVID-19 suspicion and 
requested additional tests were lacking and may also 
have overestimated the performance of the AI tool. Our 
sixth limitation, inherent to the reference standard, as 
mentioned several times before, is that a negative RT-
PCR result does not necessarily imply the absence of 
disease, and misclassifications may have occurred. We 
believe that using serological tests and microbiological 
tests has increased classification accuracy. Still, we do 
not rule out possible false negatives for SARS-CoV-2 
infection in those patients who underwent only the RT-
PCR test, especially if it was only once.

And our final limitation is that this study has dem-
onstrated a high rate of false-positive results, especially 
in low-prevalent COVID-19 environments, up to 30% 
according to our specificity data. As a result, the num-
ber of RT-PCR or other microbiology or serological 
tests might be increased. However, the AI algorithm 
might increase its accuracy if additional information on 
patients’ characteristics could be included.

In short, the preliminary results of this project sug-
gest that this AI algorithm can be used for early detec-
tion of COVID-19 from the first conventional CXR 
performed at the onset of disease, overtaking the 
radiologists’ performance. The generalizability of our 
results, the reasons the algorithm bases its decisions, 
and the added value that it may bring to routine patient 
care will be elucidated in future work.
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