
https://doi.org/10.1177/2056305119880177

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction

and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

Social Media + Society
October-December 2019: 1–10 
© The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2056305119880177
journals.sagepub.com/home/sms

Platformization of Cultural Production

The evolution of digital platforms has been beset by “wars.”
These clashes between Windows/Mac, Google/Yahoo,
Facebook/Myspace, and iOS/Android established battle-
grounds for platform makers to retain control over “the condi-
tions under which creative content is produced” (Gillespie,
2010, p. 358). While such feuds are well documented, another
rivalry rages under the radar between Epic Games and Unity
Technologies, whose game engines “are in a battle for the
hearts and minds” (Takahashi, 2015) of programmers. Beyond
games, the two are also vying for control over Virtual Reality
(VR) and other immersive media. Ultimately, through their
software’s technical specifications, interoperability with other
platforms and business models, the winner of the war will pos-
sess the de facto “tool” for making interactive content.

This article investigates how the Unity game engine sets
standards for games and emerging technology (like VR). To
do this, first I review the literature surrounding “plaformiza-
tion,” which reveals a persistent logic embedded in the eco-
nomic, social, and technical makeup of platforms. One
underlying component of this logic is “lock-in,” where plat-
forms are made dependent on and interoperable with each
other to assure market viability. However, “lock-in” also con-
stricts creative and ideological alternatives. These restraints
are emblematic of what I call a “platform tool,” or productivity
software that simultaneously enables and locks-in how ama-
teurs and professionals build digital content for platforms.

Unity offers a glimpse into the power platform tools have
over creators. It both gives access to the necessary elements

for virtual world building and compels developers to adopt
norms derived from the game and tech industries in which it
is enmeshed. To uncover the software’s influence on creative
practices, semi-structured interviews were conducted with
VR enthusiasts. Their perspective elucidates the role of the
engine in current and future modes of production. Unity
opened an easy point of entry to play with VR, while it
locked-in genres, user identity, professional criteria, and
even the potential future of the medium around digital games’
culture and industry.

The Problem With Platforms

There is “no consensus definition” (Martens, 2016) for “plat-
forms.” The term describes a variety of phenomena: from
social networks (Helmond, 2015) to music distribution ser-
vices, game consoles (Montfort & Bogost, 2009), and
broadly any multisided market where an exchange occurs
(Martens, 2016).1 As a result, Nieborg and Poell (2018) char-
acterize platforms by their “contingency” (p. 4276), in that
they are at once dependent on each other and yet change con-
stantly. A platform can therefore be understood as an app,

880177 SMSXXX10.1177/2056305119880177Social Media + SocietyFoxman
research-article20192019

University of Oregon, USA

Corresponding Author:
Maxwell Foxman, School of Journalism and Communication, University of
Oregon, Eugene, OR 97403, USA.
Email: mfoxman@uoregon.edu

United We Stand: Platforms, Tools and
Innovation With the Unity Game Engine

Maxwell Foxman

Abstract
The skirmish between game engines Unity and Unreal presents a new front in the platformization of cultural production. This
article argues that such programs are “platform tools.” They enable amateurs and professionals to not only build content for
platforms but also “lock-in” industry ideologies in the ideation, production, implementation, and distribution of digital creative
work, resulting in a homogeneity of developers, practices, and products. The Unity engine’s history, features, and place in the
game production pipeline makes it a paradigmatic “platform tool.” Findings from 90 interviews with VR enthusiasts show that
Unity set the boundaries or “rules” for developers’ everyday activities and, despite enthusiasm about the medium’s potential,
compelled them to create content which conformed to popular gaming genres and standards.

Keywords
virtual reality, immersive media, diffusion of innovations, video games, game engine, lock-in

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/sms
mailto:mfoxman@uoregon.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2056305119880177&domain=pdf&date_stamp=2019-11-21

2	 Social Media + Society

software environment, or service contingent: (a) on other
platforms both economically (via multisided marketplaces)
and technically (through interoperable code), (b) in their
mutability and modularity, and (c) on user content and feed-
back for functionality.

Platformization

Given platforms’ broad definition and reach, scholars have
also sought to distill their commonalities. Schwarz (2017)
states that there is a complex “platform logic” that underlies
all levels of use, from local code-based control to global
networks (p. 94). “Platformization,” as Nieborg and Poell
(2018) name this logic, refers to the “penetration of eco-
nomic, governmental, and infrastructural extensions of digi-
tal platforms” (p. 4276). This represents three fundamental
shifts in the philosophy and politics of cultural production:
first, in the role platforms play in shaping multisided mar-
kets; second, in the control exerted by platform providers on
users; and third, in the infrastructure of the software itself
(p. 4281). The result is that platforms impose limitations for
the production, consumption, and even ideation of digital
content: producers modify their products to fit platformized
business models, and developers are incentivized to manu-
facture content that is “contingent, modularized, constantly
altered, and optimized for platform monetization” (p. 4282).

Finally, platformization consolidates power and equity into
a small number of global “platform behemoths,” who can fur-
ther entrench themselves because of the interconnectivity and
interoperability inherent to the platform economy. Bechmann
(2013) labels this phenomenon as “intraoperability” to high-
light the asymmetry in power relationships between end-users
and providers who are “dominant in terms of market share,
attitude, or acquiescence” (p. 75). Ultimately, retaining users,
or keeping them “locked into” (p. 84) a platformized ecosys-
tem, is an ideological prerogative of platform leaders.

Lock-In

Although rarely the explicit focus of platform studies, lock-
in is a useful concept for further interpreting the implications
of platformization. “Lock-in” is a negotiation between com-
panies, products, and consumers in which the norms and uses
surrounding a product are set and adopted. In doing so, dif-
ferent standards and products are obscured as switching to or
introducing an alternative becomes more difficult and costly.

The concept is rooted in economics and studies of path
dependence, in which “there are a finite number of perfect
stable alternative states, one of which will arise based on the
particular initial conditions” (Margolis & Liebowitz, 1998).
Lock-in explains how history, social factors, and business
strategies may cause the adoption of subpar consumer goods
and services. Classic examples include the QWERTY key-
board’s triumph over the more optimal Dvorak, and VHS
tapes over Betamax.2 In both cases, inferior versions

dominated the market because they were “locked-in” by
users before the competing standard. Besides removing com-
petitive alternatives (Cantner & Vannuccini, 2017, p. 11),
lock-in’s value is that once established in consumers’ lives it
preserves profitable as well as failing aspects of a product or
service.

In critiques of platforms, lock-in is referenced as a source
of oligopolistic control of markets (Bodle, 2011), users,
developers, and vendors (Nieborg & Poell, 2018; Plantin,
Lagoze, Edwards, & Sandvig, 2016). However, these texts
do not put the concept at the forefront of their studies.

This may be because its application is so widespread. In
business studies alone, vendors, innovations, and technology
can all be subject to lock-in. Shapiro and Varian (1998) also
describe benefits of customer lock-in; since it is costly to
switch from locked-in products, users can be enticed to hold
onto them for years (such as Microsoft Office). Lock-in is at
once a technical parameter, a business strategy, and even a
simple explanation for the adoption of innovations.

I argue that lock-in also functions as an ideology to
impede competing options, reflecting popular technology
philosopher Lanier’s (2011) concern that

[l]ock-in removes ideas that do not fit into the winning digital
representation scheme . . . [and] reduces or narrows the ideas it
immortalizes, by cutting away the unfathomable penumbra of
meaning that distinguishes a word in natural language from a
command in a computer program. (p. 10)

It constrains the creative potentiality of cultural producers as
they become inculcated into specific software. Lock-in,
therefore, serves three purposes for cultural production: it
sets consumer expectations of use, establishes a technical
and social pipeline for common practices, and, perhaps most
importantly, cements and institutionalizes corporations’
imperatives and philosophies.

As such, lock-in represents an important avenue for
assaying the impact of platformization and contingency. It
establishes the technical and economic criteria by which
companies, consumers, and producers interact with plat-
forms, simultaneously constricting their creative possibilities
while affording them normalized parameters by which they
create. In other words, platforms can lock-in the tools with
which users have to work, play, and produce.

Platform Tools

Lock-in takes on particular significance when considering
what I call “platform tools.” This software enables both ama-
teurs and professionals to build content from and for platforms,
thus serving an explicitly utilitarian purpose, as opposed to
social platforms like Facebook, distribution platforms like
Spotify, or even online marketplaces like Etsy. As tools, they
are integral to the entire production process—from the ideation
of a project through creation, production, and eventually

Foxman	 3

distribution. But as a platform tool, the software “locks-in” spe-
cific practices at each of these stages, setting rules and guide-
lines based on the platformized digital media ecosystem.

Like platforms, these tools are contingent on other plat-
forms for economic viability, are constantly changing to
meet the needs of existing and new platforms, and ultimately
depend on consumers/producers to build content with them.
But they are distinct in a number of key ways: they generate
applications and creative work that may not be explicitly tied
to or hosted on a platform (though they often are), and they
are not billed as marketplaces.3 Instead, a platform tool acts
as an intermediary between industries and platforms to aid in
the construction of a stand-alone application. However, a
byproduct of this function is that it locks-in specific ideolo-
gies connected to those industries.

As a consequence, platform tools resemble “middle
broware” (Lesage, 2015) or a set of “commoditised media soft-
ware and its related practices of design” (p. 90) used as a “glue”
for “simultaneously enabling and constraining the production,
circulation, and appreciation of cultural content” (p. 92).
Lesage’s example is Adobe Photoshop, software also for pro-
fessionals and amateurs, which, he notes, constantly adds for-
mats, features, and third-party plug-ins to sustain it as a vital
force in shaping who and how digital photos are reproduced.
Platform tools, as I conceive them, do not share the “symbolic
order” of content that preoccupies Lesage. Furthermore,
Photoshop does not require inter- or intraoperable platforms to
successfully create or distribute photographs.4

Nor does it make as extensive use of prefabricated soft-
ware packages, kits, and application programming interfaces
(APIs)5 for content creation. These promote path dependence
because it is less tedious for developers to work with the com-
patible software and premade code than to program from
scratch. However, packages further define how applications
interact with each other by providing a roadmap for what can
be designed. These technical restrictions are central to soft-
ware studies’ critiques of platforms. Bogost (2008) states how
they “both facilitate and limit discursive production, just as the
rules of natural language bound poetry and the rules of optics
bound photography” (p. 66). However, he adds that such
restrictions can be empowering for users and even useful cre-
atively. Similarly, Plantin et al. (2016) describe how platforms’
“affordances simultaneously allow and constrain expression”
(p. 298) through APIs, which act as “gateway[s], permitting
other systems to interact” (p. 303) with dominant platforms
that “locks [emphasis added] . . . groups into a landscape
defined and controlled” by the leading company. This asser-
tion underscores the notion that platform tools like the Unity
Game Engine are a nexus by which to view the impact of plat-
formization and lock-in both on platforms and producers.

Unity as a Platform Tool

Unity’s features and market choices make it a quintessen-
tial “platform tool.” As an “engine,” it is a utility with the

explicit purpose of building games and applications for
broader distribution. Furthermore, it is connected to all
aspects of game production and interfaces with existing
platforms through its own multisided marketplace and
compatible software packages.

Despite its ubiquity in game development—Unity is used
by 45% of independent developers compared with Unreal,
which has captured only 2% of the market according to popu-
lar reporting (Beschizza, 2018)—critical literature on the
engine is surprisingly sparse. Schmalz (2015) briefly mentions
it in his dissertation on the history of video game innovation in
the 2000s. Panourgias, Nandhakumar, and Scarbrough (2014)
write about game design through engines like Unity (without
mentioning it specifically); they contend that development
requires an interplay between creative intentions and practical
restrictions coded into a program. Whitson (2018) goes one
step further and argues for the vital role Unity plays in game
studios. Scholars have not addressed issues of lock-in, plat-
forms and cultural production even while path dependence is
fixed as Unity becomes a popular tool for development.

Why Unity?

Unity, like other “game engines,” is a “software framework”
or a set of tools that facilitates rendering, physics, and input
by developers, freeing them from having to construct virtual
spaces from the ground up (Ward, 2008). The engine pro-
vides the building blocks for both three-dimensional (3D)
and two-dimensional (2D) virtual worlds, which is no small
task; consider the innumerable laws of nature that we take
for granted—from gravity to the reactions of others when we
touch them. These fundamental aspects of life must be taken
into account to make virtual spaces playable.

Prior to 2009, most game engines were proprietary and
closely guarded by companies. From its inception, Unity
moved away from that model and offered tools directly to
hobbyists. The engine’s growth gained momentum from the
“modding” movement, where enthusiasts modified games
based on just enough code made available to them by publish-
ers. Kücklich (2005) has defined the activities of such “mod-
ders” as “playbor,” which capitalizes on the loyalty of these
customers, adds life and value to existing products by having
modders generate new content, and acts as a testing ground for
ideas, all driven by users’ passion and excess efforts.

Such playbor allowed Unity to pivot from a paid applica-
tion to one that billed developers only after they earned a
certain amount of revenue: US$100,000 during my period of
study (Downie, 2016). In this way, their business model capi-
talized on the success of independent and mobile developers’
enthusiasm and work (Haas, 2014, p. 10). Furthermore, as it
grew in popularity, the engine expanded into new markets,
including enterprise software and digital animation.

These strategies situated Unity as a go-to tool for making
games and other interactive material. Whitson (2018) describes
how developers treated the application as the “lowest common

4	 Social Media + Society

denominator” (p. 2319) for production because it interfaced
with different teams and software across studios. This under-
lines Unity’s contingency as a “platform tool,” along with the
role the engine served in “apprenticing” and “socializing” (p.
2321) users; Unity imparted basic skills, and even “common
purpose” (p. 2322). As attested in my interviews, it viscerally
shaped the entire production experience.

This matches the image the company wants to convey: to
give “developers around the world the tools to create rich,
interactive, 2D, 3D, VR and AR experiences” (“Unity Public
Relations Fact Page,” n.d.). In fact, one of the reasons for
immersive technologies’ recent wave of popularity, along
with the reduction in hardware cost, can be attributed to the
software’s interoperability and ease-of-use. Developers can
make content across devices and distribute it through low-
cost marketplaces like Apple’s App Store and the Steam
game library, which has contributed to a profusion of soft-
ware for commercial VR. Meanwhile, platform behemoths
including Google, Facebook-owned Oculus, and Microsoft
have joined forces with Unity in the manufacture of their
headsets to facilitate content creation.

Unity’s popularity has led to a somewhat paradoxical
view of the engine. On one hand, it has been credited with
democratizing game production. A common trope is
expressed in an Ars Technica post: Unity is “really letting
anyone make a game” and “is partially responsible for the
boom of independent and artistic games over the past half-
decade” (Axon, 2016). On the other hand, the engine makes
it just as possible for inexperienced developers to proliferate
poor content. Democratization, the article continues, has an
“unanticipated side-effect—it lowers quality standards for
gamers. And worse . . . the new glut of Unity-bred games
makes earning a profit harder in an already difficult market”
(Axon, 2016). In sum, the engine, beyond playing a role in
game development and 3D production, also is integral to
who, how, and in what ways content is produced for a variety
of platforms.

Unity’s Platform Features

Unity contains a number of features commensurate with
other platforms. For one, it is interoperable. To allow pub-
lishing on many platforms and consoles, Unity developed a
“build and run” protocol, which only requires the tap of a
button to load and start playing content on different devices.
The code is continuously updated to accommodate builds for
emerging formats.

At the same time, business expansion included opening
its own multisided marketplace. Their “Asset Store” permits
amateurs and professionals alike to upload homemade
scenes, code, add-ons, and avatars for other users to down-
load (for free or a fee) and populate virtual spaces.

Finally, the engine makes heavy use of intraoperable code.
Unity “packages” can be employed not only by developers to
easily export their own material to other computers but also to

import code written by hardware manufacturers. Packages
usually include custom “scenes” or virtual world setups where
the capabilities of hardware and software are modeled and
assessed. If a new device comes out, such as the hand-tracking
“Leap Motion” (n.d.) controller, scenes are made available to
download through the engine so that developers can test the
hardware and use them to build games and applications.

Thus, Unity positions itself as an indispensable go-
between. It interacts with a universe of intraoperable plat-
forms and markets at every stage of production, from pulling
together content and reconstructing it in virtual space, to
publishing and distribution, making it an emblematic plat-
form tool.

Unity in the Production Pipeline

To gain a better understanding of Unity’s place within plat-
form and video game ecology, the production pipeline of
game development requires brief explanation. Derived from
computer scientists Labschütz, Krösl, Aquino, Grashäftl, and
Kohl (2011), game construction comprises four steps:6 ide-
ation or “concept phase” (p. 3), production or “3D content
creation pipeline” (p. 3), implementation (p. 6), and distribu-
tion or “release” (p. 7).

Game development is iterative and often recursive. Users
will go back and forth between phases as they progress. It
also involves interfacing with other programs like “model-
ing” software (which is used to design 3D content) and soft-
ware packages.7 As Figure 1 and the following sections
illustrate, each phase solidifies Unity’s role as a key interme-
diary in game production while simultaneously locking-in
existing platforms’ standards into the development process.

Ideation.  In the ideation phase, initial concepts, aesthetics,
mechanics, and levels are brainstormed, then brought into
the engine. Unity locks itself in as a platform tool even as a
user envisions the game. In part, it is the ease with which
content can advance from conception to distribution that
makes it attractive to users. One reason Labschütz et al.
(2011) chose the engine was because of its simple drag and
drop features, which meant art could be imported with little
or no coding (p. 2).

Production.  Production involves creating the “assets” (char-
acters, objects and other materials) that will be used in the
virtual space of the game, as well as level design. Some fea-
tures (such as lighting, animation, and “primitive” objects)
are built into the engine as defaults, but Unity also offers
integration with more sophisticated 3D graphics applica-
tions, such as Maya and Blender. For those proficient in
either game development or modeling, this locks them into
the compatible pieces of software. For novices, Unity pro-
vides another path to lock-in: its preloaded Asset Store mar-
kets content, plug-ins, packages, and other utilities that
simplify production.

Foxman	 5

Implementation.  At implementation, player controls are
coded into the game, as are interactions with assets and
objects. Software development kits (SDKs),8 APIs, and
packages bring the project to life by incorporating game con-
trols and other forms of interactivity. This process often
involves coding for the player, other objects, and characters
in relation to the desired hardware on which the game will be
played. As an example, navigation and interaction in VR
requires the use of controllers and headsets. To assist pro-
gramming for both, assets with built-in code are available in
the Asset Store, such as the Vive Input Utility (“VIVE Input
Utility—Asset Store,” n.d.), made by the VR hardware man-
ufacturer HTC. These also lock users into making projects
for specific platforms. To switch to another piece of hard-
ware, they must refit the content, often using other software
packages. Unity increasingly attempts to standardize such
code in their engine, making it even more essential for hard-
ware developers.

Distribution.  In this phase, the game’s environment, code, and
assets are compiled for certain platforms including mobile
phones, computers, consoles, and so on. In Unity’s case, distri-
bution occurs through its “build and run” feature. Since
excluded formats are significantly more difficult for designers
to manage and the engine periodically removes underused
platforms such as Tizen mobile and the Samsung TV formats
(Akshay, 2017), Unity has become the arbiter of desirable are-
nas for publishing games, VR and other 3D content.

Unity and Lock-In

At each stage of this workflow, Unity locks-in existing plat-
forms at a functional level. It achieves this through intraop-
erability: its Asset Store and other platforms affect each stage
of the production pipeline. Consequently, Unity reifies and
further entrenches current platforms and facilitates their use
to its benefit.

As a result, the game engine exacerbates distrust about
platforms already voiced by scholars. By vying for market
dominance and using its own packages and kits, Unity is
“crowding out . . . exceptions and alternatives” (Nieborg &
Poell, 2018, p. 4289) through platform dependence. Similarly,
its move to infiltrate other markets, as well as launch an asset
store for 3D objects and code, ultimately conforms to the
“underlying logic of the platform” (Helmond, 2015, p. 8),
which serves to make data not only expansive and accessible
but also commodifiable and restrictive.

Dependence on platforms seems immutable as a result of
the productive nature of the program and its explicit market-
ing as a tool for creating applications. It exploits the inherent
power of platforms, which hold “undeniable benefits” for
users who can easily produce work with them, but, at the
same time, allow major corporations “to gain footholds as the
modern-day equivalents of the railroad, telephone, and elec-
tric utility monopolies of the 19th and 20th centuries” (Plantin
et al., 2016, p. 295). Unity ultimately establishes a production
pipeline where the use of platforms seems like the best (if not
only) option to conceive of, make, and distribute games.

The consequences for users, as Lanier asserts, is that the
multitude of creative possibilities are increasingly locked-in,
which affects all stages of game development and manifests
in countless ways. The engine itself locks gaming conven-
tions into any 3D process—for example, navigation through
the software includes the W, A, S, D key configuration com-
mon to computer games. Core assets have names such as the
“FPSController,” which is labeled and patterned after first-
person shooter games.

However, Lanier also suggests that such lock-in has a pro-
found, but complicated relationship with users, not only lim-
iting what they can do but also providing the rules by which
they create. Whitson (2018) similarly states that program-
mers call Unity “voodoo software,” which exhibits “a mind
of its own . . . in a manner counter to users’ input and goals”
(p. 2324). This led to “unplanned ‘features’” (p. 2327) and

Figure 1.  The game development production pipeline including Unity’s platform tool features.

6	 Social Media + Society

framed how developers conceived of projects and interacted
with one another.

What then is the influence of tools such as Unity on users
as they adopt and interact—even playbor—with it? What is
the effect of locked-in ideologies on the process of creation,
particularly with new innovations? Insights into these ques-
tions surfaced through interviews with VR developers and
enthusiasts.

Methods

Semi-structured interviews were conducted with content
creators, enthusiasts, and developers of VR and Augmented
Reality (AR) hardware as part of a larger project studying
immersive technologies (Foxman, 2018). Interviewees
were garnered from enthusiast meetups in the United
States; some centered explicitly on game development,
while others focused on business, education, and technical
aspects of emerging media. As a consequence, a wide
swath of users at various levels of expertise in Unity was
represented. In addition, interviews were held with mem-
bers of a private VR lab, which explicitly utilized the
game engine.

Interviews occurred over a year and a half, starting in
2016. A total of 76% interviewed were developers or content
creators, and 34% worked in development-oriented busi-
nesses. A total of 77% were male, reflecting the general
attendance of the meetups.

In total, I conducted 90 interviews, which lasted between
15 min and 2.5 hr and occurred over phone, in-person, and
email. All respondents were given the option to be anony-
mous, and as a consequence, have not been identified.

While similar topics were covered in each interview, I
took a grounded approach by consistently re-theorizing fol-
low-ups from primary questions. This directly affected the
investigation of Unity. My original inquiry concerned work-
flow, the experience of VR development, use of devices/
development kits, and overall perceptions of the medium,
but the engine came up with such frequency in answers that
I re-theorized the direction of my queries.

The result is not a complete description of using Unity,
but rather an analysis of perceptions of the engine in the daily
work of developers and enthusiasts, its relationship to the
game industry and its significance in VR diffusion.

Unity, Virtual Reality, and the Limits of
Platform Tools

Many exposed to Unity through meetups and the lab were
bullish about VR’s potential; it realized long-held childhood
dreams and a ground floor opportunity to enter the games
and tech industries. They used expressions like “revolution-
ary,” “transformative,” and “all-encompassing,” and made
bold claims about Unity and its impact on the world. “In
terms of unlocking your potential, everybody talks about

that—unlock a kid’s potential. It’s all talk, but Unity actually
does it. And they give it to you for free . . .”

Respondents lauded Unity for its ease-of-use. Content
could be made in merely 30 min and published as a rudimen-
tary project. One interviewee found the immediate results
“gratifying,” and thought it would inspire those unfamiliar
with programming to venture further into VR development. It
was also efficient, especially its “drag and drop” feature which
allowed assets to be placed into virtual environments with lit-
tle difficulty. Furthermore, the interoperability of the platform
was appreciated. Developers began projects by experimenting
with Unity packages; one described how she downloaded
demos, then modified them “because I couldn’t code” until
she got a new piece of hardware working. Citing the Unity
Asset Store, another stated that the many premade assets and
scripts which one could conveniently purchase, download,
and “drag and drop” would familiarize any user with the
engine who could then “patch things together” to make an
application. The range of compatible packages was also
praised. Another interviewee touted the “cool” even “beauti-
ful” discussions that occurred online with every SDK release.

The benefits of Unity’s interconnectivity and interopera-
bility also extended to publishing. The low fee for doing so
on popular marketplaces, such as the App Store, Google
Play, or Steam, was extolled as a means to achieve success
and increase output. Because of Unity’s build and run fea-
tures, the same project could be circulated across all of them,
allowing for mass exposure: rather than taking an unpaid
internship, an enthusiast recommended beginners spend
US$25 on a one-time developers’ license and release “a
bunch of stuff” on the stores.

The unbridled optimism over Unity was tempered in
some individuals, however, because specific forms of social
and technical lock-in circumscribed the genre associated
with VR, the identity of developers, professional interest,
and ultimately its future direction.

Lock-in of Genre

In my interviews, many respondents had backgrounds in
content creation, but not necessarily in game development.
Yet, as one interview put it, “VR and AR is almost synony-
mous with gaming.” Another called gaming and entertain-
ment media the obvious “portals” for VR. This assumption
extended to Unity. “I always wanted to make games” one
respondent said. Because he wanted to make 3D content, he
started using Unity, where he “then eventually found virtual
reality.” The engine and the medium were linked in their
gaming orientation.

For those who enjoyed gaming, this was a delight. One
interviewee described the entire process as “building a sandbox
where people could play and create memories . . . for me, that’s
what life is all about.” He compared Unity to Adobe Photoshop,
which he tinkered with as a teenager, and enjoyed looking “at
all the tools and then you see what’s possible,” saying there was

Foxman	 7

“a large aspect of play to this.” He even enjoyed showing off
each minor accomplishment to family, friends, and enthusiasts
alike as he started building games and VR projects.

But for those who were disinterested in games, Unity only
bolstered the overall perception that VR was dominated by
the genre, as one interviewee put it: “If people are going to
study VR in Unity I really think they should take some . . .
classes in video game design and maybe even coding.” The
implication is a lock-in of games, game design, and even the
game industry within the diffusion of VR. The engine and the
medium can be used for a multitude of purposes such as
architecture, art, and film, but, for early enthusiasts, Unity
was primarily intended for gaming. This is best illustrated by
a respondent who was designing an application for retail ser-
vices. When looking to employ Unity developers, he was
concerned that the engine “defined [a] set of rules” and
mechanics around gaming, which comprised “the vocabu-
lary of how we communicate” about VR and immersive
media. Conflicted, he did not know if those rules would be
what he wanted in his app.9

In a somewhat ironic twist, those who knew about the
diversity of options for which Unity could be applied tended
to come from a gaming background and often felt empow-
ered when it came to working with the tool.10

Lock-in of Identity

Those “in the know” also tended to fall into age, gender, and
socio-economic stereotypes: “I would also *broadly* char-
acterize the white young males as ‘dudes’, and that they are
coders or digital artists who are also avid gamers,” wrote one
interviewee via email about the VR community, adding “I
would also guess that their income is above average. I’ve
only met one expert level female developer in [Unity] who
codes VR applications as her full-time job.” Another inter-
viewee summed it up as “more guys, more tech people . . .”

By contrast, one older female lab participant feared
attending weekly meetings because she lacked a coding
background. Another said it was “dis-enabling” and “shock-
ing” that she had to learn both Unity and its interoperable
code, the C# programming language, simultaneously. The
engine and VR were viewed as part of a boys’ club that was
antithetical to the interests of more marginalized groups.

Respondents also sensed the absence of people of color
within the enthusiast community. Two female interviewees
noted the high proportion of males, followed by saying that
African Americans were specifically underrepresented. One
Korean student said she did not have anyone to “connect
with.” An African American developer stated she had to
learn to “accommodate” herself to the meetups to “feel com-
fortable.” Thus, just as the engine locked-in a specific genre
(games) and with it a specific type of enthusiast (a gamer or
game developer), it also locked-in the norms of the surround-
ing gamer culture, which has been critiqued for its focus on,
marketing to and support of affluent White males at the

exclusion of other social groups (Shaw, 2011). It was this
faction that had the cultural knowledge, income, and ability
to successfully use and deploy VR content.

Lock-in of Professionals

Because Unity was locked-into a wider set of platforms in
game production, professionals knowledgeable in these tool-
sets were most successful with the emerging medium.
Competence in VR production required not only familiarity
with Unity but also learning 3D graphics programs like Maya
to make VR. A respondent described the “steep learning
curve” for anyone without a 3D modeling background.
Another novice said it was hard to “ramp up” in and recounted
many hours spent online researching and testing the engine.

As a consequence, Unity tended to lock-in developers,
while locking out almost any other profession. Film and video
editors had little patience to learn new software when they
already had expertise in established design applications such
as those in the Adobe Creative Suite. A hobbyist with a back-
ground in film critiqued the engine for not being cooperative
enough. She could not do “simple” things easily like creating
a video or audio loop. Ultimately, she found it “convoluted
and messy,” a “kind of Lord of the Flies of computer pro-
gramming.” In my interviews, there was almost a palpable
desire for a tool better suited to the needs and practices of
non-game makers.

These remarks betray an awareness of the restrictions by
which developers had to work even while they were pushing
Unity’s creative envelope for VR. The engine principally
afforded a platform for game creation but could be repur-
posed for other ends only with significant effort.

This also extended to distribution, where once again suc-
cess with the engine was contingent upon platforms and
tools that the professionals already understood or owned.
Gamers and developers possessed the hardware required to
easily build VR projects with Unity and were primed to
produce and experiment with content. By contrast, average
users would have to spend thousands of dollars and many
hours to gain access to necessary technology to produce
and distribute VR.

Lock-in of VR’s Future

The previous observations anticipate Unity’s role in molding
VR’s future. Those without the professional backgrounds or
who did not identify with “gamers” found using the engine
and associated platforms bewildering, or, at very least, imped-
ing their creativity. Interviewees highlighted the implicit and
explicit restrictions that will ultimately thwart VR’s progress.
One enthusiast stated, “I look at certain things about AR and
VR in the future, and I’m like, ‘We should be careful to think
about what we’re building . . .’” He went on to compare VR’s
development to the game industry’s missteps when it came to
promoting violence and then concluded, “We should think a

8	 Social Media + Society

little bit about what we’re building and why, before moving
ahead at full pace.” Thus, for all its revolutionary potential,
there was a persistent concern about how the long-standing
conventions of games and gaming, supported by Unity itself,
might ultimately shape VR.

The popularity of Unity for VR production indicates path
dependence accompanied by pervasive lock-in. Who can use
the software (game developers), how they can use it (primar-
ily for game development), what they can publish (game-
related content), and where they publish it (app stores already
connected to both Unity and games) are well-established,
despite commercial VR’s infancy.

Rules of the Game: Discussion

These interviews paint a contradictory picture about Unity: it
is simultaneously a user-friendly program essential to real-
izing the potential of a budding medium, while also befitting
a specific set of users acculturated to gaming.

Lock-in is present at all stages of production, where it set
technical and ideological parameters. The engine, on both an
intellectual and visceral level, affected each decision develop-
ers made, and required an awareness of, if not an acquiescence
to, the conditions under which they worked. Developers needed
Unity to successfully navigate VR production. Furthermore,
since many early users were both producers and consumers (or
players) of content, this caused a kind of self-selection—VR
became fun for those eager to produce with Unity.

Under these circumstances, I argue that compliance to the
standards supported by Unity is sustained through the coping
mechanism of “playbor.” As Kücklich (2005) describes,
playbor’s basic tenets are mirrored in developers’ activities
to the benefit of the corporation: their homemade assets and
scripts end up in the Unity Asset Store and serve as de facto
marketing; users’ efforts add capabilities and consequently
“shelf life” to the engine, and they test novel features when
new hardware such as VR headsets are released. They even
aspire to be hired by Unity, or related industries with which
the engine is compatible.

More broadly, playbor manifests “play” as it functions
within platformized labor practices. Adopters of Unity are
“playing within rules,” which entail the “lock-in” of the
engine’s norms and technical requirements. This was alluded
to in interviews: “It feels like we’re already locked in for
shoot-em-up things and enterprise tools.” For some (particu-
larly those versed in the “rules” of cultural production sur-
rounding Unity), playbor is rewarding and fun to master,
reinforced by positive feedback loops (another key character-
istic of play and games). This pleasure explains the passion of
certain VR adherents; for them, the synchronicity and low bar-
riers of entry are powerful incentives to continue work within
the engine. But for those who neither have the desire nor the
wherewithal to play, the environment is not as enjoyable.

Such rules reach beyond Unity to its business and market
partners. The interoperability of platforms expands the

“playing field” where Unity can function, but then requires
developers to further invest time and effort to understand the
guidelines of compatible companies and applications. At the
same time, these companies must also interface and work
within the engine’s boundaries. Thus, as a platform tool,
Unity sets the conditions by locking-in specific ways of
working within the production environment. Furthermore, it
does this at all levels of content creation: from inception to
distribution. These rules ultimately support playbor and
playborers who are amenable to work within its economic,
technical, and social restraints.

From a business-to-business perspective, platform tools
are indispensable. Interoperability has enabled experimenta-
tion with VR by almost every industry—there is no need to
go back to the drawing board when utilizing the medium for
architecture, games, or medicine (as examples). Yet, this cre-
ates a counterintuitive situation: the engine opens up new
horizons for, while simultaneously dictating the conditions
of, production.

A final consideration is the effect on industry when plat-
form tools like Unity are standardized, locked-in, and played
with. Respondents’ perspectives insinuate that Unity is an
important agent for reification. VR hardware manufacturers
release headsets with APIs, software packages, and code,
which are compatible with Unity. Then developers make use
of them to create content that proliferates within the existing
platform ecosystem, since it is a necessary part of Unity’s
pipeline for both innovating and publishing. Consequently,
the platform “behemoths” already invested in VR and
immersive media further solidify their status as technology
leaders. Unity also reinforces its place as a vital emissary by
locking-in industries, associated marketplaces and its own
position within them. Practically, this means that VR will be
associated with gaming for the foreseeable future, which is
the foundation upon which Unity was built.

Furthermore, Whitson (2018) asserts that such tools are the
first interface by which many hobbyists approach interactive
content. As familiarity with these “agents . . . mentors, produc-
ers and community organizers” increases, the gap between the
“developer and the tools-developer” (p. 2329) widens, endow-
ing the latter with more power. The diffusion of software like
Unity into a wide variety of emerging fields perpetuates this
power imbalance as future innovations enter the marketplace.
In short, lock-in, play/playbor, and the reification of compati-
ble industries are becoming conventional in digital creation.

Reaching the Limit: Conclusions

Using Unity as a quintessential example of a platform tool,
this article showed how platforms can provide the technical,
social, and economic conditions to lock-in specific industries,
design practices, and inequalities. Through interviews with
enthusiasts of VR and other immersive media, a visceral
apprehension of such lock-in was uncovered, where the
potentially limitless possibilities of the emerging medium and

Foxman	 9

who can work with it are constrained by the engine. This does
not mean that creativity is hindered, but rather is shaped by
norms and rules embedded within the tool.

For users, this perception is implicit as they attempt to
learn the engine and fashion content beyond games. However,
these are only users’ impressions. Future study should probe
how the views expressed by respondents affect their daily
practice, to further elucidate the influence of lock-in on cre-
ative processes.

However, these findings highlight three major issues in
the examination of platforms and platformization. First, plat-
form tools remain seriously understudied. Unity is not the
only highly platformized and, to a degree, “de-professional-
ized” piece of sophisticated productivity software that has
become routine to developers. New users feel emboldened
through such applications and assume their integrity without
critically assessing their ideological underpinnings. Thus, it
is imperative for there to be continued scholarly analysis and
rigorous critique of them.

A second issue is the intimate relationship between “plat-
form behemoths” and consumer lock-in. Unity is just one
example of the myriad ways that platform tools can sustain
and entrench those in power. Developers need to work with
industry-provided packages, kits, and assets—not to mention
to commit extra effort, time, and money in the case of VR—
to generate successful content. They, therefore, must suc-
cumb to the bounds of the existing industry within which
companies like Unity are deeply embedded. This may explain
why titans of tech are investing in similar software; Amazon’s
“Sumerian” game engine and Google’s “Stadia” streaming
service are just two examples. Such acquisitions strengthen
these behemoths by broadening their reach beyond the sim-
ple capture of user data to devising ways to capitalize upon
enthusiasts’ labor.

Third, platform tools manifest the extent to which
intraoperability has disrupted traditional cultural production
and the logic of platformization has informed the contempo-
rary economy. Interviews reveal how a single platform tool
impacts users’ lives by prescribing the qualifications of
developers, their production methods, and agendas. With this
article’s emphasis on emerging media, questions arise as to
how novel technologies—from robotics to artificial intelli-
gence—may be shaped by platforms, but more importantly,
how platforms will shape the people and ideas that are instru-
mental in building these innovations.

In sum, cultural producers are encountering an increasingly
rule-bound set of tools with which they must construct content.
Those rules flow from the top down, rather than the bottom up,
creating a path dependence for creativity. Still, the path depen-
dence outlined may not inevitably lead to purely negative ends.
Lock-in does obscure forms of creativity and development, but
limits can also be powerful. Playing within rules allows for
both enjoyment and the opportunity for prowess in production,
and ultimately commands adherence to obtain mastery. After
all, a game can only be well-played when its rules are known to

all. Such knowledge also instigates subversion and modifica-
tion of the rules, which are ordinary (even necessary) elements
of play. When rules are imposed rather than mutually agreed
upon, more egregious problems persist. Only by understanding
the rules and standards with which cultural producers are play-
ing can all parties find ways to win.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, author-
ship, and/or publication of this article.

ORCID iD

Maxwell Foxman https://orcid.org/0000-0001-6499-4372

Notes

  1.	 This is in part because platforms are studied by many fields
including management studies, media studies, cultural stud-
ies, and political economy. See Plantin, Lagoze, Edwards, and
Sandvig (2016) for further review.

  2.	 The examples have been critiqued for inflating differences
between the competing products (Cantner & Vannuccini,
2017; Liebowitz & Margolis, 1995).

  3.	 In the case of Unity, a marketplace is featured, but is not a core
component of the engine.

  4.	 At the same time, platform tools may be considered an evo-
lution of middlebroware and codify Lesage’s (2015) findings
that users indulge in “playful, less disciplinarily sophisticated,
experiments” (p. 106).

  5.	 Application programming interfaces (APIs) or sets of under
lying rules for using existing code in a software program. See
Helmond (2015) for analysis in terms of platformization.

  6.	 The same production pipeline is present for virtual reality
(VR), augmented reality (AR), and other forms of virtual
world building.

  7.	 Whitson (2018) also describes this process with Unity and
three-dimensional (3D) Studio Max.

  8.	 A “Software Development Kit,” or suite of code and examples
that can be imported into Unity.

  9.	 The full quote can be found in Foxman (2018, p. 243).
10.	 One genre absent from the analysis is pornography, which

is credited as a reason for VHS locking-in over Betamax
(Johnson, 1996). Interviewees rarely mentioned pornography,
which may reflect how they were recruited—through semi-
professional labs and meetups.

References

Akshay. (2017, November 6). Unity drops support for Tizen mobile and
Samsung TVs in the latest Beta release. IoT Gadgets. Retrieved
from https://www.iotgadgets.com/2017/11/unity-drops-support-
tizen-mobile-samsung-tvs-latest-beta-release/

Axon, S. (2016, September 27). Unity at 10: For better—or
worse—game development has never been easier. Retrieved

https://orcid.org/0000-0001-6499-4372
https://www.iotgadgets.com/2017/11/unity-drops-support-tizen-mobile-samsung-tvs-latest-beta-release/
https://www.iotgadgets.com/2017/11/unity-drops-support-tizen-mobile-samsung-tvs-latest-beta-release/

10	 Social Media + Society

from https://arstechnica.com/gaming/2016/09/unity-at-10-for-
better-or-worse-game-development-has-never-been-easier/

Bechmann, A. (2013). Internet profiling: The economy of data
intraoperability on Facebook and Google. MedieKultur: Journal
of Media and Communication Research, 29, 72–91.

Beschizza, R. (2018, July 17). The most popular engines for indie
games. Retrieved from https://boingboing.net/2018/07/17/the-
most-popular-engines-for-i.html

Bodle, R. (2011). Regimes of sharing: Open APIs, interoperability,
and Facebook. Information, Communication and Society, 14,
320–337.

Bogost, I. (2008). Unit operations: An approach to videogame
criticism. Cambridge, MA: MIT Press.

Cantner, U., & Vannuccini, S. (2017). Innovation and lock-
in. In H. Bathelt, P. Cohendet, S. Henn, & L. Simon (Eds.),
The Elgar companion to innovation and knowledge creation
(pp. 165–181). Cheltenham, UK: Edward Elgar.

Downie, C. (2016, June 16). Evolution of our products and pricing.
Unity Blog. Retrieved from https://blogs.unity3d.com/2016/06
/16/evolution-of-our-products-and-pricing/

Foxman, M. H. (2018). Playing with virtual reality: Early adopt-
ers of commercial immersive technology. New York, NY:
Columbia University. Retrieved from http://academiccom-
mons.columbia.edu/download/fedora_content/download/
ac:6q573n5tc8/content/Foxman_columbia_0054D_14522.pdf

Gillespie, T. (2010). The politics of “platforms.” New Media &
Society, 12, 347–364.

Haas, J. (2014). A history of the unity game engine. Worcester, UK:
Worcester Polytechnic Institute. Retrieved from http://web.
wpi.edu/Pubs/E-project/Available/E-project-030614-143124/
unrestricted/Haas_IQP_Final.pdf

Helmond, A. (2015). The platformization of the web: Making
web data platform ready. Social Media + Society, 1(2).
doi:10.1177/2056305115603080

Johnson, P. (1996). Pornography drives technology: Why not to
censor the Internet. Federal Communications Law Journal, 49,
217–226.

Kücklich, J. (2005). Precarious playbour: Modders and the digital
games industry. Fibreculture, 5(1). Retrieved from http://five.
fibreculturejournal.org/fcj-025-precarious-playbour-modders-
and-the-digital-games-industry/

Labschütz, M., Krösl, K., Aquino, M., Grashäftl, F., & Kohl,
S. (2011). Content creation for a 3D game with Maya and
Unity 3D. Institute of Computer Graphics and Algorithms,
Vienna University of Technology. Retrieved from https://
www.researchgate.net/profile/Reinhold_Preiner/publica-
tion/267417785_Content_Creation_for_a_3D_Game_with_
Maya_and_Unity_3D/links/554788c70cf26a7bf4d93df6.pdf

Lanier, J. (2011). You Are Not a Gadget: A Manifesto. New York,
NY: Vintage.

Leap Motion. (n.d.). Available from https://www.leapmotion.com/
Lesage, F. (2015). Middlebroware. Fibreculture Journal, 25,

89–114.
Liebowitz, S. J., & Margolis, S. E. (1995). Path dependence, lock-

in, and history. Journal of Law, Economics, & Organization,
11, 205–226.

Margolis, S., & Liebowitz, S. J. (1998). Path dependence: New
Palgrave dictionary of economics and law. London, England:
Palgrave MacMillan.

Martens, B. (2016). An economic policy perspective on
online platforms. Retrieved from https://doi.org/10.2139/
ssrn.2783656

Montfort, N., & Bogost, I. (2009). Racing the beam: The Atari
video computer system. Cambridge, MA: MIT Press.

Nieborg, D. B., & Poell, T. (2018). The platformization of cultural
production: Theorizing the contingent cultural commodity.
New Media & Society, 20, 4275–4292.

Panourgias, N. S., Nandhakumar, J., & Scarbrough, H. (2014).
Entanglements of creative agency and digital technology:
A sociomaterial study of computer game development.
Technological Forecasting and Social Change, 83, 111–126.

Plantin, J.-C., Lagoze, C., Edwards, P. N., & Sandvig, C.
(2016). Infrastructure studies meet platform studies in the
age of Google and Facebook. New Media & Society, 20,
293–310.

Schmalz, M. (2015). Limitation to innovation in the North American
console video game industry 2001-2013: A critical analysis.
London, Ontario, Canada: Western University. Retrieved from
https://ir.lib.uwo.ca/etd/3393/

Schwarz, J. (2017). Platform logic: An interdisciplinary approach
to the platform-based economy. Policy & Internet, 9, 374–
394.

Shapiro, C., & Varian, H. R. (1998). Information rules: A strate-
gic guide to the network economy. Cambridge, MA: Harvard
Business Press.

Shaw, A. (2011). Do you identify as a gamer? Gender, race, sexual-
ity, and gamer identity. New Media & Society, 14, 28–44.

Takahashi, D. (2015, August 16). In the game engine wars,
Epic and Unity aim at enabling VR. Retrieved from https://
venturebeat.com/2015/08/16/in-the-game-engine-wars-epic-
and-unity-aim-at-enabling-vr/

Unity public relations fact page. (n.d.). Retrieved from https://uni-
ty3d.com/public-relations

VIVE input utility—Asset store. (n.d.). Retrieved from https://
assetstore.unity.com/packages/tools/integration/vive-input-
utility-64219

Ward, J. (2008, April 29). What is a game engine? GameCareerGuide.
com. Retrieved from https://www.gamecareerguide.com/fea-
tures/529/what_is_a_game_.php

Whitson, J. R. (2018). Voodoo software and boundary objects in
game development: How developers collaborate and conflict
with game engines and art tools. New Media & Society, 20,
2315–2332.

Author Biography

Maxwell Foxman (PhD Columbia University) is an assistant profes-
sor of Media Studies at the University of Oregon. His research
interests include Virtual and Augmented Reality, the game indus-
try, and the gamification of journalism and other professions. His
work has appeared in journals such as Games and Culture,
Computational Culture, and First Monday.

https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://boingboing.net/2018/07/17/the-most-popular-engines-for-i.html
https://boingboing.net/2018/07/17/the-most-popular-engines-for-i.html
https://blogs.unity3d.com/2016/06/16/evolution-of-our-products-and-pricing/
https://blogs.unity3d.com/2016/06/16/evolution-of-our-products-and-pricing/
http://academiccommons.columbia.edu/download/fedora_content/download/ac:6q573n5tc8/content/Foxman_columbia_0054D_14522.pdf
http://academiccommons.columbia.edu/download/fedora_content/download/ac:6q573n5tc8/content/Foxman_columbia_0054D_14522.pdf
http://academiccommons.columbia.edu/download/fedora_content/download/ac:6q573n5tc8/content/Foxman_columbia_0054D_14522.pdf
http://web.wpi.edu/Pubs/E-project/Available/E-project-030614-143124/unrestricted/Haas_IQP_Final.pdf
http://web.wpi.edu/Pubs/E-project/Available/E-project-030614-143124/unrestricted/Haas_IQP_Final.pdf
http://web.wpi.edu/Pubs/E-project/Available/E-project-030614-143124/unrestricted/Haas_IQP_Final.pdf
http://five.fibreculturejournal.org/fcj-025-precarious-playbour-modders-and-the-digital-games-industry/
http://five.fibreculturejournal.org/fcj-025-precarious-playbour-modders-and-the-digital-games-industry/
http://five.fibreculturejournal.org/fcj-025-precarious-playbour-modders-and-the-digital-games-industry/
https://www.researchgate.net/profile/Reinhold_Preiner/publication/267417785_Content_Creation_for_a_3D_Game_with_Maya_and_Unity_3D/links/554788c70cf26a7bf4d93df6.pdf
https://www.researchgate.net/profile/Reinhold_Preiner/publication/267417785_Content_Creation_for_a_3D_Game_with_Maya_and_Unity_3D/links/554788c70cf26a7bf4d93df6.pdf
https://www.researchgate.net/profile/Reinhold_Preiner/publication/267417785_Content_Creation_for_a_3D_Game_with_Maya_and_Unity_3D/links/554788c70cf26a7bf4d93df6.pdf
https://www.researchgate.net/profile/Reinhold_Preiner/publication/267417785_Content_Creation_for_a_3D_Game_with_Maya_and_Unity_3D/links/554788c70cf26a7bf4d93df6.pdf
https://www.leapmotion.com/
https://doi.org/10.2139/ssrn.2783656
https://doi.org/10.2139/ssrn.2783656
https://ir.lib.uwo.ca/etd/3393/
https://venturebeat.com/2015/08/16/in-the-game-engine-wars-epic-and-unity-aim-at-enabling-vr/
https://venturebeat.com/2015/08/16/in-the-game-engine-wars-epic-and-unity-aim-at-enabling-vr/
https://venturebeat.com/2015/08/16/in-the-game-engine-wars-epic-and-unity-aim-at-enabling-vr/
https://unity3d.com/public-relations
https://unity3d.com/public-relations
https://assetstore.unity.com/packages/tools/integration/vive-input-utility-64219
https://assetstore.unity.com/packages/tools/integration/vive-input-utility-64219
https://assetstore.unity.com/packages/tools/integration/vive-input-utility-64219
https://www.gamecareerguide.com/features/529/what_is_a_game_.php
https://www.gamecareerguide.com/features/529/what_is_a_game_.php

