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Abstract: Controlling the temporal mode shape of quantum light pulses has wide ranging
application to quantum information science and technology. Techniques have been developed to
control the bandwidth, allow shifting in the time and frequency domains, and perform mode-
selective beam-splitter-like transformations. However, there is no present scheme to perform
targeted multimode unitary transformations on temporal modes. Here we present a practical
approach to realize general transformations for temporal modes. We show theoretically that any
unitary transformation on temporal modes can be performed using a series of phase operations in
the time and frequency domains. Numerical simulations show that several key transformations on
temporal modes can be performed with greater than 95% fidelity using experimentally feasible
specifications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The ability to manipulate the mode structure of light enables numerous technologies, both
quantum and classical, ranging from long-distance telecommunications to microscopy. Quantum
applications such as quantum key distribution [1], boson sampling [2], linear optics quantum
computing [3] and continuous-variable quantum information processing [4] all rely upon unitary
transformation of optical modes for the encoding, manipulation and measurement of quantum
information. Over the past decade significant progress has been made to implement multimode
transformations with high fidelity and low loss by utilizing integrated optical platforms. This
work has primarily focused on polarization and spatial degrees of freedom [5]. More recently,
time and frequency encoding has come to the fore as a promising platform for encoding quantum
information in optical fields [6,7]. There are different approaches to encoding information
in the time-frequency degree of freedom. Approaches to utilise wavelength-(time-) division
multiplexing, which encodes information in non-overlapping frequency (time) bins of single
photons, for quantum applications have been recently introduced [8,9]. Here we consider temporal
modes, which overlap in both time and frequency, but are nevertheless orthogonal. Manipulation
of temporal modes by means of nonlinear optical interactions have recently been discussed for
quantum applications [10]. Analogous to transverse spatial modes such as the Laguerre-Gauss
modes that carry orbital angular momentum, these overlapping modes form a useful orthonormal
basis in which to encode quantum information and arise naturally in many common quantum
light sources such as spontaneous parametric down conversion [10,11].

To address the temporal modes of light for quantum applications most efforts have focused
on nonlinear optical means for control [7,12–17]. The quantum pulse gate (QPG) [12,13,15]
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is a key building block for nonlinear optical methods to control temporal modes which acts, in
theory, as a temporal mode beam splitter. To realize multimode transformations using the QPG
requires sequential application of multiple QPGs with both high selectivity and high efficiency
and appropriate relative phase shifting between the ancilla and fundamental modes of the pulse
gate [10], which has yet to be demonstrated with quantum light. Alternatively, linear-optical
methods using acousto- and electro-optic temporal phase modulation and dispersive spectral
phase manipulation of pulsed modes have shown promise for quantum applications [18–20].
However, a complete prescription for manipulating temporal modes using linear-optical methods
has yet to be developed.

Recent experiments with phase-only manipulation of optical pulses have demonstrated spectral
shearing [18,19] and bandwidth manipulation [20]. These techniques have been developed using
the optical space-time analogy [21], in which the evolution of a pulsed and transverse-spatial
modes can be mapped onto equivalent equations of motion. Examples include the time lens
[22,23] and the dispersive Fourier transform [21,24,25]. Both of these applications have been
implemented using off-the-shelf components.

In this paper we present a general recipe for implementing targeted unitary transformations on
temporal modes through the use of temporal phase modulation and spectral dispersion. First
we introduce the mathematical framework by which these transformations can be described.
Then we introduce an experimental apparatus that can perform these transformations based
upon electro-optic phase modulation and chirped fiber Bragg gratings. Numerical simulations
are then presented that show the performance of the proposed experimental apparatus. The
simulations, performed on select single-mode and multi-mode transformations applicable to
quantum applications, take into account realistic specifications for the modulators and gratings.

2. Theory

To describe the quantized electromagnetic field one must first decompose the field into an
appropriate set of orthonormal field modes that satisfy the Maxwell equations [26]. Here
we choose to focus on a paraxial geometry, such as found within integrated optical systems
or in beam-like propagation directed along the z-axis. In addition, we assume pulsed modes
traveling with group velocity vg in which the slowly-varying envelope approximation holds, that
is, where the temporal envelope of the pulse changes on a time scale significantly longer than an
optical-carrier cycle period, T0 = 2π/ω0. In these limits the electric field vector can be expressed
as

E(r, t) =
∑︂
m
αmemum(r)ψm(t − z/vg)ei(k0z−ω0t). (1)

Here the summation is taken over a set of discrete, orthonormal modes describing the transverse
spatial, {um(r)}, temporal, {ψm(t − z/vg)}, and polarization, {em}, degrees of freedom of the
field. These are weighted with a complex amplitude, αm, and have associated wave vector, k0,
and carrier frequency, ω0, which are all labelled by a non-negative integer m. Here we focus
on the temporal modes {ψm(t − z/vg)} of the field and consider the case in which only a single
polarization e and transverse spatial mode u(r) are excited. Dropping the polarization and
transverse spatial mode dependence, the electric field in the time domain is thus

E(z, t) =
∑︂
m
αmψm(t − z/vg)ei(k0z−ω0t). (2)

In the following, we will work in the reference frame of the pulse traveling at the group velocity,
vg, along the z-axis, and thus drop the z-dependence of the temporal modes. The temporal
modes form a complete set that can be used to expand an arbitrary pulsed signal and obey the



Research Article Vol. 28, No. 25 / 7 December 2020 / Optics Express 38378

orthonormality relation ∫ +∞

−∞

ψ∗
m(t)ψn(t)dt = δmn. (3)

Note that a temporal mode ψm(t) can also be represented by its Fourier transform, ψ̃m(ω), in
the frequency domain, where the orthonormality condition still holds∫ +∞

−∞

ψ̃
∗

m(ω)ψ̃n(ω)dω = δmn. (4)

Standard techniques to control the pulse mode of light involve either filtration or amplification
in the frequency or time domain [27,28]. Such an approach to pulse shaping is incompatible
with quantum states of light owing to added noise and reduction in the signal arising from
amplification and loss. These lead to the destruction of the fragile quantum coherences between
different photon-number components of the state. To preserve the quantum state of light
occupying different temporal modes when modifying the mode structure thus requires unitary,
i.e. phase-only, manipulation.

A simple example of how application of phase can modify the amplitude distribution of a
pulse is the time domain analogy of Fraunhofer diffraction, known as the dispersive Fourier
transform [21,25]. Consider a transform-limited pulse ψ(t) and its Fourier transform ψ̃(ω). After
propagating through a medium with second-order dispersion characterized by the group delay
dispersion (GDD) δ, which applies a quadratic spectral phase to the pulse, the spectral mode
amplitude is

ψ̃
′
(ω) = ψ̃(ω)eiδ(ω−ω0)

2/2, (5)

where ω0 is the central frequency of the pulse [27,29]. The amplitude of the pulse in the time
domain becomes a convolution of the original temporal mode with the Fourier transform of the
quadratic spectral-phase factor and can be expressed as

ψ ′(t) = Ne−it2/2δ
∫ ∞

−∞

ψ(τ)e−iτ2/2δe2itτ/δdτ, (6)

where N is a normalization constant. If the temporal duration of the pulse ψ(t), given by τp, is
short compared with the square root of the GDD, i.e. τp<<

√
δ, then the Gaussian temporal phase

factor in Eq. (6) can be treated as unity within the integral and the resultant temporal mode at the
output is just a Fourier transform of the input,

ψ ′(t) = Ne−it2/2δψ̃

(︃
2t
δ

)︃
. (7)

The frequency argument of the Fourier transform is ω = 2t/δ. By the analogy to spatial
diffraction this is called the temporal far-field condition and is satisfied approximately when

τ2
p

δ
<
π

16
. (8)

Thus by introducing sufficient group-delay dispersion to satisfy the temporal far-field condition
of Eq. (8) the temporal profile of the pulse becomes a scaled replica of the spectrum. The
dispersive Fourier transform is a phase-only operation and thus a unitary transformation of
the field modes, which makes it compatible for use with quantum states of light. Indeed, this
technique has been used to measure the spectrum of single-photon pulses using highly-dispersive
optical fibers [24] and chirped-fiber Bragg gratings [30] along with time-resolved single-photon
detection.
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Inspired by methods to implement programmable unitary transformations on transverse spatial
modes, demonstrated through the use of sequential application of spatial phase and diffraction
[31], we present here an approach to realize temporal mode unitary transformations by application
of temporal phase and dispersion. This approach follows from the fact that unitary transformations
can be decomposed into a sequence of applied phases and Fourier transforms [32,33]. In practice,
we consider discretized field modes ψi = ψ(ti) that are sampled versions of the mode functions at
discrete times {ti}, with i a positive integer labeling sample time. In this case the continuous
modes become vectors and the unitary transformations become unitary matrices. The unitary
matrices can then be decomposed into a sequence of diagonal unitary matrices and discrete
Fourier transforms [33]. For a given unitary matrix U its decomposition can be written as

U = F†DN · · ·FD2F
†D1, (9)

where the Dj are diagonal unitary matrices, F is the discrete Fourier transform, and F† is its
inverse. This decomposition is at the heart of our approach to implementing programmable
unitary temporal mode transformations. It requires the ability to perform sequential application
of phases in the temporal and spectral domains. Here we propose a method to implement such
temporal mode unitary transformations using a sequence of dispersive Fourier transforms and
application of temporal phase profiles.

3. Proposed implementation

To implement a targeted temporal mode transformation U a sequence of phases can be achieved
by application of temporal phase followed by the dispersive Fourier transform, which maps the
spectral amplitude of a pulse onto its temporal envelope as in Eq. (8). As the spectrum has been
mapped onto the temporal envelope, application of a time-varying phase implements a spectral
phase to the original pulse. This is followed by the inverse dispersive Fourier transform, which
can be achieved using a medium with the same magnitude GDD, but opposite sign.

Here we consider temporal phase modulation implemented using an electro-optic phase
modulator (EOPM). The phase applied to an optical field traveling through an EOPM, ϕ(t), is
determined by the electronic voltage, V(t), that drives the modulator and the intrinsic electro-
optic response of the EOPM itself. The applied phase is proportional to the driving voltage,
ϕ(t) = V(t)/Vπ , given that the driving signal does not exceed the electronic bandwidth of the
modulator, which we denote B. Here Vπ is the voltage required to achieve a π phase shift at the
highest operating frequency of the modulator. Therefore the temporal phase profiles that can
be applied are restricted by the capabilities of the EOPM, encapsulated by Vπ and B, and the
electronics available that generate and deliver the driving voltage V(t).

The phase modulation bandwidth B restricts the frequencies of the phase profiles that can be
applied. Traveling-wave EOPMs are capable of modulation bandwidths in the tens of gigahertz
region with low Vπ ≈ 2 V. State-of-the-art modulators have demonstrated electronic bandwidth
up to B ≈ 100 GHz with Vπ = 2.3 V [34]. Similarly, arbitrary waveform generators for
radio-frequency (RF) generation can produce electronic signals with up to 100 GHz bandwidth
and 2 V amplitude. Thus in the following we consider temporal mode transformations composed
from temporal phase modulation with phase modulation bandwidths in the 1 − 100 GHz region.

The dispersive Fourier transform in Eq. (8), which maps the spectral amplitude onto the
temporal amplitude of the pulse, is performed by applying GDD, δ, a quadratic spectral phase,
to the pulse. This can be applied by propagating through a length of optical fiber. The length
required is proportional to the square of the temporal duration of the pulse. Performing a Fourier
transform on a pulse with a temporal duration of τp = 10 ps with 800 nm central wavelength
would require 10 km of optical fiber. Depending on the wavelength regime, a fiber of this length
would introduce significant loss, which cannot be tolerated for unitary transformations. Another
approach to achieve second-order spectral dispersion is by using a chirped fiber Bragg grating
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(CFBG), which can apply a large amount of dispersion with relatively low loss compared with an
optical fiber. CFBGs can be manufactured with quadratic dispersion equivalent to that achieved
in over 10 km of fiber. In addition, a CFBG can easily implement both positive and negative
GDD by simply reversing the direction into which light is launched into the CFBG. In either case,
however, there is a finite limit to the GDD, δ, that can be implemented using a fiber or CFBG,
which effectively places an upper limit on the temporal duration of the pulses used.

The bandwidth constraint of the EOPM and the upper limit on GDD determines the range of
temporal widths of the pulses that should be used. For instance consider an EOPM with B = 50
GHz bandwidth. According to the sampling theorem we can generate a temporal phase profile
by defining samples at approximately 10 ps intervals. This places a lower limit on the temporal
width of optical pulses that can be addressed. In general, a transformation on N temporal modes
requires pulses to have sufficient duration so that N samples of the phase modulation can be
applied across them so that there are enough independent degrees of freedom to operate on each
mode.

The number of samples applied to the spectral phase must also be considered. For a Gaussian
pulse with a temporal duration τ the spectral width is ν = 8 ln(2)/τ. So after dispersive Fourier
transform, by Eq. (7), the pulse will have a temporal duration τω = 4 ln(2)δ/τ. Thus the total
number of phase samples we have control over is proportional to τω + τ, which increases as τ
gets smaller. Therefore, in order to maximize the number of degrees of freedom over the phase,
the transform-limited pulse durations should be as small as possible while covering at least N
temporal phase samples.

3.1. Proposed experiment

A unitary temporal mode transformation decomposed as in Eq. (9) can be implemented using the
experimental setup depicted in Fig. 1. The apparatus consists of a series of EOPMs, circulators
(C) and CFBGs. A pulse enters through the first phase modulator, which is driven by a shaped
electronic signal such that the targeted phase, Φ1(t), that realizes the diagonal element of the
decomposition, D1, in Eq. (9) is applied. The shaped electronic signal can either be generated
by an arbitrary waveform generator or by photonic waveform generation methods, which must
be precompensated to account for the response of EOPMs as well as any amplifiers used. The
pulse then passes through a circulator and reflects off a CFBG with positive GDD, δ, performing
the Fourier transform (FT). The output of the circulator leads to another phase modulator which
is driven to apply the second targeted phase, Φ2(t), that realizes the diagonal element of the
decomposition, D2. The pulse continues through a second circulator and CFBG, the latter of
which is oriented to apply negative GDD, −δ, performing the inverse Fourier transform (IFT).
This process is repeated, with the pulse passing through as many sets of phase modulators and

Fig. 1. Proposed experimental setup. A sequence of N sets of electro-optic phase modulators
(EOPM), circulators (C) and chirped-fiber Bragg gratings (CFBG), the latter with alternating
signs of GDD, implement a series of N phase profiles Φj(t), j = 1, . . . , N, where N is the
total number of steps in the decomposition of Eq. (9). Each phase profile implements a
diagonal element of the decomposition, Dj in Eq. (9). Chirped-fiber Bragg gratings (CFBG)
are used to perform the Fourier transform (FT) and inverse Fourier transform (IFT).
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CFBGs as needed according to the decomposition. Alternatively, one could achieve the same
transformation by switching the pulse into a cavity comprised of two CFBGs with opposite signs
as the mirrors and an EOPM inside the cavity.

Note that in an experiment with off-the-shelf components sequential use of phase modulators,
circulators and fiber Bragg gratings will lead to compounding loss for each phase step of the
transformation. The loss will scale exponentially with the number of steps. If there are no time-
or frequency-dependent losses, which we anticipate for the pulse spectral and temporal regimes
considered here, then loss commutes with the applied phase operations and can be included as a
multiplicative factor of the resultant transformation. For the simulations in this paper we consider
ideal lossless components.

4. Simulation

Although Eq. (9) indicates that any unitary transformation on the temporal modes has a
decomposition as a sequence of temporal phase modulations and Fourier transforms, it does
not provide a way to determine the form of the phases required or the number of factors in the
decomposition of a given transformation. Furthermore, we are not able to implement arbitrary
temporal phase profiles since the bandwidth and driving voltage of the EOPMs are constrained. To
demonstrate that such a unitary decomposition works in a practical setting, we present numerical
simulations that determine an optimal set of phases for a fixed number of phase factors within
the sequence to implement select targeted unitary transformations. These simulations takes into
account the finite bandwidth of the EOPMs as well as the driving electronics.

A unitary transformation U can be represented in various bases. Here we will work in either
the time basis or the basis of Hermite-Gaussian (HG) modes defined by

HGn(t) =
1√︁

2nn!
√

2πσ
Hn

(︃
t

√
2σ

)︃
e−(

t
2σ )

2
, (10)

where Hn(t) is the n-th order Hermite polynomial. The full-width at half-maximum (FWHM)
duration of the fundamental Gaussian pulse is τp = 2.35σ. This set of modes forms a complete
orthonormal basis for the temporal modes.

Each simulation begins with a targeted transformation, U, which we express in the HG basis.
For example Ui,j represents the component of the input temporal mode that overlaps with the
jth HG mode, HGj, that is mapped to the ith output HG mode, HGi. A unitary transformation
is completely determined by its action on a complete set of input modes. Thus, for a given
simulation we calculate the output of the realistic transformation, T , when acting on the set of
input HG modes {HGm(t)}, which gives output modes {χm(t) = T · HGm(t)}. The output modes
are then compared with the targeted output modes {ξm(t) = U · HGm(t)}, with m = 1, 2, . . ., that
would be the ideal output of the transformation.

To find an optimal realistic transformation T for a fixed number of phase applications, denoted
N, constrained by finite electronic bandwidth, B, and half-wave voltage, Vπ , of the EOPMs and
driving electronics and the limited dispersion available, δ, we use a modified simulated-annealing
algorithm [35]. Each simulation begins with discretization of the input {HGm(t)} and target
{ξm(t)} modes, which have transform limited duration of approximately τp ≈ M/2B, where M is
the number of modes involved in the target transformation. This choice of τp is to ensure that
the modes are wide enough to be independently modulated. For each simulation the modes are
defined on a temporal window of 1 ns, chosen to be several times wider than the longest pulses
so that any temporal shifts or temporal broadening caused by the spectral phase modulation will
remain within this window. They are sampled at a rate higher than twice the spectral width of
the modes to prevent aliasing. The phase modulations, Φn(t) are initially generated by random
samples in the range [0, π] at the frequency 2B corresponding to the phase modulation bandwidth
B. This ensures that the generated phases can reach Vπ while remaining within the electronic
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bandwidth constraints. They are then interpolated to the same sampling rate as the modes. The
dispersive Fourier transform is simulated by performing a fast Fourier transform (FFT) on the
modes, multiplying each mode by a quadratic spectral phase, and then performing an inverse FFT.

The set of input modes is operated on alternately by the phase modulations and dispersive
Fourier transforms up to a predefined number of steps, N, where a step is defined as the application
of a phase modulation and the dispersive Fourier transform. After the final step the transformed
input modes, {χm(t) = T · HGm(t)}, are compared to the target modes, {ξm(t) = U · HGm(t)},
using a cost function tailored to the type of transformation performed, either a one-to-one mode
mapping or M-to-M mode mapping as described below. This cost function is minimized using a
simulated annealing algorithm to optimize the phases.

4.1. Single-mode transformation

When transforming one input pulse, ψ(t), to an output targeted pulse, ξ(t), there are, in principle,
an infinite number of unitary transformations that can achieve this objective. Our simulations on
such single-mode transformations aim to determine the N applied phases {Φj(t)}, j = 1, . . . , N,
subject to experimental constraints that optimizes the overlap of the output and target modes. The
simulated-annealing algorithm initializes the set of N phases, {Φj(t)}, by randomly setting each
phase sample in the range [0, π]. From these phases the transformation T = F†DN · · ·FD2F

†D1
is computed. This transformation is then applied to the input mode, ψ(t) to give an output mode,
χ(t) = T · ψ(t). We use the fidelity as a measure of closeness between the output and target
modes, defined as the modulus squared of the overlap of the output mode with the target mode

F =
|︁|︁|︁|︁∫ χ∗(t)ξ(t)dt

|︁|︁|︁|︁2 . (11)

The algorithm generates an additional set of phases {Φ̄j(t)}, j = 1, . . . , N by randomly
perturbing a small number of samples from the phases in the original set. The corresponding
transformation T̄ = F†D̄N · · ·FD̄2F

†D̄1 is calculated along with the output mode χ̄(t) = T̄ · ψ(t)
and fidelity F̄. The simulated annealing algorithm [35] starts with a temperature K. In each
iteration the new set of phases is compared to the prior set of phases by computing ∆F = F̄ − F.
The new set of phases is taken with a probability P(∆F) = e ∆F

K , otherwise the initial phase
settings are kept. The temperature is lowered with each iteration. The simulation results in a
fidelity F ≤ 1, where the maximum F = 1 would be the fidelity of the ideal transformation. For
single-mode transformations we use this fidelity as the cost function, so the simulation maximizes
the fidelity. Note that L = 1 − F gives the loss associated with the transformation into modes
orthogonal to the target mode.

As an example we simulate the transformation of a 0th-order HG mode with σ = 10 ps to
a 5th-order HG mode with the same σ value. The phase modulation bandwidth is restricted
to B = 40 GHz, and the simulation is performed for several different step numbers, N. The
results shown in Fig. 2 depict the output pulse intensity profile, I(t) = |χ(t)|2 for phase steps of
N = 2, 4, 6, 8. We see that the fidelity increases with step number, reaching F = 0.994 after 8
steps. Note that only after four phase settings, which implies two sets of combined spectral and
temporal phase applications, nearly 95% fidelity can be achieved. The four phases required to
perform this four-step transformation are shown in Fig. 3.

To determine how the fidelity behaves with the number of steps we simulate the same HG0 to
HG5 mode transformation over large range of steps for modulation bandwidths of B = 5, 10, 20
GHz, keeping the pulse duration parameter, σ = 10 ps, fixed. The results, shown in Fig. 4,
indicate that for a fixed modulation bandwidth and pulse duration fidelity plateaus and additional
phase modulation steps do not significantly lead to increased fidelity. We also see that increased
bandwidth leads to higher achievable fidelity and convergence to this fidelity in fewer steps. This
leads one to conjecture that there are some transformations that are infeasible under realistic
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Fig. 2. Temporal intensity profile, I(t) = |χ(t)|2, resulting from the simulated transformation
of a Gaussian temporal mode into the 5th-order HG mode each having Gaussian temporal
duration parameter with σ = 10 ps. The simulations assume a phase modulation bandwidth
of B = 40 GHz, optimized over a range from 0 steps (left) to 8 steps (right).

Fig. 3. The phases required to perform the 4-step HG0 to HG5 transformation.

constraints. Furthermore, this indicates that there is a trade off in the resources needed for an
experiment, quantified by the modulation bandwidth available and the number of phase steps
required to achieve a target transformation.

4.2. Multi-mode transformations

Now we turn our attention toward multi-mode transformations. Here we consider M × M-
dimensional transformations acting on a basis of M HG modes. The transformation U maps M
input HG modes onto a set of M orthonormal target output modes {ξm(t) = U · HGm(t)}. We
simulate this transformation using a similar procedure as used in the single-mode case. For a fixed
number of phase modulation steps, N, the set of N phases, {Φj(t)}, is again initialized by randomly
setting each phase in the range [0, π]. The realistic transformation T = F†DN · · ·FD2F†D1 is
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Fig. 4. The fidelity of the optimized HG0 to HG5 transformation, F, as a function of
the number of phase modulation steps, N. The fidelity is plotted for phase modulation
bandwidths of 5 GHz, 10 GHz, 20 GHz, and 40 GHz and fixed pulse duration parameter,
σ = 10 ps. Each transformation converges to a nearly constant fidelity, within 8 steps for the
different modulation bandwidths. The higher bandwidth modulator converges in fewer steps
and to a larger fidelity than the lower bandwidth modulators.

calculated using the dispersive Fourier transform and is applied to each of the M input modes
simultaneously. We can define an M-by-M matrix U for the target transformation on the M HG
modes, where the matrix elements in the HG-mode basis are given by the overlap of the target
modes with the HG modes

Uij =

∫
HG∗

i (t)ξj(t)dt. (12)

Similarly, we define a matrix T for the output of the simulation where the output modes of the
transformation, {χj(t)} = {T · HGj(t)} replace the target modes in Eq. (12), giving

Tij =

∫
HG∗

i (t)χj(t)dt. (13)

To evaluate the effectiveness of the transformation generated by this procedure we define the
fidelity as

F =
1

M2

|︁|︁Tr(T†U)
|︁|︁2 . (14)

where Tr(·) is the trace operation. Note that while the trace is only over the M HG modes the
transformation T may send energy into modes outside this M-mode subspace. To quantify this
we introduce two new quantities related to the fidelity by

F = P × FHS. (15)

Here P is the success probability

P =
1
M

Tr
(︂
T†T

)︂
, (16)

which quantifies the probability that the output modes resulting from the transformation remain
in the chosen M-mode subspace. A transformation that has a value of P<1 means that there is
loss into the other temporal modes. Note that P does not account for other system losses, e.g.
propagation or insertion loss. The other quantity used to evaluate the simulated transformation is
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the Hilbert-Schmidt fidelity [36]

FHS =
1

M2

|︁|︁Tr(T†U)
|︁|︁2

P
. (17)

This can be interpreted as the probability that, given the output modes stay in the target
subspace, the desired transformation is implemented. An optimal transformation would result in
P = 1 and FHS = 1.

After applying the phase modulations to the input pulses we calculate the matrix elements of
the transformation as in Eq. (13). The phases are then optimized to maximize the fidelity, Eq. (15),
using the iterative simulated annealing algorithm. We then compute the success probability and
Hilbert-Schmidt fidelity. Here we consider three targeted multi-mode transformations.

4.2.1. Hadamard transformation

To begin with we demonstrate the ability of this system to implement a beam splitter, or Hadamard,
transformation between two HG modes, which is represented by a matrix in the space of the two
HG modes as

U =
1
√

2
⎛⎜⎝
1 1

1 −1
⎞⎟⎠ . (18)

For this simulation we use the 0th- and 5th-order HG modes as our two-mode subspace,
with equal pulse duration parameter, σ = 10 ps. The applied phases, subject to a modulation
bandwidth constrained to B = 20 GHz, are optimized to maximize the Hilbert-Schmidt fidelity
FHS. The temporal mode outputs for each input resulting from this simulation using N = 6 steps
are depicted in Fig. 5.

Fig. 5. The temporal amplitude of the output modes of the Hadamard simulation. The
simulation assumes a phase modulation bandwidth of B = 20 GHz, optimized over N = 6
phase steps. The temporal amplitude of the target modes are displayed as dashed lines.

The output modes of the simulation closely match the target modes of the desired transformation
with overlap fidelities F1 = 0.923 and F2 = 0.952. The presence of rapid oscillations outside the
main peaks of the amplitudes in Fig. 5 can be considered as loss into higher-order HGn modes
outside of the two-mode subspace. This contributes to a success probability P = 0.941 that is
less than the ideal value of 1. The output matrix T of this transformation is

T =
1
√

2
⎛⎜⎝
0.96 − 0.10i 0.98 − 0.03i

0.96 − 0.02i −0.97 − 0.01i
⎞⎟⎠ (19)
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The Hilbert-Schmidt fidelity of this matrix with the target in Eq. (18) is FHS = 0.999. The
success probability P = 0.941 indicates loss into the other HG modes, but the high Hilbert-Schmidt
fidelity indicates that within the two-mode subspace the transformation performs well.

4.2.2. Four mode Hadamard transformation

In principle, we should be able to perform targeted transformations on an arbitrarily large
number of modes. However, we have seen that experimental constraints restrict the types of
transformations that can be performed and may also impact the number of modes that can
be addressed in a given experimental configuration. As an example we simulate a four-mode
Hadamard transformation between the first four HG modes defined by the matrix

U =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

This transformation is simulated using a B = 20 GHz bandwidth modulator and N = 12 phase
steps. The output matrix T from the simulation was

T =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.67 + 0.07i 1.00 + 0.04i 1.10 + 0.01i 0.80 − 0.47i

1.01 + 0.00i −0.98 − 0.02i 0.75 − 0.07i −0.85 + 0.12i

0.98 − 0.03i 0.98 + 0.08i −0.91 + 0.07i −0.89 + 0.07i

0.95 + 0.01i −0.68 − 0.05i −0.86 + 0.01i 1.16 − 0.11i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(21)

From this matrix we compute a Hilbert-Schmidt fidelity with the target matrix in Eq. (20)
of FHS = 0.975 and a success probability P = 0.852. For this transformation as well as for the
two-mode Hadamard transformation the fidelity and success probability increase with the number
of steps. As shown in Fig. 6 the four-mode transformation requires more steps to converge than
for the two-mode transformation, and the success probability converges to a lower value.

Fig. 6. The fidelity, Fhs, and success probability, P, as a function of the number of phase
modulation steps for the two- and four-mode Hadamard transformations.
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4.3. Demultiplexer

As a final application of this system we look at a temporal-mode demultiplexer, which sorts
HG modes centered at one time into Gaussian pulses temporally separated such that a fast
detector could distinguish them by time of arrival. This application could also be performed
using a sequence of quantum pulse gates [37], which would require a separate pulse gate for each
additional modes. The advantage to our approach is that it could be performed with one device,
no matter how many modes are considered.

By separating the HG-modes into separate time bins the information encoded in the temporally-
overlapping HG modes can be read out using a time-resolved detector. We simulate this operation
on the first three HG modes with a temporal duration parameter σ = 20 ps, demultiplexing
them into individual Gaussian modes separated in time by 200 ps. For this simulation we use
the fidelity of Eq. (11) and optimize the set of applied phases to maximize the average fidelity
of the three modes. The results of this simulation, shown in Fig. 7, for N = 0, 4, 8, 12 phase
steps. To evaluate the efficacy of this transformation for demultiplexing we calculate the average
signal-to-noise ratio (SNR) across the time bins. The SNR for each time bin given by the ratio of
the energy in each time bin arising from the targeted mode to the energy in each time bin from the
other two modes. For this transformation we find an SNR of 187, 66, and 88 for modes 0, 1, and
2 respectively. We see that this system is capable of performing the demultiplexing operation on
three modes. After 12 steps the modes are demultiplexed with an average fidelity of F = 0.977.

Fig. 7. Demultiplexing the temporally overlapped Gaussian (turquoise), a 1st-order HG
(black), and 2nd-order HG (magenta) pulses into temporally separated Gaussian pulses for
an increasing number of phase modulation steps. The initial temporally overlapping HG
pulses and target pulses have widths σ = 20 ps. The target Gaussian modes are separated by
200 ps. The average fidelity is shown for each transformation.

5. Conclusion

A method to implement temporal mode transformations that are, in principle, unitary operations
has been introduced. This has been shown to be experimentally feasible with current technology by
means of numerical simulations. The approach uses a decomposition of the mode transformations
into into a sequence of temporal phase modulations and Fourier transforms. The fidelity that can
be achieved in our simulations is limited by the experimental constraints, including the electronic
bandwidth of the EOPMs and available amount of optical dispersion. Under these constraints
we have shown that transformations on up to four temporal modes with can be performed with
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fidelity greater than 95%. The number of steps needed to perform these transformations is
proportional to the number of modes.

The simulations performed here neglected the effect loss. In principle, since each step to
generate a temporal mode transformation involves phase-only operations the overall transformation
should be lossless. However, in a realistic experimental setup each component would contribute
to loss in the system. In the spectral and temporal regimes considered in this paper we do not
anticipate time- or frequency-dependent losses. But insertion losses can have an impact on
the overall transmission probability of the transformations. Typical off-the-shelf EOMs have
insertion losses on the order of 2-4 dB. This loss would scale exponentially with the number
of steps, making transformations involving a large number of steps unrealistic. The amount
of loss depends highly on the particular implementation used. It is possible to perform these
transformations in free-space or on chip using integrated components. The development of on
chip quantum circuits is an ongoing process that has the potential to greatly reduce losses [17,38].

A further experimental challenge to be overcome is the generation of the electronic signals
needed to drive the EOPMs. Each phase modulator must be driven by a different specified
electronic signal for each step in the decomposition, and these must be synchronized with the
arrival of the pulse at the EOPMs. Novel schemes to solve this problem have recently been
demonstrated by using photonic waveform generation [39].

The implementation of this system would enable targeted multimode unitary transformations
on temporal modes. This would allow the use of the temporal modes as a basis for encoding
quantum information with wide ranging applications from computing and communications to
dynamic spectroscopy and sensing.
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