
DOUBLE-ORACLE DEEP REINFORCEMENT LEARNING

FOR HANDLING EXPONENTIAL ACTION SPACE IN

SEQUENTIAL STACKELBERG SECURITY GAMES

by

CZANDER TAN

A THESIS

Presented to the Department of Computer and Information Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of
Master of Science

June 2022

THESIS APPROVAL PAGE

Student: Czander Tan

Title: Double-Oracle Deep Reinforcement Learning for Handling Exponential Action Space
in Sequential Stackelberg Security Games

This thesis has been accepted and approved in partial fulfillment of the requirements for
the Master of Science degree in the Department of Computer and Information Science by:

Thanh H. Nguyen Chair
Daniel Lowd Core Member

and

Krista M. Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the Division of Graduate Studies of the
University of Oregon.

Degree awarded June 2022

ii

© 2022 Czander Tan
All rights reserved.

iii

THESIS ABSTRACT

Czander Tan

Master of Science

Department of Computer and Information Science

June 2022

Title: Double-Oracle Deep Reinforcement Learning for Handling Exponential Action Space
in Sequential Stackelberg Security Games

Standard Stackelberg Security Games (SSGs) assume attackers to be myopic players

that select only a single target based on the defender’s strategy. In this paper, we consider

sequential SSGs, in which attackers launch multiple attacks sequentially. With a sequence

of events, however, the defender’s action space grows exponentially with the number of

time steps, making the problem computationally intractable.

To handle this issue, this paper presents the following contributions. First, we use the

Double Oracle algorithm to iteratively derive player strategies. Second, we use Advantage

Actor-Critic models to approximate best response policies for both players. Lastly, we

represent the defender action space compactly with marginal probabilities instead of

enumerating all possible actions.

Overall, our experiments show that the Double Oracle algorithm not only allows us to

search through defender strategies effectively and efficiently, but also provides optimal

solutions that outperform other models at scalable settings.

iv

ACKNOWLEDGMENTS

I would like to thank my research advisor Thanh H. Nguyen for her assistance in my

research and the writing of this work, as well as her understanding during a difficult part of

my life. I would also like to thank Heidi Kaufman, who helped me with my first

publication and always encouraged my interdisciplinary explorations, and Stephen Fickas,

who saw my potential and encouraged me to pursue a graduate degree in Computer

Science. Finally, I would like to thank my dear family and cherished friends, without whose

love and support I would not be here.

v

TABLE OF CONTENTS

1 INTRODUCTION 1

2 BACKGROUND 3

2.1 Stackelberg Security Game Applications . 3

2.2 Double Oracle for Stackelberg Games . 4

2.3 Sequential Stackelberg Security Games . 4

3 PROBLEM DESCRIPTION 5

3.1 Example with Resource Movement Cost . 7

4 DOUBLE ORACLE 10

4.1 CoreLP . 11

5 ORACLE DESIGN 14

5.1 Reinforcement Learning - Policy Gradient Methods 14

5.1.1 Advantage Actor-Critic (A2C) . 15

5.2 Compact Representation for Defender Actions 16

5.3 Attacker Oracle . 16

6 EXPERIMENTAL OVERVIEW 18

6.1 Game Representation . 18

6.1.1 Adjacency Matrix . 18

6.1.2 Payoff Matrix . 18

6.2 Defender Oracle . 19

6.2.1 Input Representation - Defender Observation 19

6.2.2 Output Representation . 19

6.3 Attacker Oracle . 20

6.3.1 Input Representation - Attacker Observation 20

6.3.2 Output Representation . 20

6.4 A2C Architecture for Oracles . 21

6.5 Oracle Training Algorithm . 21

6.6 Baselines . 22

7 RESULTS 24

7.1 Small Game . 25

7.1.1 Double Oracle . 25

7.1.2 Model Comparison . 26

vi

7.2 Mid-sized Game . 27

7.2.1 Double Oracle . 27

7.2.2 Model Comparison . 28

7.3 Large Game . 29

7.3.1 Double Oracle . 29

7.3.2 Model Comparison . 30

8 CONCLUSION AND FUTURE WORK 31

9 REFERENCES CITED 32

vii

LIST OF FIGURES

1 Oracle Convergence for 10-target Games . 25

2 Comparison of Models against an Optimal Attacker for 10-target Games . . 26

3 Oracle Convergence for 20-target Games . 27

4 Comparison of Models against an Optimal Attacker for 20-target Games . . 28

5 Oracle Convergence for 30-target Games . 29

6 Comparison of Models against an Optimal Attacker for 30-target Games . . 30

viii

CHAPTER 1

1 INTRODUCTION

In real-world security domains, law enforcement organizations work to protect critical

infrastructure from human attackers. They do this by monitoring and allocating resources

to specific targets not only to engage with security threats, but also to strategically deter

and control attacks. An airport, for example, includes multiple terminals, control towers,

hangars, lobbies, and runways. In order to establish security at an airport, human and

material resources are distributed to checkpoints, patrols, and various forms of security

systems. While the number of potential targets at an airport is substantial, security

resources are often extremely limited, so organizations have to figure out which resources

to apportion to patrols, how much for checkpoints, where to place those checkpoints, etc.,

to achieve optimal coverage of the entire territory.

Since defensive agencies have to establish security preemptive to any attack, this kind

of leader-follower security game, known as Stackelberg Security Games (SSG), puts the

defenders at a disadvantage. Malicious actors, or attackers, often spend time observing

general patterns of security resources specific to their targets; therefore, in SSGs, attackers

decide on which target to attack with knowledge of the general defender strategy. On the

other hand, defenders are modeled to commit to their resource allocation strategy without

knowledge of the attacker’s behavior. As such, game theory has been utilized as a formal

method for developing strategies to handle such disadvantages. Much research has been

done with developing game theoretical models for security scenarios to optimize defender

strategies based on the values of their targets, randomization, and other methods (Fang

et al., 2017; Shieh et al., 2012; Pita et al., 2009; Tsai et al., 2009; Sinha et al., 2018).

Increased attention to defensive strategies, however, also pressures malicious actors to

develop more sophisticated strategies of their own. One of these strategies involves

sequential attacks, where a malicious actor attacks multiple targets in a specific order

(Nguyen et al., 2019). For example, a malicious actor could launch an attack on a less

valuable target to attract the attention of security resources, after which they would launch

an attack on a more valuable target. Even if the value of targets were more or less uniform,

these sophisticated attack strategies could be formed and executed to manipulate security

resources.

Standard SSGs assume attackers to be myopic players that select only a single target

based on the defender’s strategy. That is, attackers in standard SSGs only consider one

action. Similarly, defenders in standard SSGs only consider the present moment, hence the

possibility of allocating resources to a select few targets. In sequential SSGs, however, both

1

attackers and defenders consider future possibilities and make decisions based on the

sequence of events that have happened and might happen. As a result, both sides can

adapt their strategies according to real-time observations. For an attacker, partial

observation of whether or not a defender resource is at an attacked location could change

their next attack. Similarly, a sequence of attacks reveals information to the defender over

time, allowing the defender to update its resource allocations accordingly.

Sequential SSGs not only provide models for more realistic security scenarios, but they

also level the playing field between attacker and defender. While the attacker has

preemptive knowledge of general defender behaviors, their belief of whether a resource is

allocated to a specific target is only confirmed when they make an attack. On the other

hand, the defender knows where all of its resources are, as well as where an attacker

launches their attack. Therefore, in the sequence of events, the defender has full

observation of the game while the attacker only has a partial observation.

Being able to model more realistic scenarios, however, also introduces exponential

complexity to the problem of deriving optimal defender strategies. The action space for

defenders in standard SSGs is already large, being a function of the number of targets and

resources. By adding a sequence of events, the action space grows exponentially according

to the number of time steps. For example, let a defender have 5 resources, with the goal of

protecting 10 targets. In a standard SSG, the action space of the defender strategy is 252.

In a sequential SSG, with 3 attacks, the action space of the defender strategy would be

(252)3 ≈ 107, over a ten million combinations.

In order to handle the exponential action space of the defender in sequential SSGs, our

work focuses on the following main contributions. First, we use the Double Oracle

algorithm (Jain et al., 2011) to derive the most likely subsets of attacker and defender

strategies. Using this algorithm, we bypass the need to enumerate over all strategies and

take advantage of the Monte Carlo sampling methods that base the Double Oracle

algorithm.

Second, we use a deep reinforcement learning model, the Advantage Actor-Critic

(A2C) (Mnih et al., 2016), to approximate best response policies for the defender and the

attacker. This model merges the benefits of value-based learning with that of policy

gradient methods, presenting a robust solution for each oracle in the Double Oracle

algorithm.

Lastly, we transform the representation of the defender action space into marginal

probabilities instead of probabilities across all possible actions. While this approach aids

the intractability of enumerating over all defender actions, it is specific to the SSG setting,

where defender marginal probabilities represent their coverage over the targets.

2

CHAPTER 2

2 BACKGROUND

Sinha et al. (2018) in (Sinha et al., 2018) provide a comprehensive overview of SSGs

and technical advances in SSG-based applications over the years. In this section, I briefly

describe these applications to give the reader a sense of where SSG research has focused.

Then I discuss a work that has applied the Double Oracle algorithm to standard SSG

games. Lastly, I discuss recent work in sequential SSGs.

2.1 Stackelberg Security Game Applications

The use of SSG-based applications for real-world domains began primarily with the

deployment of ARMOR at the Los Angeles International Airport (LAX) in 2007, with the

deployment of IRIS for scheduling the U.S. Federal Air Marshal Service in 2009, and with

the deployment of PROTECT for scheduling the U.S. Coast guard in 2012.

ARMOR – Pita et al. (2008) in (Pita et al., 2009) present ARMOR (Assistant for

Randomized Monitoring Over Routes), a scheduling system to randomize checkpoints and

canine patrols at LAX. A key contribution of Pita et al., in relation to this paper, is the

consideration of multiple adversary types in SSGs (e.g. smugglers, criminals, terrorists).

While Pita et al. only consider one attack, considering multiple adversary types means that

the defender strategy provided by ARMOR must be adaptive to various attacker priorities,

similar to how the shifting environment in sequential SSGs affects defender strategies.

IRIS – An extension of the considerations of ARMOR, Tsai et al. (2009) apply a SSG

model to transportation networks with IRIS (Intelligent Randomizing In Scheduling) in

(Tsai et al., 2009). They face the issue of exponential state space since transportation

networks, particularly tens of thousands of commercial flights, contain numerous routes.

One way IRIS solves this issue is to represent the strategy space of the leader (i.e. the

defender) compactly, based on scheduling constraints, instead of enumerating over all

possible schedules. This solution is similar to how this paper compactly represents defender

actions using marginal probabilities due to exponential state and action spaces.

PROTECT – To address the bounded rationality of attackers, rather than assuming

perfect rationality as the previous applications have done, Shieh et al. (2012) in (Shieh

et al., 2012) use quantal response (QR) to model attacker behavior. With this new

assumption, Shieh et al. present PROTECT (Port Resilience Operational/Tactical

Enforcement to Combat Terrorism) to aid the U.S. Coast Guard in protecting the ports

around Boston and New York. In addition to modeling QR attackers, PROTECT also uses

3

compact representation for defender actions. In the experiments of this paper, we use QR

as a baseline against which we compare our defender strategy computed by the Double

Oracle algorithm.

2.2 Double Oracle for Stackelberg Games

In their paper, Karwowski and Mandziuk apply the Double Oracle algorithm to

approximate equilibria for general-sum extensive-form games in the Stackelberg setting

(Karwowski and Mandziuk, 2020). They move beyond conventional methods for solving

Stackelberg equilibria that use mixed integer linear programs (MILP), instead leveraging

Monte Carlo tree search to sample player strategies. While their methods are able to

generate high-quality solutions that scale better than MILP-based methods, their setting is

only for one-shot Stackelberg games. Thus, in this paper, we seek to apply the Double

Oracle algorithm to the sequential setting.

2.3 Sequential Stackelberg Security Games

The first foray into sequential SSGs is the paper by Nguyen et al. (Nguyen et al.,

2019), where they explore two-step sequential SSGs in two settings: one where the defender

can move resources between time steps, and one where the defender cannot move resources.

For both settings, they find that considering attacks sequentially derives a strategy no

worse for the defender than considering the attacks as a series of one-shot games. In this

paper, we consider the setting where the defender can move resources between time steps.

This setting not only allows for more complex and realistic scenarios through non-zero-sum

games, but also results in higher quality defender strategies than computing from a series

of one-shot SSGs.

To go beyond the two-step sequential SSG setting, Tomasek et al. consider sequential

SSGs as one-sided partially observable stochastic games (Tomasek et al., 2020). They base

their method on Heuristic Search Value Iteration and adapt it to the finite-horizon

sequential SSG setting to design a heuristic for scaling towards larger games. However, they

acknowledge that their methods do not return the optimal defender strategies for larger

games. Therefore, in this paper, we seek to develop a method that generates an optimal

solution by implementing reinforcement learning models in a Double Oracle algorithm.

4

CHAPTER 3

3 PROBLEM DESCRIPTION

A sequential Stackelberg Security Game (seSSG) involves a fixed number of targets

and two players, an attacker and a defender, where the defender has a limited number of

resources to defend the targets. At each time step, the defender first commits to a strategy,

and then the attacker selects a target to attack. If there is a defender resource at that

target, the attack fails; otherwise, the attack is successful. Then the attacker selects

another target to attack, and the process repeats until all time steps are finished.

Formally speaking, a seSSG is defined by a set of targets T , a fixed number of time

steps I, a set of defender resources K, a set of rewards R over the targets, and a set of

penalties P over the targets. In terms of game theory, players engage the game by selecting

actions against each other, and each executed action is known as a pure strategy (e.g. a

resource allocation). Let G and H be the set of all pure strategies for the defender and the

attacker respectively. To introduce uncertainty into the game setting, players employ a

mixed strategy, which is a randomization over all pure strategies. In our case, a mixed

strategy for the defender is denoted as x = {Pr(g)}, where g is a pure strategy in G and

Pr(g) is the probability that the defender plays pure strategy g. Similarly, let a mixed

strategy for the attacker be denoted as y = {Pr(h)}, where h is a pure strategy in H and

Pr(h) is the probability an attacker plays pure strategy h.

At each turn i of a game, each player simultaneously takes an action based on the

state si of the game. The defender’s action di ∼ xi allocates k defense resources to T

targets, where k < T and di refers to the set of targets protected by the defender at i. At

the same time, the attacker’s action ai ∼ yi chooses a target to attack. If the attack meets

a defender resource at ai, i.e. ∃ l ∈ di where ai = l, the attack fails. Additionally, the

resource at l is removed from play. The defender is rewarded according to the utility for

that target RD(ai), and the attacker is penalized for PA(ai). However, if the attacker does

not meet a defender resource at ai, i.e. ai ̸= l,∀l ∈ di, the attack is successful and the

target is destroyed. In that case, the defender is penalized according to the defender

penalty for that target PD(ai), and the attacker is rewarded with RA(ai). Within one time

step, the process described is that of a standard non-sequential SSG.

For a seSSG, however, each player takes an action again, repeating the process until

the last time-step is finished. Therefore, the trajectory of the game must be taken into

account, as it reflects how defender and attacker mixed strategies, xi and yi, would be

updated. Furthermore, to simulate real-world scenarios, we also introduce a resource

movement cost for the defender. That is, if the defender’s sampled action moves a resource

5

from one target to another, a cost is deducted from the immediate reward or penalty.

After players take their actions, then, each of them sees an independent observation of

the results. Since the defender knows where all the resources were allocated during the

attack, the defender has a complete observation of the game turn, knowing where the attack

happened in relation to the resource allocation. Let odi = {(di, ai)} denote the history of

the game so far at time step i, representing the defender’s observation. At the next time

step, the defender’s mixed strategy would be xi+1 = {Pr(g|odi)i+1}, which shows how the

probabilities of playing a pure strategy g are updated given the history of the game.

The attacker, on the other hand, sees only the outcome of the attack, gaining

knowledge of the defender’s resource allocation only at the target attacked. That is, if the

attack does not meet any defender resource at target ai, the only information gained about

the defender’s strategy is that a resource was not allocated at ai. Since the attacker does

not have information about the entire resource allocation, they have incomplete

information regarding the game turn. Let oai = {[ai, b(ai)]} denote the attacker observation

at time step i, where b(ai) represents whether or not there was a defender resource at ai.

The attacker’s mixed strategy at the next time step, then, would be yi+1 = {Pr(h|oai)i+1},

which shows how the probabilities of playing a pure strategy h are updated given partial

observations at each time step.

As such, each player takes an action and updates their strategies each turn until the

last time step is reached. Within each game, then, the objective is to compute a mixed

defender strategy x∗ to determine the defender’s actions each time step such that the

defender’s utility is maximized, given a rational minimizing attacker in the game setting

specified. With UD to denote the defender utility after all time steps, and UA as the same

for the attacker, a Strong Stackelberg Equilibrium (SSE) for a seSSG can be formulated as:

x∗ = argmaxxU
D(x, a∗(x))

a∗(x) = argmaxaU
A(x, a)

(1)

A SSE denotes a point where it would not be advantageous for the defender to deviate

from mixed strategy x∗, given the same for the attacker playing a∗. However, as mentioned

previously, to enumerate over all pure strategies for the defender in G is infeasible for an

exponentially large action space, making the computations for x intractable. Therefore, in

Chapter 4, we introduce the Double Oracle approach, which iteratively enumerates through

best-response strategies to derive an equilibrium. Before introducing the Double Oracle

approach, however, we describe a simple example comparing the seSSG setting to the

standard SSG, incorporating resource movement costs for the defender.

6

3.1 Example with Resource Movement Cost

Consider a non-zero-sum toy example game setting with 3 targets, 2 time steps, and 2

defender resources, where the value of each of the targets is 1, 2, and 3 respectively. In this

example, if the attacker attacks a target and there is not a defender resource allocated to

it, they receive a reward equal to the value of the target; otherwise, they get a utility of

zero. Likewise, if the defender is able to block an attack, the defender gets a reward equal

to the value of the defended target; otherwise, the defender gets a utility zero. Real-world

values will have penalties less than zero, but we use zero here for convenience and to make

it a non-zero-sum game.

In a standard SSG setting, the defender’s mixed strategy in a SSE would make it such

that the expected utility of the attacker is equal across the targets. With 2 resources and 3

targets, the defender has 3 possible actions to allocate resources accordingly:

{(t1, t2), (t1, t3), (t2, t3)}. This game can be represented in the following matrix, with the

row player as the attacker and the column player as the defender:

(t1, t2) (t1, t3) (t2, t3)

t1 0, 1 0, 1 1, 0

t2 0, 2 2, 0 0, 2

t3 3, 0 0, 3 0, 3

With this setting, the defender’s mixed strategy across their 3 possible actions would

calculate to be (2
11
, 3
11
, 6
11
) respectively.

Let’s say the attacker chooses to attack target t1 at the first time step, and a defender

resource was present. In the second time step, the defender would only have one resource

remaining and two targets left to defend, each with the values 2 and 3 respectively. In a

standard SSG setting, the defender would have to recalibrate their mixed strategy for the

next attack, for defending either t2 or t3 respectively, to (2
5
, 3
5
).

Let us now introduce the resource movement cost of −0.5 to determine the expected

utility of the defender for the second attack. Consider the case where the defender’s move

in the first round was (t1, t2). The utility matrix of the second round, including resource

movement cost for the defender, would then be:

t2 → t2 t2 → t3

t2 0, 2 2,−0.5

t3 3, 0 0, 2.5

7

Even if we fixed the attacker’s first attack to target t1 such that the defender always covers

t1 in the first round and gets a reward of 1, the defender’s total expected utility for the

two-step game would be 1.4. This value results from the defender’s expected utility of 0.4

in the second round for playing (2
5
, 3
5
). If the defender played (t1, t3) for the first round,

however, the resulting utility matrix for the second round would be:

t3 → t2 t3 → t3

t2 0, 1.5 2, 0

t3 3,−0.5 0, 3

In this case, the defender’s expected utility for the second round would be 1.1. Given

the case that the attacker’s first target is fixed to t1 such that the defender always gets a

reward of 1 in the first round, the total expected utility of the defender for the two-step

game if they played (t1, t3) the first round would be 2.1. Using the initially calculated mixed

strategy of the defender to select only between (t1, t2) and (t1, t3), i.e. (2
11
, 3
11
)→ (2

5
, 3
5
)

respectively, the defender’s expected utility considering both scenarios is 1.82.

Let’s say we keep the attacker’s first attack fixed to target t1, and we considered a

sequential SSG setting. In terms of a real-world scenario, t1 might be a checkpoint that the

attacker must pass through in order to get to either t2 or t3. In that case, we can represent

the simplified sequential game through the following matrix, with the row player as the

attacker and the column player as the defender:

(t1, t2), t2 (t1, t2), t3 (t1, t3), t2 (t1, t3), t3

t1, t2 0, 3 2, 0.5 0, 2.5 2, 1

t1, t3 3, 1 0, 3.5 3, 0.5 0, 4

Knowing that the attacker will first attack target t1 before either t2 or t3, the defender

has 4 possible sequential actions shown in the matrix above. To render the attacker’s

choice between t2 and t3 indifferent, the defender can play the mixed strategy (1
5
, 3
10
, 1
5
, 3
10
).

In this case, the defender’s total expected utility for the two-step game would be 2.125,

which is greater than the 1.82 derived from playing two one-shot games.

Furthermore, the sequential SSG setting introduces an additional advantage in that

the mixed strategy equilibrium computation need only be computed once, instead of being

recalibrated every time step according to the attack’s outcomes. The latter option is not

feasible for real-world scenarios, where response to sequential attacks must often be

8

immediate. Since the defender’s mixed strategy for a sequential SSG setting must include

resource allocations for every time step, and take into account every possible attack

sequence, the space of the matrix grows exponentially. If we did not fix the first attack to

t1 in our toy game setting, for example, the attacker would have 6 possible sequences of

attacks and the defender would have 18 possible sequences of resource allocations, making

the size of the matrix 108. From these calculations, we can see that beyond the toy game

setting, the computation for the SSE would be intractable. Therefore, the next section

introduces the Double Oracle algorithm to solve this issue.

9

CHAPTER 4

4 DOUBLE ORACLE

The Double Oracle algorithm was first developed to solve simultaneous two-player

adversarial games (McMahan et al., 2003). In our case, an oracle O is essentially a function

that returns a policy π given a set of inputs S, that is, O : S → π. And a policy maps a

given state s ∈ S to a mixed strategy x, from which an action a is sampled, giving

π : s→ (a ∼ x). Basically, the Double Oracle algorithm employs an oracle for each player

that returns a best response policy given the strategies of their opponent. Then, with the

best response policies being added to a set of policies of the respective players at each

iteration, the algorithm keeps generating best response policies for each player until no

better can be found. As such, the iterative process of the Double Oracle algorithm aids

with the issue of exploring an exponentially large action space by simulating only best

response policies against the respective opponent’s set of policies.

To explain the Double Oracle algorithm in more detail, let Xj and Aj be the set of

defender and attacker policies, respectively, generated so far at iteration j. First, a utility

matrix, Mj, between the defender and attacker is calculated by simulating each defender’s

policy πD ∈ Xj against each attacker’s policy πA ∈ Aj. Then, we use a linear program

solver, CoreLP (Xj, Aj,Mj), which calculates the Nash equilibrium of the two-player game.

The Nash equilibrium returned by the CoreLP gives p∗j and q∗j , which are probability

distributions for the defender and attacker over their respective sets of policies Xj and Aj.

After the CoreLP step, the main part of the Double Oracle algorithm is run: we

compute a defender oracle that generates a best response policy πD∗ against q∗j ; at the same

time, we compute an attacker oracle that generates a best response policy πA∗ against p∗i .

Both new policies are subsequently added to Xj+1 and Aj+1 respectively, and the utility

matrix is updated to Mj+1. Subsequently, the Nash equilibrium probability distribution for

each player is updated with CoreLP (Xj+1, Aj+1,Mj+1), which provides p∗j+1 and q∗j+1. As

such, X and A increase in size each iteration of the Double Oracle algorithm, and new best

response policies are generated for each player each time until convergence is reached.

Convergence results when the policies generated by the oracles stop improving over

existing policies in the set, or when the probability distributions given by the CoreLP stop

changing. At that point, neither the defender oracle nor the attacker oracle can produce a

policy better than the current solution provided by the CoreLP . This way, the optimal

probability distribution over best response policies for either player can be derived without

having to enumerate over all possible policies or compute all the possible probability

distributions over those policies.

10

Computing the oracles, however, can be quite expensive. In order to make it tractable,

we use deep neural networks to approximate the oracles of each player. This means that

the modified algorithm looks as follows:

1. Generate initial policies for defender and attacker sets.

2. Compute respective Nash equilibrium probability distributions using the CoreLP .

3. Train a neural network against the attacker probability distribution to approximate
the defender oracle.

4. Train a neural network against the defender probability distribution to approximate
the attacker oracle.

5. Add generated policies (i.e. the weights and biases of the networks) to the sets of
policies of each respective player.

6. Repeat steps 2-5 until convergence, where each oracle’s policy returns a utility no
better than that from the CoreLP for each player.

7. Return the optimal defender and attacker mixed strategies (i.e. probability
distributions over their set of respective policies represented by neural networks).

The correctness of the Double Oracle algorithm for two-player zero-sum games has

been presented in (Jain et al., 2011) and (McMahan et al., 2003). Basically, when the

algorithm converges, the defender and attacker mixed strategies at that iteration form an

equilibrium of the game. And since each oracle cannot find a better policy after searching

over all possible policies against the opponent’s mixed strategy, those defender and attacker

mixed strategies are optimal. Additionally, the algorithm must converge, because at worst,

it searches over all policies in the entire exponentially large state and action space.

4.1 CoreLP

To compute Nash equilibria for our experiments, we use the gambit software,

specifically their linear complementarity program (LCP) as our CoreLP . Basically, the

program generates a probability distribution for each player by optimizing the player’s

expected utility against the set of policies of the opponent. Finding these probability

distributions can be formulated as a maximin problem between defender and attacker

utilities as follows:

max
p, v

v∗

such that v ≤
∑
k

pk · U(dk, al), ∀al ∈ A

where
∑
k

pk = 1 and pk ∈ [0, 1]

(2)

The variables here represent the following:

• v: The player’s expected utility

• p: The player’s probability distribution, formed from a random distribution over the
set of policies D

11

• k: The index of a policy for the player

• l: The index of a policy for the opponent

• pk: The probability to play a given policy dk

• dk: A single policy for the player, indexed by k from the set of player policies in the
restricted problem.

• al: A single policy for the opponent, indexed by l from the set of opponent policies in
the restricted problem.

• U(dk, al): The total utility of the player when playing policy dk against opponent
policy al.

As the first line signifies, our main objective is to maximize the player expected utility v

that corresponds to some probability distribution, or randomization, p. Our primary

variables, then, are v and p.

While the second and third constraints ensure that p adds up to one and each

pk, ∀k ∈ |D|, is a valid probability, the first constraint ensures the opponent minimizes the

player’s expected utility for each opponent policy, across all opponent policies. That is, for

every policy d played according to some overarching randomization p, we assume the worst

case scenario where the opponent always plays their best policies. If we derive the optimal

player strategy according to the worst case scenario, any other action the opponent takes

will result in a better outcome for the player. Thus, for every randomization p, we derive

the minimum expected utility for the player. Then, out of the set of derived minimized

player expected utilities, the objective selects the randomization p that corresponds to the

maximum expected utility v∗.

As such, at each step j of the Double Oracle algorithm, the CoreLP returns

probability distributions p∗j and q∗j (along with corresponding maximin expected utilities

vD∗
j and vA∗

j) for the defender and attacker, each according to their respective set of

policies Xj and Aj. This process is compactly represented in Algorithm 1.

12

Algorithm 1: Double Oracle Algorithm with Neural Networks

1 Initialize defender strategies X
2 Initialize attacker strategies A
3 for each iteration do
4 Mj ← Game(x, a),∀x ∈ X, ∀a ∈ A
5 (p∗j , v

D∗
j), (q∗j , v

A∗
j)← CoreLP (X,A,Mj)

6 Initialize and train defender oracle neural network Dj:
πD∗
j , vdj ← Dj(q

∗
j)

7 Initialize and train attacker oracle neural network Ej:
πA∗
j , vaj ← Ej(p

∗
j)

8 if vdj ≤ vD∗
j AND vaj ≤ vA∗

j then
9 return p∗j , q

∗
j

10 X ← X ∪ {πD∗
j }

11 A← A ∪ {πA∗
j }

13

CHAPTER 5

5 ORACLE DESIGN

With the attacker’s equilibrium distribution q∗j over their set of policies Aj, the

defender oracle must generate a best response policy d∗. More specifically, this best

response policy d∗ must maximize the defender expected utility U(d∗, q∗j) such that the

expected utility is better than that from the equilibrium, i.e. U(d∗, q∗j) > vD∗
j .

As shown in (Jain et al., 2011), however, this problem is NP-hard as it reduces to the

Set-Cover problem. While Jain et al. derive a Mixed Integer Linear Program to solve the

defender oracle, their problem is zero-sum and not sequential. Furthermore, as previously

mentioned, the state and action space for seSSGs are much larger than standard SSGs.

Therefore, we use reinforcement learning, specifically Policy Gradient methods, to

approximate the best response policy for the defender oracle.

5.1 Reinforcement Learning - Policy Gradient Methods

Due to the exponentiality of the state and action space for seSSGs, we cannot

implement a standard reinforcement learning approach, which derives a policy based on

approximating the state (Value Function Approximation) or state-action values

(Q-learning) of the entire game. Since computing all state-action values for large seSSGs is

intractable, we turn to Policy Gradient methods, which directly approximate the policy

itself. In Policy Gradient methods, the oracle learns parameters θ for policy π, and the goal

is to find the θ for the optimal policy π∗, which provides the maximum value function. As

our oracles are implemented using neural networks, θ represents the weights and biases of

the network.

With a game state si as input to the network, then, the defender gets a mixed strategy

xi from its parameterized policy, with the probability of the mixed strategy being

represented by π(xi|si, θi); then the defender samples a discrete resource allocation di ∼ xi.

The outcome of playing di, which includes defender utility ri, is then used to update the

policy parameters based on a learning rate α and the gradient of some function J(∗) that

seeks to maximize the defender’s utility, giving θi+1 = θi + α∇J(θi).

The disadvantage of using Policy Gradient methods over value-based methods,

however, is that they are more likely to get stuck in local optima. Without direct

optimization of the values of states or state-action pairs, it is difficult to determine if a

current policy is the globally optimal one. In our case, while J(∗) aims to maximize the

defender’s utility, there is no absolute target against which to compare the state-action

14

values of a given policy.

One solution is to leverage the benefits of both Policy Gradient methods and

value-based methods by approximating both a value function and a parameterized policy.

In this way, the oracle has a target to aid it in getting out of local optima, and it does not

have to compute the state-action values of the entire game. This combined approach has

led to Actor-Critic methods, which is explained further in the section below.

5.1.1 Advantage Actor-Critic (A2C)

In Actor-Critic methods, we have two primary components: the parameterized policy

(actor), and the value function (critic). While the policy and value function each could

have their own parameters, for the sake of simplicity, we use θ to represent parameters for

both of them. Practically speaking, the oracle can be thought of as a single model that

generates two outputs; in terms of neural networks, therefore, the two outputs share most

of the network layers’ weights and biases.

With the value function denoted as V (s|θ) and the policy as π(x|s, θ), an

implementation of J(θ) that corresponds to actor-critic reinforcement learning as shown in

(Sutton and Barto, 2018) is:

∇J(θi) = [ri + γV (si+1|θ̂)− V (si|θ)] ∇ log π(xi|si, θi) (3)

where ri is the reward for employing mixed strategy xi to transition from state si to si+1,

and γ is a discount factor. The term ∇ log π(xi|si, θi) incorporates the actor part of the

approach, where the probability of the state-action pair is factored into the gradient.

The segment of the equation ri + γV (si+1|θ̂)− V (si|θ) accounts for the critic part of

the approach, where the value function is trained to encapsulate the value of the immediate

reward at si and the discounted future reward. Note that the parameters in γV (si+1|θ̂) are

labeled with a hat symbol to distinguish that they are fixed for that value, so that the

gradient step for the value function only ascends once for V (si|θ). The parameters in

γV (si+1|θ̂) are fixed also so that the target for V (si|θ) does not vary substantially.

Furthermore, this segment of the equation corresponds to the Q-value of the state-action

pair, where, generally speaking in reinforcement learning terms,

Q(s, a) = R(s, a, s′) + γV (s′)− V (s). Therefore, we can rewrite the above equation as:

∇J(θi) = Q(si, xi|θ) ∇ log π(xi|si, θi) (4)

As Q(si, xi|θ) has a high variance from update to update, learning can be stabilized by

introducing a baseline. Mnih et al. show in (Mnih et al., 2016) that subtracting V (si) from

15

Q(si, xi) decreases overall variance, deriving the advantage A(si, xi) = Q(si, xi)− V (si).

The parameter update can thus be written as:

θi+1 = θi + α[A(si, xi|θ) ∇ log π(xi|si, θi)] (5)

As such, we implement the Advantage Actor-Critic (A2C) method for the defender oracle’s

neural network by updating the network’s parameters θi from its outputs V (si|θi) and

π(xi|si, θi), as well as the immediate utility of the time step ri.

5.2 Compact Representation for Defender Actions

In regular reinforcement learning settings, the mixed strategy generated by

Actor-Critic oracles is a probability distribution over all possible actions. Since

enumerating all actions is intractable for larger instances of this problem, we require a

compact representation for defender actions.

In this paper, we follow Nguyen et al. in (Nguyen et al., 2019), which implements

compact representations for defender actions in resource movement settings of seSSGs.

Instead of denoting defender mixed strategy x as a probability distribution over all possible

actions, x can represent the probability distribution of moving a resource from one target

to another over all targets. The justification for this approach, as proposed in (Nguyen

et al., 2019), is that the probability a defender resource will be at a given target represents

the marginal probability that that target will be protected by the defender before an attack

at that time step.

Representing defender actions compactly with marginal probabilities also allows us to

derive π(xi|si, θi) easily. As such, we would not need to enumerate over all possible

resource allocations for the defender.

5.3 Attacker Oracle

Similar to the defender oracle, the attacker oracle also uses an Actor-Critic method to

train its neural network by updating parameters λ for its respective value function and

policy.

With a game state si as input to the network, then, the attacker samples an action ai

from the mixed strategy the parameterized policy outputs, with the probability of the

mixed strategy being represented by π(ai|si, λi). The outcome of playing ai, which includes

attacker utility ui, is then used to update the policy parameters based on a learning rate α

and the gradient of some function J(∗) that seeks to maximize the attacker’s utility, giving

λi+1 = λi + α∇J(λi). The network update for the attacker oracle follows equation (5) for

16

its respective parameters.

One thing to note is that we do not need a compact representation for the attacker’s

action at each time step, since the attacker only attacks one target per time step. As such,

the attacker’s action space is defined by the number of targets in the game, and is not

intractable. Therefore, the method for training the attacker oracle is much simpler than

that for the defender oracle.

17

CHAPTER 6

6 EXPERIMENTAL OVERVIEW

In this section, we first outline the technical specifications of the game. Then, we

discuss the states or observations that are input to the defender and attacker oracles

respectively, as well as the details of the neural network architecture and training program

for each of the oracles.

6.1 Game Representation

The following game setting features encode necessary information about the seSSG,

which is naturally representable as a scale-free network graph. Specifically for our

experiment, we have an adjacency matrix, which encodes the connectivity of the graph, as

well as a payoff matrix, which encodes the utilities each player receives at each node of the

graph depending on the outcome of the players’ actions at a given time step.

6.1.1 Adjacency Matrix

The connectivity of the seSSG game setting is represented by a T × T matrix, which

shows the ability of a player to move from one target to another. A fixed positive value in

position ij of the matrix shows that the player cannot move from target ti to target tj. A

negative value at position ij of the matrix represents a resource movement cost, showing

the penalty for the defender to reallocate a resource from target ti to target tj. The cost to

keep a resource at a target, i.e. moving resource from target ti to target ti at a given time

step, is zero. This resource movement cost is meant to represent real-life security scenarios,

where it takes time and energy for a security resource to be redistributed to another

location apart from some set schedule. On the other hand, since the attacker’s sequential

attacks are represented as preemptively coordinated, they do not suffer any movement

costs.

6.1.2 Payoff Matrix

The payoffs for each player in the seSSG game setting is represented by a T × 4

matrix, which shows the rewards and penalties for the defender and attacker for each target

location. The first column shows the rewards for the defender for defending each attacked

target, while the second column shows the penalties for the defender if each attacked target

is not defended. The third column shows the rewards for the attacker for attacking an

undefended target, and the fourth column shows the penalties for the attacker for attacking

18

a defended target. The varying payoffs for each target is meant to represent real-life

security scenarios, where various target locations have different priorities or values. An

example would be the baggage claim at an airport, where high pedestrian traffic is located

regularly and the location is widely accessible to the public, as opposed to an airline lounge.

6.2 Defender Oracle

The following subsections describe the representation of the input features of the

defender oracle (DO).

6.2.1 Input Representation - Defender Observation

Recall that the defender has full observation of the game state. That is, at each time

step, the defender knows the locations of all defender resources, as well as whether or not

each target has been attacked (i.e. the history of sequential attacks). As such, we represent

the defender observation as the game state:

• Game State: A T × 2 matrix that shows the position of defender resources before

making the next action. The first column indicates the number of defender resources

at each target. For the second column, the defender observes the targets that have

been attacked; a value of 0 shows that the target has not been attacked, while a value

of 1 shows that a target has been attacked.

6.2.2 Output Representation

Using the A2C framework, the output of the DO is an actor, which represents the

policy by which the defender samples an action, and a critic, which represents the value of

the input state. Since we are not enumerating over all possible defender actions, the

compact representation schema described in section 5.2 is reflected in the actor component

of the output, as described below:

• Actor: A T × T matrix where each entry in position ij of the matrix represents the

probability the defender moves a resource from target ti to target tj. Each row i of

the matrix signifies the potential coverage of the defender for that target ti, and

therefore, each row i of the matrix must sum up to 1.

• Critic: A continuous value that represents the network’s prediction of the value of the

current game state.

19

6.3 Attacker Oracle

The following subsections describe the representation of the input features of the

Attacker Oracle (AO).

6.3.1 Input Representation - Attacker Observation

Recall that the attacker does not have full knowledge of the game state; they know the

defender mixed strategy but they do not know the exact resource allocation of the defender

at each time step (i.e. the action that is sampled from the defender’s mixed strategy). As

such, the observation of the attacker updates only at the target they choose to attack at

each time step, as described below:

• Partial Observation: A T × 2 vector that shows whether or not targets have been

defended. In the first column, a value of −1 shows that the target has not yet been

observed, a value of 0 shows that the target has been observed during a time step to

not have been defended, and a value of 1 shows that the target has been observed

during a time step to have been defended. The second column is similar to the

representation of the defender’s observation, showing the targets that have been

attacked. A value of 0 shows that the target has not been attacked, while a value of 1

shows that a target has been attacked.

6.3.2 Output Representation

Using the A2C framework, the output of the AO is an actor, which represents the

policy by which the attacker samples an action, and a critic, which represents the value of

the input state. Since the action space of the attacker corresponds to the number of

targets, that is, it is not exponential, we do not require compact representation of the

attacker’s policy. Therefore, the output of the AO follows a standard A2C schema in the

reinforcement learning context, as described below:

• Actor: A 1× T vector where each entry at position i represents the probability that

the attacker will attack target ti at a given time step. Therefore, this component

represents the full policy for the attacker across all possible actions at a given time

step.

• Critic: A continuous value that represents the network’s prediction of the value of the

current game state.

20

6.4 A2C Architecture for Oracles

The network architectures for the AO and the DO are mostly the same, excepting a

couple of differences regarding the actor component of the output. Otherwise, each

network architectures contains three sections.

The first section is a graph convolutional network (GCN), which incorporates

connectivity information from the adjacency matrix. Since the seSSG setting is represented

as a scale-free network graph, we encode the information of the state using graph

convolutional techniques, which are generalized CNNs (Li et al., 2018). Our GCN contains

two graph convolutional layers, each batch-normalized, as well as a feed-forward linear

layer, all activated by Rectified Linear Units (ReLU).

The output of the GCN is then sent to two separate sections: the actor network and

the critic network. The critic network contains two feed-forward linear layers, and is the

same for the AO and the DO. The first of these layers is ReLU activated, and the second

layer compresses the vector input to generate the state value.

The actor network for the both AO and the DO also contains two linear layers. The

first layer is ReLU activated, but the process of the second layer is where the AO and the

DO diverge. Since the output of the actor network of the DO is a T × T matrix, it is

activated by a Softmax function over each row of the input vector. For the DO, then, the

last layer generates a probability distribution across each target for all targets in order to

produce a compact representation of the defender’s policy. On the other hand, since the

output of the actor network of the AO is a 1× T matrix, it is activated by a Softmax

function over the entire vector space, thus generating a probability distribution over all

targets.

For this experiment, we build the network architectures for the AO and the DO to be

similar in order to test the efficacy of the Double Oracle algorithm for handling the

exponential strategy space of the defender. Building the networks for the AO and DO

differently could introduce noise into the experiment, since there would be more

hyperparameters that affect the results of the Double Oracle algorithm. As such, we also

train each algorithm by the same procedure, as discussed in the following section.

6.5 Oracle Training Algorithm

As explained in section 5.1.1, each oracle network is trained using the A2C framework.

At each time step of each training episode, the actor and critic is generated by the oracle

network. The player action is sampled from the actor policy, an opponent action is

sampled from their set of best response policies, and those actions are executed to obtain

the reward and the next state. Using the outcome, the loss is calculated, which involves the

21

log of the probability the player plays the sampled action as well as the advantage value.

Then, the parameters of the oracle network are updated with the loss. This training

procedure is represented compactly in the figure Algorithm 2.

6.6 Baselines

To compare the optimal solution returned by the Double Oracle algorithm, specifically

the resulting mixed strategy of the defender, we also train one A2C network against a

uniformly randomizing attacker and one A2C network against an attacker that plays

according to subjective utility quantal response (SUQR).

The baseline A2C network trained against a uniformly randomizing attacker generates

a defense strategy that is not based on any information from the attacker or the

environment. In other words, this baseline network simulates a reactive defender that

performs actions and updates strategies only according to the immediate situation.

Similarly, the uniformly randomizing attacker does not perform actions based on

information from the environment, providing adequate circumstances to generate a

defender trained on negligible information. By comparing the mixed strategy from the

Double Oracle algorithm against the uniformly randomized baseline, we contrast a reactive

defender against one that is trained against many optimal attacker strategies.

For the second baseline, we generate a defense strategy trained against an attacker

that plays according to SUQR (Nguyen et al., 2013). Basically, the attacker first takes into

account the mixed strategy of the defender at a given time step, deriving the marginal

probabilities that each target is covered by the defender. Then the attacker calculates their

expected utility for each target according to their coverage probabilities, and determines

their own mixed strategy based on those expected utilities. Simply put, the attacker

calculates its subjective utility to simulate a boundedly rational player based on human

behavior (i.e. quantal response). While the uniformly randomizing attacker performs

actions despite any environmental information, the SUQR attacker simulates a malicious

actor that has full knowledge of the defender strategies, allowing a defender to be trained

against an attacker that responds to environmental changes. However, the SUQR attacker

is still a reactive player, since it updates its strategy according to the current defender

strategy. Comparing this baseline against the mixed strategy returned by the Double

Oracle algorithm, then, contrasts a defender that plays one optimized policy with a

defender that samples across many policies.

In order to compare the three resulting models, we have them play games against an

optimal attacker, that is, the one returned by the Double Oracle algorithm. We then

compare each of the models’ resulting utilities across multiple simulated games.

22

Algorithm 2: A2C Reinforcement Learning for Each Player Oracle Given Oppo-
nent Policy Set OP

1 Initialize player oracle network Wθ

2 for each episode k do
3 Initialize game state s
4 Sample opponent policy Zk ∼ OP
5 for each time-step i do
6 Updated round information s.t. s→ si
7 Get actor policy and critic value xi, vi = Wθ(si)
8 Sample player action ai ∼ xi

9 Generate opponent action zi from Zk(si)
10 Execute actions ai and zi for si,

observe player reward ri and next state si+1

11 Calculate actor loss:
∇ log πθ(ai|sx)

12 Calculate critic loss:
Get vi+1 = Wθ(si+1)
Aθ(si, xi) = (ri + γvi+1 − vi)− vi

13 Update oracle network parameters:
θ ← θ + α[Aθ(si, xi) ∇ log πθ(xi|si)]

23

CHAPTER 7

7 RESULTS

For this problem, we run the experiment with a small game, a mid-sized game, and a

larger game. Experimenting with progressively larger games shows that the Double Oracle

algorithm provides a scalable solution that is able to handle exponential action spaces. The

following pages show our results for each of the game size settings.

24

7.1 Small Game

For the small game setting, there are 10 targets and 5 time steps, and the defender has

5 resources. While the small game is not trivial, it is often not applicable to real-world

scenarios, in which there are many more targets and resources available.

In this section, we first show the plots of how the attacker oracle and the defender

oracle converge their training utilities towards the Nash Equilibrium utilities to derive an

optimal solution for the Double Oracle algorithm. Then, we compare the optimal defender

solution with the network trained against a uniformly randomizing attacker and the

network trained against a SUQR attacker by showing their utilities playing against an

optimal attacker.

7.1.1 Double Oracle

(a) Attacker Oracle

(b) Defender Oracle

Figure 1: Oracle Convergence for 10-target Games

For the small game setting, the Double Oracle algorithm took 21 iterations to

converge, with a running time of approximately 35 minutes.

25

7.1.2 Model Comparison

In the following plot, MIX labels the defender strategy returned by the Double Oracle

algorithm, RAND labels the defender strategy trained against a uniformly randomizing

attacker, and SUQR labels the defender strategy trained against a SUQR attacker.

Figure 2: Comparison of Models against an Optimal Attacker for 10-target Games

As shown in the average utilities in Figure 2, the defender strategy returned by the

Double Oracle algorithm outperforms the baselines. Across 50 simulations, the average

utility of the Double Oracle defender was −1.3698, while that for the randomly-trained

defender and the SUQR-trained defender were −3.2456 and −2.2524 respectively.

Therefore, the Double Oracle defender performed approximately twice as well as a

SUQR-trained defender, and almost thrice as well as the randomly-trained defender.

26

7.2 Mid-sized Game

For the mid-sized game setting, there are 20 targets with 10 time steps, and 10

defender resources.

In this section, we first show the plots of how the attacker oracle and the defender

oracle converge their training utilities towards the Nash Equilibrium utilities to derive an

optimal solution for the Double Oracle algorithm. Then, we compare the optimal defender

solution with the network trained against a uniformly randomizing attacker and the

network trained against a SUQR attacker by showing their utilities playing against an

optimal attacker.

7.2.1 Double Oracle

(a) Attacker Oracle

(b) Defender Oracle

Figure 3: Oracle Convergence for 20-target Games

For the mid-sized game setting, the Double Oracle algorithm took 29 iterations to

converge, with a running time of approximately 3.7 hours.

27

7.2.2 Model Comparison

In the following plot, MIX labels the defender strategy returned by the Double Oracle

algorithm, RAND labels the defender strategy trained against a uniformly randomizing

attacker, and SUQR labels the defender strategy trained against a SUQR attacker.

Figure 4: Comparison of Models against an Optimal Attacker for 20-target Games

As shown in the average utilities in Figure 4, the defender strategy returned by the

Double Oracle algorithm outperforms the baselines. Across 50 simulations, the average

utility of the Double Oracle defender was −2.8258, while that for the randomly-trained

defender and the SUQR-trained defender were −11.442 and −8.3561 respectively.

Therefore, the Double Oracle defender performed approximately thrice as well as a

SUQR-trained defender, and almost four times as well as the randomly-trained defender.

This relative increase in performance of the Double Oracle defender, compared to smaller

games, incorporates the increased number of attacks, but also suggests that the iterative

process of the Double Oracle framework provides better results for more extensive games.

Further experimentation would be required to test this theory.

28

7.3 Large Game

For the large game setting, there are 30 targets with 15 time steps, and 15 defender

resources.

In this section, we first show the plots of how the attacker oracle and the defender

oracle converge their training utilities towards the Nash Equilibrium utilities to derive an

optimal solution for the Double Oracle algorithm. Then, we compare the optimal defender

solution with the network trained against a uniformly randomizing attacker and the

network trained against a SUQR attacker by showing their utilities playing against an

optimal attacker.

7.3.1 Double Oracle

(a) Attacker Oracle

(b) Defender Oracle

Figure 5: Oracle Convergence for 30-target Games

For the large game setting, the Double Oracle algorithm took 44 iterations to

converge, with a running time of approximately 18.4 hours.

29

7.3.2 Model Comparison

In the following plot, MIX labels the defender strategy returned by the Double Oracle

algorithm, RAND labels the defender strategy trained against a uniformly randomizing

attacker, and SUQR labels the defender strategy trained against a SUQR attacker.

Figure 6: Comparison of Models against an Optimal Attacker for 30-target Games

As shown in the average utilities in Figure 6, the defender strategy returned by the

Double Oracle algorithm outperforms the baselines. Across 50 simulations, the average

utility of the Double Oracle defender was −4.5093, while that for the randomly-trained

defender and the SUQR-trained defender were −15.5076 and −10.0102 respectively.

Therefore, the Double Oracle defender performed approximately twice as well as a

SUQR-trained defender, and about thrice as well as the randomly-trained defender. The

performance of the Double Oracle defender, relative to the other models, is similar to that

in the small game setting. This plateauing of performance increase suggests that while the

Double Oracle framework is scalable, there is a cutoff point at which the benefits of the

Double Oracle process will not outweigh training a defender with a random or SUQR-based

attacker. Further experimentation would be required to test this theory.

30

CHAPTER 8

8 CONCLUSION AND FUTURE WORK

In this paper, we looked into the problem of computing an optimal strategy for the

defender in sequential Stackelberg Security Games. Specifically, we tackled the issue of

handling exponential action spaces by combining three approaches. First, we used marginal

probabilities to represent defender actions instead of probabilities across all possible

actions, which aided in reducing the computational intractability for the defender action

space. We then leveraged the benefits of the Advantage Actor-Critic (A2C) framework

(Mnih et al., 2016), which generates both the value function of the game as well as its

corresponding best response policy through reinforcement learning principles. Wrapped

around these two approaches was the Double Oracle algorithm (Jain et al., 2011), which

allowed us to iteratively search through best response policies for the attacker and defender

by playing them against each other during each iteration, ultimately finding optimal

equilibrium solutions for each player.

The results of the experiments showed that the defender strategy returned by the

Double Oracle outperformed the proposed baselines. However, more experimentation is

needed to confirm how the increase of performance is related to specific aspects of our main

contributions.

Furthermore, using marginal probabilities to represent defender actions does not allow

the imposition of nonlinear constraints on defender resources. For example, in real-life

scenarios, certain resources (e.g. a security officer and a medic) could be required to be

located at neighboring targets for emergency purposes. Thus, the model would need to

enforce as well as learn how to generate valid actions according to those constraints. As yet,

our A2C model is unable to do this. Future work using Generative Adversarial Networks

(GANs) and Normalizing Flow models could be done to explore this scenario further.

Otherwise, we are pleased to report promising results from using the methods proposed in

this paper to tackle exponential action space for sequential Stackelberg Security Games.

31

9 REFERENCES CITED

Fang, F., Nguyen, T. H., Pickles, R., Lam, W. Y., Clements, G. R., An, B., Singh, A.,
Tambe, M., and Lemieux, A. (2017). Deploying paws: Field optimization of the
protection assistant for wildlife security. Proceedings of the Twenty-Eighth AAAI
Conference on Innovative Applications.

Jain, M., Korzhyk, D., Vanek, O., Conitzer, V., Pechoucek, M., and Tambe, M. (2011). A
double oracle algorithm for zero-sum security games on graphs. Proceedings of the 10th
International Conference on Autonomous Agents and Multiagent Systems.

Karwowski, J. and Mandziuk, J. (2020). Double-oracle sampling method for stackelberg
equilibrium approximation in general-sum extensive-form games. Decision and Game
Theory for Security, GameSec 2020, Lecture Notes in Computer Science.

Li, R., Wang, S., Zhu, F., and Huang, J. (2018). Adaptive graph convolutional networks.
Proceedings of the 32nd AAAI Conference on Artificial Intelligence.

McMahan, H. B., Gordon, G. J., and Blum, A. (2003). Planning in the presence of cost
functions controlled by an adversary. Proceedings of the Twentieth International
Conference on Machine Learning.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.
Proceedings of the 33rd International Conference on Machine Learning.

Nguyen, T. H., Yadav, A., Bosansky, B., and Liang, Y. (2019). Tackling sequential attacks
in security games. Decision and Game Theory for Security - 10th International
Conference, GameSec 2019, Proceedings.

Nguyen, T. H., Yang, R., Azaria, A., Kraus, S., and Tambe, M. (2013). Analyzing the
effectiveness of adversary modeling in security games. Proeedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence.

Pita, J., Jain, M., Ordonez, F., Portway, C., Tambe, M., Western, C., Paruchuri, P., and
Kraus, S. (2009). Using game theory for los angeles airport security. Association for the
Advancement of Artificial Intelligence.

Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., and Meyer,
G. (2012). Protect: A deployed game theoretic system to protect the ports of the united
states. Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems.

Sinha, A., Fang, F., An, B., Kiekintveld, C., and Tambe, M. (2018). Stackelberg security
games: Looking beyond a decade of success. Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction, 2nd
edition. MIT Press.

Tomasek, P., Bosansky, B., and Nguyen, T. H. (2020). Using one-sided partially observable
stochastic games for solving zero-sum security games with sequential attacks. Decision
and Game Theory for Security, GameSec 2020, Lecture Notes in Computer Science.

Tsai, J., Rathi, S., Kiekintveld, C., Ordonez, F., and Tambe, M. (2009). Iris - a tool for
strategic security allocation in transportation networks. Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems.

32

	INTRODUCTION
	BACKGROUND
	Stackelberg Security Game Applications
	Double Oracle for Stackelberg Games
	Sequential Stackelberg Security Games

	PROBLEM DESCRIPTION
	Example with Resource Movement Cost

	DOUBLE ORACLE
	CoreLP

	ORACLE DESIGN
	Reinforcement Learning - Policy Gradient Methods
	Advantage Actor-Critic (A2C)

	Compact Representation for Defender Actions
	Attacker Oracle

	EXPERIMENTAL OVERVIEW
	Game Representation
	Adjacency Matrix
	Payoff Matrix

	Defender Oracle
	Input Representation - Defender Observation
	Output Representation

	Attacker Oracle
	Input Representation - Attacker Observation
	Output Representation

	A2C Architecture for Oracles
	Oracle Training Algorithm
	Baselines

	RESULTS
	Small Game
	Double Oracle
	Model Comparison

	Mid-sized Game
	Double Oracle
	Model Comparison

	Large Game
	Double Oracle
	Model Comparison

	CONCLUSION AND FUTURE WORK
	REFERENCES CITED

