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A B S T R A C T

Insulin like growth factor receptor (IGF-1R) and Insulin receptor (IR) are widely accepted to play a prominent role
in cancer drug discovery due to their well-established involvement in various stages of tumorigenesis. Previously,
neutralization of IGF-1R via monoclonal antibodies was in focus, which failed because of compensatory activation
of IR-A upon inhibition of IGF-1R. Recent studies have demonstrated high homology between IGF-IR and IR
particularly in tyrosine kinase domain and targeting both receptors have produced efficient therapeutic ap-
proaches such as inhibition of cancer cell cycle proliferation. Herein, we have made an attempt to analyze the
unique data set from different chemical classes, containing potent ATP competitors against tyrosine kinase
domain. We performed the 2D, 3D quantitative structure–activity relationship (QSAR) studies on inhibitors of
these receptors to predict useful pharmacophoric features. We have optimized virtual screening of structurally
diverse data set of dual inhibitors of IGF-1R and IR. Based on QSAR studies, we predict potential novel clinical
candidates with a demonstrated absorption, distribution, metabolism, elimination, and toxicology (ADMETox)
track. We also demonstrated comprehensive analysis of co–crystal complexes along with their inhibitors and built
3D- GRid INdependent Descriptors (GRIND) model to obtain insightful features such as H-bond donors and ac-
ceptors, overall topology and Vander Waal volume (vdw_vol) which are found to be responsible for dual inhi-
bition of receptors. These findings lead to further description that Tirofiban, Practolol, Edoxaban, Novobiocin
have potential to perform dual inhibition of both targets.
1. Introduction

The Insulin like growth factor receptor-1 (IGF-1R) is a transmembrane
receptor comprising of two α subunits that are associated with ligand
binding and two β subunits that mediate the intracellular signaling
pathway. The IGF-1R shows approximately 60–85% similarity with Insulin
Receptor (IR) in the tyrosine kinase domain (Adams et al., 2000). The
binding of respective ligands to the extracellular domain of IGF-1R and the
IR results in the autophosphorylation of the tyrosine residue receptors,
particularly, Tyr 1158, 1162 and 1163 are important in this regard (Rosen
et al., 1983). The IR has two isoforms, IR-A and IR-B. The existence of two
isoforms is due to the alternative splicing of exon 11 in the IR, which results
in a shorter form, the IR-A form,which lacks a stretch of 12 amino acids and
the IR-B form (Mosthaf et al., 1990). The IR-A is associatedwith fetal tissues
and has also been observed in cancer cells. The IR-B is predominantly
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associated with the tissues specific for insulin metabolism (Belfiore et al.,
2009; Denley et al., 2003). Although the ligands for each receptor are
different and are involved in different signaling pathways, there is well
established data about binding of IGF-II to the IR-A leading to its activation.
Furthermore, there is evidence of a high number of IGF-1R present in
transformed cells (Christofori et al., 1994).

Physiologically, the IR is responsible for binding of insulin and should
ideally be present in the hepatocytes and the skeletal muscles, but it has
been observed that IR is present in other tissues including the brain, heart,
monocytes, granulocytes, pancreatic acini, vascular endothelium, kidney
and fibroblasts. This observation suggests that IR plays a role not only in
the insulin related metabolism but also has functional roles in other sys-
tems (Kaplan, 1984). High levels of insulin induce a higher level of serum
IGF-I which in turn have properties of mitogen and promote anti-apoptotic
behavior in cells. Hence chronic hyperinsulinemia has been associated
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with carcinogenesis. The IGF-1R is not only involved in the process of
transformation of cancers but has also been found to play an important role
in the maintenance of the transformed state (Yu and Rohan, 2000).

Over the last two decades, studies have provided in-depth evidence
that the IGF-1R is present in various types of cancers and that the
blockage of this receptor provides a means of blocking the signaling
pathways that follow, particularly the Ras-Raf pathway which is impor-
tant in providing resistance to the tumors (Benvenuti et al., 2007).
IGF-1R is believed to be involved in the proliferation of transformed cells
(Yu and Rohan, 2000). As of recent studies, IR-A has also been seen in the
course of tumor genesis (Buck et al., 2010). Our previous docking studies
on both targets showed that H-bond and hydrophobic pockets play sig-
nificant roles in initiation of cancer cell cycle (Pashaa et al., 2021).
Studies on different myosarcoma cell lines revealed that IR-A is pre-
dominantly expressed in sarcoma cells (Sciacca et al., 2002). Most of the
cancers express genes for the insulin receptor (IR) as well as the genes
encoding Insulin like growth factor 1 receptor (IGF-1R).

One of the key features noted in the expression of IR-A in cancers is
associated with its high affinity for IGF-II because of compensatory cross
talks between these two receptors leading to signaling pathways that are
involved in transformation, cell proliferation and in evading apoptosis
(Denley et al., 2004). Targeting IR-A alone would result in hyperglycemia
and hyperinsulinemia, leading to metabolic complications (Nemecek
et al., 2010).

Since both, the IR-A and IGF-1R (Fig. 1) have been observed in lungs,
breast and prostate cancers, there is a need to develop potential in-
hibitors that could block these receptors and in turn, control the trans-
formation of cells. Previously, monoclonal antibodies have been targeted
to block the IGR-IR receptor. Additionally, small molecule inhibitors are
being explored for their ability to bind to the receptor to stop the rigorous
signaling followed by the receptor binding (Li et al., 2009). In a
comprehensive review by Jingran et al., a rationale is discussed for dual
inhibition of IGF-1R and IR pointing to importance of dual inhibition
(Cao and Yee, 2021). Small molecule inhibitors that can bind to the
tyrosine kinase domain have been reported to bind to the catalytic
domain responsible for kinase activity (Li et al., 2009; Liu and Gray,
2006a; Zwick et al., 2002). One key approach is to target these receptors
in their inactive state because the inactivated ATP binding pocket is less
conserved and is a more reliable target. The activated state is conserved
among the kinase family and hence proves itself to be a promiscuous
target. Therefore, it is a better approach is to target these receptors by
Fig. 1. Structural organization of IGF1R and IR structures adapted from (De
Meyts and Whittaker, 2002; Luo et al., 1999; Ottensmeyer et al., 2000).
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small molecule inhibitors when they are in the inactivated or the DGF-out
conformation (Liu and Gray, 2006b). Initial studies revolved around
screening and development of small molecule inhibitors against the
IGF-1R only but there exist evidence for the role of IR-A in transformation
and maintenance of tumors (Buck et al., 2010; Papa and Belfiore, 1996;
Baserga, 1995). Targeting IGF-1R alone can have undesirable conse-
quences and may lead to implications that may strengthen malignancies
(Christopoulos et al., 2015). A recent study showed the effect of dual
inhibitor (OSI-906) onWtU87 cells and concluded its synergistic effect to
inhibit IGF1R along with TMZ-40/100 (Fernandez et al., 2019). Along
with this, there is increasing evidence that repressing any one of the RTKs
(Receptor Tyrosine Kinase) is not enough, the other receptor, still func-
tional, will do enough to compensate and lead to the maintenance and
progression of the tumor. Elevated levels of insulin result in higher
signaling by IR-A. Also, there is evidence of IGF–II binding to IR-A
resulting in an increase in the mitogenic signaling in the transformed
cells (Denley et al., 2003). Therefore, a better approach would be
co-targeting both the receptors in order to make sure that the mitogenic
signaling cascade activated by both these receptors is down-regulated so
that proliferative pathways that lead to tumor formations can be stopped
(Huang et al., 2015).
2. Materials and methods

2.1. Data set

A diverse dataset of 47 inhibitors, of which; 33 were dual in-
hibitors of IGF-1R and IR mainly including Imidazopyrazine, Imida-
zopyridine, Pyrrolopyramidine, Quinolones, Cyanoquinolines,
Isoquinolinedione derivatives (Li et al., 2009; Ji et al., 2007; Jin
et al., 2010; Ducray et al., 2011; Mulvihill et al., 2008, 2009;
Buchanan et al., 2011; Emmitte et al., 2009; Chamberlain et al.,
2009a, 2009b; Miller et al., 2009; Anastassiadis et al., 2013; Mayer
et al., 2008; Marsilje et al., 2013; Finlay et al., 2014; Carboni et al.,
2009) (Fig. 2) were extracted from the literature and remaining 14
were more selective towards IGF-1R than IR (Liu et al., 2010; P�arrizas
et al., 1997; Li et al., 2004; Wood et al., 2009). These selective in-
hibitors against IGF-1R also belonged to the structurally diverse
classes i.e Benzylamines, Thiazolidine, Pyrimidine and Ethenylpyr-
idine. Data set of 47 compounds including ‘selective’ and the ‘dual’
inhibitors of IGF-1R and IR was used for 3D QSAR and Pharmaco-
phore model building. The 2D structures of the compounds were used
in the data set along with their inhibitory biological activity (pIC50)
values against tyrosine kinase domain of IR and IGF-1R (Fig. 2).
Briefly, the biological activity values of the data vary from 2 nM to
50,000 nM. Compound 40 (Iso propyl Piprazine) (pIC50 IGF1R/IR
8.6/8.7) being highly active against both receptors, belonged to the
Pyrrolopyramidine and the least active compound was Isoquinoline
(pIC50 IGF1R/IR 5.1/5.3) which belonged to the Isoquinolinedione
class. Dataset was divided into selective inhibitors for IGF-1R and
dual inhibitors for both targets and were assigned binary numbers.
The difference of the IC50s was taken against their target receptors to
differentiate them into selective and dual inhibitors for in-silico
modeling. The optimal threshold of the two halves was pIC50 6.4 nm
and 6.2 nm for IGF1R and IR, respectively. While the optimal
threshold for dual inhibitors was set 0.6 and those below were
considered as selective inhibitors against IGF-1R. In addition to it,
Compounds showing the difference of one log unit, or more were
considered selective against IGF-1R and assigned “0”. While others
were considered as dual inhibitors and assigned “1”.

2.2. GRID-independent molecular descriptor analysis

GRIND is alignment independent approach; however it depends on
3D conformations of the compounds. Two independent sets of 3D
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conformations including, energy minimized and extended 3D confor-
mations (Gasteiger et al., 1990; Sadowski et al., 1994) of the data set
were used to develop multiple GRIND models. Briefly, minimum energy
conformation of each compound in the data set was explored by sto-
chastic search algorithm using the MMFF94 force field in software MOE
(Gill et al., 1981). This algorithm (Ferguson and Raber, 1989) divides a
molecular structure into overlapping fragments and conformations of
molecular fragments are considered independent before the complete
assembly of the molecule. Further, it includes the initialization of bond
rotations and random inversion of all the chiral centers following Bond
rotations to randomized dihedral angles. Later, perturbation of all the
atomic positions is done followed by energy minimization. We generated
a total of 250 conformations per molecules and out of these only least
energy structure per molecule was used for further GRIND analysis.

Additionally, evaluation package “CORINA” (Gasteiger et al., 1990;
Sadowski et al., 1994) was used for the generation of extended 3D mo-
lecular conformations. Stereochemical information of the molecules was
kept fixed to generate low energy conformations via neutralization of
formal charges, orientation of the 3D structures with reference to their
moment of inertia and removal of counterions in salts. In the following
step, each independent set of molecular conformations were imported
into Pentacle v 1.07 (Pastor et al., 2000) along with their biological ac-
tivity values (pIC50). Molecular Interaction Fields (MIFs) were computed
using probes i.e., hydrophobic interactions (DRY), Hydrogen bond
acceptor (O), Hydrogen bond donor (N1) and Topology representing the
molecular boundaries (TIP) with reference to the receptor. These MIFs
were calculated by replacing each probe iteratively through the GRID
and computing total energy at each node. Total energy at each node
represents a sum of Lennard-Jones energy (Elj), electrostatic energy (Eel),
and hydrogen bond energies (Ehb) at that point (Eq. (1)).

Exyz¼ ƩElj þ ƩEel þ ƩEhb (1)

Most relevant regions were extracted using a built-in algorithm
AMANDA (Dur�an et al., 2008). Default cutoff values for probes were used
to discretize the MIFs. Nodes with energy below the cutoff values were
discarded. Consistently large auto and cross correlation (CLACC) (Dur�an
et al., 2008) was used for encoding the pre-filtered nodes into GRIND
thus, producing consistent sets of variables. The calculated values were
represented in the form of correlograms plots representing products of
node–node energies on Y-axis and the distances separating the nodes on
X-axis. Partial Least Square (PLS) and using Leave One Out (LOO) cross
validation procedure was used to correlate structural variance of the data
with their biological activity values.
2.3. Pharmacophore modeling

A conformational data set of dual as well as selective inhibitors of IGF-
1R and IR containing 250 conformations per molecules were generated
from stochastic conformational search algorithm as was discussed in
previous section. These conformations were packed and merged with
biological activity (pIC50) values against both targets. Both ligands, as
well as structure-based pharmacophore models (Sadowski et al., 1994;
Gill et al., 1981), were built to develop a binding hypothesis of dual and
selective inhibitors of IGF-1R and IR. Finally, this comprehensive data-
base was used for screening against final pharmacophore models to es-
timate the hit rate and model accuracy.

2.3.1. Model I
Briefly, a highly potent small molecule (NVP-AEW541) (Stauffer

et al., 2016) with pIC50 of 7.06 nM against IGF1R, also present in our
curated database, was chosen as a template for ligand based pharmaco-
phore modeling. This molecule belonged to a Pyrrolopyramidine class
showing its selectivity 27 times more potent against IGF1R over IR
having pIC50 value of 5.63 nM as reported by Fr�ed�eric et al. (Stauffer
et al., 2016). NVP-AEW541 has been reported for cancer suppression if
7

co-targeted with autophagy. In a broader sense, it blocks the cell cycle
proliferation in G0/G1 phase by cutting the proliferation signal and
increasing bax protein concentrations (responsible for apoptosis) and
decreasing Bcl-2 protein expressions (Wu et al., 2017). A stepwise
pharmacophore feature selection process was performed to extract the
most appropriate feature followed by screening against packed training
data to identify the true positive and true negative rate. This model
delineated 0.68 as overall accuracy for Mathew's correlation coefficient
(MCC) (Eq. (2)).

TP�TN–FP�FN/√(TPþFP)(TPþFN)(TNþFP)(TNþFN) (2)

2.3.2. Model II
For a 3D structure based pharmacophore, features were extracted

from the ligand bound crystal structure of IGF1R, PDBID: 5HZN (Stauffer
et al., 2016), on the basis of receptor binding site algorithm (Wang et al.,
2000). A structure-based pharmacophore query was built using infor-
mation from ligand bound protein interaction profiles of NVP-AEW541.
We performed the quality tests for both pharmacophore models and
estimated the model sensitivity, specificity, accuracy and the Matthew's
correlation coefficient (Chicco, 2017) (Eqs. (2)–(4)). Although, both
models successfully parted the data into two halves for selective and dual
inhibitors, but structure-based Pharmacophore was utilized for further
analysis based on the 0.87 factor MCC.

Sensitivity ¼ TP/(TP þ FN) (3)

Specificity ¼ TN/(TN þ FP) (4)

2.4. Virtual screening

In order to identify hits against final Pharmacophore model (structure
based) was screened against “World Drug Index” (Wishart et al.) and
“ChemBridge” (Groom et al., 2016) databases.

A total of 725 hits from the World Drug Index (WDI) and 19,773 from
ChemBridge database were extracted, respectively. The filtered hits were
then subjected to online database OCHEM; a CYP filter including
different isoforms of CYP450 i.e. CYP1A2, 2C9, 2C19, 2D6, 3A4 and logp
to sieve the non-inhibitor small molecules for ADMETox properties,
designed by Sushko and colleagues (Sushko et al., 2011). Recently
developed Pharmacophoric filter for hERG channels developed by Saba
et al. (Munawar et al., 2018) further reduced the number of hits i.e. 143
for WDI and 1540 for ChemBridge. To further screen the hits, drug-like
descriptor comparison was executed on the filtered results.

Eventually, binary biological activity values (pIC50) of these hit
compounds were predicted using final GRIND model which resulted in
18 highly predicted (pIC50 0.50–1.21) hits from WDI and 37 (pIC50
0.50–0.89) hits from Chembridge data based were selected. The com-
pounds predicted near “0” were taken as selective inhibitors for IGF-1R
while those which were near “1” were taken as dual inhibitors. For our
comparison, the threshold was set to 0.60 for observation against results.
Only 4 FDA approved drugs, namely; DB00775, DB01297 and DB09075
were found among which 3 were under-predicted with activity value of
0.62, 0.63 and 0.76 and DB01051 was slightly over-predicted with 1.21,
respectively. An MOE based GUI was used to check whether the com-
pounds from the databases to be screened against the Phamracophore
had functional groups required by the pharmacophore or not. Following
this, the algorithm checked for the 3D spatial arrangements of these
compound that matches the query (Labute and Santavy, 2007).

2.5. Docking

In rational drug design, structure-based drug design is needed. Our
objecttive was to identify the hits from the base protein i.e, IGF-1R kinase
(5HZN). On this basis we perfomed docking on the co-crystalised pro-
teins structures of hits i.e., Beta1-Adrenergic receptor, PDBID: 7JJO (Su



Table 1
Energy minimized and extended statistics.

Conformations R2 Q2 SDEP FFD/ LV

Energy min 0.89 0.54 0.10 1/ 3
Extended 0.61 0.33 0.22 0/2

0.65 0.45 0.24 1/2
0.76 0.60 0.37 2/2

SDEP ¼ Standard error prediction. FFD ¼ Factorial Design. LV ¼ latent variable.

Table 2
Important Distances by GRIND; Representation of distances from having negative
effect (larger distance) to positive effect (closer distance) on the macromolecule.

Features Important Distance (Å)

N1–N1 12.8–13.2
DRY-O 19.2–19.6
DRY-N1 18.4–18.8
O–N1 14.8–15.2
O-TIP 18.4–18.8
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et al., 2020) and Integrin Beta-3 and integrin alpha II-B, PDBID: 6BXJ
(Thinn et al., 2018). The idea of structure-based docking was to gain
insights into electrostatic and steric hindrances of the hits and declaring
the crucial amino acid connections.

Dock application from MOE was used to produce optimal fit config-
urations of the inhibitors and macromolecular target (5HZN, 7JJO and
6BXJ). The first choice for docking was to perform runs consecutively
with each member of the ensemble by using rigid receptor docking. The
dock algorithm (Chamberlain et al., 2009a) automatically generated 3D
conformations which seemed to fit optimally into the pocket with the
help of “Placement method‟ for ligand placement.

We've shown a structural comparison of the crystallographic re-
ceptors (Table 9). Afterwards we matched the pocket residues and did
loop comparison. For the comparison, these structures were aligned with
blossom62 matrix-based calculation, where root mean square deviation
(RMSD) was performed. Moreover, it was also considered whether the
Co–crystal structures were recently published and had higher resolution.

The placement methods used in the optimization of protocol were,
Alpha Triangle, Triangle Matcher and Alpha PMI. We then scored the
poses after the placement of the ligand into the pocket with a stress on
favourable ionic, hydrophobic and H-bond contacts. Later, scoring
functions were used i.e., London dG Scoring, Affinity dG Scoring and
Alpha HB Scoring. Upon testing several combinations of placement
methods and scoring functions for docking, Alpha PMI and Alpha HB
were considered final for further dockings and analysis. Once Docking
Fig. 3. GRIND Correlogram delineating importa
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runs were performed, the generated databases of optimal conformations
for bioactive interactions between molecules and receptors were further
analysed for amino acids involved in interactions and imporatnt features
of the ligands.

3. Results

3.1. 3D-QSAR

The independent set of molecular conformations (standard 3D con-
formations and energy minimized conformations) along with binary
biological activity values (“0” for selective against IGF-1R and “1” for
dual against both IGF-1R and IR) were subjected to software Pentacle
V1.07 to develop two independent GRIND models. Statistical parameters
of both models are shown in Table 1.

The model based on the standard 3D conformations showed better r2

and q2 better than those of energy minimized conformation model. The
Latent variable “2” shows a measure of confidence that the hidden infor-
mation with twice a fractional analysis of the variable data is delineating a
good statistics score of r2 ¼ 0.76 and q2 ¼ 0.60. Among four probes;
Dry–Dry (Hydrophobic), O–O (H- bond acceptors), N1–N1 (H- bond do-
nors), Tip- Tip (Topology) and also their intercross distances and energy
scores delineated 4 important distances and descriptors shown in Table 2.

The overall trend seen for H-bonding relied on the electronegativity
of the atoms. Atoms i.e. Sulpher, Chlorine, Boron, Fluorine have shown
least inclination towards H- bonding except the fact that fluorine is most
electronegative. We presumed that the power of an electronegative atom
to donate a H- bond depends on it's overall topology and van der waal
forces. Both of these descriptors have played their role in the overall
positive and negative impact. Also, In comparative analysis with previous
published reports (Muddassar et al., 2008; Sperandio et al., 2009; Kurup
et al., 2001; Sheridan et al., 2009; Li et al., 2012) our preliminary models
remained consistent with electrostatic potential and hydrophobicity
except steric bulk. The final model has revealed steric bulk along with
H-bond donor; O- TIP play a pivotal role at a distance of 18.40–18.80 Å
along with previously stated descriptors (Fig. 3). In line with steric and
electrostatic descriptor, two sets of O–N1 and N1– N1 probes imparted
their presence as obligatory variables at the distance of 14.80–15.20 Å
and 12.80–13.20 Å, respectively (Fig. 3). Clearly, the N1–N1 probe's
distances from pyridine ring to phenyl ethanol moiety showed a prom-
ising impact for compound 4a based on the least distance of
12.80–13.20 Å and the highest peak in the correlogram depicting the
positive contribution towards the dual inhibition. While, no such dis-
tance could be found in selective inhibitors against IGF-1R, showing the
absence of such functional groups. The second most active dual inhibitor
nt variables O–O, N1–N1, O–N1 and O-TIP.



Fig. 4. The PLS coefficient GRIND correlogram identified regions for Dual In-
hibition described by visual receptor site. a; Distance between two H-bond
acceptor (blue contours), b; Distance between H-bond donors (red) and acceptor
(blue), c; larger distance found between nodes of bulk(green) and Dry(yellow),
d; Optimal distance between H-bond donor (red) and steric bulk (green). For
reference see Table 2.
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showed the same probe distance between pyridine moiety and pyr-
azolidine ring. Also, the third one with another electronegative moiety as
Florobenzene. Similarly, the O–O probe (Fig. 3) have delineated the
optimal distances between the pyridine ring and methanolamine in
compound 4b for selective inhibitors against IGF1R only. Along with this,
O–N1 showed affinity with imidazolidine and pyrazine in compound 4b.
Also, the DRY-TIP showed the same potential with similar groups with
addition of chlorothiophenol moiety as hydrophobic ring 4c. Lastly, O-
TIP showed the methanolamine and pyridine moieties as an important
tifunctional group for dual inhibition of the small molecule 4d. Upon
visual analysis of the graph, the variables representing the true nodes of
these four probes with moieties like pyridine, pyrazolidine, methanol-
amine are considered as playing crucially important role in the dual in-
hibition of both receptors. While, a lesser distance or no distance could be
found between such probes in selective inhibitors.

The consistency with previous models was taken into account by
variable sets of DRY- N1 which happened to be present at the distance of
18.00–19.20 Å. While O–N1 (Fig. 4c) and O- Tip (Fig. 4d) at distacne of
18.4–18.8 were found concurrently, have also contributed positively
towards the inhibitory trends for dual inhibition.

3.2. External validation

A test set of 20% of the total data extracted from the literature was
utilized against the validation of the curated database. The test set was
non-congeneric and IC50 values ranged from 2 nM to 20,000 nM against
IGF-1R and IR. The results delineated high consistency course along the
training set in terms of dual or selective inhibition. Except Compound e,
no outliers were found against the level 2 prediction of GRIND model
built against 3D standard conformations.

3.2.1. Test Set I
The data extracted was dual as well as selective in nature against IGF-

1R having at least one log unit difference with respect to IR i.e. com-
pound d f, h, i, j (Fig. 5). The test set contained almost the same per-
centage of selective and dual inhibitors of both receptors i.e 40%
selective and 60% dual. Predictions of test set based on the GRINDmodel
distinctive features were within the binary range of training set. Those
predicted near 1 were considered as dual. While inhibitors having the
predicted values near 0 were taken as selective inhibitors of IGF-1R.
Among the data only compounds a and g were under-predicted and
compound e was slightly over-predicted (Table 3).

3.2.2. Test set II
Recently published data along with a clinical trial candidate was also

extracted and used as an external test set for the model validation
(Hempel et al., 2017; Sabari et al., 2017; Wang et al., 2017) (Fig. 6).

A total of 12 compounds were distinguished as selective and
remaining 6 as dual (Tables 4–5). Dual small molecule inhibitors
assigned ‘1’ were called test set 2 (Table 4). When the validations were
run against the GRIND model based on standard conformations, This test
set II showed predictions near 1. This further strengthens the findings
that the predicted values are true to their very nature of molecules.

3.2.3. Test set III
The test set III having IGF1R selective inhibitors (Table 5) showed

selectivity predictions against IGF-1R. Those lied near or below zero were
considered as selective against IGF-1R receptor (Table 5). No outlier were
observed. There is no evidence found yet for the duality of these com-
pounds including literature. This strengthens our finding while cross
checking the trend for duality. From the predictions of test set III
designed for IGF1R, the interaction pattern was similar with our Phar-
macophore model. Most interestingly, these analogues contained all
those electronegative functional groups and atoms which were predicted
by 3D GRIND model. The overall statistics (q2 and r2) of the Test sets was
>0.5 which further signifies the external validations.
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Fig. 5. External Data set extracted from recent literature.
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Table 3
Predictions on External Validation set 1.

Molecule Selectivity LV 2 Prediction Difference

Comp a 1 0.34 0.65
Comp b 1 0.75 0.24
Comp c 1 1.08 �0.08
Comp d 0 0.15 �0.15
Comp e 1 1.50 �0.50
Comp f 0 0.13 �0.13
Comp g 1 0.42 0.57
Comp h 0 0.05 �0.05
Comp i 0 0.06 �0.06
Comp j 0 0.28 �0.28
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Table 4 shows the statistics predicted by the GRIND model for the
validation of compounds which were considered to be dual inhibitors for
IGF1R and IR. The predictions were built on the training set obtained via
extended conformations. Similar threshold was designed for such data
where dual inhibitors were termed as 1. The prediction clearly identifies
the behavior towards the inhibition of both Targets. It could be delin-
eated that these compounds would interact in similar fashion as of those
upon which training set was built. The predictions, near 1 also evidently
support the hypothesis build by 2D and 3D QSAR.

Each study was in line with previous research results. The electro-
negativity of the atoms at the extremities of the molecules i.e Fluorine
and phosphate group of Brigatinib and Comp 19 have made them to be
predicted as potent dual inhibitors of Tyrosine Kinase inhibitors. On the
other hand Comp HKI272(2) has been over predicted (Table 4).
3.3. Pharmacophore modeling

As described above, structure and ligand-based pharmacophore
models were generated. The 3D coordinates of co-crystalized structure of
IGF-1R (5HZN) were downloaded from protein databank having NVP-
AEW451. Based on Mathew's correlation coefficient (Eq. (2)),
structure-based pharmacophore was chosen. This model successfully
parted the data with one false negative and 2 false positives. The overall
accuracy of the system was 0.87.

Typical pharmacophoric features were built against abstract confor-
mations i.e. hydrophobic centroids, Aromatic rings, H-bond acceptor, H-
bond Donor, Cations & Anions. These features define the fate of eliciting
pharmacological actions for various responses.

3.3.1. Model I (ligand-based pharmacophore)
The first model built on NVP-AEW541 efficiently marked the most

potent inhibitors of dual inhibitors. Despite having a good Mathew's
correlation factor of 0.68, it was clear from the analysis that this model
failed to produce any reliable result. The reason for choosing NVP-
AEW541 was its co–crystal structural importance that demonstrated
several key interactions and also its presence on the threshold of dual and
selective inhibitor. The model contained two H-bond acceptors with the
radius of 0.9 Å and 1.6 Å and two HYD|ARO and H-bond donor with a
radius of 1.4 Å and 1.3 Å respectively. When this pharmacophore model
was screened against the abstract information obtained from the sto-
chastic search with the threshold of 150 nM inhibitory concentration,
The abstract conformation was unpacked later to procure energy mini-
mized conformation to utilize them for GRIND models which failed to
produce matching results. Although, previously published reports (Liu
et al., 2010; Taha et al., 2007; Ramdhave and Nandave, 2016) have
completely matched with the present pharmacophore model irrespective
of the numbers of the pharmacophoric features. Unlike published reports,
our model failed to correspond to negative ionizable feature.

3.3.2. Model II (structure-based pharmacophore)
In structure-based pharmacophore (Fig. 7), NVP-AEW451 had a

strong H- bond interaction with LYS 1030 where it accepted an H-bond
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from the side chain of 5HZN. On the other hand, hydrophobic in-
teractions with the benzene ring could also be seen. GLU 1077 was a
backbone H-acceptor and MET 1079 as H-donor along with ASP 1083 as
H-acceptor. It was hypothesized that the inhibitors from the database
bind in a similar fashion with the receptor, then common group (fea-
tures) could interact with the same protein residue.

This information was extracted from the region defined by the
automated program. A similar fashion of search for hits and model
assessment was performed as it was executed on ligand-based pharma-
cophore. The structure-based Pharmacophore revealed that there could
exist pie–pie interaction between the terminal benzene ring of NVP-
AEW541 and LYS1030. Rest of the denouncements were in line with
the proposed Pharmacophore. The distance comparison is shown in
Table 6, where we compared the inter-feature distances.

One of the reviews by pakaj et al. also identified similar feature for
different small molecules to be dual inhibitors.

3.4. Virtual screening

The structure based Pharmacophore generated was screened against
World Drug Index (WDI) and ChemBridge databases (Wishart et al.;
Groom et al., 2016) having 6.5 thousands and 0.45 million entries
respectively. Since, the chosen pharmcophore was structure based, the
interaction patterns explained in pharmacophore and GRIND section
were the key indicator that the filtered candidates from the databases
would have dual inhibition characteristics of both receptors. Based on
traditional lock and key model, results from pharmacophore model and
Mathew's correlation delineates that the hits from WDI and ChemBridge
databases have the same pharmacophoric feature which would help them
bind the stated receptors and block proliferation signal. It is evident from
the statistics; number of Pharmacophoric features and distances that
structure-based pharmacophore was the right choice for virtual
screening. The hits obtained via virtual screening filtered 725 candidates
from World Drug Index and 19,773 from ChemBridge data base as dual
inhibitors.

This also validates the results generated by GRIND model. The se-
lective and dual inhibitors separation of the external test sets delineates
the authenticity of the pharmacophoric model. The compounds predicted
by GRIND near “0” were taken as selective inhibitors for IGF1R while
those near “1” were taken as dual inhibitors. The column of LV 2 shows
the predicted values of the WDI drugs against their inhibitors. All the
entities in this table are above 0.5 which are considered to be active
against dual receptors as they are predicted near one (Table 4). For our
comparison, to tighten the criteria, we increased the threshold to 0.60
and scrutinized the results which revealed only 4 FDA approved drugs.
Among them DB00775, DB01297 and DB09075 were under-predicted
with 0.62300003, 0.63910002 and 0.76560003 respectively, while
DB01051 was slightly over-predicted with 1.2187999 (Table 7) at LV 2
upon which GRIND model relied.

The compounds having FDA approval are considered final hits and
therefore recommended for further analysis. They satisfy atomic count,
Molecular weight, and other properties for a drug like entity.

3.5. Pharmacophore modeling of hits proteins

To produce efficient results, we chose the stringent criteria to be
applied on docking. Only those proteins were chosen which had PIC50
value closer to 0.6. To obtain all available chemical information on the
hits’ binding of 7JJO and 6BXJ, two different structure-based Pharma-
cophore models were constructed. We used the co-crystalized ligand
from 5HZN structure in order to build pharmacophore which would
depict true features as our base pharmacophore. Similarly, we used Eqs.
(2)–(4) for the correlation coefficient, sensitivity, and specificity,
respectively. We found that our model with Beta1-Adrenergic receptor
(7JJO) showed 79% significance confirming that it is well predicted
(Fig. 8). Similarly, our model with Integrin Beta-3 and integrin alpha II-B



CO1686 (4) AZD9291 (5) Osimertinib

BIBW2992(1)Brigatinib

WZ4002 (3)

HKI272 (2)

Fig. 6. External validation data set with pIC50 values *the difference of 1 log unit can be seen.

Table 5
Predictions for external test set 3.

Comp. R1 R2 Experimental
pIC50-IGF-1R

Actual
Selectivity/
Selective

Calc./
Predicted
pIC50-IGF-1R

5a 3-OMe p-Br 5.00 Selective 0 Selective 0
5b 3-Cl p-Br 5.45 Selective 0 Selective 0
5c 3-BR p-Br 5.52 Selective 0 Selective 0
5d 3-NH2 p-Br 6.27 Selective 0 Selective 0
5e 4-OMe p-Br 5.65 Selective 0 Selective 0
5f 4-Cl p-Br 5.64 Selective 0 Selective 0
5g 4-Br p-Br 6.05 Selective 0 Selective 0
5h 4-Me p-Br 6.15 Selective 0 Selective 0
6a 3-OMe p-CN 6.54 Selective 0 Selective 0
6b 4-OMe p-CN 6.57 Selective 0 Selective 0
6c 4-Me p-CN 6.40 Selective 0 Selective 0
7 3-OMe p-COOH 5.62 Selective 0 Selective 0
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(6BXJ) had 79% MCC accuracy (Fig. 9). Both models predicted similar
features with a much lower distance than our base model. All three
models, including the base model, evidently distinguish the active and
inactive compounds. We believe that these will provide deeper insights
into the ligand binding at the binding domain by mapping the mutual
distances of important pharmacophores features that interact with amino
acid residues.

These models were consisted of similar features including hydro-
phobic feature with Aromatic feature (F1: Hyd|Aro), aromatic feature
(F2: Aro), hydrogen bond donor feature (F3: Don), and hydrogen bond
acceptor feature (F4: Acc). The overall range of the radius was within
0.5–2.0 Å. We've shown a comprehensive distance and RMSD com-
parison in Tables 8 and 9, respectively, where we can see similar
patterns not only in distances but also in RMSD of these target
structures.
Table 4
Predictions for External test set 2.

Comp. Experimental
pIC50-IG1R

Experimental
pIC50-IR

Actual/
Selective
(Dual)

Calc./
Predicted
pIC50-IGF-1R

Brigatinib 6.58 7.42 Dual 1 Dual 1
BIBW2992(1) 6.25 5.92 Dual 1 Dual 1
HKI272 (2) 5.92 6.53 Dual 1 Dual 1
WZ4002 (3) 6.72 5.92 Dual 1 Dual 1
CO1686 (4) 5.88 6.72 Dual 1 Dual 1
AZD9291 (5)
Osimertinib

6.44 6.30 Dual 1 Dual 1

R1

R2

Fig. 7. Pharmacophore built against extended database.

Table 6
Distances of descriptors on 5HZN.

Hyd|Aro Å Aro Å Don Å Acc Å

Hyd|Aro – 5.10 7.56 10.30
Aro 5.10 – 2.82 5.31
Don 7.56 2.82 – 2.77
Acc 10.30 5.31 2.77 –
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Table 7
Finalized Compounds (hits predicted by GRIND model) for future investigations.

Generic
Names

2D- Structure Predicted
pIC50

Class Target Indication

Tirofiban 0.62 Phenylpropanoic acids Integrin β-3 & Integrin
α-IIb

Acute Coronary syndrome

Practolol 0.63 Acetanilides, Benzenoids Beta-1 adrenergic
receptor

Cardiac Arrhythmia Emergency Treatment

Edoxaban 0.76 Novel Oral Anti-Coagulants
(NOACs) class of drugs

Coagulation Factor X Stroke risk and systemic embolism in patients
with non-valvular atrial fibrillation (NVAF)

Novobiocin 1.21 Coumarin Glycosides DNA Gyrase sub
Unit B & DNA
topoisomerase 1

Infections due to Staphylococci and other
susceptible organisms
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3.6. Docking on hits’ proteins

Simulation of Molecular docking was executed with the aim to predict
the most favorable ligand-target spatial configuration as well as to
visualize the binding of these ligands to the active site to get each con-
formation's native binding. Hydrogens were added, partial charges were
computed, and energyminimization was performed using Amber99 force
field (gradient: 0.05). Docking of Practolol and Tirofiban with 5hzn was
performed through MOE 2017.100 poses of each ligand were generated
with the combination of scoring function Alpha HB and placement
methods Alpha Triangle to check the behaviour of ligands in the binding
site and also to observe native binding site through the docking.

Practolol docked in 5HZN shows hydrogen bonding with Met1076,
Fig. 8. Beta 1 adrenergic receptor structure based pharmacophore.
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Met1079 and Asp1150 that was already reported by the previous docking
studies related to the IGF-1R (Su et al., 2020). Another potential target
Tirofiban docked in 5HZN also shows the same hydrogen bonding with
Val1010 and Met 1076. These results demonstrated that both potiential
targets show the same interaction pattern and have the potency to inhibit
the IGF-1R.

For protein profiling, the co-crystalized ligand of 5hzn was docked in
hits' proteins and protein ligand interaction analysis was performed
(Table 10). The results show that the same interaction pattern as the
native interaction pattern of proteins was observed. Also, the hydrogen
bond interaction with most effective amino acid of the protein can be
seen in Table 10. Beta1-Adrenergic receptor (7JJO) docked with NVP
derivative shows the importance of hydrogen bond interaction by pairing
with Phe306, and similar hydrogen bond interaction were seen with
Integrin Beta-3 and integrin alpha II-B (6BXJ) i.e., Asp95, Glu337, Ser306
and Asn308. These results demonstrated that hydrogen bonding is
important for the inhibition of the hit's protein.
Fig. 9. Integrin Beta-3 receptor structure based pharmacophore.



Table 8
Radius & Distances Comparison of Hits' proteins.

Features 6BXJ 7JJO 5hzn Base Structure

Radius Hyd/Aro Aro Don Acc Radius Hyd/Aro Aro Don Acc Radius Hyd/Aro Aro Don Acc

Hyd/Aro 1.50 – 5.41 4.43 6.21 1.30 – 6.67 4.60 3.59 0.8 – 5.10 7.56 10.30
Aro 1.20 5.41 – 3.99 5.36 1.20 6.6 – 32.38 3.29 0.8 5.10 – 2.82 5.31
Don 1.20 4.43 3.99 – 2.38 1.40 4.60 238 – 3.59 1.2 7.56 2.82 – 2.77
Acc 1.20 6.21 5.36 2.38 – 1.50 3.59 3.29 3.59 – 1.2 10.30 5.31 2.77 –

Table 9
Structural comparison of hits protein with IGF-1R kinase (5HZN).

Protein Name RMSD with IGF-1R (5HZN) (Superimposed
structure only)

Beta1-Adrenergic receptor (7JJO) 2.864 (40 residues)
Integrin Beta-3/Integrin alpha II-B
(6BXJ)

3.02 (34 residues)

Table 10
Important Amino Acid: Hits docked in 5HZN.

Ligands Interaction Type Amino Acid Involved

NVP-
Derivative

H- Bond Donor &
Acceptor

Gln1004, Glu1077, Met1079, Arg1136,
Val1010, Met1076,

Practolol H- Bond Donor &
Acceptor

Met1076, Asp1150, Met1079

Tirofiban H- Bond Donor Val1010, Met1076
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4. Discussion

The current study offers robust investigative protocols for potential
clinical candidates. We confirm that the Pharmacophore and GRIND
models concurrently delineate two H-bond donors, two H-bond accep-
tors, overall Topology and vdw_vol as important descriptors for dual
inhibition of IGF-1R and IR.

Our GRIND model showed two H-bond donors at the distance of
16.8–17.2 Å and two H- bond acceptors at the distance of 12.8–13.2 Å
respectively. It also predicted that steric bulk along with H- bond donor at
18–22 Å plays a significant role in the affinity. The partial least square
analysis with latent variables and factorial design from Final GRIND
model gave an r2 ¼ 0.76 with a cross validation q2 ¼ 0.60, reflecting
statistically significant results. Additionally, external validation per-
formed with three external test sets for selective and dual inhibitors from
published research reflected the model results. Furthermore, our phar-
macophore model delineated the distances between the descriptors like
hydrophobic region, H- bond acceptors and donor region to be important.
Moreover, a strong Mathew's correlation factor of 0.87 from our phar-
macophore model was obtained, which suffices the significance of the
model. Lastly, model query against WDI and ChemBridge resulted in
potential hits for dual inhibition of both IGF-1R and IR.

Herein, the models and virtual screening reveals crucial distances
among H-bond donors and acceptor and overall topology. From the final
hits, the Edoxaban possesses a pair of hydrogen bond acceptors present at
13.5 and 15.5 Å. Likewise, for over-predicted candidate Tirofiban, the
distance found is approximately 18.4 and 12.6 Å, which is promising
based on our predicted distances from the GRIND model. The identified
features and distances are paralleled in both models, witnessing the
intrinsic dual inhibitory nature of the compounds. Recent studies are
either suggesting correlated potentiation of dual inhibition of IGF-1R and
IR with cytoskeleton actin-binding protein filamin A (FLNA) inhibition or
chimeric modified receptor (Catalano et al., 2021; de Billy et al., 2020).
We further confirm the accuracy of the models through Docking and
pharmacophore models on hits’ target proteins, which delineated similar
features and amino acids as the base model with accuracy of 79%. These
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further hints the candidacy of the NVP derived pharmacophoric model
and potential hits from QSAR studies. Hence, in the absence of experi-
mental data available and on the bases of diverse and non-congeneric
chemical classes, our models and validations provide statistically sig-
nificant results upon which further research and experimentations can be
performed for repositioning of drugs.

5. Conclusion

The compensatory cross-talks occurrence upon inhibition of IG1R and
high sequence homology between the binding domains of IGF1R and IR
pave the idea of dual inhibition of both receptors. This led to a race in novel
molecular agents’ experimentation and dual targeted inhibition through
cutting edge techniques. The purpose of using in-silico should address the
drug resistance, toxicology, and other complication. Even though recent
studies have given us a small degree of confidence, yet precautions should
be exercised while modeling the ADMETox properties and performing
repositioning of the drugs. Among recent discoveries, first in human phase
clinical trials candidate KW-2450 showed hyperglycemia and hyper-
insulinemia concluding more research is needed in this area (Umehara
et al., 2018), along with other leading dual inhibitors to date i.e. Lensitinib
(OSI-906), GSK and NVP derivatives, and Erlotinib. This study will help in
the evaluation the ligand efficiency. We have thoroughly researched the
Pharmacophore models and confirmed through high throughput screening
and the cross validations that the NVP- derivatives can be potential clinical
candidates. Additionally, previous models were solely based on exploring
unaccompanied solo properties, i.e., modeling of a single class 2D or 3D, or
in some cases the delineated features were limited.

The ADMETox studies on these novel molecules would additionally
explore the possibility of their clinical candidacy. Further optimization
and experimental validation of identified hits will pave a way towards
the successful development of chemotherapeutic agents against differ-
ence types of cancers. For example, the optimization of classes including
Thiazolidinedione (TZD) or pyrimidines have led to the discovery of
potent novel molecules.

However, strong computational tools with advanced A.I and machine
learning algorithms are needed in the drug discovery process. The
experimental validations for each computational study performed on cell
lines may provide further insights onto the chemical nature of the
molecule, including the ligand efficiency and profiling. Current findings
encourage a promising window into cancer research and could aid into
the development of potential clinical candidate.
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