
1. Introduction
Precipitation is a key feature of the water cycle. Its quantification is crucial for various hydrometeorological 
applications. At the same time, precipitation is particularly variable in space and time, which makes quantitative 
estimation on high spatiotemporal resolutions difficult. Since simulations from numerical weather models cannot 
produce such high-quality quantification, the primary information sources are observations. These observations 
may suffice with regard to temporal resolution; however, the spatial coverage is generally limited. For hydro-
logical applications such as runoff models, it is crucial to capture the spatial distribution, that is, the pattern of 
precipitation, accurately.

Common observational data comprises dedicated sensors such as rain gauges and weather radars. Despite some 
limitations, for example, wind-related underestimation (Pollock et al., 2018) and limited spatial coverage, rain 
gauges can be considered very accurate precipitation sensors. Weather radars provide a high spatial resolution but 
have other disadvantages stemming from beam blockage, ground clutter, the measuring height above ground, and 
the sensitivity to the drop size distribution (Berne & Krajewski, 2013).

Abstract Accurate spatiotemporal precipitation quantification is a crucial prerequisite for hydrological 
analyses. The optimal reconstruction of the spatial distribution, that is, the rainfall patterns, is particularly 
challenging. In this study, we reconstructed spatial rainfall on a countrywide scale for Germany by combining 
commercial microwave link and rain gauge observations for a better representation of the variability and spatial 
structure of rainfall. We further developed and applied the Random-Mixing-Whittaker-Shannon method, 
enabling the stochastic reconstruction of ensembles of spatial fields via linear combinations of unconditional 
random fields. The pattern of rainfall objects is evaluated by three performance characteristics, that is, ensemble 
Structure-, Amplitude-, and Location-error. Precipitation estimates obtained are in good agreement with the 
gauge-adjusted weather radar product RADOLAN-RW of the German Weather Service (DWD) which was used 
as a reference. Compared to reconstructions by Ordinary Kriging, Random Mixing showed clear advantages in 
the pattern representation via a five times smaller median structure error.

Plain Language Summary Rainfall is commonly measured by dedicated sensors such as rain 
gauges or weather radars. Commercial microwave links (CMLs), which have the primary purpose of signal 
forwarding within cellular networks, can be used for rainfall measurements too. The signal, which is transmitted 
from one antenna to another, is being attenuated if it rains along the path. From the amount of attenuation 
an average rain rate can be retrieved. For many hydrological applications, it is of major interest to estimate 
area-wide rainfall (i.e., rainfall maps) while observations provide only scattered information. In this study, 
we used the local information from almost 1,000 rain gauges and the information along the paths of 3,900 
CMLs distributed over Germany to reconstruct rainfall maps. We did this by applying a method of stochastic 
simulation (called Random Mixing) which we compared to a more common method of estimation (Ordinary 
Kriging). To evaluate the quality of the obtained maps, we compared them to rainfall information from weather 
radars. We found that the general agreement is high, and that maps reconstructed by Random Mixing have 
particular advantages in representing the spatial structure, that is, the shape of rainfall cells.
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Additionally, opportunistic sensors can be used for precipitation estimation. Commercial microwave links 
(CMLs), operated by mobile communication providers, have been used for rainfall estimation for many years 
(Leijnse et al., 2007; Messer, 2006). One of the major advantages of CMLs is their widespread presence across 
the globe. Moreover, rain rate retrieval for typical CML frequencies is, in contrast to radar, rather independent of 
the drop size distribution. However, as CMLs are not designed and operated with the aim of measuring rainfall, 
careful processing is required to deduce rainfall information from the raw attenuation (Chwala et al., 2012; Graf 
et al., 2020; Overeem et al., 2016).

In this study, we use rain gauge and CML observations to calculate spatially interpolated rainfall estimates. 
Rain gauges represent networks of point observations for which there exist various interpolation methods such 
as Kriging and inverse distance weighting. CML observations, in contrast, are path-integrated measurements. 
There is no optimal way to account for such spatially variable nonlocalized measurements in standard interpo-
lation methods. Nevertheless, CML data has successfully been used to estimate rainfall fields in several studies. 
Overeem et al. (2013) used Ordinary Kriging to derive rainfall maps for the Netherlands, and Graf et al. (2020) 
used an inverse distance weighting approach to calculate such maps for Germany. In these cases, CML informa-
tion was reduced to a single point at the center of the CML path. A way to account for the path-averaged nature 
of CML observations was presented by Goldshtein et al. (2009). They applied inverse distance weighting using 
virtual rain gauges along the CML paths combined with an algorithm that allows redistribution of rainfall values 
between the virtual gauges. Other studies that fully take into account the CML observations as path-averaged 
used tomographic reconstruction (D’Amico et al., 2016; Zinevich et al., 2008) and a block Kriging approach 
(Graf et al., 2021).

A fundamentally different approach to derive spatial rainfall estimates based on CML and rain gauge data was 
shown by Haese et al. (2017). Their method of stochastic reconstruction produces rainfall fields with realistic 
patterns which are constrained by the combination of point and path-averaged observations. For the path-averaged 
CML observations, the method accounts for the possible variability of rainfall along the paths. It further over-
comes the tendency to produce estimates with smoothened spatial gradients which is a general limitation of 
interpolation methods such as Kriging and inverse distance weighting.

Improved spatial patterns in rainfall field reconstructions are particularly important for the estimation of rainfall 
at relatively high temporal resolution which is highly variable and intermittent in space. The method used by 
Haese et al. (2017) has the potential to effectively account for the pattern; however, up to now, it was only applied 
to small spatial extents and to a limited amount of data.

In this study, we use CML and rain gauge observations distributed over Germany to derive ensembles of rainfall 
fields via the Random Mixing (Bárdossy & Hörning, 2016) approach similar to the study of Haese et al. (2017). 
For the first time, we apply this method on a large countrywide scale and for longer periods. This required several 
smaller adaptations to the method, that is, to make large-scale calculations feasible on a cluster computer, and, 
to better account for precipitation with high percentages of dry (zero values) observations. Moreover, we focus 
our study on the evaluation of the quality of reconstructed rainfall patterns using eSAL error metrics (Radanovics 
et al., 2018; Wernli et al., 2008). This allows us to quantify aspects of spatial estimates which cannot be captured 
by standard performance metrics.

This study aims to answer the following questions: Can we improve large-scale spatial precipitation estimates 
based on CML and rain gauge data compared to a standard Kriging interpolation? In particular, does our method 
improve the reconstruction of true spatial precipitation patterns?

2. Data and Methods
2.1. Data

We used data sets (CMLs and rain gauges) over a period of 3 months, June through August, in 2019. In this 
section, we first describe a reference data set (gauge-adjusted weather radar) that we use for the validation of 
our reconstructions, and second, we describe the two data sets which we use as the basis for our reconstructions.
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2.1.1. Reference Data RADOLAN-RW

RADOLAN-RW is a product of the German Weather Service (DWD) that 
provides gridded countrywide precipitation information. It is based on data 
derived from 17 C-Band weather radars and adjusted to more than 1,000 
rain gauges that are distributed over Germany. Each weather radar yields 
reflectivity observations every 5  min. The information from the individ-
ual stations is merged into a national gridded composite using the Python 
package wradlib (Heistermann et al., 2013). Additionally, the 5-min rainfall 
information is aggregated to full hours and then adjusted to the hourly rain 
gauge observations by weighted combination of additive and multiplicative 
correction schemes (Bartels et al., 2004).

The final product yields hourly rainfall sums at time stamps hh:50 and with 
a precision of 0.1 mm. The spatial extent is a 900-by-900 grid in a stere-
ographic coordinate system covering Germany and parts of the neighbor-
ing countries. Each grid cell has a size of 1-by-1 km. For our analysis, we 
disregard the western margin that is outside the German borders, that is, we 
consider a grid of 900 km in meridional (y) and 700 km in zonal (x) direc-
tion. Further information on the coordinate system is referenced in the Data 
Availability Statement.

We are aware of the shortcomings of gauge-adjusted radar products like 
RADOLAN-RW, stemming from inherent errors of radar rainfall observa-
tion and from the imperfect gauge adjustment further away from the gauge 
locations. However, our analysis requires spatial reference data with high 
resolution which can only be provided by weather radars. For Germany, 
RADOLAN-RW, the national operational gauge-adjusted radar product, is 
thus the reference data set of choice.

2.1.2. Data Used for Reconstructions

Our reconstructions are based on rain gauge and CML data. The rain gauges 
are from the network of the German Weather Service (DWD). The data set 

comprises 953 devices that are distributed over Germany (see Figure 1). Note that the rain gauges we use for the 
reconstructions are also deployed for the radar adjustment. Rainfall sums are recorded every minute. The second 
data set consists of 3,900 CMLs that are operated by Ericsson. Transmitted and received signal intensities are 
retrieved in 1-min resolution (Chwala et al., 2016). The CML lengths range between several hundreds of meters 
and almost 30 km, and their frequencies between 6 and 39 GHz. CML attenuation data requires several processing 
steps to obtain rainfall information. We apply methods from the Python package pycomlink (Chwala et al., 2021) 
and processing steps according to what is described by Graf et al. (2020). This involves (a) a distinction between 
wet and dry periods based on the rolling standard deviation of the attenuation time series, (b) an estimation of the 
baseline attenuation under dry conditions, (c) a correction for the attenuation caused by wet antennas, and (d) the 
calculation of rain rates from the rain-induced specific attenuation.

We aggregate both rain gauge and CML data to full hours. For consistency with the reference data, we consider 
hours that start and end at hh:50 (e.g., data from the period between 06:50 and 07:50 is allocated to the time 
stamp 07:50) as it is done for RADOLAN-RW. The aggregation is only done if there are no missing values in the 
high-resolution data. For gaps in the original data, we consider the rainfall amount of the affected hour as a miss-
ing value. This affects approximately 1.4% and 5.3% of the rain gauge and CML data, respectively. Note that there 
are whole periods in which almost no CML data is available due to failures of our data acquisition system (see 
shaded parts in the time series in Figure 2). Those periods are disregarded in the analysis entirely. This reduces 
the total number of 1-hr time steps from 2,208 (3 months) to 1,885.

The sensor locations are projected onto the polar stereographic coordinate system used for RADOLAN-RW. One 
of the rain gauges lies outside the grid extent and thus is disregarded. The projection differs slightly between the 
reconstruction methods applied in this study: For the use in Random Mixing, we project onto the grid points, 
while keeping the exact (off-grid) values for Kriging.

Figure 1. Locations of sensors. Areas outside the German borders are not 
considered in the evaluation.
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We then apply a filtering routine that concerns CML data only, and goes beyond steps described in Graf 
et  al.  (2020). It is a spatial sanity check in which single observations at given time steps are excluded from 
the analysis if they measure values that are distinctly different from the ones of neighboring sensors. As was 
acknowledged by Graf et al. (2020) and Polz et al. (2020), there still is a considerable amount of false-positive 
CML rainfall values, despite the advance in CML data processing. Compared to these two studies, we focus on 
spatial rainfall estimation and an analysis of the derived rainfall patterns. Hence, eliminating spatially isolated 
false-positive CML rainfall, which impacts its whole surrounding area, has a higher importance in this study. We 
thus deploy the following heuristic filtering scheme to remove spatially isolated suspicious data points. For any 
wet (nonzero) observation qObs we test whether the neighboring observations are all dry. For this, we consider 
only neighbors in a radius of 15 km. If there exist at least five such neighbors and if they all observe no rainfall, 
the observation in question qObs is disregarded. This way, approximately 2.8% of CML data is filtered. Two 
examples of the effect of this filter can be found in Figures S4 and S5 in Supporting Information S1. Note that 
this filter is similar to the nearby link approach (Overeem et al., 2016), which has been applied in several studies 
(e.g., de Vos et al., 2019; Roversi et al., 2020) for identifying wet periods and filtering outliers. An important 
difference is that our filter uses processed rainfall amounts instead of the raw signal.

We further disregard whole time steps if they are too dry, that is, we only consider time steps in which at least five 
percent of rain gauges and five percent of CMLs record some rainfall. One reason for this is our observation-based 
estimation of the spatial dependency model which requires a minimum of nonzero observations. Moreover, we 
are interested in rainfall that covers a considerable spatial extent to allow for a meaningful pattern analysis. This 

Figure 2. Overview of the analyzed period and case studies. Top row: Time series of analyzed period (June–August 2019) including spatial mean rainfall of the 
RADOLAN-RW reference, and indication where reconstructions were calculated and which time steps were selected for the case studies. Below: For each of the case 
studies, CML observations, rain gauge observation, RADOLAN-RW data, and a single Random Mixing (RM) reconstruction are shown. Areas that are not covered by 
RADOLAN-RW as well as observations that did not record values are colored in gray.
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further reduces the number of total time steps from 1,885 to 819. This disregard of many rather dry time steps 
limits the applicability to operational use, for which a different approach to the calculation of the spatial depend-
ence model would be required.

2.2. Reconstructions

We apply two approaches for the reconstruction of rainfall fields. As the aim of this study is to evaluate the perfor-
mance of the Random Mixing method for large-scale rainfall estimation, we will give an overview of the basic 
principles of this method. Before, we shortly first describe the Kriging approach, which we use as a reference 
method, and afterward, we briefly compare some of the methods' technical aspects.

2.2.1. Reference Interpolation Method: Kriging

Kriging is a geostatistical tool that is widely used for spatial interpolation. In this study, we apply Ordinary 
Kriging (OK) as a reference method. We apply the PyKrige Python package (version 1.6.1), with an exponential 
variogram model and moving window that considers the 10 closest points. The parameters of the variogram are 
calculated by the package's default L1 norm minimization scheme.

With OK, we can use the rain gauges directly as they are point observations. The CML observations, however, 
need to be reduced from integral values to point values. Therefore, we assume the CML-derived observations 
as point measurements at the central positions along the links' paths similar to what was done in Overeem 
et al. (2013) and Graf et al. (2020).

OK generally allows the creation of values that are outside the range of observations. Hence, we were confronted 
with nonsensical negative rainfall values which we set to zero before the analysis.

2.2.2. Stochastic Reconstruction of Rainfall Fields: Random Mixing

We reconstruct spatial rainfall via the Random Mixing (Bárdossy & Hörning,  2016) approach that is imple-
mented in the Python package RMWSPy (Hörning & Haese,  2021). With Random Mixing (RM), we can 
reconstruct spatial fields, that is, values on a two-dimensional grid, that preserve several features. The spatial 
dependence structure is obtained from (and thus similar to) that of the rain gauge measurements. Moreover, the 
marginal distribution of the field is in accordance with the marginal distributions of rain gauge and CML obser-
vations. Finally, rain gauge and CML observations can be introduced as linear (localized) and nonlinear (integral) 
constraints on the field. The following paragraphs are a brief introduction to the methodology. For a detailed 
step-by-step description of the algorithm, we refer to Hörning and Haese (2021).

The central aspect of RM is the stochastic combination of large numbers K of unconditional random fields Yi 
with i = 1, …, K. These initial fields are random as they do not account for the observations; however, they repre-
sent the spatial dependence structure. Linear combinations of these fields are constructed such that the spatial 
dependence structure is preserved. To be able to construct such linear combinations, the unconditional random 
fields Yi are required to possess a standard normal value distribution and a spatial dependence structure that can 
be described by a Gaussian copula (Bárdossy & Hörning, 2016). Let all fields Yi have a standard normal marginal 
distribution, that is, expected values E(Yi) = 0 and variance Var(Yi) = 1, and a spatial correlation defined by a 
covariance matrix Γ with Γ(Yi) equal for all Yi. Then we can calculate a linear combination

𝑊𝑊 =

𝐾𝐾
∑

𝑖𝑖=1

𝑎𝑎𝑖𝑖𝑌𝑌𝑖𝑖. (1)

where W is another spatial field with the same expected value, that is, E(W) = 0. By ensuring that

𝑛𝑛
∑

𝑖𝑖=1

𝑎𝑎
2

𝑖𝑖
= 1, (2)

it follows that also Var(W) = Var(Yi) = 1. Moreover, Equation 2 guarantees the preservation of the spatial depend-
ence, that is, Γ(W) = Γ(Yi).
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Additionally, the linear combination can be adjusted such that the observational data is represented. Let J be the 
number of rain gauges and x a location on the spatial grid. Rain gauge observations (Z(xj)) with j ∈ [1, …, J] are 
first transformed to standard normal space via the transformation

� (��) = Φ−1 (� (�(��)) . (3)

where F(Z) is the marginal distribution of the rainfall deduced from the distributions of rain gauges and CMLs, 
and Φ −1 is the inverse standard normal distribution function. Note that we projected the locations such that 
every rain gauge falls onto a certain grid point, as described in Section 2.1.2. The transformed values are linear 
constraints and can be fulfilled in Equation 1 if K ≥ J, that is, if the linear equation system is not overdetermined. 
With K > J we can additionally account for the validity of Equation 2.

CML observations are nonlinear constraints. To account for them, first the field that is calculated in Equation 1 
is back-transformed by the inverse of Equation 3, that is,

𝑍𝑍 = 𝐹𝐹
−1(Φ(𝑊𝑊 )). (4)

Then, path-averaged CML observations are compared to Z. Therefore, we consider the intersecting pixels of Z for 
each CML path. These pixels are obtained by the Bresenham Line algorithm connecting the locations of the two 
poles of a CML. The overall agreement is measured as the Euclidean distance of the differences over all individ-
ual CMLs. To adjust the field to CML data, we change the selection of unconditional fields in the linear combi-
nation (Equation 1) repeatedly. This iterative approach is governed by the Whittaker-Shannon algorithm which 
assures convergence and fast computation. For a detailed description of the application of the Whittaker-Shannon 
algorithm in RM, we refer to Hörning et al. (2019).

RM allows for variability at unobserved locations, that is, at locations without any measurement as well as along 
the CML paths. Hence, there is not only one solution but we are able to calculate ensembles of reconstructions 
which allows the quantification of uncertainties. In this study, we calculate an ensemble of 20 single realizations. 
This number is sufficiently high to see several effects that the ensemble calculation features. At the same time, 
performance indices are not expected to vary by much for greater ensemble sizes (see Section 4.4) and compu-
tational costs which depend on the ensemble size, need to be considered as a limiting factor in RM calculations.

We implemented several adaptations to RM to make the calculations of this study feasible. This comprised the 
replacement of specific Python packages to speed up the computations. Also, the calibration to CML data was 
extended such that it can now be done in parallel computing mode. Furthermore, we slightly adapted the treat-
ment of rain gauge observations that recorded no rain. This was necessary as, of course, we needed to cope with 
many dry observations in the large domain for hourly aggregation times. RMWSPy, which is not dedicated to 
precipitation estimation in particular, involves a special processing for such zero values. The implementation with 
our adaptions is available on GitHub (see Data Availability Statement below).

2.3. Comparison of the Reconstruction Methods

Ordinary Kriging and Random Mixing are fundamentally different methods for spatial reconstruction. While the 
former yields a most probable estimate at all unknown locations, the latter produces fields that are constrained 
by local observations and global statistics but involve randomness in the values at unknown locations. In fact, 
averages over very large RM ensemble sizes converge toward the same output as in OK.

Computationally, RM is clearly more challenging than OK. The time to compute an RM ensemble for one time 
step was on average 3.8 hr with most time steps requiring less than two but a few even more than 10 hr. The large 
spread of computation time stems from the optimization algorithm that accounts for the CML observations and 
which is variable in time. OK, on the contrary, produced solutions (albeit no ensemble) generally in less than a 
minute per time step. Moreover, RM requires large RAM resources in the case of a large grid as in this study. It 
computes linear combinations of random fields of which a large enough pool needs to stay in memory. We needed 
approximately 30 GB of RAM for RM and 1 GB for OK per time step. Note, however, that there exists potential to 
significantly reduce RM memory usage further, for example, by leaving out areas that can certainly be classified 
as dry from the calculations of the linear combinations. Such optimization was not the focus of this study, though.
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2.4. Validation

Our validation comprises two sets of performance metrics. One set that we use for pattern analysis features the 
consideration of rainfall objects. The other set, which we refer to as standard performance indices, quantifies the 
quality via pixel-by-pixel comparison. Before calculating the performance metrics, we apply spatial masking of 
the rainfall maps. First, pixels are set to missing values if they lie outside the German borders (see Figure 1). This 
means that only about 62% of the 900-by-700 km grid are considered. Second, pixels in the generated rainfall 
maps are set to missing values at all locations where the reference has missing values. While for most time steps, 
this affects only 123 (0.03%) of the pixels, in total approximately 0.2% are affected.

2.4.1. Pattern Performance Indices: (e)SAL

In this study, we are particularly interested in analyzing rainfall patterns. That is, we assess whether spatial gradi-
ents of rainfall amounts are represented in our estimates, and how well one can capture correct shapes, and posi-
tions of rainfall objects. To quantify such features, we apply a set of metrics that evaluate deviations in structure S, 
amplitude A, and location L between a reconstructed and a reference rainfall field. This SAL analysis, introduced 
by Wernli et al. (2008), considers properties such as average rainfall amount and centers of mass both for the 
whole domain as well as for rainfall objects. These objects are defined as connected pixels of the grid with rainfall 
amounts that exceed a given threshold value. By applying an image processing algorithm, the objects are distin-
guished from their surrounding. The consideration of rainfall cells as separated objects distinguishes SAL from 
standard validation methods, and enables a dedicated assessment of the quality of reconstructed rainfall patterns.

The structure error S is a measure of differences in weighted rainfall amounts of all the rainfall objects. It has a 
possible value range between −2 and 2, where negative values indicate too peaked objects and positive values 
too flat objects. The amplitude error A describes the discrepancy of domain-averaged rainfall. Similar to S, A 
may range between −2 and 2. Negative values indicate overall underestimation and positive values indicate 
overestimation. The A parameter is independent of the individual rainfall objects. The location error L evaluates 
the difference in location of reconstructed and reference rainfall. It is defined as the sum of two components 
(L = L1 + L2). L1 quantifies the spatial dislocation of the weighted center of mass over the whole domain, thereby 
disregarding the rainfall objects. L2 considers the displacements of single objects to the total center of mass of the 
same field. The L parameter ranges from 0 (indicating no location error) to 2 (strong location error). A detailed 
description and definition of the SAL parameters can be found in Wernli et al. (2008).

Note that only S and L do really give an account on rainfall patterns. Therefore, it is mainly these two parameters 
that we are interested in. Nevertheless, parameter A is not disregarded in this analysis. It quantifies a domain-wide 
property but within a similar value space as the pattern-oriented measures S and L and at the same time relates to 
standard performance indices, that is, the bias (BIAS).

Radanovics et al. (2018) extended the SAL concept by estimating the three parameters for the validation of ensem-
bles. This eSAL analysis considers the single ensemble members when estimating the regional properties. The 
ensemble mean of these properties is used to calculate the three parameters eS, eA, and eL. For the calculation, 
either both or only one of reconstruction and reference may be ensembles. In case reconstruction and reference 
both lack the ensemble dimension, eSAL is equivalent to SAL. In the following, we generally refer to the parame-
ters by S, A, and L (without the leading e) for both ensemble (RM) and nonensemble (OK) validation.

As mentioned above, the discrimination of rainfall objects requires a threshold value. We define the threshold 
value by f × R 95, where f is the threshold factor and R 95 is the 95 percentile of the domain-wide distribution of 
rainfall amounts considering wet pixels only. Since its definition is dependent on the rainfall amount, the thresh-
old generally differs between reconstruction and reference. The threshold factor f is set to

𝑓𝑓 = max

(

1

15
,
0.1𝑚𝑚𝑚𝑚

𝑅𝑅
95

𝑟𝑟𝑟𝑟𝑓𝑓

)

 (5)

where 𝐴𝐴 𝐴𝐴
95

𝑟𝑟𝑟𝑟𝑟𝑟
 is the 95 percentile rainfall amount of the reference. That is, the threshold factor is equal to 𝐴𝐴

1

15
 , except 

for cases where this value would lead to a threshold that is smaller than the lowest nonzero value of the field. 
The reference data has a precision of 0.1 mm and by this definition we ensure that the threshold for the reference 
field is 0.1 mm or higher. Equation 5 is only dependent on the reference field as RM and OK reconstructions, do 
effectively not have precision limits. The choice of the number 𝐴𝐴

1

15
 follows the definition of Wernli et al. (2008) 
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who based it on visual confirmation and a sensitivity analysis. The concept of using the 95 percentile and the 
definition of the threshold factor depending on the precision follows Radanovics et al. (2018).

Furthermore, the calculation of SAL parameters requires a treatment of missing values that are present in the 
RADOLAN-RW data (see Figure 2), and, by our own definition, at locations outside the German borders (see 
Figure 1). Missing values cannot be handled by the image processing algorithm that defines the rainfall objects. 
Therefore, and only for the SAL analysis, we set those pixels to zero both in the reference data and the reconstruc-
tions. This manipulation of the fields does not corrupt the SAL metrics. For the rainfall objects, the pixels are 
never considered if their value is zero and therefore do not influence the objects' properties. Also, the parameters 
that consider domain-wide average rainfall (A and L1) are not corrupted as they are relative measures. There is 
no difference whether missing values are disregarded or considered as zeros since the number of affected pixels 
is the same in reconstruction and reference. We experimented with interpolating the rare occurrences of missing 
values of the reference within the German borders. This would however introduce additional uncertainty, espe-
cially since missing values generally occur in connected patches at the edge of the reach of the individual radars. 
Besides, the experiments showed that the differences in the metrics would be negligible.

Within the scope of this study, we developed the functionality to calculate SAL parameters in a Python environ-
ment. The code is accessible via GitHub (see Data Availability Statement below).

2.4.2. Standard Performance Indices

We calculate several standard performance indices that are commonly used to evaluate the quality of rainfall 
maps. They relate reconstructions and references via a pixel-by-pixel comparison. We calculate the Pearson 
correlation coefficient (PCC), the root-mean-square error (RMSE), and the bias (BIAS) as follows

��� =
���(���� , ���� )

�(����) × �(���� )
 (6)

���� =
√

�
(

(���� −���� )2
)

 (7)

���� =
�(���� −���� )

�(���� )
 (8)

where Rrec and Rref are the rainfall amount for all pixels of the reconstruction and the reference, respectively. cov(.) 
is the covariance function, σ(.) the standard deviation function, and μ(.) the arithmetic mean function.

3. Selected Case Studies: Synoptic Situation
Our analysis covers the 3 months June, July, and August 2019. During the summer months, there is generally 
almost no solid precipitation, but a mixture of convective and stratiform rainfall patterns over Germany. Through-
out the country, this summer was characterized by warm and dry conditions. However, several intense rainfall 
events took place particularly in the southern parts of the country.

In addition to the analysis over the 3-month period, we selected three time steps for a detailed analysis of rainfall 
patterns. We chose one rainfall event of each analyzed month. Those events differ in terms of rainfall loca-
tion, type, and synoptic conditions. All three time steps represent synoptic conditions that are rather common in 
Germany (Werner & Gerstengarbe, 2010).

The first selected time step is of June 11 at 01:50. The synoptic condition at this time was dominated by high 
pressure over Central Europe. Germany was influenced by anticyclonic patterns. For several days the weather in 
Germany was characterized by strong thunderstorms which had particular strong severity in southern parts of the 
country. At the selected time step there was widespread intense rainfall over southwestern Germany and several 
rainfall cells along the Baltic Sea and the border to Poland.

The second selected time step is of July 28 at 13:50. The conditions were characterized by a high-pressure zone 
over the Atlantic and low pressure over western Asia. Especially in the southern half of Germany, there were local 
and partly very intensive convective rainfall cells.

 19447973, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032563 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [24/10/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

BLETTNER ET AL.

10.1029/2022WR032563

9 of 16

The synoptic condition of the third time step (August 18 at 12:50) was dominated by zonal westerly directions 
of inflow and a cyclonic regime. There was a center of low pressure over the northern Atlantic between Iceland 
and the British Isles, and a belt of high pressure reaching from the Azores through central Europe and Germany, 
to Russia. Over Germany, there was a decline in pressure from the Alps to the North Sea. These conditions led to 
cyclonic frontal rainfall over northwestern Germany.

4. Results and Discussion
Our analysis comprises 815 hourly time steps. We calculated rainfall maps for 819 hourly time steps as described 
in Section 2 and disregarded 4 time steps in which reference data is not available. Figure 2 shows which time 
steps of the 3-month periods are considered and gives an overview of observational data, reference data, and an 
RM reconstruction for the three selected case studies. In this section, we will first present SAL results for these 
case studies, followed by the SAL statistics for all calculated time steps. Subsequently, we will present the analysis 
based on standard performance indices, and an analysis of the ensemble means of different ensemble sizes which 
range between 3 and the total of 20 ensemble members that have been calculated in this study. We generally refer 
to Random Mixing reconstructions by eRM, sRM, and mRM(M) if we consider the whole ensemble, a single 
ensemble member, or the mean of M members, respectively, and Kriging reconstructions by KRI. Note that for 
the (e)SAL analysis, we generally refer to the parameters by S, A, L omitting the leading “e.” For eRM, this implies 
that S is actually eS (likewise for A and L), that is, a single value describing the whole ensemble.

4.1. SAL Analysis: Case Studies

For the selected time steps, we present rainfall maps of reference, KRI, and one of the sRM reconstructions 
together with the SAL parameters in Figures 3 and 4. Note that in the case of RM SAL parameters are shown for 
eRM as well as for sRM. Similar figures showing mRM maps can be found in the supporting material (Figures 
S1–S3 in Supporting Information S1).

On June 11, 2019 at 01:50 (Figure 3), there was considerable rainfall over southwestern and northeastern Germany. 
By visual comparison, both the sRM and KRI reconstructions are in good agreement with the reference. The 

Figure 3. Top row: Rainfall maps of first selected time step (June 11, 01:50) for reference, KRI reconstruction, and 
sRM reconstruction (a single ensemble member), with centers of mass indicated by the crosses, and threshold values that 
encapsulate the rainfall objects (see Section 2.4.1 for details). Below the maps, the SAL error metrics are shown. The framed 
squares represent eSAL results of eRM, smaller squares represent SAL results of all individual ensemble members, and the 
circles represent SAL of KRI.
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spatial extent as well as rainfall amounts are well represented in the reconstructions. Comparing sRM and KRI, 
a general difference in the structure can be seen along the edges of the rainfall objects: KRI objects have straight 
edges while for sRM they are rather convoluted. This displays a high spatial variability in sRM.

The visual observations can be supported by the SAL metrics. (Table S1 in Supporting Information S1 gives an 
overview of metrics that are discussed in the following.) The S parameters for eRM and for KRI are positive which 
shows that both eRM and KRI produce too widespread or less peaked objects. However, for eRM (S = 0.100), 
this value is clearly smaller than for KRI (S = 0.355) which indicates that the structure is better captured in eRM. 
The tendency for too smooth spatial gradients is implicit in OK as the variability is strongly constrained by local 
observations. RM, on the other hand, enables a reconstruction that does not involve this tendency.

Figure 4. Rainfall maps and SAL metrics for second and third selected time steps. The maps show the reference data, a Kriging reconstruction, and a single sRM 
reconstruction, with centers of mass and threshold values that encapsulate the rainfall objects, for each time step. Below the maps, eSAL results for eRM are shown by 
the framed squares, SAL of individual sRM members by the smaller squares, and SAL of KRI by the circles (cf. Figure 3).
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The A parameter reveals that the error in representing domain-wide rainfall is small for both eRM and KRI. Both 
reconstructions suffer from slight underestimations that are similar in magnitude. The amplitude errors for eRM 
(A = −0.072) and KRI (A = −0.096) represent approx. 93% and 91% of the reference rainfall, respectively.

The L parameters show that dislocation is generally small. The domain-wide dislocation measured by L1 indicates 
a shift of approx. 10 km for both eRM and KRI (both with L1 = 0.009).

The second selected time step (July 28, 13:50, see upper part in Figure 4) is characterized by several convective 
cells with large rainfall amounts over southern Germany. As for the first case, the overall picture is captured by 
the reconstructions. For this time step, we see strong differences in the representation of the rainfall structures 
between sRM and KRI. sRM represents the small-scale spatial variability and produces many narrow but peaked 
rainfall objects. KRI, on the other hand, is characterized by much broader objects and less locations with very 
high rainfall amounts. The sharp spatial gradients observable in convective conditions are not captured in KRI. 
Instead, fewer features are present that are connected over relatively large extents.

The difference in structure that can be seen in the maps is also represented by the S parameter which is very high 
for KRI (S = 1.331) and much closer to 0 for eRM (S = −0.257). Again, the large structural error demonstrates 
that rainfall objects are too smooth and widespread in the KRI reconstruction, and confirm that KRI has short-
comings in producing adequate peaks and finer structures.

The amplitude error reveals that KRI represents the overall rainfall amount well. Its A value of −0.058 relates to 
a representation of approx. 94% of reference rainfall. For eRM, we observe underestimation (A = −0.152) which 
translates to approx. 86% of reference rainfall.

As in the aforementioned example, the location error is small for both eRM and KRI. The displacement of the 
total center of mass is toward the south-west for both the shown sRM ensemble member and KRI. The L1 compo-
nent of eRM (0.029) and KRI (0.014) indicate dislocations of the total center of mass of approx. 33 and 16 km, 
respectively.

The last selected time step (August 18, 12:50, see lower part in Figure 4) is characterized by frontal rain that 
covers the northern parts of Germany. In contrast to the other examples, we observe a clearly anisotropic rainfall 
pattern, that is, rainfall objects are elongated in SW-NE direction in the reference. The elongation can also be 
seen in the reconstructions on a large scale. However, on a smaller scale, for example, when focusing on single 
peaks, the elongation is not well represented in the reconstructions. Moreover, some of the rainfall objects of 
rather low amplitudes that are visible in the reference are not present in both sRM and KRI. On the other hand, 
there are several small objects that are present in KRI but not in the reference or sRM. These might be attributed 
to false positive rainfall values of the CMLs that were missed by the filter we applied (see Section 2.1.2). With 
regard to the relation of spatial extent, sRM and KRI reconstructions differ substantially. For KRI, a large area is 
covered by moderate rainfall, while for sRM the spatial extent is smaller but the peaks are higher. Especially in 
the northern and western parts of the domain, KRI produces widespread objects and sRM several smaller ones.

Similar to both cases discussed above, the structure error is smaller for eRM (S = 0.158) than for KRI (S = 0.376). 
The amplitude error is slightly positive and similar for KRI and the eRM. Their values (A = 0.220 for KRI) and 
(A = 0.142 for eRM) represent approx. 125% and 115% of reference rain, respectively. Location errors for the 
eRM and KRI are particularly small.

4.2. SAL Analysis: Overall Statistics

The following presents the SAL results for the whole analyzed period. Figure 5 shows boxplots of the parameter 
distributions for eRM, mRM(20), and KRI over time. Note that the sample sizes of the parameters do not differ 
among the three cases. While S of KRI and mRM(20) is mostly strongly positive (median of 0.583 and 0.530, 
respectively), S of eRM displays smaller values (median of −0.110). This shows the tendency of KRI to produce 
rather widespread, flat objects, while eRM has only a weak tendency for too peaked objects. mRM(20) is similar 
to KRI with regard to the structural error. For the A parameter, there is (by definition) no difference in eRM and 
mRM(20). From median values of −0.159, it follows that 85% of the reference rainfall amount is represented by 
eRM. For KRI, the median A value is −0.035 which corresponds to approx. 97% of the reference rainfall amount. 
Compared to S and A, the location error is relatively small for eRM, mRM(20), and KRI. Moreover, it shows 
a narrow range of values. Median values of 0.042 (eRM), 0.057 (mRM(20)), and 0.059 (KRI) reveal a slight 
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advantage for eRM with regard to representing the location of rainfall. The median L1 parameter of eRM (and 
mRM(20)) is 0.021 which corresponds to a distance in the location of the total center of mass of approx. 24 km. 
For KRI, the median L1 is only slightly higher (0.023).

Figure 5 also presents the internal mutual dependencies of the three SAL parameters. It should be noted that the 
SAL parameters are constructed (e.g., by applying field-dependent rainfall threshold values and scaling of objects 
for the calculation of S) such that they measure distinct features and do not exhibit strong correlation. In fact, 
Figure 5 (right) suggests that the parameters can be considered largely independent from one another.

On the contrary, we find a clear correlation when we consider the overall rainfall amount. Figure 6 shows all 
data points in the time series colored according to the spatial mean rain of the RADOLAN-RW reference. For 
all parameters and particularly for A, we see that time steps with little rain show a larger scatter. Moreover, we 
observe a small positive correlation between A and S in cases with little rainfall. Strong rainfall, on the other hand, 
is associated with smaller SAL errors and smaller scatter. These observations are similar for eRM and KRI. Since 
these parameters are relative measures, they are likely to be more sensitive and more correlated under conditions 
of little total rain.

Figure 5. Distribution of the SAL metrics for the whole analyzed period. Boxplots for eSAL of eRM, SAL of mRM(20), and 
SAL of KRI (left); probability density of SAL value distribution in contour plots (right) of A versus S, L versus S, and L versus 
A. For each of the reconstructions the outer, middle, and inner contour represent a probability density of 0.25%, 0.5%, and 
0.75%, respectively.

Figure 6. Relation of SAL parameters as scatter plots for all available time steps. For KRI (left) and eRM (right), colored 
according to rainfall amount. The time steps are put into three categories: 25% time steps with least, 50% with intermediate, 
and 25% with highest mean rainfall amount of the RADOLAN-RW reference.
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4.3. Analysis by Standard Performance Indices

To put the results from the SAL analysis into perspective, we also analyzed 
the reconstructions using standard performance indices that are based on a 
pixel-by-pixel comparison. A summary of these indices for eRM, mRM(20), 
and KRI is shown in Figure 7. Note that for eRM, we consider the median 
over the ensemble dimension.

The correlation index PCC shows a wide range of positive values in all 
three cases. eRM performs worse than KRI with regard to this metric. The 
median (over time) PCC is 0.651 and 0.762 for eRM and KRI, respectively. 
mRM(20) (median of 0.766), however, shows correlations that are slightly 
higher than KRI correlations. In a similar manner, eRM generally performs 
worse than KRI with regard to RMSE. We see higher errors for eRM (median 
of 0.274 mm) than for mRM(20) and KRI (median of 0.164 and 0.159 mm, 
respectively). RMSE shows a strongly skewed distribution with several outli-
ers that have high errors. The BIAS, which is directly related to the A param-
eter of the SAL analysis, is similar for eRM and mRM(20) (median of −0.151 

and −0.147, respectively). It is also negative but of lower magnitude for KRI (median of −0.034). All the recon-
structions show a tendency for underestimation.

The analysis of standard performance indices displays a contrast to the SAL analysis above, and thereby highlights 
that metrics based on pixel-by-pixel comparison cannot account for all relevant features of a reconstruction. 
Focusing on PCC and RMSE, KRI has an advantage over eRM. The pattern analysis, on the other hand, suggested 
that eRM is capable of reproducing the structure better than KRI. In both regards, mRM(20) is closer to KRI 
than the eRM. That is, the shortcoming of eRM with regard to PCC and RMSE is more than compensated when 
considering mRM(20); however, at the same time, the advantage of eRM with regard to the structure is reduced 
for mRM(20). So far, we only compared single fields with the mean of the whole ensemble, containing 20 single 
fields. In the next section, we will present an analysis that takes into account averages over different ensemble 
sizes.

4.4. Analysis of Ensemble Averages

We showed that eRM has benefits over KRI with respect to pattern representation and shortcomings with respect 
to standard performance indices, and that considering mRM(M) ensemble means can be used to reduce the differ-
ences in both cases. So far, we considered single fields and the mean of the whole ensemble which consists of 20 
members. Now we compare the performance of various aggregation sizes M ∈ [1, 3, 5, 10, 20] (Figure 8), with 
mRM(1) being equivalent to sRM. Apart for the case M = 20, we randomly selected a subset of the ensemble. We 
tested various combinations of random selections which showed that the selection does result only in negligibly 
small variance of the metrics. Note that the number of possible combinations is different and can be very large 
depending on M, such that the calculation of all combinations is not practicable.

We find that standard metrics like PCC and RMSE that indicate a relatively low performance of sRM improve 
significantly once we consider ensemble mean fields even of small sizes. Both PCC and RMSE are very close 
to KRI for mRM(5) and almost equal for mRM(10). As seen above, mRM(20) already performs slightly better 
than KRI. However, we also see that the rate of change levels out for the large ensemble sizes. The structure error 
S, on the contrary, deteriorates with increasing M. While it is −0.130 for a single sRM member, it is 0.325 for 
mRM(5). It further increases for larger M but levels off, too. In all cases, the structure error of mRM is clearly 
below S of KRI. The location error is also the lowest for sRM single fields. It increases slightly for mRM(3) but 
does not change for larger M. Besides, it is almost equal to L of KRI once M > 1. The A parameter and the BIAS 
are generally not influenced by the ensemble size, and slightly worse for sRM and mRM compared to KRI.

These comparisons highlight the potential that comes with the ensemble calculation in RM. Single fields show 
better structure representation but worse standard metrics. However, averaging over the ensemble dimension can 
help to remove the shortcomings of RM with regard to the latter set of metrics. Albeit the structure representation 
of these ensemble averages is worse than that of RM single fields, it is still better than that of KRI. The ensemble 
size considered for averaging can be adjusted to specific use cases, depending on which aspect of the field is of 

Figure 7. Pixel-based performance metrics for the whole analyzed period. For 
eRM, the median of the ensemble is considered.
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most interest. We do not expect large changes in the metrics for ensemble sizes that are greater than the ones we 
consider in this study, since Figure 8 clearly shows the convergence of the metrics with increasing number of 
RM ensemble members. Moreover, the size suffices to achieve PCC and RMSE values for mRM that are similar 
to KRI. Only the overall underestimation of RM cannot be reduced by averaging over the ensemble dimension.

5. Conclusions
We applied the Random Mixing (RM) method for producing countrywide spatial rainfall estimates based on 
CML and rain gauge data and carried out a validation using (e)SAL, a specific set of metrics for structure, 
amplitude, and location of spatial data. We find that RM reconstructions show a reasonable agreement with the 
reference data. Moreover, when comparing RM reconstructions with Ordinary Kriging (KRI) reconstructions, we 
find that the former has advantages in reproducing rainfall patterns, while at the same time, the single RM fields 
showed lower performance than KRI fields when analyzed via standard performance indices.

RM works fundamentally differently than KRI. It does not interpolate observations values in space, but rather 
generates possible rainfall fields that agree with the observations. The generated rainfall fields follow a specific 
spatial dependence structure derived from the observations. This explains the much better performance of RM 
rainfall fields with regard to spatial structures compared to the KRI fields which are always much too smooth. 
Especially for complex patterns this aspect is crucial. We found the greatest advantage of RM over KRI for the 
case of convective conditions, where spatial variability is particularly pronounced. However, the fact that RM 
generates possible rainfall fields can result in large variations further away from the observations which constrain 
the generation process. Hence, single RM rainfall fields can show large deviations from the reference in regions 
without observations, leading to relatively weak performance regarding standard metrics. When considering an 
ensemble of rainfall fields, this variation does, however, reflect the uncertainty of the rainfall field reconstruction.

The possibility of RM to generate an ensemble of possible rainfall fields that fit to the point observations of the 
rain gauges and the path-averages from CMLs is a major advantage. Considering ensemble averages, we are 
able to reduce the variability that is present in the single ensemble members. Such averages are similar to a KRI 
reconstruction with regard to most performance metrics. They show a slightly worse pattern representation, but 
enhanced pixel-based metrics, compared to single ensemble members. Thus, RM allows the consideration of a 
spectrum of solutions, from single ensemble members to ensemble averages of various sizes, depending on the 
application.

Figure 8. Various performance metrics for ensemble mean fields of different ensemble sizes. Solid lines represent mRM and 
dotted lines KRI. The latter is represented by a single value and not dependent on the ensemble dimension.
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A disadvantage of RM observed in this study is its stronger (compared to KRI) tendency for underestimation. 
This, in contrast to the other analyzed properties of the fields, cannot be influenced by the consideration of 
ensemble aggregates. However, the underestimation might be minimized by adjustments in the RM algorithm. 
The estimation of the marginal distribution can probably be optimized and calibrated to reduce this bias. We 
further observed shortcomings in representing the anisotropy of rainfall objects that might be accounted for in 
future versions of RM. In spite of these limitations, we could show that RM has the potential to produce valuable 
estimates that can outperform standard methods depending on the use case.

For certain hydrological models, it might be useful to consider single RM ensemble members that give a true 
representation of spatial gradients. This allows the assessment of expected spatial extents relative to the total rain-
fall amount of a rainfall object. That is, RM can reduce overestimation of spatial extents as well as underestima-
tion of peaks. One can further use different ensemble members as model input for the estimation of uncertainties, 
or consider ensemble averages which are less variable and more conservative.

This shows that with RM, we have a suitable method for precipitation estimation. It is capable of dealing with a 
combination of different and extensive observational data appropriately, produces fields with high-quality pattern 
representation, and allows for different perspectives via the consideration of ensemble aggregates.

Acronyms
RM Random Mixing, the method generally
eRM The full ensemble reconstructed using the Random Mixing method
sRM A single ensemble member of the Random Mixing reconstruction
mRM(M) The ensemble mean over M ensemble members of the Random Mixing reconstruction
OK Ordinary Kriging, the method generally
KRI The reconstruction by Ordinary Kriging
(e)SAL (Ensemble) Structure, Amplitude, Location Error, also used independently as S, A, and L, or eS, 

eA, and eL
L1 One of two components of the Location Error L
PCC Pearson correlation coefficient based on comparing reconstructions pixel-by-pixel
RMSE Root mean square error based on comparing reconstructions pixel-by-pixel
BIAS Relative bias based on comparing reconstructions pixel-by-pixel

Data Availability Statement
CML data were provided by Ericsson Germany and are not publicly available for reasons of their commercial 
interest. An individual agreement with the network provider needs to be established to obtain the CML data 
for research purposes. Rain rate retrieval was conducted using pycomlink (Chwala et al., 2021) under BSD-3-
Clause License, https://doi.org/10.5281/zenodo.4810169. The pycomlink repository contains an exemplary CML 
data set that may be used to follow the methodology of this study. Rain gauge data and RADOLAN-RW data 
(Bartels et  al.,  2004) are available from the Climate Data Center of the German Weather Service at (https://
opendata.dwd.de/climate_environment/CDC). The well-known-text definition of the RADOLAN projection 
can be found at: (https://maps.dwd.de/geoserver/web/wicket/bookmarkable/org.geoserver.web.demo.SRSDe-
scriptionPage?10&code=EPSG:1000001). PyKrige which was used for the Kriging reconstructions is available 
under GNU General Public License (Murphy et al., 2021), https://doi.org/10.5281/zenodo.5380342. RMWSPy is 
available under GNU General Public License (Hörning, 2022), https://doi.org/10.5281/zenodo.7048941. Adap-
tions to RMWSPy applied in this study are available here: Hörning and Blettner (2022), https://doi.org/10.5281/
zenodo.7049826. The functionality to calculate eSAL parameters in Python are available at Blettner (2022) under 
MIT License, https://doi.org/10.5281/zenodo.7049846.
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