

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Scannell, Aidan J

Title:
Bayesian learning for control in multimodal dynamical systems

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Bayesian Learning for Control in

Multimodal Dynamical Systems

By Aidan J. Scannell

Department of Aerospace Engineering

University of Bristol

&

Department of Engineering Design and Mathematics

University of the West of England

A dissertation submitted to the University of Bristol and

the University of the West of England in accordance with

the requirements of the degree of Doctor of Philosophy

in the Faculty of Engineering.

Supervisors: Professor Arthur Richards

Dr Carl Henrik Ek

May 2022

Word count: 56,976

Abstract

Over the last decade, learning-based control has become a popular paradigm for con-
trolling dynamical systems. Although recent algorithms can find high-performance
controllers, they typically only consider unimodal systems and cannot correctly iden-
tify multimodal dynamical systems. The main goal of this thesis is to control un-
known, multimodal dynamical systems, to a target state, whilst avoiding inoperable

or undesirable dynamics modes. Further to this, deploying learning algorithms in the
real world requires handling the uncertainties inherent to the system, as well as the
uncertainties arising from learning from observations. To this end, we consider the
Model-Based Reinforcement Learning (MBRL) setting, where an explicit dynamics
model – that includes uncertainties – is used to plan trajectories to a target state.

Motivated by synergising model learning and control, we introduce a Mixtures of
Gaussian Process Experts (MoGPE) method for learning dynamics models, which
infers latent structure regarding how systems switch between their underlying dy-
namics modes. We then present three trajectory optimisation algorithms which,
given this learned dynamics model, find trajectories to a target state with mode

remaining guarantees. Initially, the agent’s dynamics model will be highly uncertain

— due to a lack of training observations — so these algorithms cannot guarantee
mode remaining navigation with high confidence. When this is the case, the agent
actively explores its environment, collects data and updates its dynamics model.
We introduce an explorative trajectory optimisation algorithm that explicitly rea-
sons about the uncertainties in the dynamics model. As a result, it can explore the
environment whilst guaranteeing that the agent remains in the desired dynamics
mode with high probability. Finally, we consolidate the work in this thesis into
a MBRL algorithm, which solves the mode remaining navigation problem, whilst
guaranteeing that the controlled system remains in the desired dynamics mode with
a high probability.

- i -

Covid-19 Statement

To mitigate risk due to Covid-19 lab closures, many of the methods in this thesis are
validated in simulated experiments and not in real-world experiments. A real-world
state transition data set was collected by flying a quadcopter around the Bristol
Robotics Laboratory (BRL) with constant controls. This data set was used to test
the MoSVGPE method in Section 3.5.3 and to test the collocation solver presented
in Section 4.2.2. These results are a step towards validating that the methods
presented in this thesis work on real-world systems. However, this constant controls
data set could not be used to learn a dynamics model for the control methods in
Sections 4.2.3 and 4.3 (due to the lack of controls). Therefore, to mitigate the risk
associated with Covid-19 lab closures, we decided not to collect a new real-world
data set that could be used to train the dynamics model. Instead, we developed a
simulator and used it to generate a data set. This had the added benefit that the
simulator could be used to test the trajectory optimisation algorithms presented in
Sections 4.2.3 and 4.3 and Chapter 6.

- iii -

Declaration

I declare that the work in this thesis was carried out in accordance with
the requirements of the University’s Regulations and Code of Practice
for Research Degree Programmes and that it has not been submitted for
any other academic award. Except where indicated by specific reference
in the text, the work is the candidate’s own work. Work done in collab-
oration with, or with the assistance of, others, is indicated as such. Any
views expressed in the thesis are those of the author.

SIGNED: .. DATE: 12th May 2022

- v -

Acknowledgements

I am deeply grateful to my two supervisors, Arthur Richards and Carl Henrik Ek.
I have learned so much under your supervision and am incredibly grateful for your
continued support. Your expertise and willingness to explore new ideas have made
my PhD journey enjoyable. Arthur, I have especially enjoyed the many connections
you’ve made between concepts from machine learning and control theory. You have
shown me how to think deeply about why things work well and how to build rich
intuitions for seemingly complex problems. Carl, I want to thank you for the count-
less hours you spent teaching me machine learning theory. You are a talented and
inspiring teacher, and I wholeheartedly appreciate your advice and enthusiasm over
the years. Further to this, your ability to simplify novel ideas and relate them to
existing literature has helped my expand my knowledge base and grow as an aca-
demic. It’s an impressive skill and is something that I aspire to. I could not have
asked for better supervisors. You have both inspired me.

I want to thank my friends and colleagues in Bristol for their support and for making
my time in Bristol so much fun! I also want to thank my family: mum, dad, Ciaran
and Mhairi, for being amazing; none of this would have been possible without your
support. I love you all very much.

I have thoroughly enjoyed writing this thesis in Org Mode. I would like to thank
everyone that helped me get started with Emacs, and I would especially like to thank
all of the contributors to GNU Emacs and Org Mode.

Finally, I would like to thank the Reddit users that supported me through my
journey with RSI. It seems like a lifetime ago since I was considering giving up my
PhD along with any hopes of a career involving programming. Your support gave
me the confidence that I needed to overcome my RSI. I am eternally grateful.

This work was supported by the EPSRC Centre for Doctoral Training in Future
Autonomous and Robotic Systems (FARSCOPE) at the Bristol Robotics Laboratory
(BRL).

- vii -

Contents

Abstract i

Covid-19 Statement iii

Declaration v

Acknowledgements vii

1 Introduction 1

1.1 Illustrative Example . 3

1.2 Contributions . 5

1.3 Associated Publications . 6

2 Background and Related Work 7

2.1 Problem Statement . 7

2.2 Optimal Control . 10

2.2.1 Dynamic Programming . 11

2.2.2 Reinforcement Learning . 11

2.2.3 Model-based Control and Planning 13

2.2.4 Constrained Control . 15

2.3 Learning Dynamical Systems for Control 18

2.3.1 Sources of Uncertainty . 18

2.3.2 Learning Single-Step Dynamics Models 19

2.3.3 Gaussian Processes . 21

2.3.4 Learning Multimodal Dynamical Systems 24

- ix -

Contents

2.4 Uncertainty-based Exploration Strategies 27

3 Probabilistic Inference for Learning Multimodal Dynamical

Systems 31

3.1 Problem Statement . 32

3.2 Preliminaries . 33

3.3 Identifiable Mixtures of Gaussian Process Experts 37

3.4 Approximate Inference . 40

3.4.1 Evidence Lower Bounds . 44

3.4.2 Optimisation . 47

3.4.3 Predictions . 49

3.5 Evaluation of Model and Approximate Inference 51

3.5.1 Experiments . 52

3.5.2 Evaluation on Motorcycle Data Set 52

3.5.3 Evaluation on Velocity Controlled Quadcopter 64

3.6 Discussion and Future Work . 70

3.7 Conclusion . 72

4 Mode Remaining Trajectory Optimisation 75

4.1 Problem Statement . 76

4.2 Mode Remaining Control via Latent Geometry 78

4.2.1 Concepts from Riemannian Geometry 79

4.2.2 Indirect Optimal Control via Latent Geodesics (IG) 86

4.2.3 Direct Optimal Control via Riemannian Energy (DRE) . . . 90

4.3 Mode Remaining Control as Probabilistic Inference 96

4.3.1 Background and Related Work 96

4.3.2 Mode Remaining Control as Inference 100

4.4 Conclusion . 105

- x -

Contents

5 Quadcopter Experiments - Mode Remaining Trajectory Opti-

misation 107

5.1 Real-World Quadcopter Experiments 108

5.1.1 Model Learning . 109

5.1.2 Trajectory Optimisation using Indirect Optimal Control via

Latent Geodesics . 110

5.2 Simulated Quadcopter Experiments 112

5.2.1 Simulator Setup . 112

5.2.2 Model Learning . 114

5.2.3 Performance Indicators . 114

5.2.4 Results . 119

5.3 Conclusion . 132

5.3.1 Discussion & Future Work . 134

5.3.2 Summary . 138

6 Mode Remaining Exploration for Model-Based Reinforcement

Learning 139

6.1 Problem Statement . 140

6.2 Mode Optimisation . 143

6.2.1 Mode Remaining Exploration 144

6.2.2 Mode Remaining Model-based Reinforcement Learning . . . 147

6.3 Preliminary Results . 149

6.3.1 Experiment Configuration . 149

6.3.2 Comparison of Exploration Terms 150

6.3.3 Exploration in Environment 1 153

6.4 Discussion & Future Work . 160

6.5 Conclusion . 166

7 Conclusion 169

7.1 Future Work . 171

- xi -

Contents

Bibliography 173

- xii -

List of Tables

3.1 MoSVGPE results on motorcycle data set 53

3.2 Initial parameter settings before training on motorcycle data set with

two experts. 55

3.3 Initial parameter settings before training on motorcycle data set with

three experts. 61

3.4 Initial parameter settings before training on the real-world velocity

controlled quadcopter data set. 65

5.1 Comparison of Indirect Optimal Control via Latent Geodesics (IG)

experiments on real-world quadcopter 111

5.2 Trajectory optimisation results in simulated environments 118

5.3 Comparison of mode remaining trajectory optimisation algorithms . 134

- xiii -

List of Figures

1.1 Quadcopter navigation problem . 4

2.1 Markov Decision Process (MDP) . 10

2.2 Motivation for multimodal dynamical models 25

3.1 Graphical models of nonparametric mixtures of experts 35

3.2 Graphical model of MoSVGPE’s augmented probability space 41

3.3 MoSVGPE’s predictive posterior with K = 2 after training on mo-

torcycle data set with Lfurther and Lfurther2 56

3.4 MoSVGPE’s latent variables’ posteriors with K = 2 after training on

motorcycle data set with Lfurther and Lfurther2 58

3.5 MoSVGPE’s predictive posterior with K = 3 after training on mo-

torcycle data set with Lfurther and Lfurther2 59

3.6 MoSVGPE’s latent variables’ posteriors with K = 3 after training on

motorcycle data set with Lfurther and Lfurther2 62

3.7 Diagram of the real-world quadcotper environment and the state tran-

sition data set . 64

3.8 MoSVGPE’s moment matched predictive posterior with K = 2 after

training on the real-world quadcopter data set with Lfurther 66

3.9 MoSVGPE’s gating network posterior with K = 2 after training on

the real-world quadcopter data set with Lfurther 67

3.10 MoSVGPE’s experts’ posteriors with K = 2 after training on the

real-world quadcopter data set with Lfurther 68

- xv -

List of Figures

4.1 MoSVGPE’s gating network posterior after training on simulated

quadcopoter data set . 80

4.2 Graphical models of control formulated as inference 98

4.3 MoSVGPE’s mixing probabilities after training on simulated quad-

copter data set from Environment 1 100

4.4 Graphical model of control as inference in multimodal dynamical sys-

tems . 101

5.1 Diagrams illustrating two quadcopter navigation problems 108

5.2 Indirect Optimal Control via Latent Geodesics (IG) trajectory op-

timisation results in real-world quadcopter experiments over gating

network posterior . 109

5.3 Indirect Optimal Control via Latent Geodesics (IG) trajectory opti-

misation results in real-world quadcopter experiments - performance

vs time . 111

5.4 Diagram of two simulated environments 113

5.5 Environment 1 gating network posterior 115

5.6 Environment 2 gating network posterior 116

5.7 Indirect Optimal Control via Latent Geodesics (IG) trajectory opti-

misation results in simulated environments 121

5.8 Trajectory optimisation results over desired mode’s mixing probability 123

5.9 Trajectory optimisation results over the gating function’s posterior

mean . 124

5.10 Trajectory optimisation results over the gating function’s posterior

variance . 129

6.1 Gating network posterior at initial iteration of ModeOpt 142

6.2 Flowchart showing the sequence of steps of ModeOpt 144

6.3 Exploration results with only state di↵erence term 151

6.4 Comparison of factorised/joint entropy objectives 152

- xvi -

List of Figures

6.5 ModeOpt iterations i = 0,2,3,4 over mode probability 154

6.6 ModeOpt iterations i = 0,2,3,4 over gating function variance 155

6.7 ModeOpt iterations i = 6,8,12,14 over mode probability 158

6.8 ModeOpt iterations i = 6,8,12,14 over gating function variance . . 159

6.9 Comparison of information-based objectives at ModeOpt iterations

i = 2,4,5,7 . 163

- xvii -

Acronyms

ARD Automatic Relevance Determination. 23, 53, 110, 149

BALD Bayesian Active Learning by Disagreement. 163, 164

BRL Bristol Robotics Laboratory. iii, vii, 64

CaI Control as Inference. 76, 96, 100, 170

DRE Direct Optimal Control via Riemannian Energy. x, 79, 90, 106–108, 118, 119,

122–126, 128–136, 138, 170

ELBO Evidence Lower Bound. 40, 41, 44, 53, 63, 73, 89, 103–105, 120, 122, 135,

136, 138, 147

FARSCOPE Future Autonomous and Robotic Systems. vii

FITC Fully Independent Training Conditional. 43

GP Gaussian Process. 5, 15, 17, 20, 22, 24–26, 28, 29, 31, 32, 35–45, 47, 51, 53, 54,

57, 58, 60, 62, 67, 68, 70–72, 77, 78, 80, 82–85, 90, 92, 93, 100, 102, 104, 109,

110, 114–116, 118, 119, 121–124, 127, 129, 131, 134, 137, 143, 145, 146, 149,

151, 152, 154, 155, 158, 159, 162, 165, 166, 170, 171

GPs Gaussian Processes. 15, 20–22, 24, 26, 28, 33, 34, 39, 42, 46, 53, 56, 59, 68,

72, 73, 131, 136, 137, 147, 162, 165

GPSSM Gaussian Process State Space Model. 30

- xix -

Acronyms

IG Indirect Optimal Control via Latent Geodesics. x, xiii, xvi, 76, 78, 86, 106–109,

111, 118–121, 123–125, 128, 129, 132, 134–136, 138

iLQG iterative Linear Quadratic Gaussian. 100, 137

iLQR iterative Linear Quadratic Regulator. 15, 100

LQR Linear Quadratic Regulator. 15

MAE Mean Absolute Error. 52–54

MBRL Model-Based Reinforcement Learning. i, 12–14, 20, 26–28, 72, 137, 140,

147, 161, 170, 171

MDP Markov Decision Process. xv, 8, 10, 11

MFRL Model-Free Reinforcement Learning. 13, 172

ModeOpt Mode Optimisation. xvi, xvii, 140, 143, 144, 147–150, 152–167, 169–171

MoE Mixture of Experts. 34, 35, 51

MoGPE Mixtures of Gaussian Process Experts. i, 5, 26, 31, 33–35, 37, 51, 52, 68,

70–72, 96, 105, 137, 162, 164

MoSVGPE Mixtures of Sparse Variational Gaussian Process Experts. iii, xiii, xv,

xvi, 31, 53–57, 59, 63, 75, 77, 79, 80, 92–94, 96, 100, 105, 108, 109, 115, 116,

137, 138, 143, 147–149, 157, 164, 165, 169

MPC Model Predictive Control. 13, 15, 17, 18, 20, 28, 137, 162, 172

MRCaI Mode Remaining Control as Inference. 96, 105–108, 118, 119, 122–124,

126, 127, 129–138, 170

NLPP Negative Log Predictive Probability. 52–54, 60, 71

ODE Ordinary Di↵erential Equation. 78, 86–88, 90, 112

PETS Probabilistic Ensembles with Trajectory Sampling. 28

PID Proportional Integral Derivative. 64, 65, 69

PILCO Probabilistic Inference for Learning COntrol. 28

- xx -

Acronyms

PIPPS Probabilistic Inference for Particle-based Policy Search. 28

RL Reinforcement Learning. 1, 7, 8, 11–13, 18–20, 27, 30

RMSE Root Mean Squared Error. 52–54

SDE Stochastic Di↵erential Equation. 90

SLSQP Sequential Least Squares Programming. 88, 95

SOC Stochastic Optimal Control. 7, 90, 98, 99

SVGP Sparse Variational Gaussian Process. 53–57, 59, 63, 89

SVI Stochastic Variational Inference. 40, 43

VAE Variational Auto-Encoder. 26

- xxi -

1 Introduction

The modern world is pervaded with dynamical systems that we seek to control

to achieve a desired behaviour. Examples include autonomous vehicles, aircraft,

robotic manipulators, financial markets and energy management systems. In the

last decade, Reinforcement Learning (RL), and learning-based control in general,

have become popular paradigms for controlling dynamical systems (Hewing et al.,

2020b; Sutton and Barto, 2018). This can be accounted to significant improvements

in sensing and computational capabilities, as well as recent successes in machine

learning.

This growing interest in learning-based control has emphasised the importance of

real-world considerations. Real-world systems are often highly nonlinear, exhibit

stochasticity and multimodalities, are expensive to run (energy-intensive, subject to

wear and tear) and must be controlled subject to constraints (for safety, e�ciency,

and so on). In contrast to simulation, the control of physical systems also has real-

world consequences: components may get damaged, the system may damage its

environment, or the system may catastrophically fail. As such, any learning-based

control strategy deployed in the real world should handle both the uncertainty in-

herent to the environment and the uncertainty introduced by learning from obser-

vations.

Many dynamical systems exhibit multimodalities, where some of the dynamics modes

are believed to be inoperable or undesirable. These multimodalities may be due

to spatially varying model parameters, for example, process noise terms modelling

aircraft turbulence, or friction coe�cients modelling surface-tyre interactions for

- 1 -

1 Introduction

ground vehicles over di↵erent terrain. In these systems, it is desirable to avoid

entering specific dynamics modes that are believed to be inoperable. Perhaps they are

hard to control due to stability, or the mode switch is hard to control. Alternatively,

they may be ine�cient or low performing. Given these motivations, this thesis

focuses on controlling dynamical systems from an initial state, to a target state,

whilst avoiding specific dynamics modes.

Model-based control comprises a powerful set of techniques for finding controls of

constrained dynamical systems, given a dynamics model describing the evolution of

the controlled system. It is commonly used for controlling aircraft, robotic manipu-

lators, and walking robots (Betts, 1998; Garg et al., 2010; Von Stryk and Bulirsch,

1992). One caveat is that it requires a relatively accurate mathematical model of

the system. Traditionally, these mathematical models are built using first principles

based on physics. However, accurately modelling the underlying transition dynamics

can be challenging and lead to the introduction of model errors. These model errors

may be due to incorrectly specifying model parameters or the models themselves.

For example, modelling a nonlinear system to be linear or a multimodal system to

be unimodal. Incorrectly specifying these model parameters and their associated

uncertainty can have a detrimental impact on controller performance. Handling

these issues is a central goal of robust and stochastic optimal control (Freeman and

Kokotovic, 1996; Stengel, 1986).

The di�culties associated with constructing mathematical representations of dynam-

ical systems can be overcome by learning from observations (Ljung, 1999). Learning

dynamics models has the added benefit that it alleviates the dependence on domain

experts for specifying accurate models, making it easier to deploy more general tech-

niques. However, learning dynamics models for control introduces other di�culties.

For example, it is important to know where the model cannot predict confidently

due to a lack of training observations. This concept is known as epistemic uncer-

tainty and is reduced in the limit of infinite data. Correctly quantifying uncertainty

is crucial for intelligent decision-making.

- 2 -

1.1 Illustrative Example

Epistemic uncertainty is the uncertainty attributed to incomplete knowledge

about a phenomenon that limits our ability to model it. It represents knowledge

about a phenomenon that we could know but we do not know a priori. It is

reduced through the accumulation of additional information.

In a risk-averse setting, control strategies should avoid entering regions of a

learned dynamics model with high epistemic uncertainty. This is because it is im-

possible to guarantee constraint satisfaction in a learned model, i.e. if the trajectory

will avoid the undesired dynamics mode. Conversely, in an explorative setting, if

the epistemic uncertainty has been quantified, it can be used to guide exploration

into regions of the dynamics that have not previously been observed. This experience

can then be used to update the model, in turn reducing its epistemic uncertainty.

These two settings are the main focus of this thesis. If the dynamics are not fully

known a priori, an agent will not be able to plan a risk-averse trajectory to the target

state confidently. How can the agent explore its environment, in turn reducing the

epistemic uncertainty associated with its dynamics model? As this thesis assumes

that complete knowledge of the dynamics are not fully known a priori, a main

interest is jointly inferring the underlying dynamics modes, as well as how the system

switches between them, through repeated interactions with the system. Once the

agent has explored enough, how can this learned dynamics model be exploited to

plan risk-averse trajectories that remain in the desired dynamics mode?

1.1 Illustrative Example

The methods developed throughout this thesis are motivated by a 2D quadcopter

navigation example. See Figure 1.1 for a schematic of the environment and details

of the problem. The goal is to fly the quadcopter from an initial state x0, to a

target state xf . However, it considers a quadcopter operating in an environment

subject to spatially varying wind – induced by a fan – where two dynamics modes

can represent the system,

- 3 -

1 Introduction

Figure 1.1: Quadcopter navigation problem Diagram showing a top-down view of an

environment, representing a quadcopter subject to two dynamics modes: 1) an operable

dynamics mode away from the fan (blue) and 2) an inoperable, turbulent dynamics mode in

front of the fan (green). The goal is to find trajectories from a start state x0, to the target

state xf (red star), whilst avoiding the turbulent dynamics mode.

Mode 1 is an operable dynamics mode away from the fan,

Mode 2 is an inoperable, turbulent dynamics mode in front of the fan.

The turbulent dynamics mode is subject to higher drift (in the negative x direction)

and to higher di↵usion (process noise). It is hard to know the exact turbulent

dynamics due to complex and uncertain interactions between the quadcopter and

the wind field. Further to this, controlling the system in the turbulent dynamics

mode may be infeasible. This is because the unpredictability of the turbulence may

cause catastrophic failure. Therefore, when flying the quadcopter from an initial

state x0, to a target state xf , it is desirable to find trajectories that avoid entering

this turbulent dynamics mode. The state-space of the velocity controlled quadcopter

example consists of the 2D Cartesian coordinates x = (x, y) and the controls consist

of the speed in each direction, given by u = (vx, vy).

- 4 -

1.2 Contributions

1.2 Contributions

This thesis explores methods for mode remaining control in multimodal dynamical

systems that explicitly reason about the uncertainties arising during learning and

control. The primary contributions of this thesis are as follows:

• Chapter 3: is concerned with learning representations of multimodal dynami-

cal systems, where both the underlying dynamics modes and how the system

switches between them, are not fully known a priori. Motivated by learning dy-

namics models for model-based control, it formulates a probabilistic model rich

with latent spaces for control. It then derives a variational inference scheme

that principally handles uncertainty whilst providing scalability via stochastic

gradient methods. The method is a Mixtures of Gaussian Process Experts

(MoGPE) method with a Gaussian Process (GP)-based gating network.

• Chapter 4: investigates model-based control techniques that leverage the prob-

abilistic model from Chapter 3 to solve the mode remaining navigation prob-

lem. Due to the complexity of the problem, this chapter assumes prior access

to the environment, such that a data set of state transitions D has previously

been collected and used to train the model. It presents three trajectory optimi-

sation algorithms that leverage the learned dynamics model’s latent structure

to solve the mode remaining navigation problem.

• Chapter 6: then considers the more realistic scenario of not having prior ac-

cess to the environment. In this scenario, the agent does not have access to

a historical data set for model learning. Instead, it must actively explore its

environment, collect data and use it to update its dynamics model, whilst si-

multaneously attempting to remain in the desired dynamics mode. It presents

an exploration strategy for exploring multimodal dynamical systems whilst re-

maining in a desired dynamics mode with high probability. It then details how

this exploration strategy can be combined with the methods from Chapters 3

and 4 to solve the mode remaining navigation problem.

- 5 -

1 Introduction

1.3 Associated Publications

The first trajectory optimisation algorithm presented in Section 4.2.2 and an initial

version of the approach for learning multimodal dynamical systems in Chapter 3,

are published in:

Aidan Scannell et al. (2021). “Trajectory Optimisation in Learned Multimodal

Dynamical Systems Via Latent-ODE Collocation”. In: Proceedings of the IEEE

International Conference on Robotics and Automation. IEEE

- 6 -

2 Background and Related Work

The primary goal of this thesis is to control stochastic, multimodal, nonlinear dy-

namical systems to a target state, whilst remaining in the desired dynamics mode.

This is a Stochastic Optimal Control (SOC) problem which can be summarised as

follows:

For a given multimodal dynamical system with control inputs, determine

a controller that can navigate to a target state, whilst remaining in a

desired dynamics mode.

This chapter formally defines this mode remaining navigation problem and reviews

the relevant literature.

2.1 Problem Statement

Dynamical systems describe the behaviour of a system over time t and are a key

component of both control theory and RL. At any given time t, a dynamical system

has a state, represented as a vector of real numbers xt 2 X ✓ RDx . The system can

be controlled by applying control actions ut 2 U ✓ RDu at any given time. This

thesis considers stochastic, multimodal, nonlinear dynamical systems, given by,

xt+1 = f(xt,ut) + ✏ (2.1a)

= fk(xt,ut) + ✏k if ↵(xt) = k

✏k ⇠ N (0, ⌃✏k), (2.1b)

- 7 -

2 Background and Related Work

where the discrete mode indicator function ↵ : X ! A indicates which of the K

underlying dynamics modes {fk : Xk ⇥ U ! X}K
k=1, and associated noise models

✏k ⇠ N (0,⌃✏k), governs the system at a given time step t. The output of the

mode indicator function is referred to as the mode indicator variable and is given

by ↵t = ↵(xt) 2 A = {1, . . . , K} = Z \ [1, K].

This thesis assumes that the state x is observed directly and is not subject to obser-

vation noise. This is a standard assumption in the Markov Decision Process (MDP)

framework, which is commonly adopted in the RL literature. In this case, the ✏k

term solely represents the process noise, which accounts for unwanted and, in gen-

eral, unknown system disturbances. For example, it is hard to model aerodynamic

e↵ects on aircraft, so these could be accounted for in the process noise term.

Optimal control Optimal control is a branch of mathematical optimisation that

seeks to find a controller ⇡ that optimises an objective function J⇡(x). The objective

function might be formulated to solve a particular task or to make the dynamical

system behave in a certain way. Typically the goal is to minimise a cost function

c : X ⇥ U ! R. This thesis considers the finite horizon problem, given by,

J⇡(x) = E
"

TX

t=0

c(xt, ⇡(xt, t)) | x0 = x

#
(2.2)

where T is known as the horizon. The objective J⇡(x) quantifies the cost of deploying

the controller ⇡ from an initial state x. The cost function typically consists of a

terminal cost and a term which is integrated over the horizon (integral cost). In a

navigation task, the terminal cost may consist of the distance to the target, whilst

the integral cost may encode the notion of minimum e↵ort control, e.g. energy

consumption (Kirk, 2004).

Controller space The controller space ⇧ defines the set of controllers over which

optimisation is performed. Controllers can have state feedback such that they are

given by ut = ⇡(xt). These are closed-loop controllers and in the RL literature are

referred to as policies. Alternatively, controllers can depend on time ut = ⇡(t), in

- 8 -

2.1 Problem Statement

which case they are open-loop controllers. This thesis considers the general case,

given by ut = ⇡(xt, t), which encompasses both open-loop and closed-loop con-

trollers.

Mode remaining This thesis considers systems where the underlying dynamics

modes are defined by disjoint state domains, i.e. Xk = {x 2 X | ↵(x) = k}, with

Xi\Xj = ; for distinct i, j 2 {1, . . . K}. Notice that each mode’s dynamics can leave

their state space Xk and enter another mode. Ideally, this work seeks to enforce the

controlled system to remain in a given mode. Formally, a mode remaining controlled

system is defined as follows.

Definition 2.1.1 (Mode Remaining). Let k denote a dynamics mode, defined by its

state domain Xk ✓ X . Given an initial state x0 2 Xk, and a controller ⇡ 2 ⇧, the

controlled system is said to be mode-remaining i↵:

f(xt, ⇡(xt, t)) 2 Xk 8t (2.3)

Mode remaining navigation problem Given this definition of a mode re-

maining controlled system, this thesis seeks to solve,

min
⇡2⇧

E
"

TX

t=0

c(xt, ⇡(xt, t)) | x0 = x0

#
(2.4a)

s.t. xt+1 = fk(xt, ⇡(xt, t)) + ✏k, ↵(xt) = k 8t 2 {0, . . . , T � 1} (2.4b)

f(xt, ⇡(xt, t)) 2 Xk⇤ 8t 2 {0, . . . , T � 1} (2.4c)

x0 = x0 (2.4d)

xT = xf , (2.4e)

where xf denotes the target state and k
⇤ denotes the desired dynamics mode.

Note that the objective function in Equation (2.2) is not of primary interest in this

work. The novelty of this work arises from remaining in the desired dynamics mode

k
⇤.

- 9 -

2 Background and Related Work

Controller / Agent
⇡(xt, t)

Control / Action utCost / negative reward c(xt,ut)
Next state xt+1

System / Environment
f(xt,ut)

Figure 2.1: Markov Decision Process (MDP) Illustration of an MDP through the lens

of optimal control. The controller (agent) uses all past knowledge, absorbed into the previous

state xt (Markov property), to decide which control (action) ut to execute. It then observes

the next state xt+1 and the cost (negative reward) associated with the state transition. The

cost function is assumed to be known. The agent’s goal is to minimise the cumulative cost

(maximise the cumulative reward).

2.2 Optimal Control

The discrete-time optimal control problem considered in this thesis can be modelled

as a Markov Decision Process (MDP), as seen in Figure 2.1. The MDP framework

refers to the controller ⇡ as the agent, the control u as the action, and the dynamical

system f as the environment. Further to this, the goal is to maximise the cumulative

reward instead of minimising the cumulative cost. However, slight manipulation of

the objective enables cost and reward functions to be interchanged. The key idea

in MDPs is that all past information is represented by the current state xt, which

is known as the Markov property. In this thesis, most work is formulated through

the lens of optimal control. However, the controller is sometimes referred to as the

agent and the system is often referred to as the environment.

In general, solutions to optimal control problems can be characterised by two di↵er-

ent approaches, Pontryagin’s Minimum Principe (Pontryagin, 1987) (based on the

calculus of variations) and Bellman’s Minimum Principle (Bellman, 1956). Although

Pontryagin’s Minimum Principle o↵ers computational benefits over Bellman’s princi-

ple, it does not readily generalise to the stochastic case. For this reason, we restrict

- 10 -

2.2 Optimal Control

our discussion to Bellman’s principle and the solution arising from it, known as

dynamic programming.

2.2.1 Dynamic Programming

Dynamic programming (Bellman, 1956) encompasses a large class of algorithms that

can be used to find optimal controllers given a model of the environment as an MDP.

However, classical dynamic programming algorithms are of limited use as they rely

on accurate dynamics models and have a significant computational expense. Never-

theless, they are still important theoretically. The main idea of dynamic program-

ming (and RL in general) is to structure the search for good controllers using value

functions V . Optimal controllers can easily be found from optimal value functions

V⇤, which satisfy the Bellman optimality equations,

V⇤(x) = min
u

E

2

64c(xt, ⇡(xt, t))| {z }
first step

+ V⇤(f(xt, ⇡(xt, t)))| {z }
future

| x0 = x

3

75. (2.5)

In the finite horizon setting, directly solving the Bellman equations backwards in

time is referred to as dynamic programming.

Approximate dynamic programming encompasses a large class of methods that,

given a controller ⇡, approximate the value function V⇡(x) for each state x with

a parameterised function. The approximate value function can then be used for

policy improvement, where a controller with superior performance is computed. In

general, approximate dynamic programming is a large collection of algorithms that

encompasses methods from RL as well. However, these methods are out of the scope

of this thesis.

2.2.2 Reinforcement Learning

There are multiple approaches to finding controllers ⇡ that minimise the expected

cost in Equation (2.2) subject to the stochastic dynamics in Equation (2.1). How-

- 11 -

2 Background and Related Work

Algorithm 1 Model-Based Reinforcement Learning (MBRL)

Require: Policy/controller ⇡0, dynamics model p✓, start state x0

1: for i = 0, 1, . . . do
2: Select ⇡i using exploration strategy, e.g. Equation (2.28)
3: Collect environment data set Di using ⇡i; add to dataset D0:i = {Di[D0:i�1}
4: Update dynamics model p✓ using D0:i.
5: end for

ever, a central assumption of many methods is that both the system dynamics and

cost function are known a priori. In contrast, we consider problems where the under-

lying dynamics modes {fk}K
k=1 and how the system switches between them ↵, are not

fully known a priori. Further to this, the problem statement in Equation (2.4) con-

tains a mode remaining constraint, which requires explicit knowledge of the desired

dynamics mode and its state domain.

To apply control and planning techniques in systems with unknown dynamics, sys-

tem identification emerged as a set of techniques for computing unknown parameters,

e.g. mass of a component (Ljung, 1999). This is a two-staged approach which first

learns about the environment and then uses this learned model to find the optimal

controller. However, this approach learns about the environment globally and often

incurs high costs during system identification.

Reinforcement Learning (RL) provides the most general framework for extending

optimal control to problems with incomplete knowledge of the system dynamics. The

classic text by Sutton and Barto, 2018 gives a general introduction to RL. The main

goal is to learn good behaviours from interactions with an environment. Typically

this is in the form of a state feedback controller, known as a policy, which makes

an agent’s interaction with the environment closed-loop. In contrast to the system

identification approach, the goal of RL is to minimise costs (maximise rewards)

during the learning process. Further to this, RL only needs to learn about the

states relevant to solving the optimal control problem.

- 12 -

2.2 Optimal Control

Model-based Reinforcement Learning

This thesis is interested in a subset of RL known as Model-Based Reinforcement

Learning (MBRL). It solves the optimal control problem in Equation (2.2) by first

learning a dynamics model and then using this learned model with model-based con-

trol techniques. As both Model-Free Reinforcement Learning (MFRL) and MBRL

methods learn models, the model in the name refers to the dynamics model f , as

MFRL approaches do not learn representations of the dynamics f . Algorithm 1

illustrates a common MBRL procedure where an agent incrementally explores its

environment, collecting data Di at each iteration i and updating its dynamics model

p✓.

As more systems are becoming data-driven, learning dynamics models for model-

based control has shifted to needing task-centric methods that simultaneously learn

about the environment, whilst optimising a controller to obtain low cumulative costs.

The field of MBRL seeks to solve many optimal control problems by incrementally

learning a dynamics model in this way (Chua et al., 2018; Deisenroth and Rasmussen,

2011). MBRL shares similarities with the system identification and control process,

except that the dynamics learning and control are updated simultaneously. There are

two main components to a MBRL algorithm: 1) a method for learning a dynamics

model p✓ and 2) a controller (or policy) ⇡ that leverages the learned dynamics model

p✓. The controller may be a parameterised state feedback controller (policy) ⇡, which

is trained using MFRL algorithms and the learned dynamics model. Alternatively,

the controller may take the form of a model-based control algorithm such as Model

Predictive Control (MPC).

2.2.3 Model-based Control and Planning

This section reviews model-based control methods that leverage learned dynamics

models in the MBRL setting. In the RL literature, model-based control is often

- 13 -

2 Background and Related Work

referred to as planning. The work in this thesis is primarily focused on model-based

control techniques, in particular, trajectory optimisation.

Trajectory optimisation Instead of approximating a value function or a policy,

it is possible to directly optimise the controls ū = {u1, . . . ,uT�1} over a horizon T .

This is known as trajectory optimisation and is given by,

ū = arg min
ū

E
"

TX

t=0

c(xt,ut) | x0 = x

#
(2.6a)

s.t. xt+1 = f(xt,ut) + ✏, (2.6b)

which finds an optimal sequence of controls ū for a given start state x0. Many

recent works have used trajectory optimisation with learned dynamics models. For

example, Nakka et al., 2021 developed a chance-constrained trajectory optimisa-

tion algorithm that leverages a dynamics model learned using a robust regression

model. Rybkin et al., 2021 utilise a latent space dynamics model – learned with a

convolutional neural network for the encoder and a recurrent neural network for the

dynamics – which scales to high-dimensional inputs such as images. In MBRL, tra-

jectory optimisers often exploit inaccuracies of the learned dynamics model. Boney

et al., 2019 propose a trajectory optimisation approach that relives this exploitation

by learning the dynamics using a denoising autoencoder. The resulting trajectory

optimisation algorithm avoids regions of the learned dynamics model where no data

has been observed.

Model predictive control Instead of directly applying the control inputs found

with trajectory optimisation in an open-loop fashion, it is possible to obtain a closed-

loop controller. This is achieved by iteratively applying the first control u0 and

resolving the trajectory optimisation problem in Equation (2.6),

⇡MPC(x) = arg min
u0

min
ū

E
"

TX

t=0

c(xt,ut) | x0 = x

#
(2.7a)

s.t. xt+1 = f(xt,ut) + ✏, (2.7b)

- 14 -

2.2 Optimal Control

This is known as Model Predictive Control (MPC) (Eduardo F. and Carlos, 2007).

However, in practice, it is often too computationally expensive to obtain real-time

control with MPC. Many approximate solutions have been introduced in the lit-

erature, that seek to balance the computational complexity and accuracy trade-o↵

di↵erently (Betts, 1998).

For example, iterative Linear Quadratic Regulator (iLQR) can generate trajectories

for nonlinear systems by iteratively approximating the dynamics to be linear around

a nominal trajectory and optimising for the controls. iLQR works well for quadratic

cost functions but can be used with any cost function by approximating the cost

function with a second-order Taylor expansion. However, in this case, iLQR is

susceptible to converging to terrible (local) optima if the true cost function is highly

non-convex. Boedecker et al., 2014 present a real-time iLQR controller based on

sparse GPs. Rohr et al., 2021 propose a novel LQR controller synthesis for linearised

GP dynamics that yields robust controllers with respect to a probabilistic stability

margin.

MPC has directly been used with ensembles of probabilistic neural networks (Chua

et al., 2018; Nagabandi et al., 2020) and with GPs (Kamthe and Deisenroth, 2018).

Lambert et al., 2019 control a quadcopter using online MPC and a dynamics model

learned using probabilistic neural networks.

O✏ine trajectory optimisation Instead of solving the trajectory optimisation

problem in Equation (2.6) online, it can be solved o✏ine. For example, the state-

control trajectory can be found o✏ine and used as a reference trajectory for a track-

ing controller. Alternatively, the trajectory optimiser can be used o✏ine to learn

a state feedback controller (policy) using guided policy search (Levine and Koltun,

2013).

2.2.4 Constrained Control

This work aims to control multimodal dynamical systems subject to the mode re-

maining constraint in Equation (2.4). However, neither the underlying dynamics

- 15 -

2 Background and Related Work

modes nor how the system switches between them, are known a priori. To this

end, this thesis is interested in model-based control techniques which can learn and

enforce latent constraints.

It is common to require constraints on the states x and controls u of a controlled

system. For example, an autonomous system may wish to remain in a subset of its

state space where it knows its dynamics model is valid. The system may also be

subject to constraints on the controls due to physical limitations, e.g. how quickly

a quadcopter can accelerate and turn. Constraints of this type can be encoded via

inequality constraints on the states x and controls u,

cx(xt) � 0, 8t � 0, (2.8)

cu(ut) � 0, 8t � 0. (2.9)

The feasible regions of these constraints can be written as sets,

Xfeasible ={x 2 RDx | cx(x) � 0}, (2.10)

Ufeasible ={u 2 RDu | cu(u) � 0}, (2.11)

so the constraints can alternatively be written as,

xt 2 Xfeasible 8t � 0 (2.12)

ut 2 Ufeasible 8t � 0. (2.13)

For a parametric controller ⇡, the control constraints can be encoded directly into

the controller by parameterising it so that its range is restricted to Ufeasible, i.e.

⇡(xt) 2 Ufeasible, for all x 2 Xfeasible. The state constraints can be enforced by

ensuring that the set is forward invariant.

- 16 -

2.2 Optimal Control

Definition 2.2.1 (Forward invariant). Given a dynamical system xt+1 = f(xt, ⇡(xt, t)),

a set Xfeasible is forward invariant under the controller ⇡ 2 ⇧, i↵, for all x0 2

Xfeasible, all future states remain in the set, i.e. f(xt, ⇡(xt, t)) 2 Xfeasible 8t.

There are multiple approaches to enforcing state constraints via invariant sets. Two

common approaches are Lyapunov functions (Lyapunov, 1992) and control barrier

functions (Ames et al., 2019). Lyapunov functions are more restrictive than control

barrier functions as they provide stability guarantees which are not a necessary con-

dition to render Xfeasible forward invariant. Although these are interesting directions

for future work, they are out of the scope of this thesis.

Unknown constraints This work is interested in learning constraints whilst en-

suring that they are satisfied. Ariafar et al., 2019; Gelbart et al., 2014 introduce

algorithms to minimise an unknown objective (Bayesian optimisation) subject to un-

known constraints. Sadigh and Kapoor, 2016 propose an MPC method that satisfies

a priori unknown constraints with high probability. However, they do not deploy a

strategy to actively learn about the constraints. In contrast, Schreiter et al., 2015

consider safe exploration for active learning. They distinguish safe and unsafe re-

gions with a binary GP classifier, which is learned separately to the dynamics model.

Their exploration strategy then considers the di↵erential entropy of the dynamics

GP and they use the GP classifier to define a set of safety constraints.

Stochastic constraints In stochastic systems it is not possible to make determinis-

tic statements about constraints. This is because given a start state x0 the resulting

trajectories are random variables. Therefore, the constraints cx(x) are also random

variables. To reason about constraints in stochastic systems, we need a method to

measure uncertainty in this random variable.

A simple approach is to consider expected constraints E[cx(x)]. However, although

expected performance is a reasonable objective, expected constraints make less sense.

For example, although the expected constraints E[cx(x)] hold, a system may still

violate them frequently if the constraints variance V[cx(x)] is high. Ferber et al.,

1958 proposed risk sensitivity which uses higher-order moments as well as the ex-

- 17 -

2 Background and Related Work

pected value. Value at risk (Du�e and Pan, 1997) is an even stronger notion, which

guarantees constraint satisfaction with high probability.

MPC (Eduardo F. and Carlos, 2007) is the most direct method to embed con-

straints. At each time step, MPC ensures that the constraints hold over a given

horizon. However, it is worth noting that these constraints still cannot be guaran-

teed in stochastic systems. For stochastic systems, Schwarm and Nikolaou, 1999

proposed to satisfy constraints with high probability. Such constraints are named

chance constraints. Chance constraints are applicable in systems where the uncer-

tainty arises from learning from observations. i.e. they are applicable with latent

constraints.

2.3 Learning Dynamical Systems for Control

This section reviews methods for learning representations of dynamical systems for

control. When learning representations of dynamical systems from observations it is

important to consider the di↵erent forms of uncertainty. For example, when using

a learned model for control, it is important to know what we do not know. This

knowledge can be used to encode risk-sensitive control (avoid regions where the

model cannot predict confidently) or to guide exploration. Section 2.4 discusses

exploration strategies that leverage well-calibrated uncertainty estimates.

2.3.1 Sources of Uncertainty

This section characterises the uncertainty that arises in RL.

Aleatoric uncertainty Dynamical systems give rise to temporal observations ar-

riving as a sequence x̄ = {x1, . . . ,xT }. These measurements are often corrupted by

(observation) noise due to imperfections in the measurement process. Even when it

is known that there is uncertainty in the measurement process, there still remains

uncertainty about its form. Given our current understanding of the real-world,

many dynamical systems also appear to be inherently stochastic. This is due to our

- 18 -

2.3 Learning Dynamical Systems for Control

inability to model certain phenomena accurately (e.g. turbulence). Stochasticity

arising from state transitions in this way is known as process noise. Observation

and process noise are the constituent sources of aleatoric uncertainty ; uncertainties

that are inherent in a system and cannot be reduced.

Epistemic uncertainty The uncertainty arising from learning the dynamics f from

observations is known as epistemic uncertainty. For example, we may be uncertain

about the structure of the model or the value of specific model parameters ✓. This

type of uncertainty accounts for those we could know, but we do not know a priori.

As such, epistemic uncertainty can be reduced by exploring, collecting data and

updating the model with this new experience.

Distinguishing these two sources of uncertainty is important in RL. For example,

the epistemic uncertainty is useful for guiding exploration into regions of the system

that have not been observed. In turn, this data can be used to reduce the model’s

epistemic uncertainty by updating the model. In contrast, driving the system into

regions of the model with high aleatoric uncertainty is not desirable. Consider

the case where the model is confident that the system is subject to high process

noise in a particular region. Guiding the system into this region will not reduce

the model’s epistemic uncertainty because the model has already been trained on

data from this region. Further to this, it may be undesirable to enter regions of

high aleatoric uncertainty because they may result in poor performance or even

catastrophic failure.

2.3.2 Learning Single-Step Dynamics Models

This work considers single-step dynamics models with the delta state formulation,

which regularises the predictive distribution, given by xt+1 = xt + f(xt,ut) + ✏.

Although multi-step dynamics models are an interesting direction for learning-based

control, they are out of the scope of this thesis.

Single-step dynamics models have been deployed in a large variety of learning-based

control algorithms. Early approaches include using single-step linear models (Schnei-

- 19 -

2 Background and Related Work

der, 1996) and single-step GP models (Deisenroth and Rasmussen, 2011; Hewing et

al., 2020b; Koller et al., 2018; Rohr et al., 2021; Vinogradska et al., 2016) for low-

dimensional control problems. More recently, single-step dynamics models have been

learned using neural networks. For example, (Chua et al., 2018; Janner et al., 2019;

Kurutach et al., 2018) use ensembles of neural networks and (Depeweg et al., 2017;

Gal et al., 2016) use Bayesian neural networks with parametric uncertainty.

Probabilistic models Mathematical models are compact representations (sets of

assumptions) that attempt to capture key features of the phenomenon of interest

in a precise mathematical form. Probabilistic modelling provides the capability of

constructing mathematical models that can represent and manipulate uncertainty in

data, models, decisions and predictions. As such, linking observed data to underly-

ing phenomena through probabilistic models is an interesting direction for modelling,

analysing and controlling dynamical systems. It enables the uncertainty to be repre-

sented and manipulated; it provides a systematic way to combine observations with

existing knowledge via a mathematical model. Learning representations of dynamical

systems for control using probabilistic models has shown much promise. Moreover,

learning single-step dynamics models that quantify uncertainty has been central to

recent successes in MBRL (Chua et al., 2018; Janner et al., 2019).

Modelling a Bayesian belief over the dynamics function f provides a principled

method for modelling epistemic uncertainty arising from learning from data, through

the posterior distribution. GPs are the state-of-the-art approach for Bayesian non-

parametric regression and are a building block for the methods presented in this

thesis. GPs have become a popular choice for learning representations of dynamical

systems (Buisson-Fenet et al., 2020; Nguyen-Tuong et al., 2009; Wang et al., 2018)

and have been used for both RL (Deisenroth and Rasmussen, 2011; Doerr et al.,

2017; Polymenakos et al., 2019; Vinogradska et al., 2020) and for MPC (Hewing

et al., 2020a,b; Kamthe and Deisenroth, 2018; Koller et al., 2018).

- 20 -

2.3 Learning Dynamical Systems for Control

2.3.3 Gaussian Processes

The mathematical machinery underpinning GPs is now detailed.

Multivariate Gaussian identities Inference techniques with GPs leverage mul-

tivariate Gaussian conditioning operations. As such, introducing the multivariate

Gaussian identities is a natural place to start.

Gaussian distributions are popular in machine learning and control theory. This

is not only due to their natural emergence in statistical scenarios (central limit

theorem) but also their intuitiveness and mathematical properties that render their

manipulation tractable and easy.

Consider a multivariate Gaussian whose random variables are partitioned into two

vectors f and u. The joint distribution takes the following form,

2

4 f

u

3

5 ⇠ N

0

@

2

4 µf

µu

3

5

2

4 ⌃↵ ⌃fu

⌃uf ⌃uu

3

5

1

A,

where µf and µu represent the mean vectors, ⌃↵ and ⌃uu represent the covariance

matrices, and ⌃uf and ⌃fu represent the cross-covariance matrices. The marginali-

sation property of Gaussian distributions states that for two jointly Gaussian random

variables, the marginals are also Gaussian,

p(f) =

Z
p(f ,u)du = N (f | µf ,⌃↵), (2.14)

p(u) =

Z
p(f ,u)df = N (u | µu,⌃uu). (2.15)

Conveniently, the conditional densities are also Gaussian,

f | u ⇠ N
�
µf + ⌃fu⌃

�1
uu(u � µu),⌃↵ � ⌃fu⌃

�1
uu⌃uf

�
, (2.16)

u | f ⇠ N
�
µu + ⌃uf⌃

�1
↵ (f � µf),⌃uu � ⌃uf⌃

�1
↵ ⌃fu

�
. (2.17)

- 21 -

2 Background and Related Work

Consider the case where u represents some observations and f represents a new test

location. Equation (2.16) can be used to make inferences in the location f given the

observations u, i.e. make sophisticated interpolations on the measurements based

on their closeness. In real-world scenarios, it is desirable to consider the entire

input domain, instead of simply pre-selecting a discrete set of locations. Gaussian

processes provide this mathematical machinery.

Gaussian processes Informally, GPs are a generalisation of the multivariate Gaus-

sian distribution, indexed by an input domain as opposed to an index set. Similar to

how a sample from an N �dimensional multivariate Gaussian is an N �dimensional

vector, a sample from a GP is a random function over its domain. Formally, a GP

is defined as follows,

Definition 2.3.1 (Gaussian process). A Gaussian Process (GP) is a collection of

random variables, any finite number of which have a joint Gaussian distribution

(Rasmussen and Williams, 2006).

More intuitively, a Gaussian process is a distribution over functions f(·) : X ! R

defined over an input domain X 2 RDf . Whilst Gaussian distributions represent dis-

tributions over finite-dimensional vectors, GPs represent distributions over infinite-

dimensional functions. A GP is fully defined by a mean function µ(·) : X ! R and

a covariance function k(·, ·) : X ⇥ X ! R (also known as a kernel),

f(·) ⇠ GP(µ(·), k(·, ·)), (2.18)

µ(·) = E[f(·)], (2.19)

k(·, ·0) = E[(f(·) � µ(·))(f(·0) � µ(·0))]. (2.20)

Importantly, for a given set of training inputs from the functions domain X = {x1, . . . ,xN},

the associated function values f = {f(x1), . . . , f(xN)}, are jointly Gaussian. This

results in an N � dimensional multivariate Gaussian random variable f , given by,

f ⇠ N (µ(X), k(X,X)). (2.21)

- 22 -

2.3 Learning Dynamical Systems for Control

A common kernel that is used throughout this thesis is the Squared Exponential

kernel with Automatic Relevance Determination (ARD), given by,

k(x, x
0) = �

2
f exp

0

@�1

2

DfX

d=1

✓
xd � x

0
d

ld

◆2
1

A, (2.22)

where �
2
f represent the signal variance and ld is a lengthscale parameter as-

sociated with input dimension d. The lengthscale parameter determines the

length of the ”wiggles” in the function and the signal variance �
2
f determines

the average deviation of the function from its mean.

Given mean and kernel functions with parameters ✓, the marginal distribution is

given by,

p(f | X) = N (f | µ(X), k(X,X)). (2.23)

where the dependency on the parameters ✓ has been dropped, i.e. p(f | X) =

p(f | X,✓). This simplification will be used throughout this thesis for notational

conciseness. By definition, these observations f are jointly Gaussian with any un-

observed function value f⇤ = f(x⇤) at a new test input,

2

4 f

f
⇤

3

5 ⇠ N

0

@

2

4 µ(X)

µ(x⇤)

3

5

2

4 k(X,X) k(X,x⇤)

k(x⇤,X) k(x⇤,x⇤)

3

5

1

A.

Given the multivariate Gaussian conditionals in Equation (2.16), it is easy to see

how the distribution over the test function value f⇤, can be obtained by conditioning

on the observations,

p(f⇤ | x⇤, f ,X) = N (f⇤ | µ, �
2) (2.24)

µ = µ(x⇤) + k(x⇤,X)k(X,X)�1(f � µ(X))

�
2 = k(x⇤,x⇤) � k(x⇤,X)k(X,X)�1

k(X,x⇤).

- 23 -

2 Background and Related Work

It is typical in real-world modelling scenarios that observations of the true function

values f are not directly accessible. Instead, observations are usually corrupted by

noise,

y = f(x) + ✏, ✏ ⇠ N
�
0, �

2
nI
�
. (2.25)

where �
2
n is the noise variance. In this scenario, the function values f become latent

variables and a Gaussian likelihood is introduced,

p(y | f) = N
�
y | f , �2

nI
�
, (2.26)

to relate the observations to the latent function values f . The predictive distribution

for a test input x⇤ follows from Equation (2.16),

p(f⇤ | x⇤,y,X) = N (f⇤ | µ, �
2) (2.27)

µ = µ(x⇤) + k(x⇤,X)
�
k(X,X) + �

2
nI
��1

(y � µ(X))

�
2 = k(x⇤,x⇤) � k(x⇤,X)

�
k(X,X) + �

2
nI
�
)�1

k(X,x⇤).

This predictive distribution is the GP posterior. Importantly, the predictive variance

�
2 in Equation (2.27) quantifies the epistemic uncertainty associated with making a

prediction at the test input x⇤, whilst the value of the noise variance �
2
n quantifies the

aleatoric uncertainty. This structured handling of uncertainty makes GPs extremely

powerful for learning representations of dynamical systems.

2.3.4 Learning Multimodal Dynamical Systems

In contrast to the previously presented approaches, we are interested in learning

representations of multimodal dynamical systems. Figure 2.2a demonstrates the

shortcomings of learning a GP dynamics model for the quadcopter navigation prob-

lem in the illustrative example from Section 1.1. It shows the results of performing

trajectory optimisation in a GP dynamics model trained on state transitions sampled

- 24 -

2.3 Learning Dynamical Systems for Control

�2 0 2

�3

�2

�1

0

1

2

3

x0

xf

x0

xf

x0

xf

Mode boundary

Dynamics Environment

(a) GP dynamics model trained on state transi-

tions sampled from both dynamics modes.

�2 0 2

�3

�2

�1

0

1

2

3

x0

xf

x0

xf

x0

xf

Mode boundary

Dynamics Environment

(b) GP dynamics model trained on state transi-

tions sampled from only the desired (operable)

dynamics mode.

Figure 2.2: Trajectory optimisation results obtained using a GP dynamics model trained

on di↵erent data sets. The optimised control trajectories are rolled out in the GP dynamics

model (magenta) and in the environment (cyan). The state trajectories are overlayed on the

gating mask, which indicates where each mode governs the dynamics. White indicates the

turbulent dynamics mode and red indicates the desired (operable) mode.

from both dynamics modes. The GP has not been able to learn a representation

of the dynamics which is true to the underlying system, due to the discontinuities

associated with the multimodal transition dynamics (changing lengthscales/noise

variances etc). The trajectory optimiser was able to find a trajectory from the start

state x0, to the target state xf in the GP dynamics (magenta). However, as the GP

dynamics do not accurately represent the true underlying dynamics, the state tra-

jectory resulting from rolling out the optimised controls in the environment (cyan)

does not match the GP dynamics trajectory (magenta). This example motivates

the need to correctly identify the underlying modes when learning representations

of multimodal dynamical systems for control.

Figure 2.2b shows results after training on state transitions from only the desired,

operable dynamics mode (red). The learned dynamics model can accurately predict

state transitions in the desired dynamics mode (red). However, as this approach only

- 25 -

2 Background and Related Work

considers the dynamics of the desired mode, trajectories in the environment (cyan)

deviate from those planned in the learned dynamics model (magenta) when they

pass through the turbulent mode. This is problematic because the trajectory passes

through the turbulent dynamics mode (which may lead to catastrophic failure) and

does not reach the target state xf . Without inferring information regarding how

the system switches between its underlying dynamics modes, it is not possible to

encode mode remaining behaviour into control algorithms.

Remark. As the underlying dynamics modes and how the system switches between

them, are not fully known a priori, partitioning the data set and learning the dy-

namics model in Figure 2.2b is not possible in realistic scenarios.

Following standard methodologies, the trajectories in Figure 2.2 were found

by minimising the expected cost under the state distribution, resulting from

cascading single-step predictions through the GP dynamics model using the

moment matching approximation (Kuss, 2006). A terminal state cost term

favoured trajectories ending at the target state and a quadratic integral control

cost term regularised the controls to encode the notion of ”minimal e↵ort”

control.

Methods for learning probabilistic multimodal dynamics have been proposed. Mo-

erland et al., 2017b use deep generative models, namely a conditional Variational

Auto-Encoder (VAE), to learn multimodal transition dynamics for MBRL. Kaiser

et al., 2020 use the data association with GPs model; a Bayesian model that learns

independent dynamics modes whilst maintaining a probabilistic belief over which

mode is responsible for predicting at a given input location. McKinnon and Schoel-

lig, 2017 also use an approach based on GPs, except that they use a Mixtures of

Gaussian Process Experts (MoGPE) method to learn the switching behaviour for

robot dynamics online.

Latent spaces for control It is worth noting that the introduction of latent vari-

ables into probabilistic models is a key component providing them with interesting

- 26 -

2.4 Uncertainty-based Exploration Strategies

and powerful capabilities for synergising model learning and control. For example,

Hafner et al., 2019; Rybkin et al., 2021 learn latent spaces which provide convenient

spaces for control (or planning). Figure 2.2b highlights the need for learning infor-

mative latent variables representing how the system switches between the underlying

dynamics modes. Without such information, it is not possible to encode the notion

of mode remaining/avoiding behaviour. As such, this work is interested in learn-

ing latent spaces that are rich with information regarding how a system switches

between its underlying dynamics modes.

2.4 Uncertainty-based Exploration Strategies

Reinforcement Learning (RL) agents face a trade-o↵ between exploration, where

they seek to explore the environment and improve their models, and exploitation,

where they make decisions which are optimal for the data observed so far. There

are many approaches from the literature used to tackle the exploration-exploitation

trade-o↵. In MBRL, the goal is often to reduce the real-world sample complexity at

the cost of increased model sample complexity.

There are two main uncertainties which are often modelled and used for exploration.

Value-based methods base their exploration on the uncertainty of the value function

V at the current state xt. Actions with higher value estimates get higher probabili-

ties of being selected based on uncertainty estimates around the values (Auer, 2002;

Moerland et al., 2017a). An alternative approach for MBRL is to use state-based

exploration. This approach is state-specific, reward independent and usually seeks

states with high epistemic uncertainty. This section recaps some relevant exploration

strategies that fit into the general MBRL procedure shown in Algorithm 1.

Greedy exploitation One of the most commonly used exploration strategies is

to select the controller that maximises the expected performance under the learned

- 27 -

2 Background and Related Work

dynamics model p✓(f | D0:i�1). Note that i denotes the iteration/episode number

of the MBRL loop. This greedy strategy is given by,

⇡
greedy
i = arg max

⇡2⇧
Ef⇠p✓(f |D0:i�1)[�J(f, ⇡)]. (2.28)

Note that the negative sign is used because the objective J(f, ⇡) is based on a cost

function and not a reward function. This approach is used in PILCO (Deisenroth

and Rasmussen, 2011) and GP-MPC (Kamthe and Deisenroth, 2018) where the

dynamics are represented using GPs and the moment matching approximation is

used to cascade single-step predictions. Parmas et al., 2018 propose PIPPS, a sim-

ilar approach to PILCO, except that they use Monte Carlo methods to propagate

uncertainty forward in time, instead of using the moment matching approximation.

Similarly, PETS (Chua et al., 2018) uses this exploration strategy but represents the

dynamics using ensembles of probabilistic neural networks. This strategy initially

favours exploring regions of the environment where the learned dynamics model is

not confident, i.e. has high epistemic uncertainty. Once it has gathered knowledge of

the environment and the model’s epistemic uncertainty has been reduced, it favours

maximising the objective function J(f, ⇡).

Thompson sampling An alternative and theoretically grounded strategy is Thomp-

son sampling. This approach samples a single model fi ⇠ p✓(f | D0:i) at every

iteration i and uses the sampled model to optimise the controller. This is given

by,

⇡
thompson
i = arg max

⇡2⇧
�J(fi, ⇡) s.t. fi ⇠ p✓(f | D0:i). (2.29)

In general, it is intractable to sample from p✓(f | D0:i). Note that after the sampling

step this problem is equivalent to greedy exploitation.

Alternatively, some MBRL algorithms, such as Sekar et al., 2020, adopt a two-phase

exploration strategy. The first phase is interested in exploring the environment and

summarising this past experience in the form of a model. The second phase then

- 28 -

2.4 Uncertainty-based Exploration Strategies

seeks to solve a downstream task, for which it is given a cost (reward) function.

This two-stage approach does not require an objective that changes its exploration-

exploitation balance as it gathers more knowledge of the environment.

Active learning Active learning is a class of exploration algorithms which fit into

the two-phase exploration approach. The goal of information-theoretic active learn-

ing is to reduce the number of possible hypotheses as fast as possible, e.g. minimise

the uncertainty associated with the parameters using Shannon’s entropy (Cover and

Joy, 2006),

Di↵erential Entropy Let X be a continuous random variable, with a proba-

bility density p(X), whose support is a set X . The di↵erential entropy H[X] is

then defined as,

H[X] = �
Z

X
p(X)logp(X)dX. (2.30)

In contrast to greedy exploitation, active learning does not seek to maximise a

black-box objective. Instead, it is only interested in exploration. There are many

approaches to active learning in the static setting, i.e. in systems where an arbitrary

state x can be sampled. In contrast, dynamical systems must be steered to x through

the unknown dynamics f through a sequence of controls ū. Thus, information gain

along the trajectory must also be considered. As highlighted by Buisson-Fenet et al.,

2020, information gain in dynamical systems is fundamentally di↵erent to the static

problem addressed by Krause et al., 2008 and Houlsby et al., 2011. The goal is to

pick the most informative control trajectory ū whilst observing x̄.

Recent work has addressed active learning in GP dynamics models. Schreiter et

al., 2015 propose a greedy entropy-based strategy that considers the entropy of the

next state. Buisson-Fenet et al., 2020 also propose a greedy entropy-based strategy

except that they consider the entropy accumulated over a trajectory. In contrast,

Capone et al., 2020; Yu et al., 2021 propose using the mutual information.

- 29 -

2 Background and Related Work

Mutual Information Given two sets of random variables, X and F, with joint

density p(X,F) the mutual information (Cover and Joy, 2006) is given by,

I[X;F] =

Z
p(X,F)log

p(X,F)

p(X)p(F)
dXdF, (2.31)

and its well-known relationship to di↵erential entropy H[·] is given by,

I[X;F] = H[X] � H[X | F]. (2.32)

Capone et al., 2020 find the most informative state as the one that minimises the

mutual information between it and a set of reference states (a discretisation of the

domain). They then find a set of controls to drive the system to this most informa-

tive state. Given a fixed number of time steps, their method yields a better model

than the greedy entropy-based strategies. Yu et al., 2021 propose an alternative

approach that leverages their Gaussian Process State Space Model (GPSSM) infer-

ence scheme to estimate the mutual information between all the variables in time

I[y1:t, ŷt+1; f1:t+1]. Here y1:t denotes the set of observed outputs and ŷt+1 denotes

the output predicted by the GPSSM. This contrasts with other approaches, which

study the latest mutual information I[ŷt+1; ft+1].

Myopic active learning In RL and control it is standard to consider objectives over

a potentially infinite horizon. However, active learning objectives often myopically

consider the information gain at the next query point only. In contrast, it is possible

to consider the information gain over a potentially infinite horizon, reliving this

myopia. The mutual information approaches in Capone et al., 2020; Yu et al., 2021

fall into this myopic category as they only maximise the information gain at the

next time step. In contrast, the entropy-based strategy in Buisson-Fenet et al., 2020

considers the entropy over a horizon.

- 30 -

3 Probabilistic Inference for

Learning Multimodal Dynamical

Systems

All models are wrong, but some are

useful.

George Box

This chapter is concerned with learning representations of multimodal dynamical

systems for model-based control. It is interested in systems where both the underly-

ing dynamics modes and how the system switches between them, are not fully known

a priori. This chapter assumes access to a data set of state transitions D, previously

sampled from the system at a constant frequency, i.e. with a fixed time-step.

Following the motivation in Section 2.3.4, this chapter seeks to identify the underly-

ing dynamics modes correctly whilst inferring latent structure that can be exploited

for control. The main goals of this chapter can be summarised as follows,

1. accurately identify the true underlying dynamics modes,

2. learn latent spaces for planning/control.

The probabilistic model constructed in this chapter resembles a Mixtures of Gaus-

sian Process Experts (MoGPE) with a GP-based gating network and is named Mix-

tures of Sparse Variational Gaussian Process Experts (MoSVGPE). Following other

MoGPE methods, it is evaluated on the motorcycle data set (Silverman, 1985). It is

- 31 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

then tested on a real-world quadcopter data set representing the illustrative example

detailed in Section 1.1.

3.1 Problem Statement

This work considers learning representations of unknown or partially unknown,

stochastic, multimodal, nonlinear dynamical systems. That is, it seeks to learn

a representation of the dynamics from the problem statement in Section 2.1. This

chapter considers single-step dynamics models with the delta state formulation that

regularises the predictive distribution. The dynamics are given by,

�xt+1 = f(xt,ut) + ✏ (3.1a)

= fk(xt,ut) + ✏k if ↵(xt) = k 8k 2 {1, . . . K}

✏k ⇠ N (0, ⌃✏k), (3.1b)

with continuous states xt 2 X ✓ RDx , continuous controls ut 2 U ✓ RDu and time

index t. The state di↵erence between time t and t+1 is denoted �xt+1 = xt+1 �xt.

At any given time step t, one of the K dynamics modes {fk : Xk ⇥ U ! X}K
k=1 and

associated noise models ✏k ⇠ N (0,⌃✏k), are selected by a discrete mode indicator

variable ↵t 2 A = {1, . . . , K}. This work assumes that the discrete mode indicator

variable depends on the state x such that it is governed by a discrete mode indicator

function ↵ : X ! A.

This chapter assumes access to historical data comprising state transitions from E

trajectories of length T , sampled with a fixed time step �t = t⇤. The data set has

N = ET elements and we abuse notation by appending the independent trajectories

along time to get the data set D = {(xt,ut), �xt+1}N�1
t=0 .

To ease notation, our modelling only considers a single output dimension. The

extension to multiple output dimensions follows from standard GP methodologies

and is detailed where necessary. To further ease notation, the state-control input

- 32 -

3.2 Preliminaries

domain is denoted Z = X ⇥ U ✓ RD and a single state-control input is denoted

xn = (xt,ut). Given this formulation, this chapter aims to learn the mapping f ,

which switches between K di↵erent functions fk. This can be cast as a regression

problem,

�xt+1| {z }
yn

= fk(xt,ut)| {z }
fk (xn)

+✏k if ↵n = k, (3.2)

where both the latent dynamics functions {fk}K
k=1 and how the system switches

between them ↵, must be inferred from observations. A single observation is denoted

as (xn, yn) = ((xt,ut), �xt+1). The set of all inputs is denoted as X 2 RN⇥D and

the set of all outputs as y 2 RN⇥1. With this notation, the regression problem can

be written as,

yn = fk(xn) + ✏k if ↵n = k. (3.3)

3.2 Preliminaries

Gaussian Processes (GPs) are the state-of-the-art approach for Bayesian nonpara-

metric regression and they provide a powerful mechanism for encoding expert domain

knowledge. They are flexible enough to model arbitrary smooth functions with the

simplicity of only requiring inference over a small number of interpretable parame-

ters, such as lengthscales and the contributions of signal and noise variance in the

data. These properties are induced by the covariance function, which models the

covariance between observations. As such, MoGPE methods are a promising direc-

tion for modelling multimodal dynamical systems. This section recaps the MoGPE

concepts that this chapter builds upon.

- 33 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

Mixture Models Mixture models are a natural choice for modelling multimodal

systems. Given an input xn and an output yn, mixture models model a mixture of

distributions over the output,

p(yn | xn,✓,�) =
KX

k=1

Pr(↵n = k | �)| {z }
mixing probability

p(yn | ↵n = k,xn,✓k)| {z }
component k

. (3.4)

where � and ✓ represent model parameters and ↵n is a discrete indicator variable

assigning observations to components. The predictive distribution p(yn | xn,✓,�)

consists of K mixture components p(yn | ↵n = k,xn,✓k) that are weighted according

to their mixing probabilities Pr(↵n = k | �).

Mixture of Experts The Mixture of Experts (MoE) model (Jacobs et al., 1991) is

an extension where the mixing probabilities depend on the input variable Pr(↵n = k | xn,�),

and are collectively referred to as the gating network. The individual component den-

sities p(yn | ↵n = k,xn,✓k) are then referred to as experts, as at di↵erent regions in

the input space, di↵erent components are responsible for predicting. Given K ex-

perts p(yn | ↵n = k,xn,✓k), each with parameters ✓k, the MoE marginal likelihood

is given by,

p(y | X,✓,�) =
NY

n=1

KX

k=1

Pr(↵n = k | xn,�)| {z }
gating network

p(yn | ↵n = k,xn,✓k)| {z }
expert k

, (3.5)

where ↵n is the expert indicator variable assigning observations to experts. The

probability mass function over the expert indicator variable is referred to as the

gating network and indicates which expert governs the model at a given input loca-

tion. See Yuksel et al., 2012 for a survey of MoE methods. Note the correspondence

between the expert indicator variable ↵n and the mode indicator variable from Equa-

tion (3.1).

Nonparametric Mixtures of Experts Modelling the experts as GPs gives rise

to a class of powerful models known as Mixtures of Gaussian Process Experts

- 34 -

3.2 Preliminaries

xn,k

fk(Xk)✓k ↵n,k �

yk�k

Nk

K

(a)

xn,k

fk(Xk)✓k ↵n,k hk(X) �k

yk�k

Nk K

K

(b)

Figure 3.1: Graphical models where the outputs y = {yk}K
k=1 are generated by mapping the

inputs X = {Xk}K
k=1 through the latent processes. An input assigned to expert k is denoted

xn,k and the sets of all Nk inputs and outputs assigned to expert k are denoted Xk and yk

respectively. The experts are shown on the left of each model and the gating network on

the right. The generative processes involve evaluating the gating network and sampling an

expert mode indicator variable ↵n. The indicated mode’s latent function fk and noise model

N (0, �k) are then evaluated to generate the output yn. (a) shows the Mixture of Gaussian

Process Experts model first presented in Rasmussen and Ghahramani, 2001 but without

the Dirichlet process prior on the gating network. This represents the basic conditional

model, not the full generative model over both the inputs and outputs as presented in Meeds

and Osindero, 2006. (b) shows our model with a GP-based gating network which involves

evaluating K latent gating functions h and normalising their output to obtain the mixing

probabilities Pr(↵n = k | h(xn)). The mode indicator variable ↵n is then sampled from the

Categorical distribution governed by these probabilities.

(MoGPE). They can model multimodal distributions as they model a mixture of

distributions over the outputs, usually a Gaussian mixture in the regression setting

(Rasmussen and Ghahramani, 2001; Tresp, 2000). They can model non-stationary

functions as each expert learns separate hyperparameters (lengthscales, noise vari-

ances etc). Many MoGPE methods have been proposed, and in general, they di↵er

in the formulation of their gating network and their approximate inference algo-

rithms.

Rasmussen and Ghahramani, 2001 highlighted that the traditional MoE marginal

likelihood does not apply when the experts are nonparametric. This is because the

model assumes that the observations are i.i.d. given the model parameters, which

is contrary to GP models, which model the dependencies in the joint distribution,

given the hyperparameters. Rasmussen and Ghahramani, 2001 point out that there

is a joint distribution corresponding to every possible combination of assignments (of

- 35 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

observations to experts). The marginal likelihood is then a sum over exponentially

many (KN) sets of assignments,

p(y | X,✓,�) =
X

↵

p(↵ | X,�)p(y | ↵,X,✓)

=
X

↵

p(↵ | X,�)

"
KY

k=1

p(yk | Xk,✓k)

#
, (3.6)

where ↵ = {↵1, . . . , ↵N} represents a set of assignments for all observations. Fig-

ure 3.1a shows its graphical model representation. Note that Xk = {xn : ↵n = k}Nk
n=1

and yk = {yn : ↵n = k}Nk
n=1 represent the Nk inputs and outputs assigned to the k

th

expert respectively. This distribution factors into the product over experts, where

each expert models the joint Gaussian distribution over the observations assigned

to it. Assuming a mixture of Gaussian process regression models, the marginal

likelihood in Equation (3.6) can be expanded to show each of the experts’ latent

variables,

p(y | X) =
X

↵

p(↵ | X,�)

"
KY

k=1

Ep(fk(Xk))

"
NkY

n=1

p(yn | fk(xn))

##
, (3.7)

where each expert follows the standard Gaussian likelihood model,

yn = fk(xn) + ✏k, ✏k ⇠ N (0, �
2
k), (3.8)

p(yn | fk(xn)) = N
�
yn | fk(xn), �2

k

�
, (3.9)

with fk and �
2
k representing the latent function and the noise variance associated

with the k
th expert. Note that for notational conciseness the dependency on ↵n = k

is dropped from p(yn | fk(xn)) as it is implied by the mode indexing fk. The

dependence on � and ✓ is also dropped from here on in. Independent GP priors are

placed on each of the expert’s latent functions,

fk(Xk) ⇠ N (µk(Xk), kk(Xk,Xk)) (3.10)

- 36 -

3.3 Identifiable Mixtures of Gaussian Process Experts

where µk(·) and kk(·, ·) represent the mean and covariance functions associated with

the k
th expert respectively. This leads to each expert resembling a standard GP

regression model with a Gaussian likelihood. For notational conciseness the depen-

dence on the inputs Xk and hyperparameters ✓k is dropped for each GP prior, i.e.

p(fk(Xk)) = p(fk(Xk) | Xk,✓k).

3.3 Identifiable Mixtures of Gaussian Process

Experts

Motivated by improving identifiability and learning latent spaces for control, this

work adopts a GP-based gating network resembling a GP classification model, sim-

ilar to that used in the original MoGPE model (Tresp, 2000). The GP-based gating

network can be used to constrain the set of admissible functions through the place-

ment of informative GP priors on the gating functions. Further to this, in Chapter 4,

the geometry of the GP-based gating network is used to encode mode remaining be-

haviour into control strategies. Chapter 6 then leverages the power of the GP-based

gating network to construct an explorative trajectory optimisation algorithm that

can consider the information gain over trajectories, as opposed to just at the next

state.

The marginal likelihood is given by,

p(y | X) =
X

↵

Ep(h(X))

"
NY

n=1

P (↵n | h(xn))

#

| {z }
GP gating network

KY

k=1

p({yn : ↵n = k} | {xn : ↵n = k})

| {z }
experts

(3.11)

where the gating network resembles a GP classification model, with a factorised

classification likelihood P (↵n | h(xn)) dependent on input dependent functions h =

- 37 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

{hk : Z ! R}K
k=1, known as gating functions. The probability mass function over

the expert indicator variable is given by,

P (↵n | h(xn)) =
KY

k=1

(Pr(↵n = k | h(xn)))[↵n=k]
, (3.12)

where [↵n = k] denotes the Iverson bracket. The probabilities of this Categorical dis-

tribution Pr(↵n = k | h(xn)) are governed by a classification likelihood (Bernoulli/-

Softmax). Fig. 3.1b shows the graphical model where the K latent gating functions

h are evaluated and normalised to obtain the mixing probabilities Pr(↵n = k | h(xn)).

The mode indicator variable ↵n is then sampled from the Categorical distribution

governed by these probabilities. The indicated expert’s latent function fk and noise

model N
�
0, �

2
k

�
are then evaluated to generate the output yn.

Softmax (K > 2) In the general case, when there are more than two experts, the

gating network’s likelihood is defined as the Softmax function,

Pr(↵n = k | h(xn)) = softmaxk(h(xn)) =
exp(hk(xn))

PK
j=1 exp(hj(xn))

. (3.13)

Each gating function hk describes how its corresponding mode’s mixing probability

varies over the input space. Modelling the gating network with input-dependent

functions enables informative prior knowledge to be encoded through the placement

of GP priors on each gating function. Further to this, if the modes are believed to

only vary over a subset of the state-control input space, then the gating functions

can depend only on this subset. Independent GP priors are placed on each gating

function, giving the gating network prior,

h(X) ⇠
KY

k=1

N
⇣
µ̂k(X), k̂k(X,X)

⌘
(3.14)

where µ̂k(·) and k̂k(·, ·) are the mean and covariance functions associated with the k
th

gating function. Similarly to the experts, dependence on the inputs and hyperparam-

- 38 -

3.3 Identifiable Mixtures of Gaussian Process Experts

eters is dropped from the gating network’s GP prior, i.e. p(h(X)) = p(h(X) | X,�).

In contrast to the experts, partitioning the data set is not desirable for the gating

network GPs, as each gating function should depend on all of the training observa-

tions.

Each mode’s mixing probability Pr(↵n = k | xn,�) is then obtained by marginalising

all of the gating functions. In the general case where Pr(↵n = k | h(xn)) uses the

softmax function (Equation (3.13)) this integral is intractable, so it is approximated

with Monte Carlo quadrature.

Bernoulli (K = 2) Instantiating the model with two experts, ↵n 2 {1, 2}, is a

special case where only a single gating function is needed. This is because the output

of a function h(xn) can be mapped through a sigmoid function sig : R ! [0, 1] and

interpreted as a probability,

Pr(↵n = 1 | h1(xn)) = sig(h1(xn)). (3.15)

If this sigmoid function satisfies the point symmetry condition then the following

holds, Pr(↵n = 2 | h1(xn)) = 1 � Pr(↵n = 1 | h1(xn)). This only requires a single

gating function and no normalisation term needs to be calculated. If the sigmoid

function in Equation (3.15) is selected to be the Gaussian cumulative distribution

function �(h(·)) =
R h(·)
�1 N (⌧ |0, 1)d⌧ , then the mixing probability can be calculated

in closed-form,

Pr(↵n = 1 | xn,�) =

Z
�(h(xn))N

�
h(xn) | µh, �

2
h

�
dh(xn)

= �

0

@ µhq
1 + �

2
h

1

A, (3.16)

where µh and �
2
h represent the mean and variance of the gating GP at xn respec-

tively.

- 39 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

3.4 Approximate Inference

Nature laughs at the di�culties of

integration.

Pierre-Simon Laplace

Performing Bayesian inference involves finding the posterior over the latent vari-

ables,

p(h(X), f(X) | X,y,�,✓) =

P
↵ p(↵ | h(X))p(h(X))

QK
k=1 p(yk | fk(Xk))p(fk(Xk))

p(y | X)

(3.17)

where the denominator is the marginal likelihood from Equation (3.11). Exact in-

ference in our model is intractable due to the marginalisation over the set of expert

indicator variables. For this reason, we resort to a variational approximation. The

rich structure of our model makes it hard to construct an ELBO that can be evalu-

ated in closed form whilst accurately modelling the complex dependencies. Further

to this, the marginal likelihood is extremely expensive to evaluate, as there are K
N

sets of assignments ↵ that need to be marginalised. For each set of assignments,

K GP experts need to be evaluated, each with complexity O(N3). For these rea-

sons, this work derives a variational approximation based on inducing variables, that

provides scalability by utilising stochastic gradient-based optimisation.

Stochastic Variational Inference (SVI) (Ho↵man et al., 2013) relies upon having a

set of local variables factorised across observations and a set of global variables.

The marginalisation over the set of expert indicator variables ↵ in Equation (3.7)

is prohibitive to SVI. This is because SVI requires a set of local variables factorised

over data but the marginalisation considers the sets of assignments for the entire

data set. Following the approach by Titsias, 2009, we augment the probability space

with a set of M inducing variables for each GP. However, instead of collapsing these

inducing variables, we explicitly represent them as variational distributions and use

- 40 -

3.4 Approximate Inference

xn

fk(xn) hk(xn)

fk(⇣k) hk(⇠)⇣k ⇠

✓k �k

�k yn ↵n

Cat

N
K

K

Figure 3.2: Graphical model of the augmented probability space where the joint distribution

over the data is captured by the inducing variables fk(⇣k) and hk(⇠). The observations

assigned to expert k are modelled by the inducing points {⇣k, fk(⇣k)}K
k=1. This model avoids

the hard assignment of observations to experts by letting the gating network softly assign

them in the ELBO.

them to lower bound (and then further bound) the marginal likelihood, similar to

Hensman et al., 2013, 2015. Figure 3.2 shows the graphical model of the augmented

joint probability space.

Augmented experts We sidestep the hard assignment of observations to experts

by augmenting each expert with a set of separate independent inducing points

(⇣k, fk(⇣k)). Each expert’s inducing points are assumed to be from its GP prior,

p(f(⇣)) =
KY

k=1

p(fk(⇣k)) =
KY

k=1

N (fk(⇣k) | µk(⇣k), kk(⇣k, ⇣k)), (3.18)

where the set of all inducing inputs associated with the experts has been denoted

⇣ and the set of all inducing variables as f(⇣). Note that the dependence on the

inducing inputs has been dropped for notational conciseness. Introducing separate

inducing points from each expert’s GP can loosely be seen as “partitioning” the

observations between experts. However, as the assignment of observations to experts

is not known a priori, the inducing inputs ⇣k and variables fk(⇣k), must be inferred

from observations.

- 41 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

Augmented gating network Following a similar approach for the gating net-

work, each gating function is augmented with a set of M inducing points from its

corresponding GP prior,

p(h(⇠)) =
KY

k=1

p(hk(⇠)) =
KY

k=1

N
⇣
hk(⇠) | µ̂k(⇠), k̂k(⇠, ⇠)

⌘
, (3.19)

where hk(⇠) are the inducing variables associated with the k
th gating function.

Again, the dependence on the inducing inputs has been dropped for notational

conciseness. The set of all inducing variables associated with the gating network has

been denoted h(⇠). Partitioning of the data set is not desirable for the gating func-

tion GPs as each gating function should depend on all of the training observations.

For this reason, the gating functions share the same inducing inputs ⇠.

Marginal likelihood These inducing points are used to approximate the marginal

likelihood with a factorisation over observations that is favourable for constructing

a GP-based gating network. Our approximate marginal likelihood is given by,

p(y | X) ⇡ Ep(h(⇠))p(f(⇣))

"
NY

n=1

KX

k=1

Pr(↵n = k | h(⇠))p(yn | fk(⇣k))

#
, (3.20)

where the conditional distributions p(yn | fk(⇣k)) and Pr(↵n = k | h(⇠)) follow from

standard sparse GP methodologies,

p(yn | fk(⇣k)) = Ep(fk(xn)|fk(⇣k))[p(yn | fk(xn))] (3.21)

Pr(↵n = k | h(⇠)) = Ep(h(xn)|h(⇠))[Pr(↵n = k | h(xn))] (3.22)

p(fk(xn) | fk(⇣k)) = N
�
fk(xn) | kknMK�1

kMMfk(⇣k), kknn � kknMK�1
kMMkkMn

�
, (3.23)

p(h(xn) | h(⇠)) =
KY

k=1

N
⇣
hk(xn) | k̂knMK̂�1

kMMhk(⇠), k̂knn � k̂knMK̂�1
kMM k̂kMn

⌘
, (3.24)

where KkMM = kk(⇣k, ⇣k) represents the k
th expert’s kernel evaluated between its

inducing inputs, kknn = kk(xn,xn) represents it evaluated between the n
th training

input and kknM = kk(xn, ⇣k) between the n
th training input and its inducing inputs.

- 42 -

3.4 Approximate Inference

Similarly for the gating network. Figure 3.2 shows the graphical model of this

augmented joint probability model.

Our work follows from sparse GP methodologies that assume, given the inducing

variables, the latent function values factorise over observations. Our approximation

assumes that given the inducing points, the marginalisation over every possible

assignment of data points to experts can be factorised over data. In a similar spirit to

the Fully Independent Training Conditional (FITC) approximation (Naish-guzman

and Holden, 2008; Quiñonero-Candela and Rasmussen, 2005), this can be viewed as

a likelihood approximation,

p(y | f(⇣)) ⇡
NY

n=1

p(yn | f(⇣)) =
NY

n=1

KX

k=1

Pr(↵n = k | xn,�)
KY

k=1

p(yn | fk(⇣k)).

(3.25)

Importantly, the factorisation over observations has been moved outside of the

marginalisation over the expert indicator variable, i.e. the expert indicator vari-

able can be marginalised for each data point separately. This approximation assumes

that the inducing variables, {fk(⇣k)}K
k=1, are a su�cient statistic for their associated

latent function values, {fk(Xk)}K
k=1 and the set of assignments ↵. This approxima-

tion becomes exact in the limit KM = N , if each expert’s inducing points represent

the true data partition {⇣k, fk(⇣k)}K
k=1 = {Xk, fk(Xk)}K

k=1. It is also worth noting

that Equation (3.20) captures a rich approximation of each expert’s covariance but

as KM ⌧ N the computational complexity is much lower. This approximation

e�ciently couples the gating network and the experts by marginalising the expert

indicator variable for each data point separately.

Our approximate marginal likelihood captures the joint distribution over the data

and assignments through the inducing variables f(⇣). As such, information regard-

ing the assignment of observations to experts must pass through the bottleneck of

the inducing variables. This approximation induces a local factorisation over ob-

servations and a set of global variables – the necessary conditions for SVI. This

- 43 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

approach can loosely be viewed as parameterising the full nonparametric model in

Equation (3.6) to obtain a desirable factorisation for 1) constructing a GP-based

gating network and 2) deriving an ELBO that can be optimised with stochastic gra-

dient methods, whilst still capturing the complex dependencies between the gating

network and experts.

3.4.1 Evidence Lower Bounds

Instead of collapsing the inducing variables as seen in Titsias, 2009, they can be ex-

plicitly represented as variational distributions, (q(f(⇣)), q(h(⇠))) and used to obtain

a variational lower bound, aka Evidence Lower Bound (ELBO). This section derives

three ELBOs. The first bound is the tightest but requires approximating M di-

mensional integrals for each expert and gating function. Two further lower bounds

which replace some (or all) of the M dimensional integrals with one-dimensional

integrals are derived. These further bounds o↵er improved computational proper-

ties at the cost of loosening the bound. All three of these bounds are evaluated in

Section 3.5.2.

Tight lower bound Following a similar approach to Hensman et al., 2013, 2015,

a lower bound on Equation (3.20) can be obtained,

logp(y | X) �
NX

n=1

Eq(h(⇠))q(f(⇣))

"
log

KX

k=1

Pr(↵n = k | h(⇠))p(yn | fk(⇣k))

!#

�
KX

k=1

KL(q(fk(⇣k)) || p(fk(⇣k)))

�
KX

k=1

KL(q(hk(⇠)) || p(hk(⇠))) := Ltight, (3.26)

where we parameterise the variational posteriors to be independent Gaussians,

- 44 -

3.4 Approximate Inference

q(f(⇣)) =
KY

k=1

q(fk(⇣k)) =
KY

k=1

N (fk(⇣k) | mk,Sk) (3.27)

q(h(⇠)) =
KY

k=1

q(hk(⇠)) =
KY

k=1

N
⇣
hk(⇠) | m̂k, Ŝk

⌘
. (3.28)

The bound in Equation (3.26) meets the necessary conditions to perform stochastic

gradient methods on q(f(⇣)) and q(h(⇠)), as the expected log likelihood (first term)

is written as a sum over input-output pairs. However, this expectation cannot be

calculated in closed form and must be approximated. The joint distributions over

the inducing variables for each expert GP q(fk(⇣k)) and each gating function GP

q(hk(⇠)), are M dimensional multivariate normal distributions. Therefore, each

expectation requires an M dimensional integral to be approximated.

Further lower bound Following Hensman et al., 2015, these issues can be over-

come by further bounding Ltight from Equation (3.26). This removes the M dimen-

sional integrals associated with each of the gating functions. Jensen’s inequality can

be applied to the conditional probability p(hk(xn) | hk(⇠)), obtaining the further

bound,

Ltight �
NX

n=1

Eq(h(xn))q(f(⇣))

"
log

KX

k=1

Pr(↵n = k | h(xn))p(yn | fk(⇣k))

#

�
KX

k=1

KL(q(fk(⇣k)) || p(fk(⇣k)))

�
KX

k=1

KL(q(hk(⇠)) || p(hk(⇠))) := Lfurther, (3.29)

where q(h(xn)) represents the variational posterior given by,

q(h(xn)) =
KY

k=1

Eq(hk(⇠))[p(hk(xn) | hk(⇠))]. (3.30)

- 45 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

Moving the marginalisation over the latent gating functions h(xn) outside of the

marginalisation over the expert indicator variable is possible because the mixing

probabilities are dependent on all of the gating functions and not just their asso-

ciated gating function. In contrast, moving the marginalisation over each expert’s

latent function fk(xn) outside of the marginalisation over the expert indicator vari-

able corresponds to changing the underlying model, in particular, the likelihood

approximation in Equation (3.25).

Further2 lower bound Nevertheless, we proceed and further bound the experts for

comparison. Jensen’s inequality is applied to the conditional probability p(fk(xn) |

fk(⇣k)), obtaining the further2 bound,

Lfurther �
NX

n=1

Eq(h(xn))q(f(xn))

"
log

KX

k=1

Pr(↵n = k | h(xn))p(yn | fk(xn))

#

�
KX

k=1

KL(q(fk(⇣k)) || p(fk(⇣k)))

�
KX

k=1

KL(q(hk(⇠)) || p(hk(⇠))) := Lfurther2 , (3.31)

where q(f(xn)) represents the variational posterior given by,

q(f(xn)) =
KY

k=1

Eq(fk(⇣k))[p(fk(xn) | fk(⇣k))]. (3.32)

Intuitively, this bound can be seen as modifying the likelihood approximation in

Equation (3.25). Instead of mixing the GPs associated with each expert, this ap-

proximation simply mixes their associated noise models.

- 46 -

3.4 Approximate Inference

As each GP’s inducing variables are normally distributed, the functional form of the

variational posteriors are given by,

q(f(xn)) =
KY

k=1

N
�
fk(xn) | Akmk, kknn + Ak(Sk � KkMM)AT

k

�
(3.33)

q(h(xn)) =
KY

k=1

N
⇣
hk(xn) | Âkm̂k, k̂knn + Âk(Ŝk � K̂kMM)ÂT

k

⌘
, (3.34)

where Ak = kknMK�1
kMM and Âk = k̂knMK̂�1

kMM . Importantly, these variational

posteriors marginalise the inducing variables in closed form, with Gaussian convo-

lutions. Lfurther removes K of the undesirable approximate M dimensional integrals

from Equation (3.26) and Lfurther2 removes K
2. The variational expectation in

Equation (3.29) still requires approximation, however, the integrals are now only

one-dimensional. These integrals are approximated with Gibbs sampling and in

practice only single samples are used because the added stochasticity helps the op-

timisation.

The tight lower bound Ltight is the most accurate lower bound, but it is also the most

computationally expensive. Both the further lower bound Lfurther and the further2

lower bound Lfurther2 have lower computational complexity at the cost of being looser

bounds. The performance of these bounds is evaluated in Section 3.5.2.

3.4.2 Optimisation

The bounds in Equations (3.26), (3.29) and (3.31) meet the necessary conditions to

perform stochastic gradient methods on q(f(⇣)) and q(h(⇠)). Firstly, they contain

a sum of N terms corresponding to input-output pairs, enabling optimisation with

mini-batches. Secondly, the expectations over the log-likelihood are calculated using

Monte Carlo samples.

Stochastic optimisation At each iteration j, a random subset of Nb data points

are sampled from the data set D, to get a minibatch Dj = {xi, yi}Nb
i=1. The further

lower bound is then approximated by,

- 47 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

L̂further =
N

Nb

X

xi,yi2Dj

0

@ 1

S

SX

s=1

1

Ŝ

ŜX

ŝ=1

log
KX

k=1

Pr
⇣
↵i = k | h(xi)

(ŝ)
⌘
p

⇣
yi | fk(⇣k)

(s)
⌘
1

A

�
KX

k=1

KL(q(hk(⇠)) || p(hk(⇠)))

�
KX

k=1

KL(q(fk(⇣k)) || p(fk(⇣k))), (3.35)

where fk(⇣k)(s) ⇠ q(fk(⇣k)) and h(xi)(ŝ) ⇠ q(h(xi)) denote samples from the varia-

tional posteriors. Ŝ samples are drawn from the gating network’s variational poste-

rior and S samples are drawn from the experts’ variational posterior. The variational

distributions over the inducing variables are represented using the mean vector mk

and the lower triangular Lk of the covariance matrix Sk = LkLT
k . A downside to this

formulation is that (K2)(M �1)M/2+K
2
M extra parameters need to be optimised.

In the two expert case, this reduces to (K +1)(M �1)M/2+(K +1)M extra param-

eters. Optimising the inducing inputs (⇠ and ⇣) introduces a further K
2
MD opti-

misation parameters. The inducing inputs ⇠, {⇣k}K
k=1, kernel hyperparameters and

noise variances, are treated as variational hyperparameters and optimised alongside

the variational parameters, using stochastic gradient descent e.g. Adam (Kingma

and Ba, 2017).

Computational complexity Assuming that each expert has the same number of

inducing points M , the cost of computing the KL divergences and their derivatives

is O
�
KM

3
�
. The cost of computing the expected likelihood term is dependent on

the batch size Nb. For each data point in the minibatch, each of the K gating

function variational posteriors has complexity O
�
M

2
�

to evaluate. For each data

point, only a single sample is drawn from each of these distributions. Sampling each

expert’s inducing variable distribution q(fk(⇣k)) has complexity O(M2) because the

covariance is represented as the lower triangular (via the Cholesky decomposition).

- 48 -

3.4 Approximate Inference

In addition to this sampling, calculating each expert’s conditional p(yn | fk(⇣k))

given these samples has complexity O(M2).

3.4.3 Predictions

For a given set of test inputs X⇤ 2 RN⇤⇥D, this model makes probabilistic predictions

following a mixture of K Gaussians. Making predictions with this model involves

calculating a density over the output for each expert and combining them using

the probabilities obtained from the gating network, i.e. marginalising the expert

indicator variable. This is given by,

p(y⇤ | y) =
N⇤Y

n=1

KX

k=1

Pr(↵⇤
n = k | y)| {z }

gating network posterior

p(y⇤
n | ↵

⇤
n = k,y)| {z }

expert K posterior

(3.36)

⇡
N⇤Y

n=1

KX

k=1

q(↵⇤
n = k)q(y⇤

n | ↵
⇤
n = k), (3.37)

where dependence on the test inputs X⇤ and the training inputs X have been

dropped for notational conciseness.

Experts The experts make predictions at new test locations by integrating over

their latent function posteriors,

p(y⇤
n | ↵

⇤
n = k,y) =

Z
p(y⇤

n | fk(x
⇤
n))| {z }

likelihood

p(fk(x
⇤
n) | y)| {z }

posterior

dfk(x
⇤
n)

⇡
Z

p(y⇤
n | fk(x

⇤
n))| {z }

likelihood

q(fk(x
⇤
n))| {z }

approx posterior

dfk(x
⇤
n) := q(y⇤

n | ↵
⇤
n = k).

(3.38)

However, the experts’ true posteriors p(fk(x⇤
n) | y) are not known and have been

approximated. Each expert’s approximate posterior is given by q(fk(Xk), fk(⇣k)) =

p(fk(Xk) | fk(⇣k))q(fk(⇣k)). To make a prediction at a set of test locations X⇤, we

substitute our approximate posterior into the standard probabilistic rule,

- 49 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

p(fk(x
⇤
n) | y)| {z }

posterior

=

Z
p(fk(x

⇤
n) | fk(Xk), fk(⇣k))p(fk(Xk), fk(⇣k) | y)dfk(Xk)dfk(⇣k)

⇡
Z

p(fk(x
⇤
n) | fk(Xk), fk(⇣k))p(fk(Xk) | fk(⇣k))q(fk(⇣k))dfk(Xk)dfk(⇣k)

=

Z
p(fk(x

⇤
n) | fk(⇣k))q(fk(⇣k))dfk(⇣k)

= N
�
fk(x

⇤
n) | Akmk, kk⇤⇤ + Ak(Sk � KkMM)AT

k

�
:= q(fk(x

⇤
n))| {z }

approx posterior

,

(3.39)

where Ak = kk⇤MK�1
kMM . This integral has complexity O(M2).

Gating network The mixing probabilities associated with the gating network are

obtained by integrating the gating network’s posterior through the gating likeli-

hood,

Pr(↵⇤
n = k | y) =

Z
Pr(↵⇤

n = k | h(x⇤
n))| {z }

likelihood

p(h(x⇤
n) | y)| {z }

posterior

dh(x⇤
n)

⇡
Z

Pr(↵⇤
n = k | h(x⇤

n))| {z }
likelihood

q(h(x⇤
n)| {z }

approx posterior

dh(x⇤
n) := q(↵⇤

n = k). (3.40)

Again, the gating network’s true posterior p(h(x⇤
n) | y) has been approximated,

p(h(x⇤
n) | y)| {z }

posterior

⇡
Z

p(h(x⇤
n) | hk(⇠))q(hk(⇠))dhk(⇠)

=
KY

k=1

N
⇣
h(x⇤

n) | Âkm̂k, k̂k⇤⇤ + Âk(Ŝk � K̂kMM)ÂT
k

⌘
:= q(h(x⇤

n)| {z }
approx posterior

,

(3.41)

- 50 -

3.5 Evaluation of Model and Approximate Inference

where Âk = k̂k⇤MK̂�1
kMM . In the general case, when K > 2, the gating likelihood is

the softmax,

Pr(↵⇤
n = k | h(x⇤

n))| {z }
likelihood

= softmaxk(h(x⇤
n)), (3.42)

so Equation (3.40) is approximated with Monte Carlo quadrature. In the two expert

case there is only a single gating function, h1, as,

Pr(↵⇤
n = 2 | h1(x

⇤
n)) = 1 � Pr(↵⇤

n = 1 | h1(x
⇤
n)). (3.43)

In this case, the gating likelihood is the Gaussian cdf,

Pr(↵⇤
n = 1 | h1(x

⇤
n))| {z }

likelihood

= �(h1(x
⇤
n)), (3.44)

so Equation (3.40) can be calculated in closed-form with,

Pr(↵⇤
n = 1 | y) =

Z
q(h1(x

⇤
n))�(h1(x

⇤
n))dh1(x

⇤
n)

= �

0

@ µh⇤q
1 + �

2
h⇤

1

A. (3.45)

where µh⇤ and �
2
h⇤

are the mean and variance of the variational posterior q(h1(x⇤
n))

at x⇤
n.

3.5 Evaluation of Model and Approximate Inference

As a Mixture of Experts (MoE) method, our model aims to improve on standard GP

regression with the ability to model non-stationary functions and multimodal dis-

tributions over the output variable. With this in mind, the model and approximate

inference scheme are evaluated on two data sets. Following other MoGPE work, they

are first tested on the motorcycle data set (Silverman, 1985). Although this data

- 51 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

set does not represent state transitions from a dynamical system, it does contain

non-stationary points and heterogeneous noise, making it interesting to study from

the MoGPE perspective. Secondly, they are tested on the illustrative example from

Section 1.1. That is, a data set collected onboard a DJI Tello quadcopter flying in

an environment subject to two dynamics modes.

3.5.1 Experiments

All data sets were split into test and training sets with 70% for training and 30% for

testing. In order to evaluate and compare the full predictive posteriors the Negative

Log Predictive Probability (NLPP) is computed on the test set. The models are

also compared using the Root Mean Squared Error (RMSE) and the Mean Absolute

Error (MAE). Given a test data set (X⇤
,y⇤) = {(x⇤

n, y
⇤
n)}N⇤

n=1, they are calculated

as follows,

RMSE =

vuut 1

N⇤

N⇤X

n=1

(ŷ⇤
n � y⇤

n)2 (3.46)

MAE =
1

N⇤

N⇤X

n=1

|ŷ⇤
n � y

⇤
n| (3.47)

NLPP =
1

N⇤

N⇤X

n=1

� log(y⇤
n | x⇤

n, D,✓,�) (3.48)

where ŷ
⇤
n is the model’s prediction at x⇤

n. Note that all figures in this section show

models that were trained on the full data set, i.e. no test/train split.

3.5.2 Evaluation on Motorcycle Data Set

The Motorcycle data set (discussed in Silverman, 1985) contains 133 data points

(X 2 R133⇥1 and y 2 R133⇥1) and input dependent noise. The data set represents

motorcycle impact data – time (ms) vs acceleration (g). The data set is represented

by the black crosses in Figure 3.3.

- 52 -

3.5 Evaluation of Model and Approximate Inference

To test the performance of MoSVGPE, the model is instantiated with K = 2 and

K = 3 experts. All experiments on the Motorcycle data set use M = 32 inducing

points for all GPs and are trained for 25, 000 iterations with Adam (Kingma and

Ba, 2017), with a learning rate of 0.01 and a batch size of Nb = 16. The results are

compared against a GP and a Sparse Variational Gaussian Process (SVGP), which

use Squared Exponential kernels with Automatic Relevance Determination (ARD)

and a Gaussian likelihood.

Table 3.1 summarises the results for the three ELBOs (Ltight, Lfurther, Lfurther2) and

compares them to a standard GP regression model and a SVGP method instantiated

with M = 16 and M = 32 inducing points. Both methods use Gaussian likelihoods

and optimise their hyperparameters, noise variances (and inducing inputs in the

SVGP case) using their well-known objectives – the marginal likelihood and ELBO.

The NLPP indicates the probability of the data given the parameters which are

Table 3.1: Results on the Motorcycle data set (Silverman, 1985) with di↵erent instantiations

of our model (MoSVGPE). Comparison of the Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE) and Negative Log Predictive Probability (NLPP) on the test data set.

Results for a GP and a SVGP with M = 16 and M = 32 inducing points are shown for

comparison. All models were instantiated with Squared Exponential kernels and were trained

for 25, 000 iterations. The GP’s hyperparameters were optimised using SciPy’s (Virtanen et

al., 2020) L-BFGS-B optimiser. The SVGP and MoSVGPE models were trained with Adam

(Kingma and Ba, 2017) using a learning rate of 0.01 and a minibatch size of Nb = 16. The

MoSVGPE experiments used M = 32 inducing points for each expert GP and each gating

function GP.

RMSE NLPP MAE
GP 0.4357 0.9886 0.3242
SVGP (M = 16) 0.4427 0.9762 0.3257
SVGP (M = 32) 0.4437 0.9832 0.3271
MoSVGPE (k = 2, Ltight) 0.4442 0.4863 0.3260
MoSVGPE (k = 2, Lfurther) 0.4590 0.5073 0.3355
MoSVGPE (k = 2, Lfurther2) 0.4472 0.5271 0.3218
MoSVGPE (k = 3, Ltight) 0.4569 0.2634 0.3301
MoSVGPE (k = 3, Lfurther) 0.4866 0.2695 0.3449
MoSVGPE (k = 3, Lfurther2) 0.4575 0.5467 0.3270

not marginalised, e.g. hyperparameters and inducing inputs. Following Bayesian

model selection, it is known that lower values indicate higher performing models,

- 53 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

i.e. predictive posteriors that more accurately match the distribution of the data.

The predictive posterior is most accurate when MoSVGPE is instantiated with three

experts K = 3 and trained using the tight lower bound Ltight. In both the two and

three expert experiments, the tight lower bound Ltight achieved better NLPP than

both of the further/further2 lower bounds, Lfurther and Lfurther2 . This is expected as

it is a tighter bound. As both of the further/further2 lower bounds o↵er improved

computational properties, it is interesting to compare their performance. The NLPP

scores for the further lower bound Lfurther are almost equal to the tight lower bound

Ltight. In contrast, the NLPP score in the three expert experiment for the further2

lower bound Lfurther2 is significantly worse. This indicates that valuable information

is lost in this bound. This was expected as this bound corresponds to a further

likelihood approximation, which mixes the experts’ noise models as opposed to their

full SVGP models.

Regarding the accuracy of the predictive means, the standard GP regression model

achieved the best RMSE, followed by the SVGP models and then the MoSVGPE

models. It is worth noting that all of the RMSE and MAE scores are very similar.

Although adding more experts to the MoSVGPE model appears to learn more accu-

rate predictive posteriors, the predictive means appear to deteriorate ever so slightly

(indicated by higher RMSE/MAE values). This is most likely due to bias at the

boundaries between the experts, resulting from the mixing behaviour arising from

our GP-based gating network. If the gating functions do not have low lengthscales

then they will not be able to immediately switch from one expert to another. It is

worth noting that this drop in performance is negligible.

Two Experts

The two further lower bounds (Lfurther and Lfurther2), derived in Section 3.4, are

compared by training each instantiation of the model using the same model and

training parameters. Table 3.2 contains the initial values for all of the trainable

parameters in the model. They are compared by instantiating the model with two

- 54 -

3.5 Evaluation of Model and Approximate Inference

Table 3.2: Initial parameter settings before training on motorcycle data set with two experts.

Description Symbol Value
Num data N 133
Batch size Nb 16

Optimiser Epochs N/A 25000
Num gating samples Ŝ 1
Num expert samples S 1
Learning rate N/A 0.01
Kernel variance �f 0.1
Kernel lengthscales l 10
Likelihood variance �n 0.032

Expert 1 Num inducing points M 32
Inducing inputs ⇣1 ⇣1 ✓ X with #⇣1 = M

Inducing variable mean m̂1 zeros plus Gaussian noise
Inducing variable Cholesky Ŝ1 ones plus Gaussian noise
Kernel variance �f 20
Kernel lengthscales l 0.5
Likelihood variance �n 0.9

Expert 2 Num inducing points M 32
Inducing inputs ⇣2 ⇣2 ✓ X with #⇣2 = M

Inducing variable mean m̂2 zeros plus Gaussian noise
Inducing variable Cholesky Ŝ2 ones plus Gaussian noise
Kernel variance �f 3
Kernel lengthscales l 0.5

Gating function Num inducing points M 32
Inducing inputs ⇠ ⇠ ✓ X with #⇠ = M

Inducing variable mean m̂k zeros plus Gaussian noise
Inducing variable Cholesky Ŝk 10⇥ ones plus Gaussian noise

experts K = 2 and comparing their performance. The results are shown in Fig-

ures 3.3 and 3.4, where Figure 3.3 visualises the predictive posteriors and Figure 3.4

visualises the posteriors over the latent variables. The left column shows results

for Lfurther and the right column shows results for Lfurther2 . This layout is used in

Figures 3.3 to 3.6.

Figures 3.3a and 3.3b compare the posterior means (black solid line) to the SVGP’s

posterior mean (red dashed line) and Figures 3.3c and 3.3d compare the posterior

densities to the SVGP. The red lines show plus or minus two standard deviations of

the SVGP’s posterior variance. As the MoSVGPE posterior is a Gaussian mixture,

- 55 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

�2 �1 0 1 2 3

x

�2

�1

0

1

2

y

Observations

SVGP mean

MoSVGPE mean

(a) Lfurther, poseterior mean and data set

�2 �1 0 1 2 3

x

�2

�1

0

1

2

y

Observations

SVGP mean

MoSVGPE mean

(b) Lfurther2 , poseterior mean and data set

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

y

k=1 samples

k=2 samples

SVGP ±2�

(c) Lfurther, posterior samples

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

y

k=1 samples

k=2 samples

SVGP ±2�

(d) Lfurther2 , posterior samples

Figure 3.3: Visualisation of the model instantiated with K = 2 experts, after training on the

motorcycle data set (Silverman, 1985) with Lfurther (left column) and with Lfurther2 (right

column). (a-b) show the data set (black crosses) and the posterior means associated with

the MoSVGPE (black solid line) and the SVGP (red dashed line) for comparison. (c-d)

show samples from the MoSVGPE posterior where colour indicates the underlying expert

(cyan K = 1, magenta K = 2) and the red lines show the ±2 standard deviation error

(95% confidence interval) of the SVGP posterior. All experiments were trained with 25, 000
iterations of Adam (Kingma and Ba, 2017) using a learning rate of 0.01 and a minibatch

size of Nb = 16. All GPs use Squared Exponential kernels and M = 32 inducing points.

it is visualised by drawing samples from its posterior, i.e. sample a mode indicator

variable ↵⇤ and then draw a sample from the corresponding expert.

Predictive posteriors Both MoSVGPE results are capable of modelling the non-

stationarity at x ⇡ �0.7 better than the SVGP. At this non-stationary point, there

are two modes in the MoSVGPE predictive distributions, indicated by the overlap

in samples from each expert in Figures 3.3c and 3.3d. The SVGP has explained the

- 56 -

3.5 Evaluation of Model and Approximate Inference

observations by increasing its single noise variance term. In contrast, both of the

MoSVGPE results have been able to learn two noise variances and these reflect the

noise in the observations much better. This is indicated by expert one learning a

low noise variance and expert two a high noise variance (similar to the SVGP’s noise

variance).

Latent variables More insight into this behaviour can be obtained by considering

the latent variables. Figure 3.4 shows the posteriors over the latent variables where

Figures 3.4a and 3.4b show the GP posteriors over each expert’s latent function

q(fk(x⇤)). Figures 3.4c and 3.4d show the GP posteriors over the latent gating func-

tions q(hk(x⇤)) and Figures 3.4e and 3.4f show the mixing probabilities associated

with the probability mass function over the expert indicator variable ↵.

The lengthscale of the gating network kernel governs how fast the model can shift re-

sponsibility from expert one (cyan) to expert two (magenta). For both lower bounds,

the distribution over the expert indicator variable tends to a uniform distribution

(maximum entropy) at x � 1.5. This can be seen by the cyan/magenta lines in Fig-

ures 3.4e and 3.4f tending to 0.5. Optimising with both bounds resulted in expert

one (cyan) learning a long lengthscale to fit the horizontal line from �2 < x < �1

and expert two (magenta) learning a shorter lengthscale function to fit the wiggly

section from �0.5 < x < 1.2. The noise variance inferred by expert one is larger for

Lfurther2 than for Lfurther. The uncertainty in the experts’ latent functions is also

higher for Lfurther2 . This is shown by the 95% confidence intervals (shaded cyan/-

magenta) being wider in Figure 3.4b than in Figure 3.4a. This is because Lfurther2

is attempting to fit both experts to the entire data set and only mixes their noise

models. In contrast, Lfurther fits each expert only in the regions where the gating

network has assigned it responsibility.

- 57 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

f k
(x

)

k = 1

k = 2

Observations

(a) Lfurther, experts’ GP posteriors

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

f k
(x

)

k = 1

k = 2

Observations

(b) Lfurther2 , experts’ GP posteriors

�2 �1 0 1 2 3

x

�6

�4

�2

0

2

4

6

h
k
(x

)

k = 1

k = 2

(c) Lfurther, gating network’s GP posteriors

�2 �1 0 1 2 3

x

�6

�4

�2

0

2

4

6

h
k
(x

)

k = 1

k = 2

(d) Lfurther2 , gating network’s GP posteriors

�2 �1 0 1 2 3

x

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

k
|x

)

k = 1

k = 2

(e) Lfurther, mixing probabilities

�2 �1 0 1 2 3

x

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

k
|x

)

k = 1

k = 2

(f) Lfurther2 , mixing probabilities

Figure 3.4: Visualisation of the model’s latent variables (instantiated with K = 2 experts),

after training on the Motorcycle data set (Silverman, 1985), with Lfurther (left column) and

with Lfurther2 (right column). (a-b) show the GP posteriors associated with the experts’

latent functions q(fk(x⇤)), where the solid lines show the mean and the shaded regions show

the 95% confidence intervals, i.e. ±2�. The gating network’s GP posteriors q(hk(x⇤)) are

shown in (c-d) and their associated mixing probabilities q(↵⇤
n = k) in (e-f).

- 58 -

3.5 Evaluation of Model and Approximate Inference

�2 �1 0 1 2 3

x

�2

�1

0

1

2
y

Observations

SVGP mean

MoSVGPE mean

(a) Lfurther, poseterior mean and data set

�2 �1 0 1 2 3

x

�2

�1

0

1

2

y

Observations

SVGP mean

MoSVGPE mean

(b) Lfurther2 , poseterior mean and data set

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

y

k=1 samples

k=2 samples

k=3 samples

SVGP ±2�

(c) Lfurther, posterior samples

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

y

k=1 samples

k=2 samples

k=3 samples

SVGP ±2�

(d) Lfurther2 , posterior samples

Figure 3.5: Visualisation of the model instantiated with K = 3 experts, after training on the

motorcycle data set (Silverman, 1985) with Lfurther (left column) and with Lfurther2 (right

column). (a-b) show the data set (black crosses) and the posterior means associated with the

MoSVGPE (black solid line) and the SVGP (red dashed line) for comparison. (c-d) show

samples from the MoSVGPE posterior where colour indicates the underlying expert (cyan

K = 1, magenta K = 2, yellow K = 3) and the red lines show the ±2 standard deviation

error (95% confidence interval) of the SVGP posterior. All experiments were trained with

25, 000 iterations of Adam (Kingma and Ba, 2017) using a learning rate of 0.01 and a

minibatch size of Nb = 16. All GPs use Squared Exponential kernels and M = 32 inducing

points.

Three Experts

The model was then instantiated with three experts K = 3 and trained following

the same procedure as the two experts’ experiments. Table 3.3 shows the initial

values for all of the trainable parameters in the model. The results are shown

in Figure 3.5, where the top row visualises the predictive mean and the bottom

- 59 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

row the predictive density, for Lfurther (left column) and Lfurther2 (right column).

Figure 3.6 then visualises the posteriors over the latent variables associated with

each model/bound combination.

From Table 3.1, it is clear that the predictive posterior associated with Lfurther is

the most accurate as it obtained the best NLPP score. As expected, the two lower

bounds explain the data completely di↵erently. Instantiating the model with three

experts K = 3 and training with Lfurther, leads to the extra expert (magenta) fitting

to the data at x � 1.5 and the gating network assigning responsibility to it in

this region. In contrast, instantiating the model with three experts K = 3 and

training with Lfurther2 , results in the gating network never using the extra expert

(cyan). This is indicated by the extra expert’s (cyan) probability remaining low

over the region with training data in Figure 3.6f. Similar to the two expert case,

the distribution over the expert indicator variable at x � 1.5 tends to a uniform

distribution (maximum entropy), over the experts that are turned “on”.

In Figure 3.6a the third expert’s posterior returns to the prior at x � 1.5. This

is indicated by the 95% confidence intervals associated with the third expert’s GP

(shaded yellow) being wide in this region. This demonstrates that not only is the

gating network turning the experts “on” and “o↵” in di↵erent regions but the model

is also exhibiting data assignment behaviour. That is, each expert appears to only

be fitting to the observations in the regions where the gating network has assigned

it responsibility. In our case, this behaviour is achieved via the inducing variables

capturing the joint distribution over the experts and the set of assignments, i.e.

implicitly assigning data points to experts.

- 60 -

3.5 Evaluation of Model and Approximate Inference

Table 3.3: Initial parameter settings before training on motorcycle data set with three ex-

perts.

Description Symbol Value
Num data N 133
Batch size Nb 16

Optimiser Epochs N/A 25000
Num gating samples Ŝ 1
Num expert samples S 1
Learning rate N/A 0.01
Kernel variance �f 0.1
Kernel lengthscales l 10
Likelihood variance �n 0.03

Expert 1 Num inducing points M 32
Inducing inputs ⇣1 ⇣1 ✓ X with #⇣1 = M

Inducing variable mean m̂1 zeros plus Gaussian noise
Inducing variable Cholesky Ŝ1 ones plus Gaussian noise
Kernel variance �f 0.1
Kernel lengthscales l 10.0
Likelihood variance �n 0.1

Expert 2 Num inducing points M 32
Inducing inputs ⇣2 ⇣2 ✓ X with #⇣2 = M

Inducing variable mean m̂2 zeros plus Gaussian noise
Inducing variable Cholesky Ŝ2 ones plus Gaussian noise
Kernel variance �f 1.0
Kernel lengthscales l 0.5
Likelihood variance �n 0.9

Expert 3 Num inducing points M 32
Inducing inputs ⇣3 ⇣3 ✓ X with #⇣3 = M

Inducing variable mean m̂3 zeros plus Gaussian noise
Inducing variable Cholesky Ŝ3 ones plus Gaussian noise
Kernel variance �f 3.0
Kernel lengthscales l 0.5

Gating functions (1-3) Num inducing points M 32
Inducing inputs ⇠ ⇠ ✓ X with #⇠ = M

Inducing variable mean m̂k zeros plus Gaussian noise
Inducing variable Cholesky Ŝk 10⇥ ones plus Gaussian noise

- 61 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

f k
(x

)

k = 1

k = 2

k = 3

Observations

(a) Lfurther, experts’ GP posteriors

�2 �1 0 1 2 3

x

�3

�2

�1

0

1

2

3

f k
(x

)

k = 1

k = 2

k = 3

Observations

(b) Lfurther2 , experts’ GP posteriors

�2 �1 0 1 2 3

x

�10

�5

0

5

10

h
k
(x

)

k = 1

k = 2

k = 3

(c) Lfurther, gating network’s GP posteriors

�2 �1 0 1 2 3

x

�10.0

�7.5

�5.0

�2.5

0.0

2.5

5.0

7.5

h
k
(x

)

k = 1

k = 2

k = 3

(d) Lfurther2 , gating network’s GP posteriors

�2 �1 0 1 2 3

x

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

k
|x

)

k = 1

k = 2

k = 3

(e) Lfurther, mixing probabilities

�2 �1 0 1 2 3

x

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

k
|x

)

k = 1

k = 2

k = 3

(f) Lfurther2 , mixing probabilities

Figure 3.6: Visualisation of the model’s latent variables (instantiated with K = 3 experts),

after training on the Motorcycle data set (Silverman, 1985), with Lfurther (left column) and

with Lfurther2 (right column). (a-b) show the GP posteriors associated with the experts’

latent functions q(fk(x⇤)), where the solid lines show the mean and the shaded regions show

the 95% confidence intervals, i.e. ±2�. The gating network’s GP posteriors q(hk(x⇤)) are

shown in (c-d) and their associated mixing probabilities q(↵⇤
n = k) in (e-f).

- 62 -

3.5 Evaluation of Model and Approximate Inference

Summary

The tight lower bound Ltight and further lower bound Lfurther recovered similar re-

sults in all experiments. This indicates that Lfurther does not loosen the bound to a

point where it loses valuable information. In contrast, Lfurther2 is not able to recover

the same results. This was expected as Lfurther2 corresponds to a further likeli-

hood approximation, where the experts’ noise models are mixed instead of their full

SVGPs. Lfurther o↵ers a rich ELBO for optimising MoSVGPE that achieves similar

results to Ltight, whilst having lower computational complexity per evaluation. For

this reason, the remainder of this thesis uses Lfurther for all experiments.

- 63 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

3.5.3 Evaluation on Velocity Controlled Quadcopter

As this work is motivated by learning representations of real-world dynamical sys-

tems, it was tested on a real-world quadcopter data set following the illustrative

example detailed in Section 1.1. The data set was collected at the Bristol Robotics

Laboratory using a velocity controlled DJI Tello quadcopter and a Vicon tracking

system. A high turbulence dynamics mode was induced by placing a desktop fan

at the right side of a room. Figure 3.7a shows a diagram of the environment. The

data set represents samples from a dynamical system with constant controls, i.e.

�xt+1 = f(xt;ut = u⇤).

(a) Diagram showing a top-down view of the envi-

ronment (a room in the Bristol Robotics Laboratory

(BRL)).

�1 0 1 2 3

x

�2

�1

0

1

2

y

(b) Quiver plot showing the data set of state

transitions from 9 trajectories flown 7 times.

Figure 3.7: Illustration of (a) the environment (a room in the Bristol Robotics Laboratory

(BRL)) and (b) the data set of state transitions. A turbulent dynamics mode is induced by

a desk top fan at the right-hand side of the room and a subset of the environment has not

been observed.

Environment The environment is modelled with two dimensions (the x and y

coordinates), which is a realistic assumption, as altitude control can be achieved

with a separate controller. The state space is then the 2D coordinates x = [x, y]

and the control is simply the velocity u = [vx, vy].

Data collection The Vicon system provided access to the true position of the

quadcopter at all times, which enabled pre-planned trajectories to be flown, using a

simple PID controller on feedback from the Vicon system. To simplify data collec-

- 64 -

3.5 Evaluation of Model and Approximate Inference

Table 3.4: Initial parameter settings before training on the real-world velocity controlled

quadcopter data set.

Description Symbol Value
Num data N 1816
Batch size Nb 64

Optimiser Num epochs N/A 10000
Num gating samples Ŝ 1
Num expert samples S 1
Learning rate N/A 0.01
Constant mean function c1 [0, 0]
Kernel variance �f 0.1
Kernel lengthscales l [2, 2]
Likelihood variance ⌃✏1 diag([0.0011, 0.0011])

Expert 1 Num inducing points M 100
Inducing inputs ⇣1 ⇣1 ✓ X with #⇣1 = M

Inducing variable mean m̂1 zeros plus Gaussian noise
Inducing variable Cholesky Ŝ1 ones plus Gaussian noise
Constant mean function c2 [0, 0]
Kernel variance �f 20
Kernel lengthscales l [0.5, 0.5]
Likelihood variance ⌃✏2 diag([1.9, 1.9])

Expert 2 Num inducing points M 100
Inducing inputs ⇣2 ⇣2 ✓ X with #⇣2 = M

Inducing variable mean m̂2 zeros plus Gaussian noise
Inducing variable Cholesky Ŝ2 ones plus Gaussian noise
Kernel variance �f 0.6
Kernel lengthscales l [0.1, 0.1]

Gating function Num inducing points M 100
Inducing inputs ⇣k ⇣k ✓ X with #⇣k = M

Inducing variable mean m̂k zeros plus Gaussian noise
Inducing variable Cholesky Ŝk 2⇥ ones plus Gaussian noise

tion, nine trajectories from y = 2 to y = �3, with di↵erent initial x locations, were

used as target trajectories to be tracked by the PID controller. Each trajectory was

repeated 7 times to capture the variability (process noise) in the dynamics.

Data processing The Vicon stream recorded data at 100Hz, which was then down-

sampled to give a time step of �t = 0.1s. This reduced the size of the data set and

left reasonable lengthscales. The data set consists of N = 1816 state transitions.

Figure 3.7b visualises the state transition data set as a quiver plot.

- 65 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

�2

0

2

y

�1 0 1 2 3

x

�2

0

2

y

�1 0 1 2 3

x

0.0

0.3

0.6

0.9

1.2

1.5

E[
�

x
1
]

0.00

0.06

0.12

0.18

0.24

0.30

V[
�

x
1
]

�1.65

�1.35

�1.05

�0.75

�0.45

�0.15

E[
�

x
2
]

0.00
0.06
0.12
0.18
0.24
0.30
0.36

V[
�

x
2
]

Figure 3.8: Moment matched predictive posterior p(�x⇤ | x⇤) after training on the quad-

copter data set. Each row corresponds to an output dimension d where the left plot shows

the moment matched mean E[�xd] and the right plot shows the moment matched variance

V[�xd].

Results

The model was instantiated with two experts, with the goal of each expert learning

a separate dynamics mode and the gating network learning a representation of how

the underlying dynamics modes vary over the state space. The model was trained

using the model and training parameters in Table 3.4.

At a new input location x⇤
n the density over the output, p(y⇤

n | x⇤
n), follows a mixture

of K Gaussians. Visualising a mixture of two Gaussians with a two-dimensional

input space and a two-dimensional output space requires the components and mixing

probabilities to be visualised separately. To aid with visualisation, Figure 3.8 shows

the predictive density approximated as a unimodal Gaussian density (via moment

matching), where each row corresponds to an output dimension. The predictive

mean is fairly constant over the domain, except for the region in front of the fan,

where it is higher. This result makes sense as the data set was assumed to be collected

with constant controls. The region with high predictive mean in front of the fan

is modelling the drift arising from the fan blowing the quadcopter in the negative

x direction. The right-hand plots of Figure 3.8 show the predictive variance. It is

high in the bottom left where there are no training observations, indicating that

- 66 -

3.5 Evaluation of Model and Approximate Inference

�1 0 1 2 3

x

�2

0

2
y

�1 0 1 2 3

x

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

↵
⇤

=
1

|x
⇤
)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

↵
⇤

=
2

|x
⇤
)

(a) Posterior over mode indicator variable.

�2

0

2

y

�1 0 1 2 3

x

�2

0

2

y

�1 0 1 2 3

x

�3.2

�1.6

0.0

1.6

3.2

4.8

E[
h

1
(x

⇤
)]

0.0
0.6
1.2
1.8
2.4
3.0
3.6

V[
h

1
(x

⇤
)]

�4.8

�3.2

�1.6

0.0

1.6

3.2

E[
h

2
(x

⇤
)]

0.0
0.6
1.2
1.8
2.4
3.0
3.6

V[
h

2
(x

⇤
)]

(b) GP posteriors over gating functions.

Figure 3.9: Visualisation of the gating network after training on the quadcopter data set.

The plots in (a) show the predictive mixing probabilities Pr(↵⇤
n = k | y) for Expert 1 (left)

and Expert 2 (right). The plots in (b) show the predictive GP posteriors q(hk(x⇤
n)) associated

with Expert 1 (top) and Expert 2 (bottom). The left-hand plots show the means and the right-

hand plots show the variances.

the method has successfully represented the model’s epistemic uncertainty. It is

also high in the region in front of the fan, showing that the model has successfully

inferred the high process noise, associated with the turbulence induced by the fan.

The individual experts and the gating network are now visualised separately.

Gating network Figure 3.9 shows the gating network after training on the data set.

Figure 3.9a (right) indicates that the model has assigned responsibility to Expert 2

in front of the fan, as its mixing probability Pr(↵⇤
n = 1 | x⇤

n) is high (red) in this

region. This implies that Expert 2 represents the turbulent dynamics mode in front

of the fan. Figure 3.9b shows the GP posteriors associated with the gating functions.

The mean of the gating function associated with Expert 1 E[h1(x⇤
n)] is high (red) in

the low-turbulence regions and low (white) in the high-turbulence region in front of

- 67 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

�2

0

2

y

�2

0

2

y

�2

0

2

y

�1 0 1 2 3

x

�2

0

2

y

�1 0 1 2 3

x

0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96
1.04

E[
f 1

1
(x

⇤
)]

0.000

0.005

0.010

0.015

0.020

0.025

V[
f 1

1
(x

⇤
)]

�1.36

�1.20

�1.04

�0.88

�0.72

�0.56

E[
f 1

2
(x

⇤
)]

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200
0.0225

V[
f 1

2
(x

⇤
)]

�0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

E[
f 2

1
(x

⇤
)]

0.00

0.04

0.08

0.12

0.16

0.20

V[
f 2

1
(x

⇤
)]

�1.95
�1.65
�1.35
�1.05
�0.75
�0.45
�0.15

E[
f 2

2
(x

⇤
)]

0.015
0.045
0.075
0.105
0.135
0.165
0.195

V[
f 2

2
(x

⇤
)]

Figure 3.10: Visualisation of the experts’ predictive posteriors after training on the quad-

copter data set. Each row corresponds to a single GP posterior, q(fkd(x⇤
n)), correspond-

ing to dimension d of expert k. The mean E[fkd(x⇤
n)] is on the left and the variance

V[fkd(x⇤)] is on the right. The noise variances learned by Expert 1 and Expert 2 were

⌃1 = diag([0.0063, 0.0259]]) and ⌃2 = diag([0.0874, 0.0432]) respectively.

the fan. The posterior variance associated with the gating function GPs is high in

the region with no training observations. This is a desirable behaviour because it

is modelling the epistemic uncertainty. These results demonstrate that the gating

network infers important information regarding how the system switches between

dynamics modes over the input space.

Identifiability These results show that the GP-based gating network is capable of

turning a single expert on in multiple regions of the input space. This is a desirable

behaviour as it has enabled only two underlying dynamics modes to be identified.

In contrast, other MoGPE methods may have assigned an extra expert to one of the

regions modelled by Expert 1. In particular, the regions at y > 0 and y < �1 may

have been assigned to separate experts.

- 68 -

3.5 Evaluation of Model and Approximate Inference

Experts Figure 3.10 shows the predictive posteriors q(fkd(x⇤
n)) associated with

each dimension d of each expert k. The method has successfully learned a factorised

representation of the underlying dynamics, where Expert 1 has learned a dynamics

mode with low process noise ⌃1 = diag([0.0063, 0.0259]]) and Expert 2 a mode with

high process noise ⌃2 = diag([0.0874, 0.0432]). Expert 2 has also clearly learned

the drift induced by the fan, indicated by the dark red region at y = 0 in the two

bottom left plots of Figure 3.10. It has also learned the control response of the

PID controller correcting for the deviation from the reference trajectory, indicated

by the white region below y = 0. The control response is an artefact of the data

collection process. Expert 2 has therefore learned both the drift and process noise

terms associated with the turbulent dynamics mode.

Both experts were initialised with independent inducing inputs, ⇣k, providing the

model flexibility to “soft” partition the data set. That is, each expert has the freedom

to set its inducing inputs, ⇣k, to support only a subset of the data set. The posterior

(co)variance associated with each expert represents their epistemic uncertainty. The

top right plot in Figure 3.10 shows the posterior variance associated with the x

output dimension of Expert 1. The posterior variance increases in front of the fan

because the gating network has assigned responsibility to the other expert in this

region. However, the posterior variance associated with the y output dimension of

Expert 1, is not high in this region. This is due to the lengthscale of the y output

dimension allowing Expert 1 to confidently extrapolate.

The bottom right two plots in Figure 3.10 show the posterior variance associated

with the x and y output dimensions of Expert 2. The posterior variance is high

everywhere except for the region in front of the fan. Again, this is due to the

gating network assigning responsibility to the other expert outside of the region

in front of the fan. These results demonstrate that the likelihood approximation in

Equation (3.25), combined with our gating network and variational inference scheme,

is capable of modelling the assignment of observations to experts via the inducing

points.

- 69 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

3.6 Discussion and Future Work

Implicit data assignment It is worth noting that in contrast to other MoGPE

methods, this model does not directly assign observations to experts. However, after

augmenting each expert with separate inducing points, the model has the flexibil-

ity to loosely partition the data set. Just as sparse GP methods can be viewed as

methods that parameterise the full nonparametric GP, our approach can be viewed

as parameterising the nonparametric MoGPE. Conveniently, our parameterisation,

in particular the likelihood approximation in Equation (3.25), deals with the issue

of marginalising exponentially many sets of assignments of observations to experts.

As evident from the results in this chapter, this likelihood approximation appears to

retain important information regarding the assignment of observations to experts,

whilst e�ciently marginalising the expert indicator variable. It is also worth noting

that the number of inducing points M associated with each expert, could be set

by considering the number of data points believed to belong to a particular expert.

Currently, each expert’s inducing inputs are initialised by randomly sampling a sub-

set of the data inputs. Future work could explore di↵erent techniques for initialising

each expert’s inducing inputs.

Bayesian treatment of inducing inputs Common practice in sparse GP methods

is to jointly optimise the hyperparameters and the inducing inputs. Optimising only

some of the parameters, instead of marginalising all of them, is known as Type-

II maximum likelihood. In Bayesian model selection, it is well-known that Type-

II maximum likelihood can lead to overfitting if the number of parameters being

optimised is large. In the case of inducing inputs, there can often be beyond hundreds

or thousands that need to be optimised. Further to this, Rossi et al., 2021 show that

optimising the inducing inputs relies on being able to optimise both the prior and

the posterior, therefore contradicting Bayesian inference. Our variational inference

scheme follows common practice and optimises the inducing inputs jointly with

the hyperparameters. In some instances, we observe that optimising the inducing

- 70 -

3.6 Discussion and Future Work

inputs leads to them taking values far away from the training data. Often this can

be avoided by simply sampling the inducing inputs the training inputs and fixing

them, i.e. not optimising them. This often leads to better NLPP scores as well.

This observation highlights that a Bayesian treatment of the inducing inputs is an

interesting direction for future work. However, specifying priors and performing

e�cient posterior inference over the inducing inputs is a challenging problem.

Latent spaces for control The gating network consists of two spaces which are rich

with information regarding how the system switches between it’s underlying dynam-

ics modes, namely, the pmf over the expert indicator variable and the GP posteriors

over the gating functions. It is worth noting that all MoGPE methods have a pmf

over the expert indicator variable. However, this space su↵ers from interpretability

issues. This is because in conventional MoGPE methods, the epistemic uncertainty

associated with the gating network is not decoupled from the pmf over the expert

indicator variable. Consider the meaning of the mixing probabilities tending to a

uniform distribution Pr(↵⇤
n = k | x⇤

n) = 0.5. This corresponds to maximum entropy

for a categorical distribution and could mean two di↵erent things. It could mean

that,

1. It has high epistemic uncertainty, so cannot confidently predict which expert

is responsible,

2. It has low epistemic uncertainty and confidently mixes the experts’ predic-

tions,

• This happens at the boundaries between experts.

This interpretability issue is overcome by our GP-based gating network, as these

two cases are modelled di↵erently. Either the gating function(s) are all equal and

their posterior variance(s) are low, implying that the gating network has low epis-

temic uncertainty and is likely at a boundary between experts. Alternatively, the

gating functions’ posterior variance(s) could be high, implying it has high epistemic

uncertainty.

- 71 -

3 Probabilistic Inference for Learning Multimodal Dynamical Systems

Importantly, the GP posteriors associated with our gating network, not only in-

fer information regarding the mode switching but also model the gating network’s

epistemic uncertainty. Further to this, formulating the gating network GPs with

di↵erentiable mean and covariance functions, enables techniques from Riemannian

geometry to be deployed on the gating functions (Carmo, 1992). The power of the

GP-based gating network will become apparent when its latent geometry is leveraged

for control in Section 4.2 and when its GPs are used to develop an information-based

exploration strategy in Chapter 6.

3.7 Conclusion

This chapter has presented a method for learning representations of multimodal dy-

namical systems using a MoGPE method. Motivated by correctly identifying the

underlying dynamics modes and inferring latent structure that can be exploited

for control, this work formulated a gating network based on input-dependent gat-

ing functions. This aids the inherent identifiability issues associated with mixture

models as it can be used to constrain the set of admissible functions through the

placement of informative GP priors on the gating functions. Further to this, the

GP posteriors over the gating functions provide convenient latent spaces for con-

trol. This is because they are rich with information regarding the separation of the

underlying dynamics modes and also model the epistemic uncertainty associated

with the gating network. In later chapters this uncertainty will be used to construct

risk-averse control strategies and to guide exploration for MBRL.

The variational inference scheme presented in this chapter addresses the issue of

marginalising every possible set of assignments of observations to experts – of which

there are K
N possibilities – in the MoGPE marginal likelihood. It overcomes the

issue of assigning observations to experts by augmenting each expert GP with a set

of inducing points. These inducing points are assumed to be a su�cient statistic

for the joint distribution over every possible set of assignments to experts. This

- 72 -

3.7 Conclusion

induces a factorisation over data which is used to derive three ELBOs that provide

a coupling between the optimisation of the experts and the gating network, by

e�ciently marginalising the expert indicator variable for single data points. The

ELBOs are compared on the Motorcycle data set (Silverman, 1985). The Lfurther

bound provides the best performance as it balances the accuracy o↵ered by the tight

bound Ltight, with the computational improvements o↵ered by further bounding the

GPs. The results demonstrate that the variational inference scheme principally

handles uncertainty whilst providing scalability via stochastic variational inference.

The method is further evaluated on a real-world quadcopter example demonstrating

that it can successfully learn a factorised representation of a real-world, multimodal,

robotic system.

- 73 -

4 Mode Remaining Trajectory

Optimisation

This chapter is concerned with controlling unknown or partially unknown, multi-

modal dynamical systems, given a single-step predictive dynamics model learned us-

ing the MoSVGPE method from Chapter 3. In particular, it is concerned with mode

remaining trajectory optimisation, which is formally defined in Definition 2.1.1. In-

formally, mode remaining trajectory optimisation attempts to find trajectories from

an initial state x0 – in the desired dynamics mode – to a target state xf , whilst

remaining in the desired dynamics mode.

The MoSVGPE method from Chapter 3 was intentionally formulated with latent

variables – to represent the mode switching behaviour and its associated uncertainty

– so that they could be leveraged to encode mode remaining behaviour into control

strategies. This chapter unleashes the power of these latent variables by making

decisions under their uncertainty.

The remainder of this chapter is organised as follows. Section 4.1 formally states

the problem. Section 4.2 details two methods that leverage the geometry of the

MoSVGPE gating network. The first method in Section 4.2.2 resembles an indi-

rect optimal control method as it solves the necessary conditions which indirectly

represent the original optimal control problem. In contrast, the second method in

Section 4.2.3 takes a more standard approach and directly solves the optimal control

problem. Section 4.3 then introduces an alternative approach to mode remaining

trajectory optimisation, which does not leverage the geometry of the gating network.

- 75 -

4 Mode Remaining Trajectory Optimisation

Instead, it extends the Control as Inference (CaI) framework (Toussaint, 2009) and

encodes mode remaining behaviour via conditioning on the mode indicator variable.

Chapter 5 evaluates and compares all three methods using the illustrative exam-

ple from Section 1.1. An initial version of the Indirect Optimal Control via Latent

Geodesics (IG) method presented in Section 4.2.2 is published in Scannell et al.,

2021.

4.1 Problem Statement

The goal of this chapter is to solve the mode remaining navigation problem in Sec-

tion 2.1. Due to the novelty of this problem, the work in this chapter considers tra-

jectory optimisation algorithms rather than state feedback (closed-loop) controllers.

This mode remaining trajectory optimisation problem is given by,

min
ū

TX

t=0

c(xt,ut) (4.1a)

s.t. xt+1 = fk(xt,ut) + ✏k if ↵(xt) = k 8t 2 {0, . . . , T � 1} (4.1b)

f(xt,ut) 2 Xk⇤ 8t 2 {0, . . . , T � 1} (4.1c)

ut 2 U 8t 2 {0, . . . , T � 1} (4.1d)

x0 = x0 (4.1e)

xT = xf , (4.1f)

where the dynamics are from Equation (2.1) and the resulting open-loop controller

is given by, ⇡(t) = ut 8t 2 {0, . . . , T � 1}. Given the desired dynamics mode k
⇤,

Equation (4.1) seeks to find a control trajectory ū = u0:T�1, to navigate from an

initial state x0 2 Xk⇤ , to a target state xf 2 Xk⇤ , over a horizon T , whilst minimising

a cost function, c : X ⇥U ! R and keeping the system in the desired dynamics mode

k
⇤. To simplify notation, the state and control trajectories are denoted as x̄ = x1:T

and ū = u0:T�1 respectively.

- 76 -

4.1 Problem Statement

Given that neither the underlying dynamics modes nor how the system switches

between them, are known a priori, it is not possible to solve Equation (4.1) with

the mode remaining guarantee in Definition 2.1.1. However, well-calibrated uncer-

tainty estimates associated with a learned dynamics model make it possible to find

mode remaining trajectories with high probability. Therefore, this work relaxes the

requirement to finding mode remaining trajectories with high probability. Let us

formally define a � � mode remaining controller ⇡.

Definition 4.1.1 (�-mode remaining). Let f : X ⇥ U ! X denote a multimodal

dynamical system and k
⇤
a desired dynamics mode defined by its state domain Xk⇤ =

{x 2 X | ↵(x) = k
⇤}. Given an initial state x0 2 Xk⇤ and � 2 (0, 1], a controlled

system is said to be �-mode remaining under the controller ⇡ 2 ⇧ i↵:

Pr(8t 2 {0, . . . , T � 1} : f(xt, ⇡(xt, t)) 2 Xk⇤ , ⇡(xt, t) 2 U) � 1 � � (4.2)

Trajectories satisfying this ��mode remaining definition are guaranteed to remain in

the desired dynamics mode with probability up to 1� �. Therefore, smaller � values

correspond to a higher confidence of remaining in the desired dynamics mode.

This chapter assumes prior access to the environment, such that a data set of state

transitions has previously been collected and used to learn a single-step dynamics

model.

Assumption 4.1.1. A data set D of state transitions has previously been collected

from the system and used to learn a single-step dynamics model using the MoSVGPE

method from Chapter 3.

Given this learned dynamics model, it is assumed that a desired dynamics mode

k
⇤ is either known or can easily be identified. This is a realistic assumption as

the parameters associated with each dynamics GP can be used to identify di↵erent

behaviours. For example, the noise variance associated with each mode’s dynamics

- 77 -

4 Mode Remaining Trajectory Optimisation

GP models its process noise. Therefore, it is easy to identify undesirable dynamics

modes with high process noise.

Assumption 4.1.2. A desired dynamics mode k
⇤
is known.

Given a learned dynamics model and a desired dynamics mode k
⇤, the goals of the

trajectory optimisation in this chapter can be summarised as follows,

Goal 1 Navigate to the target state xf ,

Goal 2 Remain in the operable, desired dynamics mode k
⇤,

Goal 3 Avoid regions of the learned dynamics with high epistemic uncertainty,

Goal 3.1 in the desired dynamics mode fk⇤ , i.e. where the underlying dy-

namics are not known,

Goal 3.2 in the gating network ↵, i.e. where it is not known which mode

governs the dynamics.

Goal 3 arises due to learning the dynamics model from observations. The learned

model may not be able to confidently predict which mode governs the dynamics in a

given region. This is due to a lack of training observations and is known as epistemic

uncertainty. It is desirable to avoid entering these regions as it may result in the

system leaving the desired dynamics mode.

4.2 Mode Remaining Control via Latent Geometry

This section introduces two di↵erent approaches to performing mode remaining tra-

jectory optimisation. They both exploit concepts from Riemannian geometry –

extended to probabilistic manifolds – to encode mode remaining behaviour. The

first approach in Section 4.2.2 resembles an indirect optimal control method (Kirk,

2004) as it projects the trajectory optimisation problem onto an Ordinary Di↵er-

ential Equation (ODE) that implicitly encodes the mode remaining behaviour. As

such, we name this approach Indirect Optimal Control via Latent Geodesics (IG).

- 78 -

4.2 Mode Remaining Control via Latent Geometry

The second approach in Section 4.2.2 is a direct optimal control method that resem-

bles standard Gaussian process control methods with the mode remaining behaviour

encoded via a geometric objective function. We name this approach Direct Optimal

Control via Riemannian Energy (DRE).

4.2.1 Concepts from Riemannian Geometry

The MoSVGPE model correctly identifies the underlying dynamics modes and infers

informative latent spaces that can be used to encode mode remaining behaviour. Fig-

ure 4.1 shows the gating network posterior after training MoSVGPE on the historical

data set of state transitions from the illustrative quadcopter example in Section 1.1.

The work in this chapter is based on the observation that Goals 1 and 2 can be

encoded as finding length minimising trajectories on the manifold parameterised

by the desired mode’s gating function, shown in the left-hand plot of Figure 4.1b.

Intuitively, the length of a trajectory from x0 to xf on the manifold given by the

desired mode’s gating function, increases when it passes over the contours; analo-

gous to climbing a hill. Given appropriate scaling of the gating function, shortest

trajectories between two locations are those that attempt to follow the contours,

and as a result, remain in a single mode by not climbing up or down any hills. This

section will review the relevant concepts from Riemannian geometry and show how

they can be used to encode Goals 1 and 2. Section 4.2.1 then extends these concepts

to probabilistic geometries to encode Goal 3.

Lengths in Euclidean spaces The l
2 norm (Euclidean norm) provides an intuitive

notion for the length of a vector x 2 X ✓ RdX in a Euclidean space. A continuous-

time trajectory is denoted x̄ : [t0, tf] ! X . Note that this has overloaded the

discrete-time trajectory notation. Under the l
2 norm, the length of a trajectory x̄

is given by,

Length(x̄) =

Z tf

t0

kẋ(t)k2dt, (4.3)

- 79 -

4 Mode Remaining Trajectory Optimisation

�2 0 2

x

�2

0

2

y

x0

xf

Mode boundary

�2 0 2

x

x0

xf

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 1 | x)

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 2 | x)

Mode boundary

Environment boundary No observations

(a) Mixing probabilities

�2 0 2

x

�2

0

2

y

x0

xf

Mode boundary

�2 0 2

x

x0

xf

Mode boundary

�24 �16 �8 0 8 16 24
Gating function h2(x) mean

0 4 8 12 16 20 24 28 32 36
Gating function h2(x) variance

Mode boundary

Environment boundary No observations

(b) Gating function’s GP posterior

Figure 4.1: Visualisation of the gating network posterior after training MoSVGPE on the

state transition data set from the simulated version of the 2D quadcopter environment in

the illustrative example from Section 1.1. (a) shows the probability mass function over the

expert indicator variable and (b) shows the gating function’s GP posterior mean (left) and

posterior variance (right). The start state x0 and target state xf are overlayed along with the

mode boundary (purple line) and the subset of the environment which has not been observed

(hashed box).

- 80 -

4.2 Mode Remaining Control via Latent Geometry

where Newton’s notation has been used to denote di↵erentiation with respect to

time t. As a norm can be expressed for any space endowed with an inner product,

it is possible to calculate lengths of trajectories on manifolds endowed with an inner

product.

Riemannian manifolds In this thesis it su�ces to consider manifolds M

defined by a mapping,

h : X ! Z, (4.4)

where X and Z are open subsets of Euclidean spaces. The manifold M is

given by M = h(X) and is said to be immersed in the ambient space Z. The

dimensionality of the surface is denoted dX = dim(X) whilst dZ = dim(Z)

denotes the dimensionality of the ambient space. Riemannian manifolds can

intuitively be seen as dZ -dimensional curved surfaces with a smoothly varying

positive-definite inner product, governed by the Riemannian metric G (Carmo,

1992).

Definition 4.2.1 (Riemannian Metric). A Riemannian metric G, on a man-

ifold M, is a smooth function G : X ! RdX ⇥dX that assigns a symmetric

positive definite matrix to any point in X .

Intuitively, the metric forms a local inner product in X that informs how to

measure lengths on the manifold M, locally in X . This is indicated in Equa-

tion (4.8). Riemannian manifolds locally resemble Euclidean spaces and have

globally defined di↵erentiable structure.

Lengths on Riemannian manifolds The length of a trajectory x̄ on a mani-

fold M, can be calculated by mapping it through the function h and using Equa-

tion (4.3),

Length(h(x̄)) =

Z tf

t0

���ḣ(x(t))
���

2
dt. (4.5)

- 81 -

4 Mode Remaining Trajectory Optimisation

Applying the chain-rule allows Equation (4.5) to be expressed in terms of the Jaco-

bian and the velocity,

Length(h(x̄)) =

Z tf

t0

kJ(x(t))ẋ(t)k2dt, (4.6)

J(x(t)) =
@h

@x(t)
2 R1⇥dX . (4.7)

This implies that the length of a trajectory on the manifold M, can be calculated

in the input space X , using a locally defined norm,

kJ(x(t))ẋ(t)k2 =
q

(J(x(t))ẋ(t))T (J(x(t))ẋ(t))

=
q

ẋT (t)Gxt ẋ(t) := kẋ(t)kGxt
, (4.8)

where Gxt = J(x(t))TJ(x(t)) is a symmetric positive definite matrix (akin to a

local Mahalanobis distance measure), known as the natural Riemannian metric.

The length of a trajectory on a manifold M, endowed with the metric G, can then

be calculated with,

Length(h(x̄)) =

Z tf

t0

kẋ(t)kGxt
dt. (4.9)

Figure 4.1 shows the GP posterior over the desired mode’s gating function, hk⇤ : X !

Z. Consider finding length minimising trajectories on the manifold Mk⇤ = hk⇤(X)

associated with the desired mode’s gating function, where the metric is given by,

G = JTJ, (4.10)

J =
@hk⇤

@x(t)
2 R1⇥D

. (4.11)

These trajectories will attempt to remain in the desired dynamics mode k
⇤, encoding

Goals 1 and 2. However, length minimising trajectories subject to this metric do

not encode Goal 3. That is, they will not avoid regions of the learned dynamics,

which cannot be predicted confidently due to high epistemic uncertainty. Goal 3 can

- 82 -

4.2 Mode Remaining Control via Latent Geometry

be encoded by observing that the metric tensor is actually a random variable and

extending the concepts of length minimising trajectories to probabilistic manifolds.

Probabilistic Geometries

Following Tosi et al., 2014 we formulate a metric tensor that captures the variance

in the manifold via a probability distribution. First note that as the di↵erential

operator is linear, the derivative of a GP is also a GP, assuming that the mean and

covariance functions are di↵erentiable.

Assumption 4.2.1 (Di↵erentiable Gaussian Process). Let µ : X ! R and k :

X ⇥ X ! R denote the mean and covariance functions associated with a Gaussian

process. The Gaussian process is di↵erentiable i↵ 9@µ(x)
@x ,

@2k(x,x0)
@x@x0 8x,x0 2 X .

Gaussian Process Jacobian As the di↵erential operator is linear, a function

h : X ! R distributed as a GP,

h(·) ⇠ GP(µ(·), k(·, ·)), (4.12)

where µ and k represent the mean and covariance functions, is jointly Gaussian

with its Jacobian at a new input location x⇤ 2 R1⇥D,

J⇤ = J(x⇤) =
@h

@x⇤
2 RD

, (4.13)

assuming that the mean and covariance functions are di↵erentiable. As such,

the conditional distribution over the Jacobian J⇤ can be obtained using the

properties of multivariate normals and is given by,

J⇤ ⇠ N

0

BB@
@µ

@x⇤
+ @K⇤NK�1

NNh(X)
| {z }

µJ

, @
2K⇤⇤ � @K⇤NK�1

NN@KN⇤| {z }
⌃J

1

CCA, (4.14)

- 83 -

4 Mode Remaining Trajectory Optimisation

where the covariance matrices are given by,

KNN = k(X,X) 2 RN⇥N (4.15)

@K⇤N =
@k(x⇤,X)

@x⇤
2 RD⇥N (4.16)

@
2K⇤⇤ =

@
2
k(x⇤,x⇤)

@x⇤@x⇤
2 RD⇥D

. (4.17)

Equation (4.14) is a D-dimensional multivariate normal distribution.

Therefore, the metric tensor G in Equation (4.10) is the outer product of two nor-

mally distributed random variables. As such, the metric tensor G is also a random

variable, following a non-central Wishart distribution (Anderson, 1946),

G ⇠ WD
�
P,⌃J, E

⇥
JT
⇤
E[J]

�
, (4.18)

where P is the number of degrees of freedom (always one in our case) and E[J] and

⌃J are the mean and covariance matrices associated with the GP over the Jacobian.

The expected value of the metric tensor in Equation (4.18) is given by,

E[G] = E[JT] E[J] + ⌃J. (4.19)

Importantly, this expected metric tensor includes a covariance term ⌃J, which im-

plies that lengths on the manifold calculated under this expected metric will increase

in areas of high covariance. This is a desirable behaviour because it encourages length

minimising trajectories to avoid regions of the learned dynamics with high epistemic

uncertainty, encoding Goal 3. To aid with user control, the metric tensor in Equa-

tion (4.19) is modified with a weighting parameter � that enables the relevance of

the covariance term to be adjusted,

G̃ = E[JT] E[J] + �⌃J . (4.20)

- 84 -

4.2 Mode Remaining Control via Latent Geometry

Setting � to be small should find trajectories that prioritise staying in the desired

mode, whereas selecting a large � should find trajectories that prioritise avoiding

regions of the dynamics with high epistemic uncertainty.

Extension to Sparse Variational Gaussian Processes

The model in Chapter 3 is built upon sparse GP approximations, so the Jacobian

in Equation (4.14) must be extended for such approximations.

Sparse Gaussian Process Jacobian To obtain the distribution over the

Jacobian in the sparse variational Gaussian process setting, we first condition

on the inducing variables h(⇠) 2 RM⇥1,

J⇤ | h(⇠) ⇠ N
✓

@µ

@x⇤
+ @K⇤MK�1

MMh(⇠), @2K⇤⇤ � @K⇤MK�1
MM@KM⇤

◆
. (4.21)

where the inducing variables’ density is from the prior in Equation (4.12), so

the covariance matrices are given by,

KMM = k(⇠, ⇠) 2 RM⇥M (4.22)

@K⇤M =
@k(x⇤, ⇠)

@x⇤
2 RD⇥M

. (4.23)

The distribution over the Jacobian is then obtained by marginalising the in-

ducing variables with respect to their variational density,

q(h(⇠)) = N (h(⇠) | m,S). (4.24)

The distribution over the Jacobian is then obtained via a Gaussian convolution,

J⇤ ⇠ N

0

BB@
@µ

@x⇤
+ @K⇤MK�1

MMm
| {z }

µJ

, @
2K⇤⇤ � @K⇤MK�1

MM (KMM � S)K�1
MM@KM⇤| {z }

⌃J

1

CCA.

(4.25)

- 85 -

4 Mode Remaining Trajectory Optimisation

4.2.2 Indirect Optimal Control via Latent Geodesics (IG)

This section presents a trajectory optimisation algorithm that exploits the fact that

length minimising trajectories on the manifold endowed with the expected metric

from Equation (4.19), encodes all of the goals. As shortest lengths on a manifold are

known as geodesics, we refer to them as geodesic trajectories. The algorithm pre-

sented in this section exploits a classic result of Riemannian geometry, that geodesic

trajectories are solutions to a 2nd order ODE, known as the geodesic ODE fG. As

solutions to this ODE encode the necessary conditions for finding length minimis-

ing trajectories, the method presented in this section resembles an indirect optimal

control method.

Geodesics Given the method for calculating lengths on Riemannian manifolds

in Equation (4.9), the notion of a shortest trajectory, or geodesic trajectory, is

defined as follows,

Definition 4.2.2 (Geodesic). Given two points x0,xf 2 M = h(X), a

Geodesic is a length minimising trajectory (curve) x̄g connecting the points,

such that,

x̄g = arg min
x̄

Length(h(x̄)) (4.26a)

s.t. x(t0) = x0 (4.26b)

x(tf) = xf . (4.26c)

Geodesic ODE An important observation from Carmo, 1992, is that geodesics

satisfy a continuous-time 2nd order ODE, given by,

ẍ(t) = fG(t,x, ẋ)

= �1

2
G�1(x(t))

@ vec[G(x(t))]

@x(t)

�T

(ẋ(t) ⌦ ẋ(t)), (4.27)

where vec[G(x(t)]) stacks the columns of G(x(t)) and ⌦ denotes the Kronecker

product. The implication of Equations (4.26) and (4.27), is that trajectories that

- 86 -

4.2 Mode Remaining Control via Latent Geometry

are solutions to the 2nd order ODE in Equation (4.27), implicitly minimise their

length on the manifold, i.e. the objective in Equation (4.9). Given this observation,

computing geodesics involves finding a solution to Equation (4.27) with x(t0) = x0

and x(tf) = xf . This is a boundary value problem (BVP) with a smooth solution

so it can be solved using any BVP solver, e.g. (multiple) shooting or collocation

methods.

Implicit Trajectory Optimisation

Solving the 2nd order ODE in Equation (4.27) with the expected metric from Equa-

tion (4.20), is equivalent to solving our trajectory optimisation problem subject to

the same boundary conditions. This resembles an indirect optimal control method

as it is based on an observation that the necessary conditions for optimality are

encoded via the geodesic ODE. However, it is worth noting that solutions to the

geodesic ODE are not guaranteed to satisfy the dynamics constraints.

Collocation Since neither ẋ(t0) nor ẋ(tf) are known, Equation (4.27) cannot be

solved with simple forward or backward integration. Instead, the problem is tran-

scribed using collocation. Collocation methods are used to transcribe continuous-

time trajectory optimisation problems into nonlinear programs, i.e. constrained

parameter optimisations (Fahroo and Ross, 2000; Kelly, 2017). The expected met-

ric in Equation (4.19) is substituted into Equation (4.27) and solved via collocation.

This work implements a Hermite-Simpson collocation method. It parameterises the

state trajectory using cubic polynomials and the dynamics equations (the geodesic

ODE in this case) are imposed as constraints at a set of collocation points. The

trajectory [t0, tf] is discretised into I intervals where the collocation points are the

mid points of the discretisation intervals. The collocation states z̄ = {zi+ 1
2
}I�1

i=0 are

obtained by interpolating the polynomials. The derivative of the collocation states

w.r.t. time {żi+ 1
2
, z̈i+ 1

2
}I�1

i=0 are obtained algebraically via the polynomials. The

collocation constraints then enforce the second derivative of the collocation states

- 87 -

4 Mode Remaining Trajectory Optimisation

interpolated by the polynomials {z̈i+ 1
2
}I�1

i=0 , to equal the geodesic ODE fG at the

collocation points. This is achieved through the collocation defects,

�z̈i+ 1
2

= z̈i+ 1
2

� fG(ti+ 1
2
, zi+ 1

2
, żi+ 1

2
) = 0 8i 2 {0, . . . , I � 1}, (4.28)

where z̈i+ 1
2
, żi+ 1

2
, zi+ 1

2
are obtained by interpolating between i and i + 1. Equa-

tion (4.28) defines a set of constraints that ensure trajectories are solutions to the

geodesic ODE fG. The nonlinear program that this method solves is given by,

min
z0...zI ,ż0...żI

I�1X

i=0

c(zi, żi) (4.29a)

s.t. �z̈i+ 1
2

= 0 8i 2 {0, . . . , I � 1} (4.29b)

z0 = x0 (4.29c)

zI = xf . (4.29d)

Notice that no integrals need to be computed as all of the functions are algebraic

operations. In practice, a quadratic cost function is used to regularise the state

derivative ż,

c(zi, żi) = żT
i Rżi = kżikR, (4.30)

where R is a user-defined, real symmetric positive definite weight matrix. It is

solved using Sequential Least Squares Programming (SLSQP) in SciPy (Virtanen

et al., 2020).

Latent variable controls This nonlinear program returns a collocation state tra-

jectory z̄ which parameterises a continuous-time state trajectory (via the polyno-

mials). However, it does not return the control trajectory. The control trajectory

is recovered from the state trajectory by performing inference in the probabilistic

dynamics model. In order to do this, the state trajectory is first discretised. In

practice, using the collocation states as the discretised state trajectory worked well,

- 88 -

4.2 Mode Remaining Control via Latent Geometry

i.e. x̄ = {xt}I
t=0 = {zi}I

i=0. The state di↵erence outputs �x̄ = {�xt}T
t=1 are cal-

culated from the state trajectory x̄. The control trajectory ū is then inferred from

the state trajectory by extending the ELBO for the desired mode’s SVGP expert

with latent variable inputs. Following Hensman et al., 2013, the ELBO for a single

SVGP expert is given by,

log p(�x̄ | x̄, ū) � Eq(fk(x̄,ū))[log p(�x̄ | fk(x̄, ū))

� KL(q(fk(⇣k)) | p(fk(⇣k)))) := LSVGP, (4.31)

where the variational posterior is given by q(fk(x̄, ū)) =
R

p(fk(x̄, ū) | fk(⇣k))q(fk(⇣k))dfk(⇣k).

The control inputs ū are recovered by treating them as latent variables and extending

the lower bound to,

log p(�x̄ | x̄) = log

Z
p(�x̄ | x̄, ū)p(ū)dū (4.32)

� Eq(ū)[LSVGP + log p(ū) � log q(ū)], (4.33)

where each time step of the latent control trajectory is assumed to be normally

distributed,

p(ū) =
T�1Y

t=0

N (ut | 0, I), (4.34)

and its variational posterior is given by,

q(ū) =
T�1Y

t=0

N (ut | mt,St). (4.35)

The posterior over the latent control trajectory q(ū) ⇡ p(ū | x̄, �x̄) is obtained by

finding the variational parameters {mt,St}T�1
t=0 that maximise the ELBO in Equa-

tion (4.33).

Although this method provides an elegant solution to finding trajectories that satisfy

Goals 1, 2 and 3, it is not without its limitations. First of all, this approach does

- 89 -

4 Mode Remaining Trajectory Optimisation

not necessarily find trajectories that satisfy the dynamics constraints, as it projects

the problem onto the geodesic ODE.

Remark. Dynamics constraints are not guaranteed to be satisfied.

Secondly, it does not consider the full distribution over state-control trajectories.

Without the inclusion of the full probabilistic dynamics model, it is impossible to

consider the full distribution over state-control trajectories. Although propagating

uncertainty through a single dynamics GP is straightforward, handling the colloca-

tion constraints is not. This is because the geodesic ODE will become a Stochastic

Di↵erential Equation (SDE).

Remark. Ignores much of the stochasticity inherent in the problem.

4.2.3 Direct Optimal Control via Riemannian Energy (DRE)

This section details a direct optimal control approach which embeds the mode re-

maining behaviour directly into the Stochastic Optimal Control (SOC) problem, via

a geometric objective function. In contrast to the previous approach, this method:

1. enforces the dynamics constraints,

2. principally handles the uncertainty associated with the dynamics.

This approach is a shooting method that enforces the dynamics constraints through

simulation, i.e. the state trajectory is enforced to match the integral of the dynamics

with respect to time.

Similar to the previous approach, this method builds on the observation that length

minimising trajectories on the Riemannian manifold M, associated with the desired

mode’s gating function hk⇤ , encodes the goals. Further to this, this method exploits

the fact that length minimising trajectories on a Riemannian manifold M, are also

- 90 -

4.2 Mode Remaining Control via Latent Geometry

energy minimising trajectories (Carmo, 1992). As such, mode remaining behaviour

can be encoded by solving,

min
ū

J⇡(x0) (4.36a)

s.t. xt+1 ⇠ p(xt+1 | xt,ut) 8t 2 {0, . . . , T � 1} (4.36b)

ut 2 U 8t 2 {0, . . . , T � 1} (4.36c)

x0 = x0 (4.36d)

with an objective function that minimises the Riemannian energy,

J⇡(x) = E
"

Energy(h(x̄))| {z }
Riemannian energy

+ (xT � xf)TH(xT � xf)
| {z }

terminal cost

+
T�1X

t=0

uT
t Rut| {z }

control cost

| x0 = x

#
,

(4.37)

where H and R are user-defined, real, symmetric, positive semi-definite and positive

definite matrices respectively. The energy of a trajectory on a Riemannian manifold,

endowed with the metric G, is given by,

Energy(h(x̄)) =
TX

t=1

�xT
t Gxt�xt, (4.38)

where �xt = xt � xt�1 is the state di↵erence. The mode remaining behaviour and

the terminal state boundary condition are encoded via the objective function.

Remark. In contrast to the collocation solver in Section 4.2.2, the terminal state

boundary condition is encoded via the cost function, instead of being enforced by the

solver.

This may seem like an easy optimisation problem, however, calculating the expected

cost in Equation (4.37) is not straightforward. Given a starting state x0 and a

control trajectory ū, the expectation in Equation (4.37) is taken with respect to the

joint state-metric distribution over a trajectory, p(x̄, Ḡ, | x0, ū). Calculating this

- 91 -

4 Mode Remaining Trajectory Optimisation

expectation is di�cult as multi-step predictions in the MoSVGPE dynamics model

cannot be calculated in closed form.

This work adopts a two-stage approximation to obtain a closed-form expression

for the expected cost. First, multi-step dynamics predictions are approximated to

obtain normally distributed states at each time step. Given normally distributed

states, calculating the expected terminal and control cost terms in Equation (4.37)

is straightforward. However, the expected Riemannian energy in Equation (4.37)

has no closed-form expression, due to the dependence of metric G on the state. The

second stage approximates the calculation of the expected Riemannian energy under

normally distributed states.

Approximate Inference for Dynamics Predictions

Multi-step predictions in the MoSVGPE dynamics model have no closed-form so-

lution because the state di↵erence after the first time step is a Gaussian mixture,

and propagating Gaussian mixtures through Gaussian processes has no closed-form

solution. Further to this, constructing approximate closed-form solutions is di�cult,

due to the exponential growth in the number of Gaussian components.

Consider assuming each of the K dynamics modes to be independent. Recur-

sively propagating the Gaussian components associated with the state, through

all of the modes, over a trajectory of length T , would lead to the final state

consisting of K
T Gaussian components.

This work sidesteps this issue and obtains closed-form multi-step predictions by en-

forcing that the controlled system remains in the desired dynamics mode. Multi-step

predictions can then be calculated in closed-form by cascading single-step predictions

using the desired dynamics GP, whose transition density is given by,

p(xt+1 | xt,ut, ↵t = k
⇤) = N

�
fk⇤(x̂t) | Ak⇤mk⇤ , kk⇤(x̂t, x̂t) + (Sk⇤ � kk⇤(⇣k⇤ , ⇣k⇤))AT

k⇤
�

(4.39)

- 92 -

4.2 Mode Remaining Control via Latent Geometry

where Ak⇤ = kk⇤(x̂t, ⇣k⇤)kk⇤(⇣k⇤ , ⇣k⇤)�1 and x̂t = (xt,ut). Cascading single-step

predictions requires recursively mapping uncertain state-control inputs through the

desired mode’s dynamics GP, i.e. recursively calculating the following integral,

p(xt+1 | x0,u0:t,↵0:t = k
⇤) =

Z
p(xt+1 | xt,ut, ↵t = k

⇤)p(xt | x0,u0:t�1,↵0:t�1 = k
⇤)dxt

(4.40)

with p(x0) = �(x0). Approximate closed-form solutions exist for propagating nor-

mally distributed states and controls through GP models (Girard, 2004; Kuss, 2006;

Quinonero-Candela et al., 2003). This work exploits the moment-matching approx-

imation from Section 7.2.1 of Kuss, 2006.

� � mode remaining chance constraints Enforcing the controlled system to re-

main in the desired dynamics mode simplifies calculating multi-step predictions and

the expected cost in Equation (4.37). As the dynamics model is learned from

observations, this work relaxes the requirement to ensuring that trajectories are

� � mode remaining (Definition 4.1.1). The conditions to be � � mode remaining

can be enforced with chance constraints,

Pr(↵t = k
⇤ | x0,u0:t,↵0:t�1 = k

⇤) � 1 � � 8t 2 {0, . . . , T}. (4.41)

These constraints enforce the system to remain in the desired dynamics mode with

satisfaction probability p↵ = 1 � �, at each time step. As the MoSVGPE model

assumes that the mode indicator variable ↵ depends on the state via the gating

function, this probability is calculated as follows,

Pr(↵t = k
⇤ | x0,u0:t,↵0:t�1 = k

⇤) =

Z
Pr(↵t = k

⇤ | h(xt))| {z }
Bernoulli/softmax likelihoodZ
q(h(xt) | xt)| {z }
approx posterior

p(xt | x0,u0:t�1,↵0:t�1 = k
⇤)| {z }

state dist

dxtdh(xt)

(4.42)

- 93 -

4 Mode Remaining Trajectory Optimisation

where q(h(xt) | xt) is the approximate posterior over the gating functions from

Equation (3.41).

Approximate Riemannian Energy

Given this approach for simulating the MoSVGPE dynamics model, the state at

each time step is normally distributed. Unlike the terminal and control cost terms

in Equation (4.37), the expected Riemannian energy,

Ex̄,J̄[Energy(x̄)] =
TX

t=1

E
h
�xT

t EJxt |xt

⇥
JxtJ

T
xt

⇤
�xt

i
, (4.43)

has no closed-form expression under normally distributed states. This is because the

metric tensor G depends on the Jacobian, which depends on the state. However, it

is possible to approximate the expected energy to obtain a closed-form expression.

The distribution over the Jacobian when the input location in normally distributed

xt ⇠ N (µxt ,⌃xt) can be calculated in closed-form when using the Squared Exponen-

tial kernel. However, this work simplifies the problem and calculates the Jacobian

at the state mean of each time step along a trajectory, i.e. Jxt ⇡ @h(µxt)
@µxt

. The

distribution over the Jacobian given deterministic inputs can be calculated using

Equation (4.14).

Approximating the Jacobian to be independent of the state enables the expected

metric tensor to be calculated in closed-form with Equation (4.20). Given this

approximation, the Riemannian energy retains a quadratic form, so the expectation

with respect to �xt ⇠ N (µ�xt ,⌃�xt) can be calculated with,

E[Energy(h(x̄))] ⇡
TX

t=1

E�xt

⇥
�xT

t EJxt
[Gxt]�xt

⇤

=
TX

t=1

µT
�xt

(µJµ
T
J + ⌃J)µ�xt + tr

��
µJµ

T
J + ⌃J

�
⌃�xt

�
(4.44)

- 94 -

4.2 Mode Remaining Control via Latent Geometry

The expected metric tensor encourages trajectories to 1) follow contours on

the desired mode’s gating function, encoding Goal 2, i.e. mode remaining be-

haviour, and to 2) avoid entering regions where it is uncertain which mode

governs the dynamics, i.e. Goal 3.2. The expectation over the state di↵erence

then encourages trajectories to remain in regions of the desired dynamics mode

with low uncertainty, i.e. Goal 3.1.

Given this approximation for the expected Riemannian energy, the expected cost in

Equation (4.36) can be calculated in closed-form with,

J(x̄, ū) = (µxT � xf)TH(µxT � xf) + tr(H⌃xT)
| {z }

expected terminal cost

(4.45)

+
TX

t=1

µT
�xt

(µJµ
T
J + ⌃J)µ�xt + tr

��
µJµ

T
J + ⌃J

�
⌃�xt

�

| {z }
expected Riemannian energy

(4.46)

+
T�1X

t=0

µT
ut

Rµut + tr(R⌃ut)

| {z }
expected control cost

. (4.47)

This work then approximately solves the problem in Equation (4.1) by solving,

min
ū

J(x̄, ū) (4.48a)

s.t. Equations (4.40) and (4.41) (4.48b)

using SLSQP in SciPy (Virtanen et al., 2020). This method obtains closed-form

expressions for the expected cost in Equation (4.36) by constraining the system to

be � � mode remaining (Definition 4.1.1).

Practical Implementation

An alternative approach to obtain mode remaining behaviour is to optimise subject

to the chance constraints in Equation (4.41) alone, i.e. without the Riemannian en-

- 95 -

4 Mode Remaining Trajectory Optimisation

ergy cost term. However, this constrained optimisation is often not able to converge

in practice. Experiments and intuition indicate that the geometry of the gating

functions provides a much better optimisation landscape. This is because the gat-

ing functions vary gradually over the state domain, whilst the mixing probability

changes abruptly at the boundaries between dynamics modes.

Therefore in practice, the optimisation in Equation (4.48) is performed uncon-

strained, i.e. without enforcing the chance constraints at every iteration. Instead,

the chance constraints are used to validate trajectories found by the unconstrained

optimiser, before deploying them in the environment. In most experiments, this

strategy was far superior than constraining the optimisation at every iteration.

4.3 Mode Remaining Control as Probabilistic

Inference

This section presents an alternative approach to finding mode remaining trajec-

tories, named Mode Remaining Control as Inference (MRCaI). In contrast to the

previous section that encoded mode remaining behaviour via the latent geometry of

the MoSVGPE’s gating network, this section unleashes the power of the probability

mass function over the expert indicator variable. As all MoGPE methods have a

probability mass function over the expert indicator variable, the method presented

in this chapter is applicable in a wider range of MoGPE dynamics models. Sec-

tion 4.3.1 recaps the necessary background and related work and Section 4.3.2 then

details the trajectory optimisation algorithm.

4.3.1 Background and Related Work

This section first recaps the Control as Inference (CaI) framework. To formulate

optimal control as probabilistic inference it is first embedded into a graphical model

(see Figure 4.2a). The joint probability model (over a trajectory) is augmented with

an additional variable to encode the notion of cost (or reward) over the trajectory

- 96 -

4.3 Mode Remaining Control as Probabilistic Inference

(see Figure 4.2b). The new variable is a Bernoulli random variable Ot 2 {0, 1}, that

indicates if time step t is optimal Ot = 1, or not optimal Ot = 0. The likelihood dis-

tribution can be formulated by mapping the negative cost through a monotonically

increasing function g, giving the likelihood,

Pr(Ot = 1 | xt,ut) := g(�c(xt,ut)). (4.49)

A common (and convenient) approach is to formulate the likelihood using an expo-

nential transform of the cost. This results in a Boltzmann distribution where the

inverse temperature, �, is used to scale the cost,

Pr(Ot = 1 | xt,ut) / exp(��c(xt,ut)). (4.50)

The resulting negative log-likelihood, for a single state-control trajectory x̄, ū, is an

a�ne transformation of the cost,

� log Pr(Ō | x̄, ū) = �c(x̄, ū), (4.51)

which preserves convexity. The set of optimal Bernoulli variables over a trajectory

is denoted Ō = {Ot = 1}T
t=0. When the inverse temperature parameter is set to

� = 1 the maximum likelihood trajectory coincides with classical optimal control

(Toussaint, 2009).

Inference of Sequential Latent Variables

The joint probability for an optimal trajectory (i.e. for Ot = 1 for all t 2 {0, . . . , T}),

can be factorised using its Markovian structure,

p(Ō, x̄, ū | x0) =

2

4
TY

t=0

Pr(Ot = 1 | xt,ut)| {z }
cost

3

5

2

64
T�1Y

t=0

p(xt+1 | xt,ut)| {z }
dynamics

⇡(ut | xt)| {z }
controller

3

75, (4.52)

- 97 -

4 Mode Remaining Trajectory Optimisation

x0 x1 x2 x3

u0 u1 u2

(a) Graphical model with states and controls.

x0 x1 x2 x3

u0 u1 u2

O0 O1 O2

(b) Graphical model with optimality variable.

Figure 4.2: Graphical models of control formulated as inference.

where ⇡(ut | xt) denotes the controller or policy. Toussaint, 2009 highlights that

although the maximum likelihood trajectory coincides with the classical optimal

trajectory, taking expectations over trajectories i.e. calculating log p(Ō | x0), is not

equivalent to expected cost minimisation. Rawlik et al., 2013 extend the concepts

from Toussaint, 2009 to show the general relation to classical SOC. For a given policy

⇡, they introduce the posterior distribution over state-control trajectories as,

p⇡(x̄, ū | Ō,x0) = Z
�1

"
TY

t=0

exp(��c(xt,ut))

#"
T�1Y

t=0

p(xt+1 | xt,ut)⇡(ut | xt)

#
,

(4.53)

where Z = p(Ō | x0). This distribution p⇡(x̄, ū | Ō,x0) is conditioned on the

optimality variable but generated by a potentially uniform policy ⇡.

They then distinguish between a prior policy ⇡0 and an unknown control policy ⇡.

The prior distribution over state-control trajectories under the control policy ⇡, is

given by,

q⇡(x̄, ū) =
T�1Y

t=0

p(xt+1 | xt,ut)⇡(ut | xt). (4.54)

Intuitively q⇡(x̄, ū), is thought of as the controlled process, which is not conditioned

on optimality and p⇡0(x̄, ū | Ō,x0) as the posterior process, conditioned on opti-

- 98 -

4.3 Mode Remaining Control as Probabilistic Inference

mality but generated by a potentially uniform policy, ⇡0. The dual problem is then

to find the control policy, ⇡, where the controlled process, q⇡(x̄, ū), matches the

posterior process, p⇡0(x̄, ū | Ō,x0). Given ⇡0 is an arbitrary stochastic policy and

D is the set of deterministic policies, the problem,

⇡⇤ = arg min
⇡2D

KL(q⇡(x̄, ū) || p⇡0(x̄, ū | Ō,x0))

= arg min
⇡2D

Z + � Eq⇡(x̄,ū)[c(x̄, ū)] + Eq⇡(x̄)[KL(⇡ || ⇡0)]

= arg min
⇡2D

Z|{z}
constant

+ � Eq⇡(x̄,ū)[c(x̄, ū)]
| {z }

expected costs

� Eq⇡(x̄,ū)[log ⇡0(ū | x̄)] � Eq⇡(x̄)[H[⇡]]
| {z }

max entropy term

,

(4.55)

is equivalent to the SOC problem, with a modified integral cost,

ĉ(xt,ut) = c(xt,ut) � 1

�
log ⇡0(ut | xt). (4.56)

The problem in Equation (4.55) finds trajectories that balance minimising expected

costs Eq⇡(x̄,ū)[c(x̄, ū)] and selecting a policy ⇡ that is similar to the prior policy ⇡0.

If the prior policy ⇡0 is assumed to be uniform, then Eq⇡(x̄,ū)[log ⇡0(ū | x̄)] becomes

constant and the optimised policy, ⇡⇤, is a balance of minimising expected costs and

maximising the policy’s entropy,

⇡⇤ = arg min
⇡2D

� Eq⇡(x̄,ū)[c(x̄, ū)]
| {z }

expected costs

� Eq⇡(x̄)[H[⇡]]
| {z }

max entropy term

. (4.57)

Maximum entropy regularisation Formulating trajectory optimisation in this

way encodes the maximum causal entropy principle, which is often used to achieve

robustness, in particular for inverse optimal control (Ziebart, 2010).

Other approaches There are multiple approaches to performing inference in this

graphical model. Trading accuracy for computational complexity is often required

for real-time control. In this case, one approach is to approximate the dynamics

- 99 -

4 Mode Remaining Trajectory Optimisation

�2 0 2

x

�2

0

2

y

x0

xf

Mode boundary

�2 0 2

x

x0

xf

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 1 | x)

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 2 | x)

Mode boundary

Environment boundary No observations

Figure 4.3: Visualisation of the probability mass function over the expert indicator variable

after training MoSVGPE on the state transition data set from the simulated version of the

2D quadcopter environment in the illustrative example from Section 1.1. The start state x0

and target state xf are overlayed along with the mode boundary (purple line) and the subset

of the environment which has not been observed (hashed box).

with linear or quadratic approximations, as is done in iLQR/iLQG and GP respec-

tively. Given linear dynamics, the full graphical model in Equation (4.52) can be

computed using approximate Gaussian message passing, for which e↵ective meth-

ods exist (Loeliger et al., 2007). The inference problem can then be solved using

the expectation maximisation algorithm for dynamical system estimation (Ghahra-

mani and Roweis, 1999; Schön et al., 2011; Shumway and Sto↵er, 1982), with input

estimation (Watson et al., 2021).

4.3.2 Mode Remaining Control as Inference

This section details how the Control as Inference (CaI) framework can be extended

to multimodal dynamical systems and used to encode mode remaining behaviour.

Figure 4.3 shows the probability mass function over the expert indicator variable

after training MoSVGPE on the historical data set of state transitions from the

quadcopter navigation problem in Section 1.1. Intuitively, the goal is to find trajec-

- 100 -

4.3 Mode Remaining Control as Probabilistic Inference

x0 x1 x2 x3

u0 u1 u2

O0 O1 O2

↵0 ↵1 ↵2 ↵3

Figure 4.4: Graphical model with optimality and mode indicator variables.

tories that remain in regions of the dynamics with a high probability of remaining

in the desired dynamics mode.

In order to find trajectories that remain in the desired dynamics mode, this work

further augments the graphical model in Figure 4.2 with the mode indicator variable

↵ 2 A from Equation (3.1). The resulting graphical model is shown in Figure 4.4,

where the evidence is that Ot = 1 and ↵t = k
⇤ for all t 2 {0, . . . , T}. The joint

probability model is then given by,

p(Ō, ↵̄, x̄, ū | x0) =

 TY

t=0

Pr(Ot = 1 | xt,ut)| {z }
cost

Pr(↵t = k
⇤ | xt)| {z }

mode remaining term

�

 T�1Y

t=0

p(xt+1 | xt,ut, ↵t = k)| {z }
dynamics

⇡(ut | xt)| {z }
controller

�
, (4.58)

where ↵̄ = {↵t = k
⇤}T

t=0 denotes every time step of a trajectory belonging to the

desired dynamics mode k
⇤. Equation (4.58) says that the probability of observing

a trajectory is given by taking the product of its probability of occurring according

to the dynamics, with the exponential of the negative cost and the probability of

remaining in the desired dynamics mode. Given deterministic dynamics, the tra-

jectory with the highest probability will be that with the lowest cost and highest

probability of remaining in the desired dynamics mode.

- 101 -

4 Mode Remaining Trajectory Optimisation

This work draws on the connection between KL-divergence control (Rawlik et al.,

2013) and structured variational inference. Whilst the derivation shown here di↵ers

from Rawlik et al., 2013, the underlying framework and objective are the same.

In variational inference, the goal is to approximate a distribution p(y) with an-

other, simpler distribution q(y). Typically this distribution q(y) is selected to be

a product of conditional distributions connected in a chain or tree, which lends it-

self to tractable inference. In this work, the goal is to approximate the intractable

distribution over optimal trajectories,

p(x̄, ū | x0, Ō, ↵̄) = Z
�1

"
TY

t=0

exp(��c(xt,ut))| {z }
cost

Pr(↵t = k
⇤ | xt)| {z }

mode remaining term

#

"
T�1Y

t=0

p(xt+1 | xt,ut, ↵t = k)| {z }
dynamics

⇡(ut | xt)| {z }
controller

#
(4.59)

with the variational distribution q(x̄, ū | x0, ↵̄). Note that Z = p(Ō, ↵̄ | x0). In

this work the variational distribution over the controller is assumed independent of

the state. That is, instead of parameterising the controller with state feedback, it is

parameterised as a set of open-loop controls ū = {u0, . . . ,uT�1} that are treated as

random variables with density q(ū). Calculating q(x̄, ū | x0, ↵̄) for a set of controls

q(ū) =
QT�1

t=0 q(ut), requires simulating the trajectory in the learned, single-step

dynamics model, i.e. making long-term predictions.

Approximate Inference for Dynamics Predictions

As this method is using a learned representation of the transition dynamics, it suf-

fices to assume that the dynamics are given by the desired mode’s learned dynamics.

Constructing approximate closed-form solutions based on the model in Chapter 3

is di�cult, due to the exponential growth in the number of Gaussian components.

Similar to the approach in Section 4.2.3, this method obtains multi-step predic-

tions by cascading single-step predictions through the desired mode’s dynamics GP.

- 102 -

4.3 Mode Remaining Control as Probabilistic Inference

However, this approach extends the predictions to handle normally distributed con-

trols ut ⇠ N (µut ,⌃ut). Multi-step predictions are then obtained by recursively

calculating the following integral,

q(xt+1 | x0, ↵̄0:t)| {z }
next multi-step state dist

=

Z

U

Z

X
p(xt+1 | xt,ut, ↵t = k)| {z }

single-step dynamics

q(xt | x0, ↵̄0:t�1)| {z }
multi-step state dist

q(ut)| {z }
control

dxtdut,

(4.60)

using the moment matching approximation from (Kuss, 2006). Note that ↵̄0:t de-

notes the first t elements of ↵̄, i.e. ↵̄0:t = {↵i = k
⇤}t

i=0. Given this method for

making multi-step predictions, the variational distribution over state-control trajec-

tories is given by,

q(x̄, ū | x0, ↵̄) =
T�1Y

t=0

q(xt+1 | x0, ↵̄0:t)q(ut), (4.61)

with q(x0) = �(x0). Note that the state and control at each time step are normally

distributed.

Variational Inference for Sequential Latent Variables

Variational inference seeks to optimise q(ū) w.r.t. the Evidence Lower Bound

(ELBO). In this setup, the evidence is that Ot = 1 and ↵t = k
⇤ for all t 2 {0, . . . , T}.

Given this, the ELBO is given by,

logp(Ō, ↵̄ | x0) = log Eq(x̄,ū|x0,↵̄)

p(Ō, ↵̄, x̄, ū | x0)

q(x̄, ū | x0, ↵̄)

�

= log Eq(x̄,ū|x0,↵̄)

"QT
t=0[Pr(Ot = 1 | xt,ut) Pr(↵t = k

⇤ | xt)]
QT�1

t=0 ⇡(ut | xt)QT�1
t=0 q(ut)

#

� �
TX

t=0

Eq(xt|x0,↵̄0:t�1)q(ut)[c(xt,ut)]| {z }
expected cost

+
TX

t=0

Eq(xt|x0,↵̄0:t�1)[log Pr(↵t = k
⇤ | xt)]| {z }

mode remaining term

�
T�1X

t=0

KL(q(ut) || ⇡(ut | xt)) := Lmode, (4.62)

- 103 -

4 Mode Remaining Trajectory Optimisation

where the inequality is obtained via Jensen’s inequality. Note the cancellation in the

second line where we assume p(xt+1 | xt,ut, ↵t = k) = q(xt+1 | x0, ↵̄0:t). Assuming

a uniform prior policy ⇡(ut | xt) leads to the KL term reducing to an entropy term

and a constant,

Lmode = �
TX

t=0

Eq(xt|x0,↵̄0:t�1)q(ut)[c(xt,ut)]| {z }
expected cost

+
TX

t=0

Eq(xt|x0,↵̄0:t�1)[log Pr(↵t = k
⇤ | xt)]| {z }

mode remaining term

+
T�1X

t=0 ((((((((((((((((Eq(xt|x0,↵̄0:t�1)q(ut)[log ⇡(ut | xt)]| {z }
constant

+
T�1X

t=0

H[ut]| {z }
entropy

. (4.63)

The ELBO in Equation (4.63) resembles the KL control objective in Equation (4.57)

but with an extra term encoding the mode remaining behaviour. In practice, max-

imum entropy control is achieved by parameterising the control at each time step

to be normally distributed q(ut) = N (ut | µut ,⌃ut). The control dimensions are

assumed independent so ⌃ut becomes diagonal. The maximum entropy behaviour

can be omitted by using deterministic controls, i.e. parameterising them to follow a

Dirac delta distribution q(ut) = �(ut). The control problem is then given by,

max
ū

�
TX

t=0

Eq(xt|x0,↵̄0:t�1)q(ut)[c(xt,ut)]| {z }
expected cost

+
TX

t=0

Eq(xt|x0,↵̄0:t�1)[log Pr(↵t = k
⇤ | xt)]| {z }

mode remaining term

+
T�1X

t=0

H[ut]| {z }
entropy

(4.64a)

s.t. Equation (4.60) (4.64b)

which encodes mode remaining behaviour alongside maximum entropy control. The

variational parameters µut (and ⌃ut) are found by maximising the ELBO using

gradient-based optimisation. At each iteration, the ELBO is calculated by rolling

out the control distribution in the desired mode’s GP dynamics model using Equa-

- 104 -

4.4 Conclusion

tion (4.60). The resulting state-control trajectory is then used to calculate the

ELBO. The cost function is given by,

c(x̄, ū) = (xT � xf)TH(xT � xf)
| {z }

terminal cost

+
T�1X

t=0

uT
t Rut| {z }

control cost

, (4.65)

where H and R are user-defined, real, symmetric, positive semi-definite and positive

definite matrices respectively. This cost function encodes the terminal state bound-

ary condition in Equation (4.1) via a quadratic cost that minimises the deviation of

the final state xT from the target state xf . Importantly, the expected value of this

cost under normally distributed states and controls can be calculated in closed-form

with,

Ex̄,ū[c(x̄, ū)] = (µxT � xf)TH(µxT � xf) + tr(H⌃xT) +
T�1X

t=1

µT
ut

Rµut . +
T�1X

t=1

tr(R⌃ut)

(4.66)

4.4 Conclusion

This chapter has presented three mode remaining trajectory optimisation algo-

rithms. The first two have shown how the geometry of the MoSVGPE gating network

infers valuable information regarding how a multimodal dynamical system switches

between its underlying dynamics modes. Moreover, they have shown how this latent

geometry can be leveraged to encode mode remaining behaviour into two di↵erent

control strategies. Both of these control strategies introduce a user tunable pa-

rameter � that can be tuned to either prioritise remaining in the desired dynamics

mode or avoiding regions of high epistemic uncertainty. However, Chapter 5 will

show that setting the � parameter is not straightforward in practice. The third

method presented in this chapter has shown how the probability mass function over

the MoGPE’s expert indicator variable can be used to encode mode remaining be-

haviour for trajectory optimisation. In particular, it has shown how the MRCaI

- 105 -

4 Mode Remaining Trajectory Optimisation

framework (Kappen et al., 2013; Toussaint, 2009; Toussaint and Storkey, 2006) can

be extended to multimodal dynamical systems and how mode remaining behaviour

can be encoded by conditioning on the mode indicator variable.

In Chapter 5 the methods presented in this chapter are evaluated and compared

using the quadcopter navigation problem from the illustrative example in Section 1.1.

It turns out that in practice, the Direct Optimal Control via Riemannian Energy

(DRE) method from Section 4.2.3 and the Mode Remaining Control as Inference

(MRCaI) method from Section 4.3, perform significantly better than the Indirect

Optimal Control via Latent Geodesics (IG) method.

- 106 -

5 Quadcopter Experiments - Mode

Remaining Trajectory

Optimisation

This chapter evaluates the three mode remaining trajectory optimisation algorithms:

1. Indirect Optimal Control via Latent Geodesics (IG) from Section 4.2.2,

2. Direct Optimal Control via Riemannian Energy (DRE) from Section 4.2.3,

3. Mode Remaining Control as Inference (MRCaI) from Section 4.3.2,

in a simulated version of the illustrative example from Section 1.1. That is, flying a

velocity controlled quadcopter from an initial state x0, to a target state xf , whilst

avoiding the turbulent dynamics mode. The methods are further evaluated on a

second simulated velocity controlled quadcopter navigation problem. See Figure 5.1

for schematics of the two environments. The turbulent dynamics modes (green)

are subject to higher drift due to the wind field created by the fan. They are also

subject to higher di↵usion (process noise) resulting from the turbulence induced by

the fan. Although the exact turbulent dynamics are unknown, they are believed

to be di�cult to control. This is due to the high process noise which may lead to

catastrophic failure. Therefore, it is desirable to find trajectories that avoid entering

this turbulent dynamics mode.

The collocation solver from the Indirect Optimal Control via Latent Geodesics (IG)

method in Section 4.2 is tested on a real-world quadcopter state transition data

set. This data set was collected with constant controls so the controls could not

- 107 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

(a) Environment 1 (b) Environment 2

Figure 5.1: Visualisation of two quadcopter navigation problems in environments with dif-

ferent spatially varying modes. It shows the desired dynamics mode in blue (Mode 1) and

the turbulent dynamics mode induced by a fan in green (Mode 2). The white box indicates

a region of the environment which was not observed. The goal is to navigate from the start

state x0, to the target state xf , whilst remaining in the desired dynamics mode (Mode 1).

be recovered from the full MoSVGPE dynamics model, nor could the Direct Opti-

mal Control via Riemannian Energy (DRE) method from Section 4.2 or the Mode

Remaining Control as Inference (MRCaI) method from Section 4.3 be tested. Nev-

ertheless, the results are a small step towards validating the method’s applicability

to real-world systems. All three control methods are tested in the two simulated

environments so that they can be compared. To aid comparison with the real-world

experiments, the layout of the first simulated environment (Environment 1) was kept

consistent with the real-world experiments.

5.1 Real-World Quadcopter Experiments

The Indirect Optimal Control via Latent Geodesics (IG) method presented in Sec-

tion 4.2.2 was evaluated using data from the real-world quadcopter navigation prob-

lem detailed in Section 3.5.3. However, a di↵erent subset of the environment was

not observed and the model was trained using an old variational inference scheme,

not the one presented in Chapter 3. Figure 5.1a shows the environment and details

the quadcopter navigation problem. The controls were kept constant during data

- 108 -

5.1 Real-World Quadcopter Experiments

�2 �1 0 1 2
x

�3

�2

�1

0

1

2

y Fan

Start x0

End xf

Initial trajectory

Optimised traj � = 20

Optimised traj � = 0.5

No observations

0.28
0.36
0.44
0.52
0.60
0.68
0.76
0.84
0.92
1.00

P
r(

�
=

1|
x
)

(a) Desired mode’s mixing probability.

�2 0 2
�3

�2

�1

0

1

2

Fan

Start x0

End xf

Initial trajectory

Optimised traj � = 20

Optimised traj � = 0.5

No observations

�2 0 2
�3

�2

�1

0

1

2

Fan

Start x0

End xf

�0.6
�0.3
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

E[
h

(1
)]

0.00
0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64

V
[h

(1
)]

(b) GP posterior mean (left) and variance (right) over the desired mode’s gating function.

Figure 5.2: Indirect Optimal Control via Latent Geodesics (IG) trajectory opti-

misation results after solving the nonlinear program in Equation (4.29) using the desired

mode’s (↵ = 1) gating function from the MoSVGPE (with K = 2 experts) after training on

the real-world velocity controlled quadcopter data set. The initial (cyan) and optimised tra-

jectories’ – for two settings of � – are overlayed on the desired mode’s (a) mixing probability

and (b) gating function GP posterior.

collection, reducing the dynamics to �xt+1 = f(xt;ut = u⇤). See Section 3.5.3 for

more details on data collection and processing.

5.1.1 Model Learning

The model from Chapter 3 was instantiated with K = 2 experts and trained on

the data collected from the velocity controlled quadcopter experiment. Each mode’s

- 109 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

dynamics GP used a Squared Exponential kernel with Automatic Relevance Deter-

mination (ARD) and a constant mean function. The gating network used a single

gating function with a Bernoulli likelihood. Its GP prior utilised a Squared Expo-

nential kernel with ARD and a zero mean function.

Figure 5.2 shows the gating network posterior where the model has learned two

dynamics modes, characterised by the drift and process noise induced by the fan.

Mode 1 (red) represents the operable dynamics mode whilst Mode 2 (blue) represents

the inoperable turbulent dynamics mode. This is illustrated in Figure 5.2a which

shows the probability that the desired mode (↵ = 1) governs the dynamics over the

domain. Figure 5.2b shows the GP posterior mean (left) and variance (right) of the

gating function h1 associated with the desired dynamics mode. The mean is high

where the model believes the desired mode is responsible for predicting, low where

it believes another mode is responsible and zero where it is uncertain. The variance

(right) has also clearly captured information regarding the epistemic uncertainty,

i.e. where the model is uncertain which mode governs the dynamics.

5.1.2 Trajectory Optimisation using Indirect Optimal Control

via Latent Geodesics

The initial (cyan) trajectory in Figure 5.2 was initialised as a straight line with 10

collocation points, indicated by the crosses. The collocation solver guarantees that

trajectories end at the target state. However, trajectories are not guaranteed to

remain in the desired dynamics mode, nor are they guaranteed to satisfy the system

dynamics. Table 5.1 compares the initial trajectory to the results obtained with two

settings of the � parameter from Equation (4.20), which determines the relevance

of the covariance term in the expected Riemannian metric.

The higher probability of remaining in the desired dynamics mode indicates that

the lower setting of � = 0.5 exhibits more mode remaining behaviour. This can be

seen visually in Figure 5.2a, where the trajectory with � = 0.5 remains in regions

of the model with high probability. The right-hand plot in Figure 5.2b shows that

- 110 -

5.1 Real-World Quadcopter Experiments

Table 5.1: Indirect Optimal Control via Latent Geodesics (IG) Comparison of

performance with di↵erent settings of �. The performance measures are summed over col-

location points.

Trajectory Mixing Probability Epistemic UncertaintyPI
i=1 Pr(↵i = 1 | xi)

PI
i=1 V[h1(xi)]

Initial 7.480 1.345
Optimised � = 20.0 6.091 1.274
Optimised � = 0.5 8.118 1.437

this trajectory favours remaining in the desired mode at the cost of entering the

region of the gating network with high epistemic uncertainty. This is quantified in

Table 5.1, which shows it accumulates more gating function variance than both the

initial trajectory and the trajectory found with � = 20.0.

In contrast, the trajectory found with � = 20.0 initially remains in the desired

mode but then enters the turbulent mode in favour of avoiding the area of high

epistemic uncertainty. This is confirmed in Table 5.1 as the trajectory found with

� = 20.0 accumulates the least gating function variance over the trajectory. This is

further visualised in Figures 5.3a and 5.3b. These results align with the intended

behaviour of the user tunable � parameter. However, in this experiment, increasing

the relevance of the covariance term in the expected Riemannian metric has no

benefit. This is because it pushes the trajectory into the turbulent dynamics mode.

�1.0 �0.5 0.0 0.5 1.0
Time t

0.4

0.6

0.8

1.0

P
r(

�
t
=

1|
x

t
)

Initial trajectory

Optimised traj � = 20

Optimised traj � = 0.5

(a) Desired mode’s (↵=1) mixing probability

over the trajectories.

�1.0 �0.5 0.0 0.5 1.0
Time t

0.05

0.10

0.15

0.20

0.25

V
[h

(1
)]

Initial trajectory

Optimised traj � = 20

Optimised traj � = 0.5

(b) Posterior variance associated with the de-

sired mode’s (↵=1) gating function over the tra-

jectories.

Figure 5.3: Indirect Optimal Control via Latent Geodesics (IG) Comparision of the

initial and optimised trajectories’ performance – for two settings of � – at a) staying in the

desired mode and b) avoiding regions of the gating network with high epistemic uncertainty.

- 111 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

These results indicate the nonlinear program in Equation (4.29), i.e. solving the

geodesic ODE in Equation (4.27) via collocation, is capable of finding state tra-

jectories from x0 to xf that exhibit mode remaining behaviour. However, these

experiments have not validated the method’s ability to recover the controls from

the state trajectory using Equation (4.33). This is because a full transition dynam-

ics model has not been learned so the control trajectory cannot be recovered. In

Section 5.2 the method is evaluated in a simulated environment where its ability to

recover the controls is tested.

It is worth noting here that the mode remaining behaviour is sensitive to the toler-

ance on the collocation constraints. Setting the tolerance too small often resulted

in the solver failing to converge, whilst setting the tolerance too large omitted any

mode remaining behaviour.

5.2 Simulated Quadcopter Experiments

All of the control methods are now tested in two simulated environments so that

they can be compared. This section first details the two simulation environments.

5.2.1 Simulator Setup

The simulated environments have two dynamics modes, ↵ 2 {1, 2}, whose transition

dynamics are given by a single integrator discretised using the forward Euler method

(velocity times time). The modes are induced by di↵erent wind fields which are

characterised by their drift !k and process noise ✏k terms. Each mode’s dynamics

are given by,

fk(xt,ut; �t = 0.25) = xt + ut ⇥ �t + !k + ✏k (5.1)

✏k ⇠ N (0,⌃✏k). (5.2)

- 112 -

5.2 Simulated Quadcopter Experiments

�2 0 2

x

�3

�2

�1

0

1

2

3
y

x0

xf

Mode boundary

(a) Environment 1 - !1 =
{0.02,�0.4}, !2 = {�2.0,�0.4},
⌃✏1 = diag([0.0002, 0.0001]) and

⌃✏2 = diag([0.2, 0.05])

�2 0 2

x

�3

�2

�1

0

1

2

3

y

x0

xf

M
o
d
e

b
ou

n
d
ary

(b) Environment 2 - !1 = {0.4, 0.02}, !2 =
{0.4,�2.0}, ⌃✏1 = diag([0.0001, 0.0002]) and

⌃✏2 = diag([0.05, 0.2])

Figure 5.4: Simulated Environments - Visualisation of the simulated environments with

their true mode boundaries indicated by the purple lines. The state transition data set

sampled from each environment is visualised by the quiver plots. The initial x0 and target

states xf for the trajectory optimisation are overlayed.

The state domain is constrained to x, y 2 [�3, 3] and min/max controls are imple-

mented by constraining the control domain to vx, vy 2 [�5, 5].

Data set We sampled 4000 state transitions from each environment with �t =

0.25s. We then removed a subset of the state transitions to induce a region of high

epistemic uncertainty in the learned dynamics model. This enabled the methods’

ability to avoid regions of high epistemic uncertainty to be tested. Figure 5.4 shows

the two environments as well as the state transition data sets that were sampled

from them. In Environment 2, the turbulent dynamics mode and the unobserved

regions are in di↵erent locations to Environment 1. Further to this, the region with

no observations does not overlap the mode boundary like in Environment 1.

- 113 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

5.2.2 Model Learning

Following the experiments in Section 5.1, the model from Chapter 3 was instanti-

ated with K = 2 experts, one to represent the desired dynamics mode and one to

represent the turbulent dynamics mode. The experiments used the same GP priors

and hyperparameters as the real-world experiments in Section 5.1. However, in con-

trast to the real-world experiments, the simulated experiments presented here learn

the full transition dynamics model, i.e. they do not assume constant controls. Fig-

ures 5.5 and 5.6 show the gating network posteriors after training on the data sets

from Environment 1 and Environment 2 respectively. In both environments, Expert

1 represents the turbulent dynamics mode and Expert 2 represents the operable,

desired dynamics mode. This results from Expert 1 learning much higher drift and

process noise than Expert 2.

5.2.3 Performance Indicators

Before evaluating the three trajectory optimisation algorithms in the simulated en-

vironments, let us restate the goals from Chapter 4:

Goal 1 Navigate to the target state xf ,

Goal 2 Remain in the operable, desired dynamics mode k
⇤,

Goal 3 Avoid regions of the learned dynamics with high epistemic uncertainty,

Goal 3.1 in the desired dynamics mode fk⇤ , i.e. where the underlying dy-

namics are not known,

Goal 3.2 in the gating network ↵, i.e. where it is not known which mode

governs the dynamics.

The performance of the trajectory optimisation algorithms are evaluated using four

performance indicators:

- 114 -

5.2 Simulated Quadcopter Experiments

�2 0 2

x

�2

0

2

y

x0

xf

Mode boundary

�2 0 2

x

x0

xf

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 1 | x)

Mode boundary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 2 | x)

Mode boundary

Environment boundary No observations

(a) Mixing probabilities

�2 0 2

x

�2

0

2

y

x0

xf

Mode boundary

�2 0 2

x

x0

xf

Mode boundary

�24 �16 �8 0 8 16 24
Gating function h2(x) mean

0 4 8 12 16 20 24 28 32 36
Gating function h2(x) variance

Mode boundary

Environment boundary No observations

(b) Gating function’s GP posterior

Figure 5.5: Environment 1 Visualisation of the gating network posterior after training

MoSVGPE on the state transition data set from Environment 1. (a) shows the probability

mass function over the expert indicator variable and (b) shows the gating function’s GP

posterior mean (left) and posterior variance (right). The start state x0 and target state xf

are overlayed along with the mode boundary (purple line) and the subset of the environment

which has not been observed (hashed box).

- 115 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

�2 0 2

x

�3

�2

�1

0

1

2

3
y

x0

xf

M
o
d
e

b
ou

n
d
ary

�2 0 2

x

x0

xf

M
o
d
e

b
ou

n
d
ary

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 1 | x)

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 2 | x)

Environment boundary No observations

(a) Mixing probabilities

�2 0 2

x

�3

�2

�1

0

1

2

3

y

x0

xf

M
o
d
e

b
ou

n
d
ary

�2 0 2

x

x0

xf

M
o
d
e

b
ou

n
d
ary

�10 0 10 20 30
Gating function h2(x) mean

0 30 60 90 120 150
Gating function h2(x) variance

Environment boundary No observations

(b) Gating function’s GP posterior

Figure 5.6: Environment 2 Visualisation of the gating network posterior after training

MoSVGPE on the state transition data set from Environment 2. (a) shows the probability

mass function over the expert indicator variable and (b) shows the gating function’s GP

posterior mean (left) and posterior variance (right). The start state x0 and target state xf

are overlayed along with the mode boundary (purple line) and the subset of the environment

which has not been observed (hashed box).

- 116 -

5.2 Simulated Quadcopter Experiments

1. Goal 2 is measured using the probability of remaining in the desired mode

without the model’s uncertainty marginalised,

TX

t=0

Pr(↵t = k
⇤ | h(x0:t),x0:t,u0:t, ↵0:t�1 = k

⇤) (5.3)

This probability will only decrease when a trajectory leaves the desired mode.

2. Goal 3.1 is measured using the state variance accumulated from cascading

single-step predictions,

V[x̄] =
TX

t=1

V[xt]. (5.4)

This will increase when a trajectory passes through regions of the desired

dynamics mode with high epistemic uncertainty.

3. Goal 3.2 is measured using the gating function variance accumulated from

cascading single-step predictions,

V[hk⇤(x̄)] =
TX

t=1

V[hk⇤(xt)]. (5.5)

This will increase when a trajectory passes through regions of the gating net-

work with high epistemic uncertainty.

4. Probability of remaining in the desired mode with the model’s uncertainty

marginalised, calculated using Equation (4.42),

TX

t=1

Pr(↵t = k
⇤ | x0,u0:t, ↵0:t�1 = k

⇤). (5.6)

This probability will decrease when a trajectory leaves the desired mode and

when it passes through regions of the learned dynamics with high uncertainty.

The methods’ ability to remain in the desired dynamics mode k
⇤, that is, to accom-

plish Goal 2, is measured using the probability of remaining in the desired dynamics

- 117 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

Table 5.2: Results in simulated environments Comparison of the Indirect Optimal

Control via Latent Geodesics (IG) method from Section 4.2.2, the Direct Optimal Control via

Riemannian Energy (DRE) method from Section 4.2.3 and the Mode Remaining Control as

Inference (MRCaI) method from Section 4.3.2, with max entropy (MRCaI gauss) and without

max entropy (MRCaI Dirac). All methods are evaluated in the two simulated environments.

The performance measures are summed over the collocation points for the IG method and

over each time step for the DRE method and the MRCaI method. The ”Mode prob” column

calculates the probability of being in the desired dynamics mode at each time step without

marginalising the state and gating function uncertainty over the trajectory. In contrast the

”Mode prob with unc.” marginalises both the state and gating function uncertainty at each

time step. The target state column indicates if the trajectory reached the target state in the

environment (X both), only under the desired mode’s dynamics GP (X dynamics) or not at

all (⇥).

Env Method � Mode prob Mode prob with unc. State unc. Gating unc. Target state
Eq. 5.3 Eq. 5.6 V[x̄] V[hk⇤(x̄)] xT == xf?

IG 0.5 16.96 16.22 8.69 346.62 ⇥ dynamics
IG 1.0 18.51 16.98 8.70 367.16 ⇥ dynamics
IG 20.0 15.04 14.92 8.65 231.98 ⇥ dynamics

1 DRE 0.5 20.98 18.04 8.71 388.71 X both
DRE 1.0 20.98 18.10 8.72 370.94 X both
DRE 20.0 13.47 13.10 8.64 164.88 ⇥ dynamics
MRCaI (gauss) N/A 20.94 19.99 8.74 208.62 X both
MRCaI (Dirac) N/A 20.96 19.58 8.73 258.27 X both
IG 0.5 18.98 19.22 1.53 495.11 ⇥
IG 1.0 18.98 19.16 1.39 522.60 ⇥
IG (mid point) 1.0 17.55 17.80 1.57 553.00 ⇥
IG 5.0 18.98 19.17 1.44 503.94 ⇥

2 DRE 0.5 20.96 20.34 1.42 367.47 X both
DRE 1.0 20.98 20.68 1.28 334.47 X both
DRE 5.0 20.81 20.13 1.37 374.13 X both
MRCaI (gauss) N/A 20.98 20.72 1.75 596.67 X both
MRCaI (Dirac) N/A 20.98 20.61 1.56 644.35 X both

mode Equation (5.3). The secondary goal of avoiding regions of the learned dynam-

ics model with high epistemic uncertainty in the desired dynamics mode (Goal 3.1),

is measured by summing the state variance over each trajectory Equation (5.4).

Similarly, each method’s ability to avoid regions of the gating network with high

epistemic uncertainty in the gating network (Goal 3.2), is measured by summing

the gating function variance over each trajectory Equation (5.5). Intuitively, the

goal is to maximise the probability of being in the desired mode, whilst minimis-

ing the variance accumulated over a trajectory. This corresponds to maximising

the probability of remaining in the desired dynamics mode with all of the model’s

epistemic uncertainty marginalised, i.e. maximising Equation (5.6).

- 118 -

5.2 Simulated Quadcopter Experiments

5.2.4 Results

Three settings of the tunable � parameter were tested for both of the geometry-based

methods in each environment. The Mode Remaining Control as Inference (MRCaI)

method from Section 4.3.2 was tested with Gaussian controls (gauss) and with de-

terministic (Dirac) controls. This enabled the maximum entropy control behaviour

(resulting from Gaussian controls) to be compared to a baseline without maximum

entropy control. Table 5.2 summarises all of the results from both environments.

Initialisation All of the Direct Optimal Control via Riemannian Energy (DRE)

and Mode Remaining Control as Inference (MRCaI) experiments used a horizon of

T = 20 time steps and all of the Indirect Optimal Control via Latent Geodesics

(IG) experiments were initialised with I = 20 collocation points. Further to this,

all of the IG experiments were initialised with straight line trajectories between x0

and xf , except for one experiment in Environment 2, named IG �=1.0 (mid point),

which was initialised with two straight lines, between x0, [�2.0, �2.0] and xf . This

is because the IG experiments struggled to find solutions in Environment 2 – due to

local optima – without adjusting the initial solution.

Visualisation Figures 5.8 to 5.10 show the trajectory optimisation results for both

environments overlayed on their associated gating network posteriors. In each fig-

ure, the left-hand column shows results for Environment 1 whilst the right-hand

column shows the results for Environment 2. The figures show the state trajecto-

ries obtained from cascading single-step predictions through the desired mode’s GP

dynamics using the controls found by the IG method (top row), the DRE method

(middle row) and the MRCaI method (bottom row). Figure 5.8 shows the opti-

mised trajectories overlayed on the desired mode’s (↵ = 2) mixing probability. This

is useful for seeing how well trajectories remain in regions of the learned dynamics

model with high probability of being in the desired mode. Figure 5.9 shows the tra-

jectories overlayed on the gating function’s posterior mean. As the geometry-based

methods in this chapter are based on finding shortest trajectories on this manifold,

the posterior mean plot is useful for observing contour following behaviour. As the

- 119 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

methods should find trajectories that avoid regions of the gating network with high

epistemic uncertainty, Figure 5.10 shows them overlayed on the gating function’s

posterior variance. Because the IG method is a two-stage process, which first finds a

state trajectory using the collocation solver and then recovers the controls using the

inference strategy in Equation (4.32), its collocation state trajectory is compared

to its dynamics trajectory in Figure 5.7. The three methods are now compared by

analysing how well they achieve the three goals.

Goal 1 - Navigate to the Target State

The methods are first evaluated at their ability to navigate to the target state, that

is, achieve Goal 1.

Indirect Optimal Control via Latent Geodesics (IG) The IG method’s collo-

cation solver was able to find state trajectories to the target state in all experiments.

This is indicated by the collocation state trajectories z̄ (left-hand plots in Figure 5.7)

reaching the target state xf in both environments. This is because the collocation

solver IGcollocation is guaranteed to satisfy the boundary conditions. However, the

inference strategy cannot always recover controls that drive the system along the

collocation solver’s state trajectory and thus to the target state xf .

In Environment 1, the inference strategy successfully recovered controls that drive

the system along the collocation solver’s state trajectory. This is indicated by the

dynamics trajectory x̄ (right in Figure 5.7a), following the state trajectory z̄ found

by the collocation solver IGcollocation (left in Figure 5.7a). However, in Environment

2, the inference strategy could not recover the controls that could drive the system

along the collocation solver’s state trajectory. This can be seen by the dynamics

trajectories (right in Figure 5.7b) di↵ering from the collocation trajectories (left in

Figure 5.7b.

One possible explanation is that the ELBO in Equation (4.32) could not recover

the controls due to a local optimum. The collocation state trajectories (left) in the

experiments with � = 0.5, 1.0, 5.0, which were initialised with straight line trajec-

- 120 -

5.2 Simulated Quadcopter Experiments

�2 0 2

x

�2

0

2

y

x0

xf

Collocation trajectory (IGcollocation) z̄

Mode boundary

�2 0 2

x

x0

xf

Dynamics trajectory (IG) x̄

Mode boundary

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

2
|x

)

IGcollocation � = 20.0

IGcollocation � = 1.0

IGcollocation � = 0.5

IG � = 20.0

IG � = 1.0

IG � = 0.5

(a) Environment 1

�2 0 2

x

�2

0

2

y

x0

xf

Collocation trajectory (IGcollocation) z̄

M
o
d
e

b
ou

n
d
ar

y

�2 0 2

x

x0

xf

Dynamics trajectory (IG) x̄
M

o
d
e

b
ou

n
d
ar

y

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

2
|x

)

IGcollocation � = 5.0

IGcollocation � = 1.0

IGcollocation � = 0.5

IGcollocation � = 1.0 (mid point)

IG � = 5.0

IG � = 1.0

IG � = 0.5

IG � = 1.0 (mid point)

(b) Environment 2

Figure 5.7: Indirect Optimal Control via Latent Geodesics (IG) This figure shows

how well the IG method’s inference strategy in Equation (4.32) can recover the controls

from the collocation solver’s state trajectory z̄ in each environment. The left-hand plots

show the state trajectories found by the collocation solver z̄. The right-hand plots show the

trajectories x̄ obtained when rolling out the controls – recovered using the inference strategy

in Equation (4.32) – in the desired mode’s GP dynamics. They are overlayed on the desired

mode’s mixing probability for Environmnet 1 (top) and Environment 2 (bottom).

- 121 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

tories, passed through the turbulent dynamics mode. As this region belongs to the

turbulent dynamics mode, the desired mode’s dynamics GP has high epistemic un-

certainty in this region. This high uncertainty may have resulted in the ELBO being

low when trajectories pass through this region and as a result, the gradient-based op-

timiser may have got stuck in the local optimum before this region. Further to this,

the experiment that was initialised with a mid point at [�2.0, �2.0] (purple) was

not able to recover the correct controls, even though the collocation state trajectory

(purple squares) does not pass through the turbulent dynamics mode. Monitoring

the optimisation of the control trajectory showed that the control trajectory hit the

local optima during optimisation. Therefore, it is possible that this experiment also

got stuck in this local optimum. Although not tested, it may be possible to overcome

this issue with random restarts, i.e. di↵erent initial control trajectories.

Direct Optimal Control via Riemannian Energy (DRE) All of the DRE ex-

periments, (middle row of Figures 5.8 to 5.10) were able to find trajectories that

navigate to the target state xf under the desired mode’s GP dynamics. It is worth

noting that this method does not guarantee that trajectories will satisfy the bound-

ary conditions. However, setting the terminal state cost matrix H to be very high,

appears to work well.

Mode Remaining Control as Inference (MRCaI) All of the MRCaI exper-

iments successfully navigated to the target state under the dynamics. This is in-

dicated by the trajectories in the bottom row of Figures 5.8 to 5.10 successfully

navigating to the target state xf . Similarly to the DRE method, this approach is

not guaranteed to find trajectories that will end at the target state. However, setting

a high terminal state cost matrix H worked well.

Goal 2 - Remain in the Desired Mode

The experiments are now evaluated at their ability to remain in the desired dynam-

ics mode, that is, their ability to achieve Goal 2.

- 122 -

5.2 Simulated Quadcopter Experiments

�2

0

2

y
(I

G
)

x0

xf

Mode boundary

x0

xf

�2

0

2

y
(D

R
E

)

x0

xf

Mode boundary

x0

xf

�2 0 2

x

�2

0

2

y
(M

R
C

aI
)

x0

xf

Mode boundary

�2 0 2

x

x0

xf

0.0 0.2 0.4 0.6 0.8 1.0
Environment 2 Pr(� = 2 | x)

0.0 0.2 0.4 0.6 0.8 1.0
Environment 1 Pr(� = 2 | x)

IG � = 20.0

IG � = 1.0

IG � = 0.5

IG � = 5.0

IG � = 1.0 (mid point)

DRE � = 0.5

DRE � = 20.0

DRE � = 1.0

DRE � = 5.0

MRCaI (Dirac)

MRCaI (gauss)

Figure 5.8: Trajectory optimisation results over the desired mode’s mixing proba-

bility Pr(↵ = k
⇤ | x) Trajectory optimisation results after finding trajectories from the start

state x0, to the target state xf , using the Indirect Optimal Control via Latent Geodesics

(IG) method from Section 4.2.2 (top row), the Direct Optimal Control via Riemannian En-

ergy (DRE) method from Section 4.2.3 (middle row) and the Mode Remaining Control as

Inference (MRCaI) method from Section 4.3 (bottom row) in Environment 1 (left) and Envi-

ronment 2 (right). The optimised controls are rolled out in the desired mode’s GP dynamics

and are overlayed on the desired mode’s mixing probability.

- 123 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

�2

0

2

y
(I

G
)

x0

xf

Mode boundary

x0

xf

�2

0

2

y
(D

R
E

)

x0

xf

Mode boundary

x0

xf

�2 0 2

x

�2

0

2

y
(M

R
C

aI
)

x0

xf

Mode boundary

�2 0 2

x

x0

xf

�10 0 10 20 30
Environment 2 E[h2(x)]

�24 �16 �8 0 8 16 24
Environment 1 E[h2(x)]

IG � = 20.0

IG � = 1.0

IG � = 0.5

IG � = 5.0

IG � = 1.0 (mid point)

DRE � = 0.5

DRE � = 20.0

DRE � = 1.0

DRE � = 5.0

MRCaI (Dirac)

MRCaI (gauss)

Figure 5.9: Trajectory optimisation results over the gating function’s posterior

mean E[hk⇤(x)] Trajectory optimisation results after finding trajectories from the start state

x0, to the target state xf , using the Indirect Optimal Control via Latent Geodesics (IG)

method from Section 4.2.2 (top row), the Direct Optimal Control via Riemannian Energy

(DRE) method from Section 4.2.3 (middle row) and the Mode Remaining Control as Infer-

ence (MRCaI) method from Section 4.3 (bottom row) in Environment 1 (left) and Environ-

ment 2 (right). The optimised controls are rolled out in the desired mode’s GP dynamics

and are overlayed on the posterior mean associated with the desired mode’s gating function.

- 124 -

5.2 Simulated Quadcopter Experiments

Indirect Optimal Control via Latent Geodesics (IG) None of the IG exper-

iments were able to remain in the desired dynamics mode successfully. In all but

one of the experiments, this was due to the collocation solver IGcollocation finding

trajectories that pass over the mode boundary into the turbulent dynamics mode.

This is indicated by the collocation state trajectories in the left-hand plots of Fig-

ure 5.7 passing directly through the turbulent dynamics mode. This motivated

a further experiment, to see if the collocation solver was getting stuck in a local

optimum induced by the initial trajectory. The IGcollocation � = 1.0 (mid point)

experiment (purple squares in Figure 5.7b) was initialised as two straight lines with

a mid point at [�2.0, �2.0] to see if setting the initial trajectory not to pass over the

mode boundary could enable it to find a mode remaining trajectory. Figure 5.7b

indicates that with this initialisation, the collocation solver was able to find a mode

remaining trajectory. This result indicates that the collocation solver is susceptible

to local optima induced by the initial trajectory. Note that the need to initialise the

collocation solver in this way limits the method’s applicability. For example, how

should the initial solution be set in environments where the state-space cannot be

visualised as easily?

In Environment 1, although none of the IG experiments successfully remained in

the desired dynamics mode, they did exhibit some mode remaining behaviour. That

is, the trajectories with � = 0.5 (blue) and with � = 1.0 (green) in Figure 5.7a

navigate to the left and almost reach the mode boundary. However, they could not

find solutions that remained in the desired mode for the entire trajectory.

Direct Optimal Control via Riemannian Energy (DRE) All but one of the

DRE experiments were able to remain in the desired dynamics mode successfully.

This is indicated by the dynamics trajectories in the middle row of Figures 5.8 to 5.10

not passing over the mode boundary into the turbulent dynamics mode. From visual

inspection of the middle rows in Figures 5.8 to 5.10 the trajectories found with DRE

� = 1.0 (green stars) have the most clearance from the turbulent dynamics in both

environments, compared to other DRE � experiments. The trajectories in the middle

- 125 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

row of Figure 5.9 show the contour following that achieves the mode remaining

behaviour. In particular, the second half of the Environment 2 trajectories in the

right-hand plot. Table 5.2 confirms that in both environments, the trajectory found

with DRE � = 1.0 obtained the highest probability of remaining in the desired

dynamics mode when not considering the model’s epistemic uncertainty.

Although the trajectories found with DRE � = 0.5, 1.0 in Environment 1 obtained

the highest probability when not considering the epistemic uncertainty, they did

not obtain the highest probabilities when considering it. This is because they both

accumulate high gating function variance when they pass over the region of high

epistemic uncertainty in the gating network. This indicates that it is important to

consider the model’s epistemic uncertainty when finding mode remaining trajecto-

ries.

The trajectory found with DRE � = 20.0 in Environment 1 obtained the lowest

probability of remaining in the desired dynamics mode. Note that increasing the

relevance of the covariance term (increasing �) is equivalent to decreasing the rel-

evance of the mode remaining term. As a result, the optimisation landscape has

favoured trajectories that avoid the region of high posterior variance in the gat-

ing network more than following a true geodesic path on the mean of the gating

function. This can be seen in Figure 5.10 where the trajectory found with DRE

� = 20.0 (orange stars) did not successfully remain in the desired dynamics mode.

This indicates that setting the relevance of the covariance term too high can have

a negative impact on performance. These results suggest that care should be taken

when adjusting the value of �.

It is worth noting that in practice the mode chance constraints would inform us that

the trajectory is not � � mode remaining, so the trajectory would not be executed

in the environment.

Mode Remaining Control as Inference (MRCaI) It is clear from the bot-

tom rows of Figures 5.8 to 5.10 that all MRCaI experiments found trajectories that

remained in the desired dynamics mode. Further to this, the maximum entropy con-

- 126 -

5.2 Simulated Quadcopter Experiments

trol term resulted in more clearance from the mode boundary. This is shown by the

experiments with Gaussian controls MRCaI (gauss), indicated by black circles, hav-

ing more clearance than the experiments with deterministic controls MRCaI (Dirac),

indicated by the pink circles. This is a desirable behaviour that is expected from the

maximum entropy control term. This observation is confirmed in Table 5.2, where

in both environments the experiments with maximum entropy control obtained the

highest probabilities of remaining in the desired dynamics mode when considering

the model’s epistemic uncertainty.

In Environment 2, both of the MRCaI experiments found discrete-time trajecto-

ries that remained in the desired dynamics mode. This is indicated by none of the

trajectories’ time steps being in the turbulent dynamics mode. However, when in-

terpolating the discrete-time trajectory for the Environment 2 experiment without

maximum entropy control (pink circles), shown in the bottom right plots in Fig-

ures 5.8 to 5.10, the trajectory crosses the mode boundary. This is an undesirable

behaviour because in non-simulated environments this would correspond to the tra-

jectory entering the turbulent dynamics mode. In contrast, the clearance resulting

from the maximum entropy control term alleviates this issue.

Goal 3 - Avoid Regions of High Epistemic Uncertainty

Finally, the methods are evaluated at their ability to avoid regions of the dynam-

ics with high epistemic uncertainty. Table 5.2 shows the state variance and the

gating function variance accumulated over each trajectory. In all Environment 1

experiments, the state variance accumulated over the trajectory (from cascading

single-step predictions via moment matching) were fairly similar. This is due to

the dynamics of the simulator being simple enough that the desired mode’s GP can

confidently interpolate into both the turbulent dynamics mode and the region which

has not been observed. In the latter case, it is up to the gating network to model

the epistemic uncertainty arising from limited training data.

- 127 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

In contrast to the experiments in Environment 1, the state variance accumulated

over each trajectory does vary between experiments in Environment 2. However,

the results in Table 5.2 suggest that the state variance does not significantly impact

the mode remaining behaviour. This is indicated by no correlation between the

mode probability and the state variance, which is likely due to extremely low state

variance.

Indirect Optimal Control via Latent Geodesics (IG) In the IG experiments

in Environment 1 with � = 0.5, 1.0, the trajectories navigate directly over the region

of high posterior variance associated with the gating function. This can be seen in

the top left plot in Figure 5.10, by the blue and green diamonds trajectories. In

contrast, the IG experiment with � = 20.0 (orange diamonds) avoided this region.

However, this uncertainty avoiding behaviour came at the cost of passing straight

through the turbulent dynamics mode. In Environment 2 the IG experiments did

not remain in the desired dynamics mode, nor did they exhibit any uncertainty

avoiding behaviour. As mentioned previously, this was likely due to the collocation

solver getting stuck in local optima as well as the inference strategy struggling to

recover the correct controls.

Direct Optimal Control via Riemannian Energy (DRE) The DRE exper-

iments exhibited the most uncertainty avoiding behaviour. This is indicated in

Table 5.2 by the Environment 1 experiment with DRE � = 20.0 obtaining the low-

est accumulation of gating function variance out of all the experiments. The middle

left plot in Figure 5.10 shows that the trajectory found with DRE � = 20.0 (orange

stars) avoids the region of high gating function variance. However, similarly to the

IG experiments, this came at the cost of leaving the desired dynamics mode. These

results confirm that the covariance term in the expected Riemannian metric can

encode the notion of avoiding regions of high epistemic uncertainty in the gating

network. However, it also suggests that adjusting � to avoid regions of high epis-

- 128 -

5.2 Simulated Quadcopter Experiments

�2

0

2

y
(I

G
)

x0

xf

Mode boundary

x0

xf

�2

0

2

y
(D

R
E

)

x0

xf

Mode boundary

x0

xf

�2 0 2

x

�2

0

2

y
(M

R
C

aI
)

x0

xf

Mode boundary

�2 0 2

x

x0

xf

0 30 60 90 120 150
Environment 2 V[h2(x)]

0 4 8 12 16 20 24 28 32 36
Environment 1 V[h2(x)]

IG � = 20.0

IG � = 1.0

IG � = 0.5

IG � = 5.0

IG � = 1.0 (mid point)

DRE � = 0.5

DRE � = 20.0

DRE � = 1.0

DRE � = 5.0

MRCaI (Dirac)

MRCaI (gauss)

Figure 5.10: Trajectory optimisation results over the gating function’s posterior

variance V[hk⇤(x)] Trajectory optimisation results after finding trajectories from the start

state x0, to the target state xf , using the Indirect Optimal Control via Latent Geodesics

(IG) method from Section 4.2.2 (top row), the Direct Optimal Control via Riemannian

Energy (DRE) method from Section 4.2.3 (middle row) and the Mode Remaining Control

as Inference (MRCaI) method from Section 4.3 (bottom row) in Environment 1 (left) and

Environment 2 (right). The optimised controls are rolled out in the desired mode’s GP

dynamics and are overlayed on the posterior variance associated with the desired mode’s

gating function.

- 129 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

temic uncertainty in the gating network is not always favourable and may result

in the optimisation landscape favouring trajectories that leave the desired dynam-

ics mode; essentially defeating the goal of introducing the � parameter in the first

place.

In Environment 2 the trajectory found with DRE � = 1.0 accumulated the least state

and gating function variance. Interestingly, Table 5.2 indicates that the experiment

with DRE � = 5.0 resulted in less uncertainty avoiding behaviour. Further to this,

the DRE � = 1.0 experiment, which accumulated the least amount of state and

gating function variance obtained the second highest probability of remaining in the

desired dynamics mode when considering the model’s epistemic uncertainty. This

result suggests that avoiding regions of high epistemic uncertainty is favourable for

remaining in the desired dynamics mode. However, when combined with the result

in Environment 1 it is not possible to draw this conclusion. Not only did increasing

the value of � not always lead to an increase in the uncertainty avoiding behaviour,

but increasing the uncertainty avoiding behaviour was also not always beneficial, as

indicated by the Environment 1 results with DRE � = 20.0.

These results indicate that the covariance term – in the expected Riemannian metric

– plays an important role at keeping trajectories in the desired dynamics mode.

However, they also indicate that � alters both the mode remaining term and the

covariance term, in a complex manner. As such, it is not always clear how the value

of � should be set. This is especially the case in Environment 1, where the inoperable

dynamics mode intersects the region of high epistemic uncertainty. In this case, the

e↵ect of adjusting the tunable � parameter is complex enough that it may be best

to just leave it at � = 1.0.

Mode Remaining Control as Inference (MRCaI) The MRCaI experiments

in Environment 1 avoided the region of high epistemic uncertainty in the gating

network. This is shown by the MRCaI (gauss) (black circles) and the MRCaI (Dirac)

(pink circles) in the bottom left plot of Figure 5.10, navigating far to the left around

the region of high gating function variance. This uncertainty avoiding behaviour

- 130 -

5.2 Simulated Quadcopter Experiments

is confirmed in Table 5.2, where the MRCaI experiments accumulated the least

amount of gating function variance out of all the trajectories which remained in the

desired dynamics mode. However, in Environment 2, the MRCaI experiments did

not exhibit as much uncertainty avoiding behaviour in the gating network. In fact,

they obtained higher accumulations of gating function variance by quite a margin.

As mentioned earlier, this result suggests that avoiding regions of high epistemic

uncertainty is not the most important factor for obtaining the highest probability

of remaining in the desired dynamics mode. This change in behaviour is due to the

relevance of the uncertainty avoiding behaviour being automatically handled by the

marginalisation of the gating function in Equation (4.63).

Although marginalisation is a principled way of handling uncertainty, in this sce-

nario, it can be conjectured otherwise. First, note that the quantitative performance

measures do not tell the full story. This is because in the region with no observa-

tions, it is perfectly plausible that there is another region belonging to the turbulent

dynamics mode, or a di↵erent dynamics mode altogether. In this case, the trajectory

found with DRE � = 5.0 (red stars) is most likely to avoid entering the turbulent

dynamics mode, because it avoids the region of high epistemic uncertainty associ-

ated with no observations. The probability of remaining in the desired dynamics

mode does not capture this notion. There are two reasons for this. Firstly, the gat-

ing network is overconfident in this region due to learning a long lengthscale. This

could be overcome by fixing the lengthscale a priori. However, there is a second is-

sue due to the fundamental modelling approximation made by GPs. The GP-based

gating network is not aware that the region with no observations is so large that it

could fit another turbulent dynamics mode inside it. This is due to the Squared Ex-

ponential kernel function relying on point-wise calculations to build the covariance

matrix. Future work could explore methods that capture higher-order interactions,

for example, the size and shape of modes.

In both environments, the MRCaI (guass) experiments with maximum entropy

control obtained lower accumulations of gating function variance than the MRCaI

- 131 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

(Dirac) experiments without maximum entropy control. This further confirms that

the maximum entropy control behaviour improves the performance of the MRCaI

method.

5.3 Conclusion

This section details the main findings from the experiments, compares the methods

and discusses directions for future work.

Geometry-based methods The IG method’s collocation solver is susceptible to

local optima around its initial state trajectory. Although this can be overcome

by engineering the initial solution, it makes it di�cult to get the method working

in practice. On top of this, the variational inference strategy used to recover the

controls does not always recover the correct controls. This may be due to the

collocation solver’s state trajectory not satisfying the dynamics constraints or the

variational inference getting stuck in local optima. Regardless, this is a big limitation

that made the IG method fail in some environments.

Overall, the DRE method performed significantly better than the IG method in

the experiments. Firstly, two of the DRE experiments in Environment 1 remained

in the desired dynamics mode, whilst the IG experiments could not. Further to

this, the DRE approach worked in Environment 2, where it was not possible to get

the IG method working, without engineering the initial solution. Not only did the

DRE approach perform better in the experiments, but it is also significantly easier

to configure. That is, setting the optimisation parameters is straightforward. In

contrast, setting the parameters for the IG method is not. In particular, setting the

upper and lower bounds for the collocation constraints is pernickety. In conclusion,

the DRE method is the preferred geometry-based method for finding mode remaining

trajectories.

How to set �? Although increasing � generally leads to more uncertainty avoiding

behaviour in the gating network, this is not necessarily the case. Further to this,

- 132 -

5.3 Conclusion

avoiding regions of high epistemic uncertainty in the gating network does not al-

ways lead to higher probabilities of remaining in the desired dynamics mode under

Equation (5.6). As a result, care should be taken if/when adjusting �.

The quantitative results indicate that good performance is generally achieved with

� = 1.0. That is, not modifying the expected Riemannian metric tensor. Although

some benefits can be obtained via setting �, for example, encoding a notion of risk-

sensitivity for avoiding the region with no observations, it is not always clear how

it should be set. Further to this, in many realistic scenarios, the state-space will

not be easy to visualise like in the 2D quadcopter experiments. For these reasons,

I conclude that it is best to air on the side of caution when setting �. That is, �

should remain at 1.0 unless it is immediately clear how it should be set.

Mode Remaining Control as Inference (MRCaI) The MRCaI method per-

formed well in all experiments. The experiments showed that the maximum entropy

control behaviour obtained from using normally distributed controls improves the

mode remaining behaviour and works well in practice.

Overall The results in Table 5.2 indicate that the MRCaI (gauss) experiments were

the highest performing in both environments. They obtained the highest probability

of remaining in the desired dynamics mode when considering the model’s epistemic

uncertainty. Visual inspection combined with the results in Table 5.2, further indi-

cate that the DRE � = 1.0 experiments performed well in both environments. Not

only did the DRE experiments avoid leaving the desired dynamics mode but they

also avoided the region of the gating network with high epistemic uncertainty more

so than the MRCaI experiments. Both the Direct Optimal Control via Rieman-

nian Energy (DRE) and the Mode Remaining Control as Inference (MRCaI) with

maximum entropy control MRCaI (gauss) methods are competitive approaches for

finding mode remaining trajectories.

- 133 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

Table 5.3: Comparison of the Indirect Optimal Control via Latent Geodesics (IG) method

from Section 4.2.2, the Direct Optimal Control via Riemannian Energy (DRE) method from

Section 4.2.3 and the Mode Remaining Control as Inference (MRCaI) method from Sec-

tion 4.3.

IG DRE MRCaI
Dynamics constraints guaranteed? × X X
Considers epistemic uncertainty in dynamics? × X X
Considers epistemic uncertainty in gating network? X X X
Can remain in multiple modes? × × X
Boundary conditions guaranteed? X × ×
� � mode remaining? × X X
Continuous-time trajectory? X × ×

5.3.1 Discussion & Future Work

This section compares the three control methods presented in Sections 4.2.2, 4.2.3

and 4.3 and suggests future work to address their limitations. Table 5.3 o↵ers a

succinct comparison of the three approaches.

Dynamics constraints Both the MRCaI method presented in Section 4.3 and the

DRE approach presented in Section 4.2.3 find trajectories that satisfy the dynamics

constraints, i.e. the learned dynamics. They achieve this by enforcing the distribu-

tion over state trajectories to match the distribution from cascading single-step pre-

dictions through the desired mode’s dynamics GP. This can be seen as a method for

approximating the integration of the controlled dynamics with respect to time, whilst

considering the epistemic uncertainty associated with learning from observations.

The chance constraints ensure the controlled system is � � mode remaining, which

makes the approximate dynamics integration valid. In contrast, the IG method from

Section 4.2.2 does not find trajectories that are guaranteed to satisfy the dynam-

ics constraints. This is a limiting factor that makes the IG method less appealing.

Therefore, methods for incorporating the dynamics constraints into IG are an inter-

esting direction for future work.

- 134 -

5.3 Conclusion

Decision-making under uncertainty The combination of the approximate dy-

namics integration and the chance constraints in the DRE method, leads to a closed-

form expression for the expected cost. This expression considers the epistemic un-

certainty associated with the learned dynamics model, both in the desired dynamics

mode and in the gating network. Similarly, for the MRCaI method, the ELBO

principally handles the uncertainty in both the desired dynamics mode and gat-

ing network. In contrast, the IG method ignores the uncertainty accumulated by

cascading single-step predictions through the learned dynamics model. That is, it

considers the uncertainty associated with the gating network and ignores any uncer-

tainty in the desired dynamics mode. Although this did not have a massive impact

in the simulated quadcopter experiments, it may have a larger impact in real-world

systems with more complex dynamics modes.

Uncertainty propagation This work only considered the moment matching ap-

proximation for propagating uncertainty through the probabilistic dynamics model.

Chua et al., 2018 test di↵erent uncertainty propagation schemes in Bayesian neural

networks. It would be interesting to test sampling-based approaches for the DRE

approach. For example, to see the impact of calculating the expected Riemannian

energy over a trajectory without approximations.

Decouple goals Without decoupling the uncertainty avoiding behaviour from the

mode remaining behaviour, it is not possible to find trajectories which avoid entering

the region of high epistemic uncertainty in the gating network. The geometry-based

approaches provide a mechanism to set the relevance of the covariance term, i.e.

decouple the goals. This was achieved by augmenting the expected Riemannian

metric tensor with the user-tunable weight parameter �, which can be adjusted to

determine the relevance of the covariance term. The experiments show that although

adjusting � can be beneficial in some scenarios, it is not necessarily straightforward

to set. In particular, when regions of high epistemic uncertainty intersect with mode

boundaries. Therefore, care should be taken when setting �. The MRCaI method

does not provide a mechanism for adjusting the relevance of each behaviour. Instead,

- 135 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

it relies on the marginalisation of the latent variables in the ELBO (Equation (4.64))

to automatically handle it, without requiring human input. This works well in

practice but may be a limitation if it is desirable to decouple the goals and balance

the mode remaining and uncertainty avoiding behaviour.

Multiple desired modes Although not tested, the approaches are theoretically

sound and should be applicable in systems with more than two dynamics modes.

However, it is interesting to consider if this is even necessary given the goals. For

example, in the quadcopter experiment, the dynamics model was intentionally in-

stantiated with two dynamics modes, even though there could be more in reality.

The desired dynamics mode was engineered to have a noise variance that was deemed

operable. The other dynamics mode was then used to explain away all of the inoper-

able modes. In most scenarios, a similar approach could be followed. Nevertheless,

it is interesting to consider systems with more than two modes. This is because the

main goal is to avoid entering the inoperable dynamics mode, not just remain in

the desired dynamics mode. Although not tested here, the MRCaI method should

be able to remain in more than one desired dynamics mode. This can be achieved

by conditioning on a set of modes. In contrast, the geometry-based methods in

Section 4.2 are only capable of remaining in a single dynamics mode.

Continuous-time trajectories The DRE and MRCaI methods required control

regularisation to prevent state transitions that “jump” over the undesired mode.

Although the discrete-time steps of the trajectory appear to satisfy the constraints

and minimise the cost, in reality, the continuous-time trajectory may pass through

the undesired mode. This is a general problem that arises when solving continuous-

time problems in discrete time. In contrast, the IG method uses a collocation solver

where the cost can be evaluated at arbitrary points along the continuous-time tra-

jectory. An interesting direction for future work is to extend the DRE and MRCaI

methods to find trajectories in continuous time. For example, Dong et al., 2016;

Mukadam et al., 2018 use GPs for continuous-time trajectories when solving motion

planning via probabilistic inference.

- 136 -

5.3 Conclusion

State-control dependent modes This chapter assumed that the dynamics modes

were separated according to their disjoint state domains, i.e. Xi \Xj = ; for distinct

i, j 2 {1, . . . , K}. It would be interesting to extend this work to systems where the

modes are governed by both state and control. For example, flying at high speed

through a wind field may be deemed an operable dynamics mode, whilst flying at

low speed may not.

Dynamics models The MRCaI method can be deployed in a wider range of dy-

namics models than the geometry-based methods. First of all, it is not limited to

di↵erentiable mean and covariance functions for the gating function GPs. Secondly,

it can be deployed in dynamics models learned with any MoGPE method. This

is because all MoGPE methods consist of a probability mass function over the ex-

pert indicator variable. In contrast, the geometry-based methods are limited to the

MoSVGPE method because they depend on it’s GP-based gating network. Further

to this, the MRCaI method is applicable in systems where the dynamics modes are

not necessarily separated according to their state domains Xk. This is because it

does not rely on the state-dependent gating functions.

Real-time control Whilst real-time control requires e�cient algorithms, “o✏ine”

trajectory optimisation can trade in computational cost for greater accuracy. This

work is primarily interested in finding trajectories that attempt to remain in the

desired dynamics mode. For simplicity, it has considered the “o✏ine” trajectory

optimisation setting. The increased computational time may hinder its suitability

to obtain a closed-loop controller via MPC (Eduardo F. and Carlos, 2007). However,

it can be used “o✏ine” to generate reference trajectories for a tracking controller

or for guided policy search in a MBRL setting (Levine and Koltun, 2013). Alter-

natively, future work could investigate approximate inference methods for e�cient

state estimation to aid with real-time control, e.g. iLQG/GP.

Infeasible trajectories It is worth noting that it might not be possible to find a

trajectory between a given start state x0 and a target state xf , that satisfies the

chance constraints. This may be due to either the desired dynamics mode being

- 137 -

5 Quadcopter Experiments - Mode Remaining Trajectory Optimisation

uncertain, or the gating network being uncertain. In this scenario, it is desirable

to explore the environment and update the learned dynamics model with this new

experience. This will reduce the epistemic uncertainty in the model, increasing

the likelihood of being able to find trajectories that satisfy the chance constraints.

This motivates the work in Chapter 6, which addresses exploration in multimodal

dynamical systems, whilst attempting to remain in the desired dynamics mode.

5.3.2 Summary

This chapter has evaluated and compared the Indirect Optimal Control via Latent

Geodesics (IG) method from Section 4.2.2, the Direct Optimal Control via Rieman-

nian Energy (DRE) method from Section 4.2.3 and the Mode Remaining Control as

Inference (MRCaI) method from Section 4.3. The methods’ abilities to navigate to

a target state, whilst remaining in the desired dynamics mode, were evaluated on

two velocity controlled quadcopter navigation problems. The results in this chapter

have verified that the latent geometry of the MoSVGPE gating network can be used

to encode mode remaining behaviour into control strategies. However, the results

indicate that the IG method is not only the lowest performing method but is also

the hardest method to configure. In contrast, the DRE and MRCaI methods work

well in practice, whilst being much easier to configure.

Although the geometry-based methods have a tunable parameter � for balancing

the mode remaining and the uncertainty avoiding behaviour, it does not work well

in practice. In contrast, the MRCaI method automatically balances the behaviours

by marginalising the uncertainty in it’s ELBO.

From the experiments in this chapter, it can be concluded that both the DRE and

MRCaI methods are competitive approaches for finding mode remaining trajecto-

ries. They find trajectories that navigate to the target state, satisfy the dynamics

constraints and attempt to remain in the desired dynamics mode. Further to this,

it is easy to verify that they are � �mode remaining by evaluating the mode chance

constraints.

- 138 -

6 Mode Remaining Exploration for

Model-Based Reinforcement

Learning

Real knowledge is to know the

extent of one’s ignorance.”

Confucius (Philosopher,

551–479BC).

Similarly to Chapter 4, this chapter is concerned with controlling unknown or par-

tially unknown, multimodal dynamical systems, from an initial state x0 – in the

desired dynamics mode k
⇤ – to a target state xf , whilst guaranteeing that the

controlled system remains in the desired dynamics mode. However, in contrast to

previous chapters, it does not assume prior access to the environment. That is, it

considers the more realistic scenario, where the agent must iteratively explore its

environment, collect data and update it’s dynamics model – whilst remaining in

the desired dynamics mode – until it can confidently navigate to the target state

xf . Following previous chapters, this chapter also considers model-based approaches

where the dynamics model is learned from observations.

The main contribution of this chapter is an explorative trajectory optimisation al-

gorithm that can explore multimodal environments with a high probability of re-

maining in the desired dynamics mode. This chapter further proposes an approach

- 139 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

to solve the mode remaining navigation problem from Section 2.1 by consolidating

all of the work in this thesis.

This chapter is organised as follows. Section 6.1 formally states the problem and

the assumptions that are made in this chapter. Section 6.2.1 then details the explo-

ration strategy proposed in this work and Section 6.2.2 presents Mode Optimisation

(ModeOpt), a MBRL algorithm for solving the mode remaining navigation prob-

lem in Section 2.1. Finally, Section 6.3 presents preliminary results in a simulated

quadcopter environment and Section 6.4 discusses ModeOpt and details directions

for future work.

6.1 Problem Statement

Similarly to Chapter 4, the goal of this chapter is to solve the mode remaining

navigation problem in Section 2.1. That is, to navigate from an initial state x0 –

in the desired dynamics mode k
⇤ – to the target state xf , whilst guaranteeing that

the controlled system remains in the desired dynamics mode. However, this chapter

does not assume a priori access to the environment, such that a data set of state

transitions can be collected and used to learn a dynamics model. Instead, the agent

must incrementally explore the environment without violating the mode remaining

constraints in Definition 2.1.1.

Given that this work leverages a learned dynamics model, it is not possible to find

trajectories that are mode remaining according to Definition 2.1.1. Following Chap-

- 140 -

6.1 Problem Statement

ter 4, this work relaxes the mode remaining constraint to be � � mode remaining,

i.e. mode remaining with high probability. Formally this problem is given by,

min
⇡2⇧

J⇡(x0) (6.1a)

s.t. xt+1 = fk(xt, ⇡(xt, t)) + ✏k, ↵(xt) = k 8t 2 {0, . . . , T � 1} (6.1b)

Pr(f(xt, ⇡(xt, t)) 2 Xk⇤) � 1 � � 8t 2 {0, . . . , T � 1} (6.1c)

⇡(xt, t) 2 U 8t 2 {0, . . . , T � 1} (6.1d)

x0 = x0 (6.1e)

xT = xf , (6.1f)

where the dynamics are given by Equation (2.1), the objective is given by Equa-

tion (2.2), and the mode remaining constraint in Equation (6.1c) is from the � �

mode remaining definition in Definition 4.1.1.

It is worth noting that the agent would not be able to explore the environment

without relaxing the mode remaining constraint from Definition 2.1.1. Intuitively,

the more the ��mode remaining constraint is relaxed, the more the controller ⇡ can

explore. However, this will also increase the controller’s chance of leaving the desired

dynamics mode. Thus, the algorithm should expand the region that is known to

belong to the desired dynamics mode towards the target state xf , without violating

the � � mode remaining constraint.

Initial mode remaining controller In robotics applications, an initial set of

poor performing controllers can normally be obtained via simulation or domain

knowledge. This work assumes access to an initial data set of state transitions

D0 = {(xn,un), �xn}N0
n=1 collected from around the start state x0.

Assumption 6.1.1. An initial region of the state space X0 ✓ Xk⇤ is known to belong

to the desired dynamics mode k
⇤
. As such, a state transition data set can be collected

D0 = {(xn,un), �xn}N0
n=1 such that it contains the start state ((x0, ·), ·) 2 D0.

- 141 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

�2 0 2

x

�2

0

2

y

x0

xf

Mode boundary

0.8

Mode boundary

�2 0 2

x

x0

xf

Mode boundary

0.8

Mode boundary

0.0 0.1 0.2 0.3 0.4 0.5
Pr(� = 1 | x)

Mode boundary

0
.8

Mode boundary

0.45 0.55 0.65 0.75 0.85 0.95
Pr(� = 2 | x)

Mode boundary

0
.8

Mode boundary

Observations

(a)

�2 0 2

x

�2

0

2

y

x0

xf

Mode boundary

0.8

Mode boundary

�2 0 2

x

x0

xf

Mode boundary

0.8

Mode boundary

0.0 0.8 1.6 2.4 3.2
Gating function h2(x) mean

Mode boundary

0
.8

Mode boundary
0.3 0.9 1.5 2.1 2.7 3.3

Gating function h2(x) variance

Mode boundary

0
.8

Mode boundary

Observations

(b)

Figure 6.1: Initial gating network Gating network posterior after training on the initial

data set D0 shown by the blue crosses. The goal is to incrementally explore the environment

until � �mode remaining trajectories under the learned dynamics model, can be found from

the start state x0, to the target state xf . The data set is overlayed on (a) each mode’s

mixing probability and (b) the posterior mean (left) and posterior variance (right) associated

with the desired mode’s gating function. The start state x0 and target state xf are overlayed

along with the mode boundary (purple line). All plots show a slice of the input space with

constant zero controls.

- 142 -

6.2 Mode Optimisation

This data set is used to learn a predictive dynamics model p✓ which is locally ac-

curate around the start state x0. Figure 6.1 shows the MoSVGPE’s gating network

posterior after training on the initial data set D0 for the quadcopter navigation

problem in the illustrative example from Section 1.1. Figure 6.1a illustrates that

the desired dynamics mode is k
⇤ = 2 and Figure 6.1b shows that the GP posterior

over the gating function is uncertain away from the initial data set D0, indicated

by high posterior variance (red). This is further demonstrated by the probability

mass function over the mode indicator variable in Figure 6.1a, tending to a uniform

distribution, i.e. maximum entropy. Although this model can be used to learn an

initial controller, it may not work outside of the initial state domain X0 and may

not be able to find � � mode remaining trajectories to the target state xf , due to

the model having high epistemic uncertainty.

6.2 Mode Optimisation

This section details our method for solving the mode remaining navigation problem

by consolidating all of the work in this thesis. The method is named Mode Opti-

misation (ModeOpt). At its core, ModeOpt learns a single-step dynamics model p✓

using the MoSVGPE model from Chapter 3. Given this model, the mode remaining

control methods in Chapter 4 can be used to find trajectories to the target state

xf . The mode chance constraints from Equation (4.41) can then be used to check

if these trajectories are � � mode remaining under the learned dynamics model p✓.

Initially, it will not be possible to find � � mode remaining trajectories under the

learned dynamics model, due to high epistemic uncertainty. In this case, the agent

must explore the environment, collect data and update its dynamics model. Even-

tually, the agent will reduce the model’s epistemic uncertainty such that it can find

��mode remaining trajectories to the target state xf . Ideally, the exploration strat-

egy will have some guarantee of remaining in the desired dynamics mode. Figure 6.2

illustrates this process in a flowchart.

- 143 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

Learn dynamics model p✓

Find trajectory to xf

� � mode
remaining?

Execute trajectory in environment

� � mode remaining
exploration with ⇡explore

yes

no

Experience

Figure 6.2: ModeOpt Flowchart showing the sequence of steps and processes needed to

control a system from an initial state x0, to a target state xf , with a � � mode remaining

guarantee, when the underlying dynamics modes and how the system switches between them,

are not fully known a priori.

� � mode remaining exploration In order to implement such an algorithm, we

require a method for exploring the environment with mode remaining guarantees.

That is, a controller that will explore the environment whilst ensuring the controlled

system remains in the desired dynamics mode with high probability, i.e. satisfy

Equation (4.2).

6.2.1 Mode Remaining Exploration

The performance of ModeOpt depends on its ability to explore the environment. The

exploration strategy is primarily interested in exploring a single desired dynamics

mode whilst avoiding entering any of the other modes. This is a challenging problem

because the agent must observe regions outside of the desired dynamics mode in

order to learn that a particular region does not belong to the desired mode. To the

best of our knowledge, there is no previous work addressing the exploration of a

single dynamics mode in multimodal dynamical systems.

- 144 -

6.2 Mode Optimisation

� � mode remaining exploration The exploration strategy presented here is pri-

marily interested in exploring regions of the gating network that are uncertain. It

relieves the myopia of active learning by considering trajectory optimisation with an

entropy-based strategy over a finite horizon. Further to this, it principally ensures

solutions are ��mode remaining via the mode chance constraints in Equation (4.41).

The objective combines entropy-based exploration of the gating network with the

main goal of navigating to the target state xf . The exploration strategy is given by,

max
⇡2⇧

H[hk⇤(x̄) | x̄, D0:i�1]| {z }
joint gating entropy

(6.2a)

+
T�1X

t=1

E

2

4�(xt � xf)TQ(xt � xf)
| {z }

state di↵erence

� uT
t Rut| {z }

control cost

3

5 (6.2b)

s.t. xt+1 ⇠ p✓(xt+1 | x0,u0:t, ↵̄0:t = k
⇤) 8t 2 {0, . . . , T � 1} (6.2c)

Pr(↵t = k
⇤ | x0,u0:t,↵0:t�1 = k

⇤) � 1 � � 8t 2 {0, . . . , T} (6.2d)

ut = ⇡(xt, t) 2 U 8t 2 {0, . . . , T � 1} (6.2e)

x0 = x0, (6.2f)

where p✓(xt+1 | x0,u0:t, ↵̄0:t = k
⇤) is the multi-step dynamics prediction calculated

by recursively propagating uncertainty through the desired mode’s dynamics GP

using the moment matching approximation. See Equation (4.40) for more details.

Q and R are user-defined, real, symmetric, positive semi-definite and positive def-

inite matrices respectively. Intuitively, the first (joint gating entropy) term seeks

to find trajectories that explore regions of the gating network with high epistemic

uncertainty and the second (state di↵erence) term targets exploration towards the

target state xf . The joint gating entropy prevents trajectories from collapsing onto

a single location of high entropy as it favours trajectories spreading over the state

space in order to maximise the entropy of the entire trajectory. The state di↵erence

- 145 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

term favours trajectories whose centre of mass is closer to the target state xf . The

control cost term regularises the control trajectory.

Chance constraints To ensure that the controlled system remains in the desired

mode with high probability, i.e. trajectories are � � mode remaining, this method

deploys the chance constraints from Equation (4.41). In practice, the constrained

optimisation in Equation (6.2) fails if the initial trajectory does not satisfy the mode

chance constraints. As such, this work deploys a simple strategy to ensure the ini-

tial trajectory satisfies the constraints. We sample a “fake” target state from the

initial data set D0 and optimise the initial trajectory using the cost function in

Equation (4.65). This finds a straight line trajectory between the start state x0 and

the “fake” target state which is in the initial state domain. Experiments show that

this procedure finds trajectories where all of the time steps are in the desired mode

with high probability.

Gating network entropy To calculate the joint gating entropy term H[hk⇤(x̄) | x̄, D0:i�1]

the state trajectory x̄ is first obtained by cascading single-step predictions through

the desired mode’s dynamics GP using the moment matching approximation from

Kuss, 2006. The key idea is then to assume that the gating function values along the

trajectory hk⇤(x̄) are jointly Gaussian according to the GP over the desired mode’s

gating function. The joint distribution over the gating function values hk⇤(x̄) is then

given by,

p(hk⇤(x̄) | x̄, D0:i�1) ⇡ q(hk⇤(x̄)) = N
�
hk⇤(x̄) | µk⇤(x̄),⌃2

k⇤(x̄, x̄)
�

(6.3)

where µk⇤(·) and ⌃2
k⇤(·, ·) are sparse GP mean and covariance functions, given by,

µk⇤(x̄) = k̂k⇤(x̄, ⇠)k̂k⇤(⇠, ⇠)�1m̂k⇤ (6.4)

⌃2
k⇤(x̄, x̄) = k̂k⇤(x̄, x̄) + k̂k⇤(x̄, ⇠)k̂k⇤(⇠, ⇠)�1

⇣
Ŝk⇤ � k̂k⇤(⇠, ⇠)

⌘
k̂k⇤(⇠, ⇠)�1

k̂k⇤(⇠, x̄), (6.5)

- 146 -

6.2 Mode Optimisation

Algorithm 2 ModeOpt

Require: Start state x0, target state xf , desired dynamics mode k
⇤, initial data set

D0, explorative controller ⇡explore, mode remaining controller ⇡mode, dynamics
model p✓

1: for i = 0, 1, . . . do
2: Train model p✓ on Di using ELBO from Equation (3.29)
3: Optimise mode remaining controller ⇡mode using learned model p✓

4: if xT = xf and ⇡mode is � � mode remaining then
5: Execute ⇡mode in environment
6: break
7: end if
8: Optimise explorative controller ⇡explore using learned model p✓

9: Collect environment data set Di+1 using ⇡explore; add to data set{D0:i+1 =
Di+1 [D0:i}

10: end for

where k̂k⇤ and ⇠ are the kernel and inducing inputs associated with the desired

mode’s gating function respectively. This sparse approximation arises because the

MoSVGPE model uses sparse GPs and approximates the posterior with,

q(hk⇤(x̄)) =

Z
p(hk⇤(x̄) | hk⇤(⇠))q(hk⇤(⇠))dhk⇤(⇠), (6.6)

where q(hk⇤(⇠)) = N
⇣
hk⇤(⇠ | m̂k⇤ , Ŝk⇤

⌘
.

6.2.2 Mode Remaining Model-based Reinforcement Learning

This section details how this exploration strategy is embedded into a MBRL loop

to solve the mode remaining navigation problem in Equation (6.1). The algorithm

is named ModeOpt and is detailed in Algorithm 2. The algorithm is initialised with

a start state x0, a target state xf , a desired dynamics mode k
⇤, a data set of state

transitions from the desired dynamics mode D0 and a calibrated dynamics model p✓.

- 147 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

Dynamics model p✓ ModeOpt learns a factorised representation of the underlying

dynamics modes using the MoSVGPE model from Chapter 3. Importantly, it learns

a single-step dynamics model p✓, given by,

xt+1 ⇠ p✓(xt+1 | xt,ut), (6.7)

which also infers valuable information regarding how the system switches between

the modes.

Mode remaining controller ⇡mode The mode remaining control methods from

Chapter 4 are used to construct a mode remaining controller ⇡mode,

ut = ⇡mode(t) 8t 2 {0, . . . , T � 1}. (6.8)

It uses the learned dynamics model p✓ to find trajectories to the target state xf . The

mode chance constraints from Equation (4.41) are then used to check if trajectories

are � � mode remaining.

Explorative controller ⇡explore When ��mode remaining trajectories to the tar-

get state xf cannot be found, ModeOpt relies on an explorative controller ⇡explore to

explore the environment. This work uses the exploration strategy from Section 6.2.1

to construct such an explorative controller,

ut = ⇡explore(t) 8t 2 {0, . . . , T � 1}. (6.9)

The goal of this controller is to explore the environment whilst remaining in the

desired dynamics mode. It is worth noting that this is an open-loop trajectory opti-

misation algorithm. Extending the method in Section 6.2.1 to feedback controllers

is left for future work.

- 148 -

6.3 Preliminary Results

6.3 Preliminary Results

This section presents initial results solving the illustrative quadcopter navigation

problem in Section 1.1 using the exploration strategy from Section 6.2.1. In par-

ticular, it shows results using the simulated Environment 1 from Section 5.2. See

Section 5.2 for more details on the environment and the simulator set up.

Figure 6.1 shows the MoSVGPE’s gating network posterior after training on the

initial data set D0. The start state x0, the target state xf , the initial data set

D0 (blue crosses) and the mode boundary, are overlayed to help visualise the mode

remaining navigation problem. The turbulent dynamics mode is the region within

the mode boundary and the desired dynamics mode is everywhere else. To further

aid visualisation, the mode chance constraints contour is marked on all plots (purple

line), i.e. Pr(↵ = k
⇤ | x, D0:i) = 1 � �. Intuitively, ModeOpt seeks to expand the

1 � � contour until the target state xf lies within the contour.

6.3.1 Experiment Configuration

This section details how the experiments were configured.

Initial data set D0 The initial data set was collected by simulating 15 random

trajectories from the start state x0 and terminating them when they left the initial

state domain X0. This resulted in an initial data set of 118 state transitions, which

is visualised as the blue crosses in Figure 6.1.

Model learning Following the experiments in Chapter 5 this section instantiated

the MoSVGPE dynamics model with K = 2 experts, one to represent each of the

dynamics modes. Each mode’s dynamics GP used a Squared Exponential kernel

with ARD and a constant mean function. The gating network used a single gating

function with a Squared Exponential kernel with ARD and a zero mean function.

At each ModeOpt iteration, an early stopping callback was used to terminate the

dynamics model training. The early stopping callback used a min delta of 0 and

- 149 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

a patience of 1200. This meant that training terminated after 1200 epochs of no

improvement.

Explorative controller The explorative controller ⇡explore was initialised with a

horizon of T = 15. At each ModeOpt iteration, the previous solution was used

as the initial solution for the trajectory optimiser. In all experiments, ModeOpt

was configured with � = 0.2, which corresponds to mode chance constraints with

a satisfaction probability of 0.8. That is, the mode chance constraints were given

by,

Pr(↵t = k
⇤ | x0,u0:t,↵0:t�1 = k

⇤) � 0.8 8 2 {0, . . . , T � 1}. (6.10)

6.3.2 Comparison of Exploration Terms

This section evaluates the di↵erent terms in the explorative controller’s objective

from Equation (6.2). In particular, it motivates why the entropy-based term was

combined with the state di↵erence term. It then shows why the joint gating entropy

over a trajectory was used, instead of summing the marginal entropy at each time

step, as is done in Buisson-Fenet et al., 2020.

State di↵erence term A simple exploration strategy is to favour trajectories whose

centre of mass is closer to the target state. This corresponds to solving the con-

strained optimisation in Equation (6.2) with only the state di↵erence term. How-

ever, using only the state di↵erence term with the mode chance constraints leads to

the optimisation getting stuck in a local optimum and never exploring to the target

state. This is shown in Figure 6.3, which shows the final iteration of the optimisation

where the trajectory is stuck at the mode boundary. If the strategy searched more to

the left it would be able to expand the mode chance constraints and explore around

the mode boundary. However, the mode chance constraints have induced a local op-

timum that prevented ModeOpt from exploring in this direction. A strategy which

favours searching regions of the state space which have not previously been observed

- 150 -

6.3 Preliminary Results

�2 0 2

x

�2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

�2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 1 | x)

Mode boundary

Mode boundary0
.8

0.0 0.2 0.4 0.6 0.8 1.0
Pr(� = 2 | x)

Mode boundary

Mode boundary0
.8

Dynamics Environment Environment boundaryFigure 6.3: State di↵erence only Results when solving the constrained opti-

misation in Equation (6.2) with only the state di↵erence term, i.e. J(f, ⇡) =PT�1
t=1 E

⇥
�(xt � xf)T Q(xt � xf)

⇤
. It shows the iteration where the optimisation gets stuck

and no longer explores. The optimised controls are rolled out in the desired mode’s GP dy-

namics (magenta) and in the environment (cyan) and are overlayed on the desired mode’s

mixing probability.

could likely avoid the local optima in Figure 6.3. This intuition motivated adding

the gating entropy term in Equation (6.2), which favours exploration in regions of

high epistemic uncertainty.

Joint vs factorised entropy Before combining the state di↵erence and entropy

terms into a single objective, the impact of di↵erent gating entropy objectives is

evaluated. In particular, the joint gating entropy term in Equation (6.2), given

by,

Jjoint(f, ⇡) = H[hk⇤(x̄) | x̄, D0:i�1], (6.11)

- 151 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

�2 0 2

x

�2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

�2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

0.0 0.1 0.2 0.3 0.4 0.5
Pr(� = 1 | x)

Mode boundary

Mode boundary

0
.8

0.45 0.55 0.65 0.75 0.85 0.95
Pr(� = 2 | x)

Mode boundary

Mode boundary

0
.8

Dynamics Environment Environment boundary(a) Factorised entropy Equation (6.12)

�2 0 2

x

�2

0

2

y

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

�2 0 2

x

x0

xf

x0

xf

x0

xf

Mode boundary
Mode boundary

0.8

0.0 0.1 0.2 0.3 0.4 0.5
Pr(� = 1 | x)

Mode boundary

Mode boundary

0
.8

0.45 0.55 0.65 0.75 0.85 0.95
Pr(� = 2 | x)

Mode boundary

Mode boundary

0
.8

Dynamics Environment(b) Joint entropy Equation (6.11)

Figure 6.4: Comparison of factorised/joint entropy objectives Comparison of solv-

ing the constrained optimisation in Equation (6.2) with (a) the sum of marginal entropies

at each time step (factorised entropy) and (b) the full joint entropy over a trajectory. The

trajectory found with the factorised entropy collapses onto a single location of high entropy.

The optimised controls are rolled out in the desired mode’s GP dynamics (magenta) and in

the environment (cyan) and are overlayed on each mode’s mixing probability.

is compared with the sum of marginal entropies over the trajectory, which is referred

to as the factorised entropy and given by,

Jfact(f, ⇡) =
TX

t=0

H[hk⇤(xt) | xt, D0:i�1]. (6.12)

Figure 6.4 shows the trajectories found at the first ModeOpt iteration when using

these two entropy objectives. The factorised entropy objective, shown in Figure 6.4a,

has collapsed the entire trajectory onto a single state of high entropy. This is an

undesirable behaviour because it does not maximise the information gain along the

entire trajectory. In contrast, the result in Figure 6.4b considers the joint entropy

over the entire trajectory. The trajectory has spread along the 1 � � contour, which

corresponds to the region with the highest gating entropy. These results confirm

that it is important to consider the information gain over the entire trajectory.

- 152 -

6.3 Preliminary Results

6.3.3 Exploration in Environment 1

This section presents preliminary results of ModeOpt’s exploration strategy. The

results show the strategy successfully exploring the simulated Environment 1 from

Section 5.2. The results presented here show how the desired mode’s mixing prob-

ability and the gating function’s variance change during each iteration. The explo-

ration strategy is visualised using a grid of figures where each row corresponds to

the data collection process corresponding to a particular iteration i. For example,

Figure 6.5 shows how the desired mode’s mixing probability changes at the start

of the exploration phase and Figure 6.6 shows how the gating function’s variance

changes.

1. The first (left) column shows the data set D0:i collected at the previous itera-

tions overlayed on the gating network posterior after training on it.

2. The second (middle) column overlays the trajectory found by the explorative

controller ⇡explore on the gating network posterior before training on the data

collected by the explorative controller.

3. The third (right) column shows the updated data set D0:i+1 after collecting

data with the explorative controller, overlayed on the gating network before

training on it.

The row below then shows the gating network posterior after training on the up-

dated data set D0:i+1 from the previous iteration. Together Figures 6.5 and 6.6

show how the model’s epistemic uncertainty reduces after collecting and training

on new data, and how this leads to the mode chance constraints expanding at each

iteration.

Initial model The top left figures in Figures 6.5 and 6.6 show the initial data set

D0 (blue crosses) overlayed on the gating network after training on it. Figure 6.5

shows that the probability of being in the desired dynamics mode k
⇤ = 2 is high

(red) around the initial data set. It tends to 0.5 away from the data, which corre-

sponds to maximum entropy for a Categorical distribution. Figure 6.6 shows that

- 153 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

�2

0

2
y

(i
=

0)

x0

xf

D0:i over Pr(↵ = 2 | x, D0:i)

0.8

x0

xf

x0

xf

x0

xf

⇡
i
explore used to collect Di+1

0.8

x0

xf

D0:i+1 over Pr(↵ = 2 | x, D0:i)

0.8

�2

0

2

y
(i

=
2)

x0

xf

0
.8

x0

xf

x0

xf

x0

xf

0
.8

x0

xf

0
.8

�2

0

2

y
(i

=
3)

x0

xf

0
.8

x0

xf

x0

xf

x0

xf

0
.8

x0

xf

0
.8

�2 0 2

x

�2

0

2

y
(i

=
4)

x0

xf
0
.8

�2 0 2

x

x0

xf

x0

xf

x0

xf

0
.8

�2 0 2

x

x0

xf

0
.8

0.45

0.55

0.65

0.75

0.85

0.95

P
r(

�
=

2
|x

,D
0
)

Mode boundary

0.45

0.55

0.65

0.75

0.85

0.95

P
r(

�
=

2
|x

,D
0:

2
)

Mode boundary

0.5

0.6

0.7

0.8

0.9

1.0

P
r(

�
=

2
|x

,D
0:

3
)

Mode boundary

0.08

0.24

0.40

0.56

0.72

0.88

1.04

P
r(

�
=

2
|x

,D
0:

4
)

Mode boundary

Dynamics Environment Observations

Figure 6.5: ModeOpt iterations i = 0,2,3,4 over mode probability Visualisation of

ModeOpt at the start of it’s exploration phase in Environment 1 overlayed on the desired

mode’s mixing probability. It shows how the explorable region – indicated by the boundary of

the mode chance constraints (purple 0.8 contour) – expands after training on data collected

using the explorative controller ⇡explore. Reading left to right shows the data collection process

whilst top to bottom shows the dynamics model updating. Each row shows the data collection

process at a given iteration i which has used the dynamics model after training on the

previous data set D0:i to collect a new data set Di+1. The data collection process is overlayed

on the desired mode’s mixing probability after training on the data set collected at the

previous iteration Pr(↵ = k
⇤ | x, D0:i). The left plots show the data set collected at the

previous iteration D0:i (blue crosses). The middle plots show the trajectory found by the

explorative controller rolled out in the desired mode’s GP dynamics (magenta) and in the

environment (cyan). The right plots show the updated data set D0:i+1 (blue crosses) after

collecting data with the explorative controller.

- 154 -

6.3 Preliminary Results

�2

0

2

y
(i

=
0)

x0

xf

D0:i over V[h2(x) | x, D0:i]

0.8

x0

xf

x0

xf

x0

xf

⇡
i
explore used to collect Di+1

0.8

x0

xf

D0:i+1 over V[h2(x) | x, D0:i]

0.8

�2

0

2

y
(i

=
2)

x0

xf

0
.8

x0

xf

x0

xf

x0

xf

0
.8

x0

xf

0
.8

�2

0

2

y
(i

=
3)

x0

xf

0
.8

x0

xf

x0

xf

x0

xf

0
.8

x0

xf

0
.8

�2 0 2

x

�2

0

2

y
(i

=
4)

x0

xf

0
.8

�2 0 2

x

x0

xf

x0

xf

x0

xf

0
.8

�2 0 2

x

x0

xf

0
.8

0.3

0.9

1.5

2.1

2.7

3.3

V
[h

2
(x

)
|x

,D
0
)

Mode boundary

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

V
[h

2
(x

)
|x

,D
0:

2
]

Mode boundary

0.8

2.4

4.0

5.6

7.2

8.8

V
[h

2
(x

)
|x

,D
0:

3
]

Mode boundary

0

2

4

6

8

10

V
[h

2
(x

)
|x

,D
0:

4
]

Mode boundary

Dynamics Environment Observations

Figure 6.6: ModeOpt iterations i = 0,2,3,4 over gating function variance Visu-

alisation of ModeOpt at the start of it’s exploration phase in Environment 1 overlayed on

the gating function’s posterior variance. It shows the explorable region – indicated by the

boundary of the mode chance constraints (purple 0.8 contour) – expanding after training on

data collected using the explorative controller ⇡explore. Reading left to right shows the data

collection process whilst top to bottom shows the dynamics model updating. Each row shows

the data collection process at iteration i which uses the dynamics model after training on the

previous data set D0:i to collect a new data set Di+1. The data collection process is overlayed

on the gating function’s variance after training on the previous data set V[hk⇤(x) | x, D0:i].
The left plots show the data set collected at the previous iteration D0:i (blue crosses). The

middle plots show the trajectory found by the explorative controller rolled out in the desired

mode’s GP dynamics (magenta) and in the environment (cyan). The right plots show the

updated data set D0:i+1 (blue crosses) after collecting data with the explorative controller.

- 155 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

the gating function’s posterior variance is low around the initial data set and high

everywhere else. Intuitively, ModeOpt seeks to expand the explorable region so

that � � mode remaining trajectories to the target state can be found. As such,

it seeks to reduce the model’s epistemic uncertainty by decreasing the gating func-

tion’s variance. In turn, this will increase the region that the model believes belongs

to the desired dynamics mode. This is visualised by the chance constraint contour

Pr(↵ = k
⇤ | x, D0:i) = 0.8 expanding as ModeOpt collects more data and trains on

it.

Iteration i = 0 The top row of Figures 6.5 and 6.6 visualise the initial iteration

i = 0 of ModeOpt. Given the dynamics model after training on the initial data

set D0, the explorative controller ⇡explore found the trajectory in the top middle

plot. The trajectory explores towards the target state xf , which is the goal of

the state di↵erence term in Equation (6.2). The top middle plot in Figure 6.6

shows that the trajectory has also spread over regions of the desired mode’s gating

function with high posterior variance. This is the goal of the joint gating entropy

term in Equation (6.2). The contour plots in the second row show how the gating

network changes after training on D0:1. The gating function’s posterior variance has

decreased around the new observations. The purple lines representing the Pr(↵ =

k
⇤ | x, D0) = 0.8 contour in the top row, and the Pr(↵ = k

⇤ | x, D0:1) = 0.8 contour

in the second row, show how the mode chance constraints expand after training

on D0:1. The region between the contours represents the newly explorable region.

This shows that reducing the model’s epistemic uncertainty leads to the explorable

region expanding under the mode chance constraints. Further to this, it indicates

that in this environment, setting � = 0.2 enables exploration outside of the initial

state domain X0.

Iteration i = 2 The second row of plots in Figure 6.5 shows the first iteration where

the � � mode remaining chance constraints have expanded the explorable domain

such that it intersects with the undesired dynamics mode. This is indicated by the

purple 0.8 contour intersecting with the purple line labelled mode boundary. As a

- 156 -

6.3 Preliminary Results

result, the trajectory found by the explorative controller left the desired dynamics

mode and was subject to the turbulent dynamics mode. This is shown by the tra-

jectory crossing the mode boundary and also by the environment trajectory (cyan)

deviating from the dynamics trajectory (magenta) due to the high drift associated

with the turbulent dynamics mode. It is worth noting that ModeOpt can never

learn where a mode boundary is without observing state transitions from outside

of the desired dynamics mode. However, ModeOpt was not able to learn the mode

boundary from this single trajectory.

Iteration i = 3 The third row shows another iteration where the dynamics model

did not learn the mode boundary and as a result, found an explorative trajectory

which left the desired dynamics mode. Although not desirable, collecting this data

was necessary for inferring the mode boundary.

Iteration i = 4 The fourth row shows the next iteration which shows that given

these new observations the MoSVGPE’s gating network is able to infer that the state

transitions belong to another dynamics mode. As a result, the explorative trajectory

did not leave the desired dynamics mode. That is, the mode chance constraints

successfully restricted the domain such that the trajectory did not leave the desired

dynamics mode. Further to this, with � = 0.2 the trajectory optimiser was able

to explore around the mode boundary without leaving the desired dynamics mode.

This confirms that the exploration strategy in Section 6.2.1 is capable of exploring

subject to the constrained domain.

Leaving the desired dynamics mode The interplay between the explorative ob-

jective and the mode chance constraints was e↵ective at preventing the explorative

controller from leaving the desired dynamics mode during training. Only two itera-

tions of ModeOpt left the desired dynamics mode during training and arguably this

is necessary in order to learn the location of the mode boundary.

Final iteration Figures 6.7 and 6.8 show the later iterations of the exploration

phase. They show ModeOpt gradually exploring the domain by expanding the mode

chance constraints. The bottom row shows the final iteration of the exploration

- 157 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

�2

0

2

4

y
(i

=
6)

x0

xf

D0:i over Pr(↵ = 2 | x, D0:i)

0
.8

0.8

0
.8

x0

xf

x0

xf

x0

xf

⇡
i
explore used to collect Di+1

0
.8

0.8

0
.8

x0

xf

D0:i+1 over Pr(↵ = 2 | x, D0:i)

0
.8

0.8

0
.8

�2

0

2

4

y
(i

=
8)

x0

xf

0.
8

x0

xf

x0

xf

x0

xf

0.
8

x0

xf

0.
8

�2

0

2

4

6

y
(i

=
12

)

x0

xf
0.8

x0

xf

x0

xf

x0

xf
0.8

x0

xf
0.8

�2 0 2

x

�2

0

2

4

6

y
(i

=
14

)

x0

xf 0.8

�2 0 2 4

x

x0

xf

x0

xf

x0

xf 0.8

�2.5 0.0 2.5

x

x0

xf 0.8

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

2
|x

,D
0
:6
)

Mode boundary

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

2
|x

,D
0:

8
)

Mode boundary

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

�
=

2
|x

,D
0:

12
)

Mode boundary

0.16

0.32

0.48

0.64

0.80

0.96

P
r(

�
=

2
|x

,D
0
:1

4
)

Mode boundary

Dynamics Environment Observations

Figure 6.7: ModeOpt iterations i = 6,8,12,14 over mode probability Visualisation

of ModeOpt at the end of it’s exploration phase in Environment 1 overlayed on the desired

mode’s mixing probability. It shows how the explorable region – indicated by the boundary of

the mode chance constraints (purple 0.8 contour) – expands after training on data collected

using the explorative controller ⇡explore. Reading left to right shows the data collection process

whilst top to bottom shows the dynamics model updating. Each row shows the data collection

process at a given iteration i which has used the dynamics model after training on the

previous data set D0:i to collect a new data set Di+1. The data collection process is overlayed

on the desired mode’s mixing probability after training on the data set collected at the

previous iteration Pr(↵ = k
⇤ | x, D0:i). The left plots show the data set collected at the

previous iteration D0:i (blue crosses). The middle plots show the trajectory found by the

explorative controller rolled out in the desired mode’s GP dynamics (magenta) and in the

environment (cyan). The right plots show the updated data set D0:i+1 (blue crosses) after

collecting data with the explorative controller.

- 158 -

6.3 Preliminary Results

�2

0

2

4
y

(i
=

6)

x0

xf

D0:i over V[h2(x) | x, D0:i]

0
.8

0.8

0
.8

x0

xf

x0

xf

x0

xf

⇡
i
explore used to collect Di+1

0
.8

0.8

0
.8

x0

xf

D0:i+1 over V[h2(x) | x, D0:i]

0
.8

0.8

0
.8

�2

0

2

4

y
(i

=
8)

x0

xf

0.
8

x0

xf

x0

xf

x0

xf

0.
8

x0

xf

0.
8

�2

0

2

4

6

y
(i

=
12

)

x0

xf
0.8

x0

xf

x0

xf

x0

xf
0.8

x0

xf
0.8

�2 0 2

x

�2

0

2

4

6

y
(i

=
14

)

x0

xf 0.8

�2 0 2 4

x

x0

xf

x0

xf

x0

xf 0.8

�2.5 0.0 2.5

x

x0

xf 0.8

0

3

6

9

12

15

V
[h

2
(x

)
|x

,D
0:

6
]

Mode boundary

0

5

10

15

20

25

V
[h

2
(x

)
|x

,D
0
:8
]

Mode boundary

0

8

16

24

32

40

V
[h

2
(x

)
|x

,D
0:

12
]

Mode boundary

0

6

12

18

24

30

V
[h

2
(x

)
|x

,D
0:

14
]

Mode boundary

Dynamics Environment Observations

Figure 6.8: ModeOpt iterations i = 6,8,12,14 over gating function variance Vi-

sualisation of ModeOpt at the end of it’s exploration phase in Environment 1 overlayed on

the gating function’s posterior variance. It shows the explorable region – indicated by the

boundary of the mode chance constraints (purple 0.8 contour) – expanding after training on

data collected using the explorative controller ⇡explore. Reading left to right shows the data

collection process whilst top to bottom shows the dynamics model updating. Each row shows

the data collection process at iteration i which uses the dynamics model after training on the

previous data set D0:i to collect a new data set Di+1. The data collection process is overlayed

on the gating function’s variance after training on the previous data set V[hk⇤(x) | x, D0:i].
The left plots show the data set collected at the previous iteration D0:i (blue crosses). The

middle plots show the trajectory found by the explorative controller rolled out in the desired

mode’s GP dynamics (magenta) and in the environment (cyan). The right plots show the

updated data set D0:i+1 (blue crosses) after collecting data with the explorative controller.

- 159 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

phase where the mode chance constraints have expanded such that the target state

xf lies within the explorable domain. This result confirms that the constrained

exploration strategy is capable of exploring to the target state xf with � = 0.2.

However, it is worth noting that the mode chance constraints intersect the mode

boundary at the final iteration. As such � �mode remaining trajectories found with

the mode remaining controller ⇡mode may leave the desired dynamics mode. In this

case, ModeOpt requires more observations around the mode boundary to learn the

true position of the mode boundary. This issue arises because the constraints are

latent and are being inferred from data.

Exploration The results in Figures 6.5 to 6.8 suggest that balancing the state

di↵erence and the joint gating entropy terms in Equation (6.2) results in exploration

to the target state xf without getting stuck in a local minimum. Intuitively, this

objective favours maximum entropy trajectories whose centre of mass is closest to the

target state xf . It is worth noting that not all settings of the cost matrices, Q and

R, resulted in ModeOpt converging in the experiments. As mentioned previously,

the performance of ModeOpt’s exploration is dependent on the interplay between

the entropy term, the state di↵erence term and the mode chance constraints. As

such, the convergence of ModeOpt likely depends on the cost matrices, Q, R and

the mode satisfaction probability given by our choice of �. Exploration can likely be

guaranteed by relaxing �, however, relaxing � too far corresponds to removing the

mode chance constraints. Nevertheless, the results shown here are an initial step

showing that ModeOpt can work in practice. However, further analysis is left for

future work.

6.4 Discussion & Future Work

This section discusses ModeOpt and proposes some directions for future work.

- 160 -

6.4 Discussion & Future Work

Further experiments First of all, it should be noted that the work presented

in this chapter is a first step at consolidating the work in this thesis to solve the

mode remaining navigation problem in Equation (6.1). As such, more experiments

are required to fully test ModeOpt. For example, further experiments are required

to validate the exploration strategy in environments with more than two dynamics

modes and on real-world systems.

Exploration guarantees ModeOpt side-steps the exploration-exploitation trade-

o↵ which is common in MBRL. It does so by separating the exploration into the

explorative controller ⇡explore and the exploitation into the mode remaining con-

troller ⇡mode. The mode chance constraints are then used to see if the exploitative

mode controller ⇡mode can find a � � mode remaining trajectory to the target state.

If it cannot, it falls back on the explorative controller ⇡explore to find informative tra-

jectories, collect data and reduce the model’s epistemic uncertainty. Although this

approach principally side-steps the exploration-exploitation trade-o↵, it does not

have any exploration guarantees. That is, given enough time, it is not guaranteed to

have explored enough such that � � mode remaining trajectories to the target state

can be found. Further to this, some experiments showed that the constrained opti-

misation can get stuck exploring away from the target state. As such, an interesting

direction for future work is to study exploration guarantees, for example, through

regret bounds. Such analysis may lead to an automatic method for selecting the

smallest � that can guarantee exploration. A more simple (empirical) approach may

quantify the rate at which the gating network’s epistemic uncertainty is reducing

and use it to relax � if the agent has stopped exploring.

Myopic vs non-myopic active learning In dynamical systems, myopic learning

corresponds to selecting the control input by only considering the information gain

at the next state. In contrast, non-myopic learning selects the control input by

considering the information gain over the next T states. The exploration strategy

presented in this chapter selected the next T controls by considering the informa-

tion gain over the next T states. In future work, it would be interesting to put

- 161 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

the exploration strategy into an MPC loop, such that it selects the next control, by

considering the information gain over the next T states. This would enable a better

comparison of myopic and non-myopic strategies.

Information criterion The exploration strategy presented in this chapter has

shown that the GP-based gating network is useful for active learning when con-

sidering trajectories over a horizon. This is because the GPs have been able to

model the joint distribution over the gating function values along a trajectory. This

enabled the exploration strategy to find trajectories where each time step is aware

of the information gain of other time steps. This is useful for finding non-myopic

trajectories as it increases the information gain over the entire trajectory. However,

this has only been verified by visual inspection and further analysis is left for future

work. It is also worth noting that the exploration strategy is only possible because

the gating network is based on GPs. As such, this method is not widely applicable

in all MoGPE dynamics models.

An alternative approach is to use the entropy of the mode indicator variable ↵. Fig-

ure 6.9 compares how the gating function entropy and two alternative information-

based objectives change during each ModeOpt iteration. Note that the figure shows

myopic versions of the objectives that do not consider full trajectories. At the start

of ModeOpt (top row), the shape of the entropy landscapes is quite similar. How-

ever, when the gating network starts learning the mode boundary at iteration i = 4

(second row) the shape of the entropy over the mode indicator variable (middle col-

umn) no longer matches the entropy of the gating function (left column). This is in

line with what happens in GP classification and is to be expected from the gating

network. As mentioned in Chapter 3, MoGPE gating networks tend to a uniform

distribution 1) where they are not very confident (have high epistemic uncertainty)

but also 2) where they are confident (have low epistemic uncertainty) but are at the

boundary between modes. This can be seen in the last two rows of Figure 6.9. In this

figure, high values (red) indicate regions where the objectives want to query next.

The entropy of the mode indicator variable (middle column) is high at the mode

- 162 -

6.4 Discussion & Future Work

�2

0

2

y
(i

=
2)

x0

xf

0
.8

x0

xf

0
.8

x0

xf

0
.8

�2

0

2

y
(i

=
4)

x0

xf

0
.8

x0

xf

0
.8

x0

xf

0
.8

�2

0

2

y
(i

=
5)

x0

xf

0
.8

x0

xf
0
.8

x0

xf

0
.8

�2 0 2

x

�2

0

2

4

y
(i

=
7)

x0

xf

0
.8

�2 0 2

x

x0

xf

0
.8

�2 0 2

x

x0

xf

0
.8

0.00 1.33 2.67 4.00 5.33 6.67 8.00
H[h(x) | x, D0:i]

M
od

e
bo

un
da

ry

0.59 0.61 0.63 0.65 0.66 0.68 0.70
H[� | x, D0:i]

M
o
d
e

b
ou

n
d
ar

y

0.00 0.11 0.22 0.33 0.43 0.54 0.65
H[� | x, D0:i] � Ep(h(x)|x,D0:i)[H[� | h(x)]]

M
o
d
e

b
ou

n
d
ar

y

Observations

Figure 6.9: Comparison of information-based objectives at ModeOpt iterations

i = 2,4,5,7 Each column visualises how a di↵erent information-based objective changes as

the dynamics model is updated during ModeOpt, i.e. after training on the data set D0:i

collected at previous iterations. Each row shows an iteration where the blue crosses indicate

the data set D0:i. The left column shows the gating function entropy H[h(x) | x, D0:i]
(myopic version of the objective used in this work). The middle column shows the Bernoulli

entropy of the mode indicator variable H[↵ | x, D0:i]. The right column shows the Bayesian

Active Learning by Disagreement (BALD) objective which approximates H[↵ | x, D0:i] �
Ep(h(x)|x,D0,i)[H[↵ | h(x)]]. Note that this figure visualises the objectives at a single state

and does not consider entire trajectories.

- 163 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

boundary even though the model has observed data at this location. Therefore,

this objective may keep exploring mode boundaries that it has already observed.

In turn, this may lead to the strategy getting stuck in a local optimum at a mode

boundary.

A popular approach to active learning for binary classification is Bayesian Active

Learning by Disagreement (BALD) (Houlsby et al., 2011). BALD alleviates this

issue by considering the following objective (in the myopic setting),

arg max
xt

H(↵t | xt, D0:i) � Ehk⇤ (xt)⇠p(hk⇤ (xt)|D0:i)[H(↵t | xt, hk⇤(xt))]. (6.13)

This objective is visualised in the right column of Figure 6.9. Intuitively, it seeks the

state xt for which the parameters under the posterior disagree about the outcome

the most, hence the name. The objective is low in regions of the mode boundary

which have been observed. This is a desirable behaviour which makes extending this

objective to dynamical systems an interesting direction for future work.

It is worth noting that the joint distribution over the mode indicator variable in

MoGPE models is factorised over time. As such, there is no way to condition the

entropy at a given time step on all other time steps. However, it may be possible to

use the joint distribution over the gating function values p(h(x̄) | x̄, D0:i) to achieve

this behaviour.

More than 2 modes Although not tested here, ModeOpt is theoretically sound

and should be applicable in environments with more than two dynamics modes.

However, the exploration strategy uses the joint entropy of desired mode’s gating

function over a trajectory. Further experiments are required to see if this strategy

works when the MoSVGPE dynamics model is instantiated with more than two

experts. This is because when using more than two experts the MoSVGPE model

uses the Softmax likelihood with a gating function for each expert. In contrast, the

two expert case uses the Bernoulli likelihood with a single gating function.

- 164 -

6.4 Discussion & Future Work

Inducing points The method presented in this chapter initialised each of the sparse

GPs in the MoSVGPE dynamics model with a fixed number of inducing points. Al-

though this approach worked well in the experiments, it is unlikely that this will

always be the case. For example, consider exploring much larger environments, i.e.

environments with larger state domains. In these environments, the MoSVGPE’s

ability to accurately model an ever increasing data set with a fixed number of induc-

ing points will decrease. This is due to the sparse approximation’s ability to model

the true nonparametric model deteriorating as the number of data points increases.

See Burt et al., 2019 for details on rates of convergence for sparse GPs. As such,

an interesting direction for future work is to study methods for dynamically adding

new inducing points to each GP.

Fixing model parameters during training During its initial iterations, Mod-

eOpt only explores the desired dynamics mode and does not observe any state tran-

sitions belonging to another mode. As a result, the lengthscale of the gating network

GP increases. This often results in the gating network becoming overconfident, al-

most as if the gating network believes that only a single dynamics mode exists over

the entire domain. When this happens, the � � mode remaining chance constraints

expand the explorable region significantly further than the observed data. This is

undesirable because it leads to trajectories leaving the desired dynamics mode sig-

nificantly more. In practice, fixing the kernel’s hyperparameters (e.g. lengthscale

and signal variance) after training on the initial data set D0, appeared to alleviate

this issue. However, it is left to future work to study this in more depth.

� � mode remaining Exploring a single dynamics mode in multimodal dynamical

systems where the underlying dynamics modes and how the system switches between

them, are not fully known a priori, is a hard problem. This is because the agent

must observe regions outside of the desired dynamics mode in order to know that

a particular region does not belong to the desired mode. The � � mode remaining

exploration strategy proposed in Section 6.2.1 resulted in the agent leaving the

desired dynamics mode multiple times in the experiments. In future work, it would

- 165 -

6 Mode Remaining Exploration for Model-Based Reinforcement Learning

be interesting to study this in more detail. For example, how often must the agent

leave the desired dynamics mode in order to accurately learn the mode boundary?

And, how often does the agent fail when leaving the desired dynamics mode in

practice?

Related work To the best of our knowledge, there is no previous work addressing

the exploration of a single dynamics mode in multimodal dynamical systems. Schre-

iter et al., 2015 use a GP classifier to identify safe and unsafe regions when learning

GP dynamics models in an active learning setting. However, they assume that they

can directly observe whether a particular data point from the environment belongs

to either the safe or unsafe regions. In contrast, we considered scenarios where the

mode cannot be directly observed from the environment, but instead, is inferred by

the probabilistic dynamics model.

6.5 Conclusion

This chapter has presented a novel strategy for exploring multimodal dynamical sys-

tems whilst remaining in the desired dynamics mode with high probability. More-

over, it has proposed how this exploration strategy can be combined with the dynam-

ics model from Chapter 3, the ��mode remaining trajectory optimisation algorithms

from Chapter 4 and the ��mode remaining chance constraints from Equation (4.41),

to approximately solve the mode remaining navigation problem in Equation (2.4).

That is, it can control multimodal dynamical systems – where the underlying dy-

namics modes and how the system switches between them, are not fully known a

priori – from a start state x0, to a target state xf whilst guaranteeing that the

system remains in the desired dynamics mode with high probability.

The algorithm, named ModeOpt, was tested in a simulated version of the illustrative

quadcopter example, verifying that the algorithm can work in practice. However,

it has not been fully tested in environments with more than two modes, nor has it

- 166 -

6.5 Conclusion

been tested on a real-world system. Further testing and analysis of ModeOpt is left

for future work.

- 167 -

7 Conclusion

The main objective of this thesis was to solve the mode remaining navigation problem

in Equation (2.4). That is, to control a multimodal dynamical system – where neither

the underlying dynamics modes, nor how the system switches between them, are

known a priori – to a target state, whilst remaining in the desired dynamics mode.

Based on well-established methods from Bayesian statistics and machine learning,

this thesis proposed ModeOpt, a general framework for approximately solving the

mode remaining navigation problem.

At the core of ModeOpt is a Bayesian approach to learning multimodal dynamical

systems, named Mixtures of Sparse Variational Gaussian Process Experts (MoSVGPE),

that accurately identifies the underlying dynamics modes, as well as how the sys-

tem switches between them. Further to this, it learns informative latent structure

that ModeOpt leverages to encode mode remaining behaviour into control strate-

gies. The method’s ability to learn factorised representations of multimodal data

sets whilst retaining well-calibrated uncertainty estimates was validated on a real-

world quadcopter data set, as well as on the motorcycle data set. Further to this,

its applicability to learning dynamics models for model-based control was validated

in two simulated environments.

As this thesis has focused on model-based techniques that leverage a learned dy-

namics model, it had to relax the requirement of remaining in the desired dynamics

mode, to remaining in the desired dynamics mode with high probability. Initially,

when not much of the environment has been observed, it is not possible to find tra-

jectories to the target state that remain in the desired mode with high probability.

- 169 -

7 Conclusion

This is due to the learned dynamics model having high epistemic uncertainty. In

this scenario, ModeOpt reduces the model’s epistemic uncertainty by exploring the

environment and updating the dynamics model with new data. ModeOpt sidesteps

the exploration-exploitation trade-o↵ which is common in MBRL algorithms by in-

troducing a set of chance constraints. That is, ModeOpt does not need an objective

function that changes its exploration-exploitation balance as it gathers more data.

The mode chance constraints are a powerful tool that allow ModeOpt to deploy

separate controllers during the explorative and exploration phases.

An explorative trajectory optimisation algorithm that leverages the GP-based gat-

ing network is proposed. Experiments confirm that the explorative controller is

e↵ective at maximising the information gain over the entire trajectory and targeting

exploration towards the target state. However, further analysis of the exploration

strategy is left for future work.

Three exploitative trajectory optimisation algorithms that find trajectories to the

target state, whilst attempting to remain in the desired dynamics mode have been

presented. Two of the methods show how the latent geometry of the GP-based gat-

ing network can be leveraged to encode mode remaining behaviour, whilst the third

approach shows how this can be achieved by extending the CaI framework to mul-

timodal dynamical systems. Their ability to remain in the desired dynamics mode

was tested in two simulated environments. Both the Direct Optimal Control via Rie-

mannian Energy (DRE) method in Section 4.2.3 and the Mode Remaining Control

as Inference (MRCaI) method in Section 4.3 performed well in the experiments.

This thesis provided experimental evidence that ModeOpt can work in practice,

however, this was only in simulation. Evaluating its performance on real-world

problems is left for future work.

- 170 -

7.1 Future Work

7.1 Future Work

There are many promising directions for future work. Some are extensions of the

work in this thesis, whilst others are alternative approaches to solving the mode

remaining navigation problem in Equation (2.4). Many of the extensions to the

work in this thesis are discussed in the relevant chapters so are not re-discussed

here.

Higher-dimensional problems Firstly, ModeOpt is mostly restricted to lower

dimensional problems due to the di�culties of defining GP priors in high dimensions.

In MBRL there has been interesting progress learning better statistical models and

scaling them up to higher-dimensional problems, for example, using Bayesian neural

networks. This is an interesting direction for future work as it may lead to more

practical algorithms.

External sensing ModeOpt uses internal sensing to obtain information on the

robot, such as where it is and how fast it is travelling. It then uses this information to

infer the separation between the underlying dynamics modes from state transitions.

However, in some applications, it may be possible to infer the separation between

the underlying dynamics modes using external sensors. For example, in autonomous

driving, the friction coe�cients associated with di↵erent road surfaces may define a

set of dynamics modes. In this setting, cameras could likely be used to detect changes

in the road surface and thus the separation between the underlying dynamics modes.

Although not applicable in all settings, this is a promising direction for future work,

as the agent would never have to enter the undesired dynamics mode.

Real-time feedback control Although the trajectories found by the controllers

are � � mode remaining, often when they are executed in the environment they are

not � � mode remaining. This behaviour is expected with open-loop controllers.

Although this did not pose an issue in the simulated experiments, it may pose an

issue in real-world environments. Future work could explore methods for obtaining

closed-loop controllers. A simple approach is to embed the trajectory optimisation

- 171 -

7 Conclusion

algorithm into an MPC loop to obtain a closed-loop controller. This would require

the trajectory optimisation algorithms to be made faster so that they could be used

for real-time MPC, for example, via locally linear dynamics approximations. Alter-

natively, an state-feedback controllers could be learned. For example, the trajectory

optimisation algorithms could be used for guided policy search (Levine and Koltun,

2013), or, they could be used for policy optimisation by reformulating them as a sum

of discounted rewards with the mode chance constraints implemented via Lagrange

multipliers. It should be straightforward to verify that learned feedback controllers

are � � mode remaining under the dynamics using the mode chance constraints.

Model-free approaches Finally, this thesis has solely focused on model-based

approaches for solving the mode remaining navigation problem in Equation (2.4).

However, it may be possible to solve it with model-free methods. For example,

Model-Free Reinforcement Learning (MFRL) methods may be able to learn reac-

tive policies which automatically turn back when they encounter hard to control

dynamics.

- 172 -

Bibliography

Ames, Aaron D., Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada (June 2019). “Control Barrier Functions: Theory and Applications”. In: 2019
18th European Control Conference (ECC), pp. 3420–3431.

Anderson, T. W. (1946). “The Non-Central Wishart Distribution and Certain Problems of Multi-
variate Statistics”. In: The Annals of Mathematical Statistics 17.4, pp. 409–431.

Ariafar, Setareh, Jaume Coll-Font, Dana Brooks, and Jennifer Dy (Jan. 2019). “ADMMBO:
Bayesian Optimization with Unknown Constraints using ADMM”. In: Journal of machine learn-

ing research : JMLR 20.

Auer, Peter (2002). “Using Confidence Bounds for Exploitation-Exploration Trade-o↵s”. In: Journal
of Machine Learning Research 3.Nov, pp. 397–422.

Bellman, Richard (1956). “Dynamic Programming”. In: Princeton University Press.

Betts, John T. (Mar. 1998). “Survey of Numerical Methods for Trajectory Optimization”. In: Jour-
nal of Guidance, Control, and Dynamics 21.2, pp. 193–207.

Boedecker, Joschka, Jost Tobias Springenberg, Jan Wülfing, and Martin Riedmiller (Dec. 2014).
“Approximate real-time optimal control based on sparse Gaussian process models”. In: 2014

IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL),
pp. 1–8.

Boney, Rinu, Norman Di Palo, Mathias Berglund, Alexander Ilin, Juho Kannala, Antti Rasmus, and
Harri Valpola (2019). “Regularizing Trajectory Optimization with Denoising Autoencoders”. In:
Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc.

Buisson-Fenet, Mona, Friedrich Solowjow, and Sebastian Trimpe (2020). “Actively Learning Gaus-
sian Process Dynamics”. en. In: 2nd Annual Conference on Learning for Dynamics and Control.
Vol. 120. Proceedings of Machine Learning Research, pp. 1–11.

Burt, David, Carl Edward Rasmussen, and Mark Van Der Wilk (May 2019). “Rates of Convergence
for Sparse Variational Gaussian Process Regression”. en. In: Proceedings of the 36th International

Conference on Machine Learning. PMLR, pp. 862–871.

Capone, Alexandre, Gerrit Noske, Jonas Umlauft, Thomas Beckers, Armin Lederer, and Sandra
Hirche (2020). “Localized active learning of Gaussian process state space models”. In: 2nd An-

nual Conference on Learning for Dynamics and Control. Vol. 120:1-12. Proceedings of Machine
Learning Research.

Carmo, Manfredo do (1992). Riemannian Geometry. en. Mathematics: Theory & Applications.
Birkhäuser Basel.

Chua, Kurtland, Roberto Calandra, Rowan McAllister, and Sergey Levine (2018). “Deep Reinforce-
ment Learning in a Handful of Trials using Probabilistic Dynamics Models”. en. In: Advances in

Neural Information Processing Systems. Vol. 31.

Cover M., Thomas and Thomas Joy A. (2006). Elements of information theory. John Wiley & Sons.

Deisenroth, Marc and Carl Rasmussen (Jan. 2011). “PILCO: A Model-Based and Data-E�cient
Approach to Policy Search.” In: International Conference on Machine Learning. Vol. 28, pp. 465–
472.

- 173 -

Bibliography

Depeweg, S., J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft (2017). “Learning and policy
search in stochastic dynamical systems with Bayesian neural networks”. In: 5th International

Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings.

Doerr, Andreas, CHristian Daniel, Duy Nguyen-Tuong, Alonso Marco, Stefan Schaal, Toussaint
Marc, and Sebastian Trimpe (Oct. 2017). “Optimizing Long-term Predictions for Model-based
Policy Search”. en. In: Conference on Robot Learning. PMLR, pp. 227–238.

Dong, Jing, Mustafa Mukadam, F. Dellaert, and Byron Boots (2016). “Motion Planning as Prob-
abilistic Inference using Gaussian Processes and Factor Graphs”. In: Robotics: Science and Sys-

tems.

Du�e, Darrell and Jun Pan (Feb. 1997). “An Overview of Value at Risk”. en. In: The Journal of

Derivatives 4.3, pp. 7–49.

Eduardo F., Camacho and Bordons Carlos (2007). Model Predictive Control. Springer.

Fahroo, F. and I. M. Ross (June 2000). “Direct trajectory optimization by a Chebyshev pseudospec-
tral method”. In: Proceedings of the 2000 American Control Conference. Vol. 6, pp. 3860–3864.

Ferber, R., R. Luce, and H. Rai↵a (1958). Games and Decisions: Introduction and Critical Survey.
Wiley New York.

Freeman, Randy and Petar V. Kokotovic (1996). Robust Nonlinear Control Design: State-Space and

Lyapunov Techniques. en. Modern Birkhäuser Classics. Birkhäuser Basel.

Gal, Yarin, Rowan McAllister, and Carl Rasmussen (2016). “Improving PILCO with Bayesian
Neural Network Dynamics Models”. en. In.

Garg, Divya, Michael Patterson, William W. Hager, Anil V. Rao, David A. Benson, and Geo↵rey
T. Huntington (Nov. 2010). “A unified framework for the numerical solution of optimal control
problems using pseudospectral methods”. en. In: Automatica 46.11, pp. 1843–1851.

Gelbart, Michael A., Jasper Snoek, and Ryan P. Adams (2014). “Bayesian optimization with un-
known constraints”. English (US). In: Uncertainty in Artificial Intelligence - Proceedings of the

30th Conference, UAI 2014. AUAI Press, pp. 250–259.

Ghahramani, Zoubin and Sam T. Roweis (1999). “Learning Nonlinear Dynamical Systems using an
EM Algorithm”. In: Advances in Neural Information Processing Systems 11. MIT Press, pp. 599–
605.

Girard, Agathe (2004). “Approximate Methods for Propagation of Uncertainty with Gaussian Pro-
cess Models”. en. PhD thesis. University of Glasgow.

Hafner, Danijar, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson (May 2019). “Learning Latent Dynamics for Planning from Pixels”. en. In: Interna-
tional Conference on Machine Learning. PMLR, pp. 2555–2565.

Hensman, James, Nicolo Fusi, and Neil D Lawrence (2013). “Gaussian Processes for Big Data”. en.
In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence. Vol. 29, pp. 282–
290.

Hensman, James, Alexander Matthews, and Zoubin Ghahramani (Feb. 2015). “Scalable Variational
Gaussian Process Classification”. en. In: Artificial Intelligence and Statistics. PMLR, pp. 351–
360.

Hewing, Lukas, Juraj Kabzan, and Melanie N. Zeilinger (Nov. 2020a). “Cautious Model Predic-
tive Control Using Gaussian Process Regression”. In: IEEE Transactions on Control Systems

Technology 28.6, pp. 2736–2743.

Hewing, Lukas, Kim P. Wabersich, Marcel Menner, and Melanie N. Zeilinger (2020b). “Learning-
Based Model Predictive Control: Toward Safe Learning in Control”. In: Annual Review of Control,

Robotics, and Autonomous Systems 3.1, pp. 269–296.

Ho↵man, Matthew D., David M. Blei, Chong Wang, and John Paisley (2013). “Stochastic Varia-
tional Inference”. In: Journal of Machine Learning Research 14.4, pp. 1303–1347.

- 174 -

Bibliography

Houlsby, Neil, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel (Dec. 2011). “Bayesian Active
Learning for Classification and Preference Learning”. In: arXiv:1112.5745 [cs, stat].

Jacobs, Robert A., Michael I. Jordan, Steven J. Nowlan, and Geo↵rey E. Hinton (Mar. 1991).
“Adaptive Mixtures of Local Experts”. In: Neural Computation 3.1, pp. 79–87.

Janner, Michael, Justin Fu, Marvin Zhang, and Sergey Levine (2019). “When to Trust Your Model:
Model-Based Policy Optimization”. en. In: Advances in Neural Information Processing Systems.
Vol. 32.

Kaiser, Markus, Clemens Otte, Thomas A. Runkler, and Carl Henrik Ek (Nov. 2020). “Bayesian
decomposition of multi-modal dynamical systems for reinforcement learning”. en. In: Neurocom-

puting 416, pp. 352–359.

Kamthe, Sanket and Marc Deisenroth (Mar. 2018). “Data-E�cient Reinforcement Learning with
Probabilistic Model Predictive Control”. en. In: International Conference on Artificial Intelli-

gence and Statistics. PMLR, pp. 1701–1710.

Kappen, Hilbert J., Vicenç Gómez, and Manfred Opper (June 2013). “Optimal control as a graph-
ical model inference problem”. In: Proceedings of the Twenty-Third International Conference on

International Conference on Automated Planning and Scheduling. ICAPS’13. Rome, Italy: AAAI
Press, pp. 472–473.

Kelly, Matthew (Jan. 2017). “An Introduction to Trajectory Optimization: How to Do Your Own
Direct Collocation”. en. In: SIAM Review 59.4, pp. 849–904.

Kingma, Diederik P. and Jimmy Ba (Jan. 2017). “Adam: A Method for Stochastic Optimization”.
In: arXiv:1412.6980 [cs].

Kirk, Donald (2004). Optimal control theory: an introduction. Courier Corporation.

Koller, T., F. Berkenkamp, M. Turchetta, and A. Krause (Dec. 2018). “Learning-Based Model
Predictive Control for Safe Exploration”. In: 2018 IEEE Conference on Decision and Control

(CDC), pp. 6059–6066.

Krause, Andreas, Ajit Singh, and Carlos Guestrin (2008). “Near-Optimal Sensor Placements in
Gaussian Processes: Theory, E�cient Algorithms and Empirical Studies”. In: Journal of Machine

Learning Research 9.8, pp. 235–284.

Kurutach, Thanard, I. Clavera, Yan Duan, Aviv Tamar, and P. Abbeel (2018). “Model-Ensemble
Trust-Region Policy Optimization”. In: ICLR.

Kuss, Malte (2006). “Gaussian Process Models for Robust Regression, Classification, and Reinforce-
ment Learning”. en. PhD thesis. Technische Universität Darmstadt, Darmstadt, Germany.

Lambert, Nathan O., Daniel S. Drew, Joseph Yaconelli, Sergey Levine, Roberto Calandra, and
Kristofer S. J. Pister (Oct. 2019). “Low-Level Control of a Quadrotor With Deep Model-Based
Reinforcement Learning”. In: IEEE Robotics and Automation Letters 4.4, pp. 4224–4230.

Levine, Sergey and Vladlen Koltun (May 2013). “Guided Policy Search”. en. In: International

Conference on Machine Learning. PMLR, pp. 1–9.

Ljung, Lennart (1999). System Identification: Theory for the User. 2nd. Prentice Hall Information
and System Sciences Series. Pearson.

Loeliger, Hans-Andrea, Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, and Frank R. Kschischang
(June 2007). “The Factor Graph Approach to Model-Based Signal Processing”. In: Proceedings
of the IEEE 95.6, pp. 1295–1322.

Lyapunov, A. M. (Mar. 1992). “The general problem of the stability of motion”. In: International
Journal of Control 55.3, pp. 531–534.

McKinnon, C. D. and A. P. Schoellig (May 2017). “Learning multimodal models for robot dynam-
ics online with a mixture of Gaussian process experts”. In: IEEE International Conference on

Robotics and Automation. IEEE, pp. 322–328.

- 175 -

Bibliography

Meeds, Edward and Simon Osindero (2006). “An alternative infinite mixture of gaussian process
experts”. In: Advances in neural information processing systems. Ed. by Y. Weiss, B. Schölkopf,
and J. Platt. Vol. 18. MIT Press.

Moerland, Thomas, Joost Broekens, and Catholijn Jonker (2017a). “E�cient exploration with Dou-
ble Uncertain Value Networks”. In: Neural Information Processing Systems.

Moerland, Thomas M., Joost Broekens, and Catholijn M. Jonker (Aug. 2017b). “Learning Multi-
modal Transition Dynamics for Model-Based Reinforcement Learning”. In: arXiv:1705.00470.

Mukadam, Mustafa, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots (Sept. 2018).
“Continuous-time Gaussian process motion planning via probabilistic inference”. en. In: The

International Journal of Robotics Research 37.11, pp. 1319–1340.

Nagabandi, Anusha, Kurt Konolige, Sergey Levine, and Vikash Kumar (May 2020). “Deep Dynamics
Models for Learning Dexterous Manipulation”. en. In: Proceedings of the Conference on Robot

Learning. PMLR, pp. 1101–1112.

Naish-guzman, Andrew and Sean Holden (2008). “The Generalized FITC Approximation”. In:
Advances in Neural Information Processing Systems. Vol. 20. Curran Associates, Inc.

Nakka, Yashwanth Kumar, Anqi Liu, Guanya Shi, Anima Anandkumar, Yisong Yue, and Soon-
Jo Chung (Apr. 2021). “Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems”. In: IEEE Robotics and Automation Letters 6.2, pp. 389–396.

Nguyen-Tuong, Duy, Matthias Seeger, and Jan Peters (2009). “Model learning with local gaussian
process regression”. In: Advanced Robotics 23.15, pp. 2015–2034.

Parmas, Paavo, Carl Edward Rasmussen, Jan Peters, and Kenji Doya (July 2018). “PIPPS: Flexible
Model-Based Policy Search Robust to the Curse of Chaos”. en. In: International Conference on

Machine Learning. PMLR, pp. 4065–4074.

Polymenakos, Kyriakos, Alessandro Abate, and Stephen Roberts (May 2019). “Safe Policy Search
Using Gaussian Process Models”. In: Proceedings of the 18th International Conference on Au-

tonomous Agents and MultiAgent Systems. AAMAS ’19. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, pp. 1565–1573.

Pontryagin, Lev Semenovich (1987). Mathematical theory of optimal processes. CRC press.

Quinonero-Candela, Joaquin, A. Girard, J. Larsen, and C.E. Rasmussen (Apr. 2003). “Propagation
of uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting”. In:
2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 2, pp. II–
701.

Quiñonero-Candela, Joaquin and Carl Edward Rasmussen (2005). “A Unifying View of Sparse
Approximate Gaussian Process Regression”. In: Journal of Machine Learning Research 6.65,
pp. 1939–1959.

Rasmussen, Carl and Zoubin Ghahramani (2001). “Infinite Mixtures of Gaussian Process Experts”.
en. In: Advances in Neural Information Processing Systems. Vol. 14, pp. 881–888.

Rasmussen, Carl Edward and Christopher K. I. Williams (2006). Gaussian processes for machine

learning. en. Adaptive computation and machine learning. Cambridge, Mass: MIT Press.

Rawlik, Konrad, Marc Toussaint, and Sethu Vijayakumar (2013). “On Stochastic Optimal Control
and Reinforcement Learning by Approximate Inference (Extended Abstract)”. en. In: Proceedings
of the 23rd International Conference on Artificial Intelligence, p. 5.

Rohr, Alexander von, Matthias Neumann-Brosig, and Sebastian Trimpe (May 2021). “Probabilistic
robust linear quadratic regulators with Gaussian processes”. en. In: Learning for Dynamics and

Control. PMLR, pp. 324–335.

Rossi, Simone, Markus Heinonen, Edwin Bonilla, Zheyang Shen, and Maurizio Filippone (Mar.
2021). “Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approx-
imations”. en. In: Proceedings of The 24th International Conference on Artificial Intelligence and

Statistics. PMLR, pp. 1837–1845.

- 176 -

Bibliography

Rybkin, Oleh, Chuning Zhu, Anusha Nagabandi, Kostas Daniilidis, Igor Mordatch, and Sergey
Levine (June 2021). “Model-Based Reinforcement Learning via Latent-Space Collocation”. In:
arXiv:2106.13229 [cs].

Sadigh, Dorsa and Ashish Kapoor (June 2016). “Safe Control Under Uncertainty with Probabilistic
Signal Temporal Logic”. en-US. In.

Scannell, Aidan, Carl Henrik Ek, and Arthur Richards (2021). “Trajectory Optimisation in Learned
Multimodal Dynamical Systems Via Latent-ODE Collocation”. In: Proceedings of the IEEE In-

ternational Conference on Robotics and Automation. IEEE.

Schneider, J. (1996). “Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning”.
In: Advances in Neural Information Processing Systems. Vol. 9, pp. 1047–1053.

Schreiter, Jens, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischo↵, Heiner Markert, and Marc
Toussaint (2015). “Safe Exploration for Active Learning with Gaussian Processes”. en. In: Ma-

chine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing,
pp. 133–149.

Schwarm, Alexander T. and Michael Nikolaou (1999). “Chance-constrained model predictive con-
trol”. en. In: AIChE Journal 45.8, pp. 1743–1752.

Schön, Thomas B., Adrian Wills, and Brett Ninness (Jan. 2011). “System identification of nonlinear
state-space models”. en. In: Automatica 47.1, pp. 39–49.

Sekar, Ramanan, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak (Nov. 2020). “Planning to Explore via Self-Supervised World Models”. en. In: Proceedings
of the 37th International Conference on Machine Learning. PMLR, pp. 8583–8592.

Shumway, R. and D. Sto↵er (1982). “AN APPROACH TO TIME SERIES SMOOTHING AND
FORECASTING USING THE EM ALGORITHM”. In: Journal of Time Series Analysis.

Silverman, B W (1985). “Some aspects of the spline smoothing approach to non-parametric regres-
sion curve fitting”. In: Journal of the Royal Statistical Society: Series B (Methodological) 47.1,
pp. 1–21.

Stengel, Robert F. (1986). Stochastic optimal control: theory and application. John Wiley & Sons,
Inc.

Sutton, R.S. and A.G. Barto (2018). Reinforcement learning, second edition: An introduction. Adap-
tive computation and machine learning series. MIT Press.

Titsias, Michalis (Apr. 2009). “Variational Learning of Inducing Variables in Sparse Gaussian Pro-
cesses”. en. In: Artificial Intelligence and Statistics. PMLR, pp. 567–574.

Tosi, Alessandra, Søren Hauberg, Alfredo Vellido, and Neil D Lawrence (2014). “Metrics for Prob-
abilistic Geometries”. en. In: Proceedings of the 30th Conference, pp. 800–808.

Toussaint, Marc (2009). “Robot Trajectory Optimization using Approximate Inference”. In: Inter-
national Conference on Machine Learning.

Toussaint, Marc and Amos Storkey (Jan. 2006). “Probabilistic inference for solving discrete and
continuous state Markov Decision Processes”. In: vol. 2006, pp. 945–952.

Tresp, Volker (2000). “Mixtures of Gaussian Processes”. en. In: Advances in Neural Information

Processing Systems. Vol. 13, pp. 654–660.

Vinogradska, Julia, Bastian Bischo↵, Jan Achterhold, Torsten Koller, and Jan Peters (Jan. 2020).
“Numerical Quadrature for Probabilistic Policy Search”. In: IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 42.1, pp. 164–175.

Vinogradska, Julia, Bastian Bischo↵, Duy Nguyen-Tuong, Anne Romer, Henner Schmidt, and Jan
Peters (June 2016). “Stability of Controllers for Gaussian Process Forward Models”. en. In:
International Conference on Machine Learning. PMLR, pp. 545–554.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der

- 177 -

Bibliography

Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van
Mulbregt, and SciPy 1.0 Contributors (2020). “SciPy 1.0: Fundamental algorithms for scientific
computing in python”. In: Nature Methods 17, pp. 261–272.

Von Stryk, Oskar and Roland Bulirsch (Dec. 1992). “Direct and Indirect Methods for Trajectory
Optimization”. In: Annals of Operations Research 37, pp. 357–373.

Wang, Li, Evangelos A. Theodorou, and Magnus Egerstedt (May 2018). “Safe Learning of Quadrotor
Dynamics Using Barrier Certificates”. In: 2018 IEEE International Conference on Robotics and

Automation (ICRA), pp. 2460–2465.

Watson, Joe, Hany Abdulsamad, Rolf Findeisen, and Jan Peters (May 2021). “Stochastic Control
through Approximate Bayesian Input Inference”. In: arXiv:2105.07693 [cs, eess].

Yu, Hon Sum Alec, Dingling Yao, Christoph Zimmer, Marc Toussaint, and Duy Nguyen-Tuong
(July 2021). “Active Learning in Gaussian Process State Space Model”. In: arXiv:2108.00819

[cs, stat].

Yuksel, Seniha Esen, Joseph N. Wilson, and Paul D. Gader (Aug. 2012). “Twenty Years of Mixture
of Experts”. In: IEEE Transactions on Neural Networks and Learning Systems 23.8, pp. 1177–
1193.

Ziebart, Brian D. (2010). “Modeling purposeful adaptive behavior with the principle of maximum
causal entropy”. PhD thesis.

- 178 -

	Abstract
	Covid-19 Statement
	Declaration
	Acknowledgements
	Introduction
	Illustrative Example
	Contributions
	Associated Publications

	Background and Related Work
	Problem Statement
	Optimal Control
	Dynamic Programming
	Reinforcement Learning
	Model-based Control and Planning
	Constrained Control

	Learning Dynamical Systems for Control
	Sources of Uncertainty
	Learning Single-Step Dynamics Models
	Gaussian Processes
	Learning Multimodal Dynamical Systems

	Uncertainty-based Exploration Strategies

	Probabilistic Inference for Learning Multimodal Dynamical Systems
	Problem Statement
	Preliminaries
	Identifiable Mixtures of Gaussian Process Experts
	Approximate Inference
	Evidence Lower Bounds
	Optimisation
	Predictions

	Evaluation of Model and Approximate Inference
	Experiments
	Evaluation on Motorcycle Data Set
	Evaluation on Velocity Controlled Quadcopter

	Discussion and Future Work
	Conclusion

	Mode Remaining Trajectory Optimisation
	Problem Statement
	Mode Remaining Control via Latent Geometry
	Concepts from Riemannian Geometry
	ig
	dre

	Mode Remaining Control as Probabilistic Inference
	Background and Related Work
	Mode Remaining Control as Inference

	Conclusion

	Quadcopter Experiments - Mode Remaining Trajectory Optimisation
	Real-World Quadcopter Experiments
	Model Learning
	Trajectory Optimisation using Indirect Optimal Control via Latent Geodesics

	Simulated Quadcopter Experiments
	Simulator Setup
	Model Learning
	Performance Indicators
	Results

	Conclusion
	Discussion & Future Work
	Summary

	Mode Remaining Exploration for Model-Based Reinforcement Learning
	Problem Statement
	Mode Optimisation
	Mode Remaining Exploration
	Mode Remaining Model-based Reinforcement Learning

	Preliminary Results
	Experiment Configuration
	Comparison of Exploration Terms
	Exploration in Environment 1

	Discussion & Future Work
	Conclusion

	Conclusion
	Future Work

	Bibliography

