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Abstract 

 

Exposure to urban environments over a relatively long period of time has been found to be 

more cognitively demanding than exposure to nature environments, even if sensory input is 

received only through visual cues. Yet, it remains unclear which parameters contribute to such 

environmentally-induced cognitive load. The aim of this thesis was to understand the causal 

mechanisms underlying this effect, using gait kinematics and reaction times as an objective 

measure of cognitive load changes in real-time. Over six studies, I teased apart factors that 

might contribute to cognitive load. In particular, I investigated the impact of low-level visual 

features (such as image statistics: contrast distribution, fractal dimensions, and the amount of 

“greenery” in a visual scene), visual discomfort and aesthetics on gait kinematics. Neither 

greenery nor contrast distribution were predictive of gait kinematics; however, walking 

towards images with fractal properties outside the range typically found in nature scenes 

slowed gait, indicating higher demands on cognitive load. This suggests that some but not all 

low-level image statistics play a role in environmentally-induced cognitive load. Moreover, an 

interaction between fractal dimensions and visual discomfort rather than aesthetics  seemed to 

contribute to environmentally-induced cognitive load, with a strong negative relationship 

between visual discomfort and liking. Data presented in this thesis have gone some way 

towards enhancing our understanding of how different visual features of an environment 

impact cognitive abilities and suggest that visual stress/discomfort could be at the core of 

cognitive load differences between nature and urban environments. More broadly, these results 

may inform future design of healthy and inclusive cities, which is one of the major global health 

challenges. 
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Chapter 1. General Introduction 

 

 

1.1. Overview  

Currently, 54% of the world’s population live in cities, and the United Nations estimates that 

by 2050 the number of people who live in urban settlements will increase to almost 76% 

(Nations, 2019). People living in urban areas are more likely to suffer from mental health issues 

such as depression and anxiety disorders (Lederbogen et al., 2011; Peen, Schoevers, Beekman, 

& Dekker, 2010; Wang, 2004) and from chronic conditions such as obesity, diabetes, 

hypertension and cardiovascular disease (Dye, 2008). Moreover, people living close to green 

spaces have a better healthy life expectancy than those with less access to green spaces (Rojas-

Rueda, Nieuwenhuijsen, Gascon, Perez-Leon, & Mudu, 2019). Indeed, exposure to nature 

environments has been found to be associated with a wide range of health benefits, including 

reduced stress, anxiety and depression, increased happiness, concentration and a general 

improvement of our immune system (e.g. Pretty, Peacock, Sellens, & Griffin, 2005; Pretty, 

Rogerson, & Barton, 2017; Ward Thompson et al., 2012; White, Alcock, Wheeler, & Depledge, 

2013). 



18 

 

Whilst a positive effect of nature on human well-being has been emphasised in poetry, 

philosophy, religion and even science for centuries (Bratman, Hamilton, & Daily, 2012), 

population health has acknowledged only recently that access to nature should be a key priority 

for urban planning to improve citizens’ health and well-being (Bush & Doyon, 2019; Frumkin, 

2002; Pretty et al., 2017; Razak, Othman, & Nazir, 2016).  

From a psychological perspective, prolonged exposure to urban environments has been 

associated with the requirements of higher cognitive processing resources than exposure to 

nature environments (Berman, Jonides, & Kaplan, 2008; Berman et al., 2012; Cimprich, 1992; 

Cimprich & Ronis, 2003; Hartig, Evans, Jamner, Davis, & Gärling, 2003; Kaplan, 1995; S. 

Kaplan, 2001; Kaplan & Berman, 2010; Ottosson & Grahn, 2005; Taylor, Kuo, & Sullivan, 

2002; Tennessen & Cimprich, 1995). This effect, mostly referred to as “nature benefit”, i.e. the 

beneficial effects exposure to nature brings over the effects of exposure to urban environments, 

can even be found if only visual information is available (e.g. Berman et al., 2008; Berto, 2005). 

This suggests that at least some of the beneficial effects of exposure to nature are driven by 

basic sensory, here visual, aspects.  

A key problem with the existing psychology literature on the impact of nature vs. urban 

environments on cognitive abilities is that most studies on this subject use a comparative 

approach, in which the experience of interacting with nature environments is simply compared 

to the experience of interacting with urban environments without appropriate quantification of 

the sensory parameters of the different environments (Bratman et al., 2012). Accordingly, there 

is no baseline measure to which these environments could be sensibly compared to; thus, it 

remains largely unclear whether the exposure to nature improves cognitive abilities (“nature 

benefit”) or whether exposure to urban environments decreases cognitive abilities (“urban 

cost”). Moreover, the question remains what exactly it is in the respective environments that 

affects cognitive functioning. 

A second key problem with the existing psychology literature lays in its design requiring 

prolonged exposure to an environment to see its positive/negative impact on a person’s 

cognitive performance. Most studies establishing the positive effects of nature on cognitive 

abilities use methods that first measure a “baseline” cognitive performance, with or without 

cognitively fatiguing or stressing their participants (Ulrich, 1984), and then expose their 

participants to nature or urban environments for a prolonged time before assessing their 

cognitive performance again (e.g. Berman et al., 2008; Berto, 2005). Post-exposure cognitive 
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performance tends to be better after exposure to nature environments than after exposure to 

urban environments. Moreover, compared to pre-exposure performance post-exposure 

performance is improved after exposure to nature but not after exposure to urban scenes (e.g. 

Berman et al., 2008); hence, these studies talk about a nature benefit. Yet, cognitive load 

changes during actual exposure have not yet been observed.  

We reasoned that if cognitive benefits can be observed after sustained exposure to nature but 

not urban environments, additional cognitive resources must have become available during the 

actual exposure time to nature but not urban environments (or, conversely, urban environments 

used up more cognitive resources). Theoretically, then, one should be able to measure this 

difference in cognitive resource availability during the actual exposure time to an environment, 

on a moment-to-moment basis; provided one has a measure that is sensitive enough to such 

fluctuations. One way to measure the moment-to-moment impact of visual environments on 

cognitive functioning might be through quantifying changes in gait kinematics as it is well 

established in the literature on dual tasking that there is a link between gait and cognitive 

functioning (see for a review Amboni, Barone, & Hausdorff, 2013). Indeed, gait kinematics 

depend on the difficulty of a cognitive task that is being performed at the same time, and 

changes in gait kinematics can be reliably tested in a within-participant experiment in which 

the difficulty of the secondary task is manipulated on a walk-by-walk (e.g. Hausdorff, 

Schweiger, Herman, Yogev-Seligmann, & Giladi, 2008; Hollman, Kovash, Kubik, & Linbo, 

2007; Lindenberger, Marsiske, & Baltes, 2000). Performing a cognitively demanding task 

during walking has been shown to result in changes in participants’ gait parameters such as to 

a slower walking speed, increased stride time and increased gait variability (Amboni et al., 

2013). From such findings, it has been suggested  that overlapping brain areas, in particular 

those involved in processing of attention, are required for both tasks and that therefore one of 

the tasks is prioritised over the other at any given moment in time due to limited attentional 

resources. This effect of “attentional switching” – here for ease defined as an increase in 

cognitive load - can be observed on a trial-by-trial basis.  

This thesis investigated whether exposure to images of nature vs. urban environments 

differentially affects gait kinematics on a trail-by-trial basis, in line with the idea that exposure 

to urban environments requires higher amounts of cognitive processing load and thus slows 

self-paced gait. Moreover, converging evidence for environmentally-induced cognitive load 

measured in real time was collected through a reaction time measurement for a basic shape 
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discrimination task in which task-irrelevant environmental images were present to test 

participants’ distractibility induced by individual environments. 

If environmentally-induced cognitive load changes could indeed be picked up in real time 

simply through exposure to visual images of different environments whilst performing an 

unrelated task, this would allow the investigation of core factors within these images that might 

underlie cognitive load changes between nature and urban environments. Such visual factors 

proposed in earlier research ranged from basic image statistics such as contrast distributions or 

fractal content (e.g. Joye, Steg, Unal, & Pals, 2016; Penacchio & Wilkins, 2015), over 

differences in attentional demands (e.g. Grassini et al., 2019) and higher visual cognitive 

aspects such as the meaning of scenes (e.g. Vo, Boettcher, & Draschkow, 2019) to more general 

stress (Ulrich, 1984), or aesthetic preferences (Bratman et al., 2012). 
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Figure 1.1: Overview of some of the core factors that might contribute to environmentally-

induced cognitive load. This is a theoretical proposition based on the literature review 

presented in this thesis (see Chapter 1). Question marks refer to as yet unknown 

interrelationships between different factors. It is unclear whether the difference between nature 

and urban environments in their cognitive processing load demands is caused by differences in 

image statistics (Chapter 1.4.1.), visual discomfort (Chapter 1.4.2.), aesthetic preferences 

(Chapter 1.4.3.) or semantic associations (Chapter 1.4.4). Arrows are influences well described 

in the literature (see Chapter 1.3.). Mid- and Higher-level visual processes (Aesthetics and 

Visual Discomfort) are associated with low-level visual processes (Image Statistics). This 

graph shows that there is a link between visual discomfort and contrast distribution (Chapter 

1.4.2.). Similarly, aesthetic preference is influenced by image statistics (fractal content) and 

semantic associations (Chapter 1.4.3.). It is unknown how the interaction between these factors 

impacts cognitive load. 

 

The purpose of this thesis was to determine which of the above factors within a background 

environment affects the availability of cognitive resources for a task at hand (note, that for the 

purpose of this thesis, research was restricted to visual parameters only). After establishing first 

whether cognitive load differences between different (visual) environments can be measured 

on a trial-by-trial basis, the following questions were addressed (see Figure 1.1.): 
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a) Does the amount of “greenery/chlorophyll” in a visual scene impact visual cognitive 

processing load? 

b) Do differences in cognitive load between nature and urban images still present when 

these two image types are equated for likeability? 

c) What effect does subjective visual discomfort have on cognitive load, and thus gait 

kinematics? 

d) Do the fractal dimensions of an image contribute to environmentally-induced cognitive 

load?  

e) What is the relationship between visual discomfort and liking ratings? 

 

These questions are addressed in 5 separate experimental chapters:  

• Chapter 3 establishes whether the negative impact of urban environments (or positive 

impact of nature environments) on cognitive functioning can be measured on trial-by-

trial basis, using gait kinematics and reaction times as a measure of cognitive load. 

• Chapter 4 investigates whether colour as low-level image statistics, in particular the 

amount of “greenery”/chlorophyll in a visual scene, impacts visual cognitive processing 

load, using gait kinematics as a measure of load (Question a). 

• Based on a converging evidence approach from both gait kinematics and reaction time 

approaches, Chapter 5 investigates whether differences in cognitive processing load 

between nature and urban scenes remain when each urban and nature scene presented 

are matched pairwise for their liking scores (Question b). Collecting visual discomfort 

measures for each scene presented further allows to measure the impact of visual 

discomfort on cognitive processing load irrespective of environment type (Question c).   

• Chapter 6 explores whether the fractal dimensions of an image affect cognitive 

processing demands, using gait kinematics as the measure of cognitive demand 

(Question d). 

• In three separate experiments, Chapter 7 finally explores the relationship between 

visual discomfort and liking for different image types (Question e).  
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1.2. Background  

1.2.1. The impact of urbanisation and decreased nature 

exposure on physical and mental health  

Nowadays, our generation has fewer daily interactions with nature than our parent’s generation 

(Bratman et al., 2012), and this global trend is predicted to continue. This decline in human 

contact with nature is thought to negatively impact physical and mental health (Cox, Shanahan, 

Hudson, Fuller, & Gaston, 2018; Lederbogen et al., 2011), particularly affecting people who 

live in economically deprived urban settlements (Schwarz et al., 2015).  

The decline in human-nature interactions is understood as a direct result of global urbanisation, 

a rapid process of rural-to-urban migration (Turan & Besiril, 2008). Indeed, for centuries, the 

proportion of the global population living in cities has been increasing continuously (Leon, 

2008), with a dramatic rise over the past 100 years due to accelerated industrialisation, 

modernisation and economic development (Antrop, 2004). Urbanisation has been defined in 

the literature as a complex process of demographics, social, economic, and psychological 

changes, leading to an increased number of people living in urban areas (Turan & Besiril, 

2008). The trend for rapid urbanisation has started in Europe and North America in the 

nineteenth and early twentieth centuries, but then spread across the world with no end in sight.  

Early research in the psychological sciences on urbanisation considered mostly the positive 

aspects of urbanisation such as an improved quality of life as cities provided access to 

education, health and social services in addition to increased employment prospects (Glaeser 

& Steinberg, 2017). Urban environments have been considered as a source of innovation and 

creativity due to the high population density that is providing more opportunities to collaborate 

and exchange information (Knudsen, Florida, Stolarick, & Gates, 2008). Massive urbanisation 

has been understood as a predictor of economic growth since 1960 (Glaeser & Steinberg, 

2017), with an increase in income as the density levels doubled, in both rich and poor countries 

(Chauvin, Glaeser, Ma, & Tobio, 2017).  

Only recently, the negative consequences of living in cities became more apparent and a topic 

of scientific investigation. Whilst there is no doubt that urbanisation has benefits and offers 

access to a range of healthcare services, sanitation, and food security (Godfrey & Julien, 2005); 

it has been shown to be associated with a decline in physical activity (e.g. Levine et al., 2011), 
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and a substantial increase in chronic conditions such as obesity, diabetes, hypertension and 

cardiovascular disease (Dye, 2008). Moreover, a widespread decrease in the population’s 

mental health has been observed (mental health is defined in this context as “a state of well-

being in which every individual realizes his or her own potential, can cope with the normal 

stresses of life, can work productively and fruitfully, and is able to make a contribution to her 

or his community” (World Health Organization., 2004, p.10)). For example, the global shift in 

demographics from rural to urban settings has been shown to be associated with increased 

depression and anxiety disorders (Lederbogen et al., 2011; Wang, 2004), and higher incidences 

of schizophrenia (e.g. Krabbendam & van Os, 2005) due to a combination of poverty, social 

isolation, discrimination and their interactions with the environment (Gruebner et al., 2017). 

Social marginalisation and exclusion problems such as homelessness, alcohol disorder, and 

drug addiction have been found to be mostly concentrated in urban environments (Godfrey & 

Julien, 2005). The increase in urbanisation and associated increase in mental disorders comes 

at the same time as the constant increase of the world’s population overall from 7.0 billion to-

date to a predicted 9.7 billion in the next 30 years (Nations, 2019), due to increased life 

expectancy and global ageing at the population level (Leeson, 2018). As urban infrastructure 

growth is predicted not to develop in alignment with such population increase, the risk of 

poverty, mental health decline and decreasing social support further increases (Srivastava, 

2009). 

Beside such overarching factors, public health has been shown to be negatively associated with 

a range of environmental stressors associated with urbanisation such as air pollution, exhaust 

fumes, industrial waste, asbestos (e.g. Brunekreef & Holgate, 2002; Godfrey & Julien, 2005; 

Zijlema et al., 2016), auditory noise pollution (Stansfeld & Matheson, 2003), light pollution 

(Chepesiuk, 2009), and features of both microclimate and macro environments such as the 

amount of green spaces available (Jokela, Bleidorn, Lamb, Gosling, & Rentfrow, 2015; 

Rentfrow & Jokela, 2016), to name but a few.  

Such stressors are thought to underlie a more overarching factor, namely the decreased 

frequency, intensity and duration of exposure to nature or blue-green infrastructure in city-

dwellers (Bratman, Hamilton, Hahn, Daily, & Gross, 2015; Cox et al., 2018; Lederbogen et al., 

2011); indeed, the less access people have to green spaces in form of parks or water, the higher 

seems the amount of mental stress people are under (Pretty, Griffin, & Sellens, 2004; Pretty et 

al., 2005).  
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The late realisation by Population Health research that a decrease in exposure to nature might 

pose a clear challenge to urban planning (Nations, 2014) seems surprising, if one considers that 

the origins of debates on a link between rural-urban migration and nature disconnection can be 

traced as far back as to the second half of the C18th when Romanticism arose partly as a 

response to industrialisation in Europe (Cloudsley, 1990). Indeed, many poets (such as, for 

example, William Wordsworth, Robert Bloomfield or William Blake in English-speaking 

countries) have drawn attention to the beauty of nature, idealised the pre-industrial past in their 

art and were concerned about separation from nature due to industrialism (Cloudsley, 1990; 

Güvenç, 2014). 

 

 

1.2.2. Nature definition and categorisation of landscapes 

Although the relationship between human beings and the environments they live has been a 

key topic throughout arts history (see Morriss-Kay, 2010), it is only over the last decade that 

evidence from urban planning, human geography, medicine, and psychology has been rapidly 

increasing to highlight the importance of exposure to nature or well-maintained urban blue-

green infrastructure in the form of parks, urban gardens and closeness to blue spaces such as 

aquatic/marine environments containing open water sources for mental health and well-being 

in urban populations (e.g. Bratman et al., 2015; Dadvand et al., 2016; James, Banay, Hart, & 

Laden, 2015; Lin, Tsai, Sullivan, Chang, & Chang, 2014; Mitchell, Richardson, Shortt, & 

Pearce, 2015; Pretty et al., 2017; Roe et al., 2013; Thomas, 2015; Van den Berg et al., 2016; 

Volker & Kistemann, 2015; Wells, 2000; Wheeler et al., 2015). Greater access to green spaces 

such as living close to parks has been associated with lower stress, less depression, enhanced 

physical activity, improved happiness and wellbeing (Cohen-Cline, Turkheimer, & Duncan, 

2015; James et al., 2015; Lee & Maheswaran, 2011; White et al., 2013), increased positive 

affect (Berman et al., 2012; Bowler, Buyung-Ali, Knight, & Pullin, 2010; Hartig et al., 2003), 

positive social interactions, improved sleep (Grigsby-Toussaint et al., 2015) and impulse 

inhibition (Taylor et al., 2002). A walk in a forest in nature, known as “forest air-bathing”, has 

been shown to reduce the level of health risk factors, such as elevated blood glucose (Ohtsuka, 

Yabunaka, & Takayama, 1998) and inflammatory cytokines (Mao et al., 2012). In addition, it 

seems that growing up in rural as compared to urban areas is associated with reduced stress 

responsivity (e.g. Lederbogen et al., 2011). Not only exposure to nature itself but even exposure 



26 

 

to some elements of nature in urban environments in form of blue-green infrastructure has been 

associated with better health and improved cognitive functioning. For example, living in urban 

environments but in close proximity to green spaces such as urban parks and gardens has been 

associated with improved cognitive abilities (Zijlema et al., 2017).  

There is thus substantial evidence that elements of nature in urban environments positively 

affect physical and mental health. Such evidence has led architects and urban planners to design 

more green and blue spaces in cities (Andreucci, Russo, & Olszewska-Guizzo, 2019; Lohmus 

& Balbus, 2015; White et al., 2013). Yet, little is known which features of a nature environment 

contribute how much to improving mental health and how to how this could be objectively 

measure and quantified to support decision making processes for urban planning decisions.  

But why do we know so little about which features in an environment contribute how to mental 

health? This lack of knowledge is not least due to the fact that very few of the authors of 

published research studies on the benefit of exposure to nature on mental health specify the 

types of nature environments they are talking about (see Bratman et al., 2012). This is 

problematic as interacting with nature per se does not necessarily have to be a positive 

experience; indeed, it can be highly unpleasant and stressful. For instance, earthquake and 

hurricane-related resource loss or nature environments perceived as life-threatening can result 

in psychological stress (Freedy, Saladin, Kilpatrick, Resnick, & Saunders, 1994) as do natural 

environments affected by natural disasters (Benight et al., 1999; Bratman et al., 2012; Freedy 

et al., 1994). Even less extreme examples of nature environments can be expected to be less 

beneficial than others such as, for example, walking through a dark and overgrown forest as 

compared to walking in an urban well-maintained park on a sunny day. Whilst there is some 

evidence that nature environments that do not allow a person to observe potential dangers (e.g. 

predator) are less pleasant (Appleton, 1975), research has tended to focus selectively on 

beneficial rather than unbeneficial aspects of nature environments when comparing nature and 

urban environments. Therefore, it seems crucial to start with a clear definition of what is meant 

here when talking about nature environments as opposed to urban environments, including 

classifications of different types of nature environments. 

In 2012, Bratman, Hamilton, & Daily proposed a system of categorization for different types 

of landscapes based on the analysis of stimulus sets used in studies that investigated the 

psychological or behavioural impact of nature images (Bratman et al., 2012). This approach 

facilitated the classification of ambiguous landscapes that incorporated both flora and man-
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made objects. In Bratman and colleagues’ categorization, nature was defined as an area that 

contains elements of living systems, including plants and non-human animals, of different 

degrees of human management, implying that both “pristine wilderness” and “urban parks” are 

parts of nature. Nature experience in their categorization system was defined as the time spent 

being physically present within or looking at landscapes from a distance, including window 

views or simply viewing images. Moreover, Bratman and colleagues distinguished between the 

following types of landscapes, based on the different kinds of studies conducted at the time: 

urban green (Berman et al., 2008; Hartig & Staats, 2006; Tennessen & Cimprich, 1995), water 

bodies (Chang, Hammitt, Chen, Machnik, & Su, 2008; Ulrich, 1981), forest/woodland (Chang 

et al., 2008; Hartig et al., 2003), countryside/farmland (Hartig et al., 2003; Ulrich, 1981) and 

wilderness (Cole & Hall, 2010; Hartig, Mang, & G.W., 1991).  

For the purpose of this thesis, Bratman et al.’s (2012) “nature” definition has been used to 

select representative images of nature environments (see Experiments 4, 5 and 9, Chapters 5 

and 7 respectively): images of nature environments contained elements of living systems and 

presented water bodies, forests, countryside, wilderness, and urban green landscapes (without 

any man-made objects). Note that there were no animals in any of these images. Images of 

urban environments contained built-up areas with man-made objects (e.g. buildings, roads, 

cars) including sometimes elements of nature (e.g. parks, water bodies, flowers, sky). 

 

 

1.3. Explaining the positive impact of nature on cognitive 

functioning 

In the Psychology literature, the fundamental idea that different environments affect us 

differently was originally proposed by J.J. Gibson. Gibson suggested that different 

environments provide different “affordances” (Gibson, 1979), defining “affordances” as 

relations between an environment and an animal’s ability to act within it. Successful interaction 

with environments depends on how an environment can be used and what the limits of action 

capabilities of an animal are. For example, a walking path “affords” (is used for) walking. 

Environmental affordances are not constant; as seen in particular for the built environment, 

environments are modified by humans to become more suitable to our everyday needs.  
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In contrast to Gibson’s ideas about environmental affordances that would hold for any kind of 

environment, irrespective of whether it belongs to a nature or built environment category, 

research on the positive impact of nature environments but not urban environments on 

cognitive abilities (see Chapter 1.4.) has been dominated by evolutionary propositions since 

the 1980s (e.g. Kellert & Wilson, 1995; Ulrich, 1981, 1983; Wilson, 1984) such as the Biophilia 

Hypothesis (Kellert & Wilson, 1995) and the Savannah Hypothesis (Orians, 1980). Only two 

psychological theoretical frameworks - Attention Restoration Theory, ART (R. Kaplan, 2001; 

Kaplan & Kaplan, 1989; Kaplan & Yang, 1990; S. Kaplan, 2001) and Stress Recovery Theory, 

SRT (Ulrich, 1983, 1984; Ulrich et al., 1991) – have been based on scientific research in 

experimental psychology. The general assumption of these theories is that exposure to urban 

environments as opposed to exposure to nature environments leads to a higher cognitive 

processing load. Evidence for such an increase in requirements on cognitive resources comes 

from studies measuring the decline in cognitive performance in attentional tasks (e.g. Berman 

et al., 2008; Berman et al., 2012; Cimprich, 1992; Cimprich & Ronis, 2003; Hartig et al., 2003; 

Kaplan, 1995; S. Kaplan, 2001; Kaplan & Berman, 2010; Ottosson & Grahn, 2005; Taylor et 

al., 2002; Tennessen & Cimprich, 1995). Both, ART (see Chapter 1.3.2.) and SRT (see Chapter 

1.3.3.) propose that nature environments provide us with the capacity to restore attentional 

resources, but explain the mechanisms underlying this restoration/restorativeness effect 

differently.  

A more recent suggestion, described in Chapter 1.3.4., the Perceptual Fluency Account (Joye 

& De Block, 2011; Joye et al., 2016; Joye & Van den Berg, 2011), has put into question 

evolutionary accounts of nature restorativeness due to a lack of empirical support. It focuses 

instead on differences in visual processing of different environments and the role of fractals 

(see Chapter 1.4.1.2.).  

For completion, I provide below an overview of the major propositions and theories that have 

been put forward to explain the mechanisms behind the cognitive processing load differences 

between nature and urban environments. Whilst it was not within the remit of this thesis to test 

or improve on these ideas, the literature with experimental outcomes derived related to some 

of the more scientific accounts helps to make predictions about the factors that might contribute 

to environmentally-induced cognitive load (see Chapter 1.4.). 
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1.3.1. Evolutionary Propositions: Biophilia and Savannah 

Hypotheses 

The main assumption of evolutionary propositions is that a positive response to nature 

environments has been rooted in our past (Joye & Van den Berg, 2011) as an adaptive 

mechanism of natural selection for survival (Hunter & Askarinejad, 2015): humans are initially 

attracted to those kinds of natural settings that are safe and provide food resources, and thus 

increase the chance of survival.  

Wilson’s Biophilia Hypothesis claims that humans have an urge to affiliate and connect with 

nature, diversity of landscapes and habitats, and other forms of life (Wilson, 1984). It proposes 

that humans have a preference for environments that meet their biological needs crucial for 

survival. Within this, aesthetic preferences for some environmental features are inherited. 

Indeed, there is ample support for a claim that nature environments including elements 

necessary for survival such as water, grass, plants, or trees are preferred over built 

environments (see also Chapter 1.4.3.). The Savannah Hypothesis (Orians, 1980) is strongly 

related to the main concept within the Biophilia Hypothesis (Kellert & Wilson, 1995; Wilson, 

1984), claiming that humans have an initial aesthetic preference for open landscapes in a form 

of savannah habitats, where crucial phases of evolution took place. A savannah is open 

grassland with sparse trees which provide refuge and outlook to hide from danger (Appleton, 

1975; Townsend & Barton, 2018). A few studies found evidence to support the hypothesis that 

images presenting landscapes with features characteristic of savannah were preferred (Balling 

& Falk, 2016; Lohr & Pearson-Mims, 2016) over images presenting other biomes, but other 

studies did not (e.g. Han, 2007; Hartmann & Apaolaza-Ibáñez, 2010). This leaves the question 

unanswered whether aesthetics preference might be a possible driver behind the nature effect. 

Note, however, that such evolutionary hypotheses remain highly speculative due to the lack of 

testability and thus evidence. 

 

 

1.3.2. Stress Recovery Theory 

Stress Recovery Theory (SRT), proposed by Ulrich (Ulrich, 1981, 1983, 1984; Ulrich et al., 

1991), suggests that spending time in nature environments reduces the level of psychological 
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stress measured in the form of sympathetic and parasympathetic nervous activity (Brown, 

Barton, & Gladwell, 2013; Gladwell et al., 2012). Psychological stress is defined as “a 

particular relationship between the person and the environment that is appraised by the person 

as taxing or exceeding his or her resources and endangering his or her well-being” (Lazarus & 

Folkman, 1984, p.19). Indeed, there is evidence that even a minimum dose of nature exposure 

(10-40 minutes) significantly decreases stress (Meredith et al., 2019). Even looking at a nature 

environment through a window or viewing photographs of nature reduce activity within the 

sympathetic nervous system and increase activity within the parasympathetic nervous system. 

Based on the notion that aesthetic and affective reactions to environments are not isolated 

processes but are tightly linked to cognitive processes, behaviour and physiological systems, 

SRT therefore proposes that the recovery from physiological stress depends on the type of 

environment someone is exposed to.  

According to SRT (Ulrich, 1983), different environments elicit different responses due to 

biological needs related to survival and success. Exposure to nature may maintain arousal in 

individuals who are not stressed and reduce arousal in individuals who are stressed. Response 

to the environment they are in is unconscious and is rooted in our evolutionary past as an 

adaptive mechanism. Exposure to nature environments presenting natural resources necessary 

for survival such as water and food, initiates a positive emotional reaction, which in turn, leads 

to a reduction in psychological and physiological stress. Not only water and vegetation were 

identified as environmental features that trigger positive affect responses but also more sensory 

factors such as complexity, depth, structure (e.g. symmetry) or surface texture (Ulrich, 1979, 

1981, 1983, 1984). Indeed, there is a support for a claim that there is a link between aesthetics 

and low-level features such as complexity in the form of fractal dimensions (Spehar, Clifford, 

Newell, & Taylor, 2003; Taylor & Sprott, 2008), symmetry (e.g. Gartus & Leder, 2013), depth 

(e.g. Zhang, Nefs, Redi, & Heynderickx, 2014) and smooth surfaces (e.g. Bhatta, Tiippana, 

Vahtikari, Hughes, & Kytta, 2017). Affective benefits from interacting with nature 

environments thus seem grounded in both low-level and high-level cognitive processes (see 

Meidenbauer et al., 2020), raising the question whether an interaction between low-level and 

high-level cognitive processes could underlie the positive impact of nature environments on 

cognitive functioning. Even though there is an ample support for a claim that nature exposure 

reduces the stress level (see for a review Meredith et al., 2019), the evolutionary aspect of 

Ulrich’s framework, i.e. that positive responses to nature environments are rooted in our 

evolutionary past as an adaptive mechanism has not been well supported by evidence.  
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1.3.3. Attention Restoration Theory  

An alternative theory on the positive effects of exposure to nature is Attention Restoration 

Theory (ART; (R. Kaplan, 2001; Kaplan & Kaplan, 1989; Kaplan & Yang, 1990; Kaplan, 

1995; S. Kaplan, 2001; Kaplan & Berman, 2010) developed in the 1980s. ART puts forward 

the idea that exposure to nature protects us against the impact of environmental stressors (see 

also Chapter 1.3.) and allows us to replenish our attentional resources. Urban environments, in 

contrast, capture attention and fatigue the brain, causing tiredness. Kaplan’s theory proposes 

that urban environments are filled with competing sensory stimulation (e.g. lighting) that tax 

top-down directed attention mechanism. Directed attention is controlled by a cognitive 

mechanism that has to actively select relevant information whilst suppressing distracting 

irrelevant information. Nature environments provide a stimulation that is soft and fascinating, 

capture bottom-up involuntary attention mechanism and thus allow directed-attention 

mechanism to be restored (R. Kaplan, 2001; Kaplan & Kaplan, 1989; Kaplan & Yang, 1990; 

Kaplan, 1995; S. Kaplan, 2001; Kaplan & Berman, 2010). Key here is that nature environments 

would far less distract from the actual task at hand. 

ART identifies four characteristics of physical settings that contribute to nature restorativeness: 

1) fascination - involves little to no directed attention, 2) being away - involves eliminating 

distractions from everyday environmental contexts, 3) extent – the environment is coherent and 

predictable, 4) compatibility - compatible with the range of activities leading to restoration 

(Kaplan & Kaplan, 1989; Lin et al., 2014).  

There is ample evidence to support ART, showing that spending time in nature improves post-

exposure performance on attentional tasks (Cimprich, 1992; Hartig et al., 2003; Taylor et al., 

2002), even when exposure to nature is reduced to viewing simply nature images (Berman et 

al., 2008; Berto, 2005). ART proposes that not only looking at nature environments without 

any built content but also looking at blue-green infrastructure in urban environments positively 

impacts cognitive functioning. For example, parks, gardens and urban woodlands have been 

found to be restorative (Carrus et al., 2017; Tyrväinen et al., 2014; Wang, Rodiek, Wu, Chen, 

& Li, 2016), as well as flowers on the street, grass and trees in urban settlements (Kuo, 2001; 

Lindal & Hartig, 2015). However, it is unclear how to quantify the amount of nature (or the 

biodiversity) needed to have restorative effects. 
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A recent systematic review of the literature on ART concluded that three different cognitive 

aspects are improved after nature exposure: attentional control, working memory and cognitive 

flexibility (Stevenson, Schilhab, & Bentsen, 2018).  

A key problem with the existing literature on nature restorativeness is the research approach 

used. Most studies use a comparative approach, in which the experience of interacting with 

nature environments is simply compared to the experience of interacting with urban 

environments without clear descriptors of the environments compared nor with any quantitative 

measures for sensory parameters of these environments (Bratman et al., 2012). More 

importantly, it remains poorly understood whether interaction with nature is indeed 

“beneficial” or whether interaction with urban environments is “harmful” due to a lack of 

baseline measures to which these environments could be compared (Bratman et al., 2012). 

Even though most studies use methods that first measure cognitive performance prior to 

exposure as a kind of “baseline” and then expose their participants to nature or urban 

environments for a prolonged time before assessing their cognitive performance again (e.g. 

Berman et al., 2008; Berto, 2005), it remains questionable whether this baseline is indeed a 

valid approach as nothing is known about the mental state a person is in when they arrive at 

the laboratory. Moreover, the methodology requires long exposure times between the pre-

exposure cognitive performance assessment and the post-exposure cognitive performance 

assessment; thus the impact of individual factors of environments on cognitive functioning 

cannot not be examined.  

A further well-known criticism of ART is its lack of a clear definition of the characteristics in 

physical settings that contribute to nature restorativeness. Whilst ART argues that nature is 

beneficial due to its “aesthetic advantage” as measured through the amount of fascination it 

evokes, it fails to clearly define what is meant by fascination and thus how this aesthetic 

advantage could be objectively quantified. Therefore, experimental approaches used to test 

ART fail to answer the question which factors contribute to environmentally-induced cognitive 

load, mostly due to the comparative approach used between the two environmental categories 

and the lack of clear definitions of restorative environments that would allow to extract and 

measure individual factors in a parametric way.  
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1.3.4. Perceptual Fluency Account 

Joye and colleagues (Joye & De Block, 2011; Joye et al., 2016; Joye & Van den Berg, 2011) 

put forward a further model for restorative responses to nature, the so-called Perceptual 

Fluency Account (PFA). In contrast to the evolutionary theories above, PFA proposes that 

restoration and stress reduction are by-products of fluent sensory processing; in other words, 

the visual elements of nature environments are easier to process than those of urban 

environments. Similar to SRT, this theory assumes that restoration is a result of the positive 

affect towards unthreatening nature environments that are more aesthetically pleasing than 

unthreatening urban scenes. However, this aesthetic preference is not due to evolutionary 

predisposition to nature per se as proposed by SRT, but simply due to the amount of sensory 

(particularly visual) features within nature scenes that can be processed fluently (Joye & De 

Block, 2011; Joye et al., 2016; Joye & Van den Berg, 2011; Reber, Schwarz, & Winkielman, 

2004; Redies, 2007). For example, Joye and colleagues found that a higher fractal content, 

common in nature environments but less so in urban environments, leads to more fluent visual 

processing (Joye et al., 2016); pointing toward low-level sensory processes being at least 

partially responsible for differences in cognitive processing load required for the processing of 

nature and urban environments.  

The main shortfall of Perceptual Fluency Account (Joye & De Block, 2011; Joye et al., 2016; 

Joye & Van den Berg, 2011) is the current lack of sufficient empirical support; therefore, this 

account remains unconfirmed. However, it provides two testable assumptions that make this 

theoretical account interesting for the purpose of my thesis: a) its claim that the sensory 

parameters of a scene or components of objects within this scene such as the scene’s fractal 

content define how easily they can be processed; and b) that there should be a positive 

relationship between aesthetic preferences (i.e. positive affective responses) for a scene and 

perceptual fluency.  
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1.4. Sensory (in particular visual) differences between 

nature and urban environments 

Recent evidence suggests that even simply exposure to images of urban environments is 

associated with the requirements of higher cognitive processing resources than exposure to 

nature images (e.g. Berman et al., 2008; Berto, 2005). It thus seems cognitive processing 

differences can be driven by basic sensory (here visual) aspects only. Yet, it remains unclear 

how the different sensory aspects proposed so far might contribute to an environment’s 

cognitive processing load.  

For the purpose of this thesis, I categorise different potentially contributing aspects at different 

levels: following current definitions (Kubilius, Wagemans, & Op de Beeck, 2014), low-level 

vision involves processing of visual features of a scene (see Chapter 1.4.1.), whilst high-level 

vision allows us to process the meaning of a scene (see Chapter 1.4.3.). Mid-level visual 

processing has been described as a “bridge” between low-level and high-level visual processes 

as it organises visual information into objects, shapes, and surfaces (Anderson, 2020; Kubilius 

et al., 2014; Rosenholtz, Li, & Nakano, 2007). In addition, I include sensory processes that 

relate low-level visual processes to affect (in particular, visual discomfort/visual stress and 

aesthetics) to this intermediate stage.   

 

 

1.4.1. Low-level Image Statistics 

One of the most obvious sensory differences between nature and urban images are their low-

level image statistics: contrast distribution, colour properties and fractal dimension.  

 

1.4.1.1. Contrast Distributions 

The majority of nature images has a “scale-invariant” spatial structure (Penacchio & Wilkins, 

2015), meaning that image complexity does not change across spatial scales. Indeed, the spatial 

frequency distributions of natural images decrease with increasing amplitude of contrast and 

vice versa; therefore contrast distributions fall close to a 1/f amplitude spectrum in nature, 
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called Fourier Spectrum (Wilkins et al., 1984). Neural processing of images with scale-

invariant structure (/f distribution) is thought to be more efficient due to a neural process known 

as “sparse coding” (Penacchio & Wilkins, 2015; Wilkins & Hibbard, 2014), i.e. a neural firing 

pattern in which the majority of neurons in the primary visual cortex remains inactive as only 

a few neurons are needed to process the sensory information available. Such efficient neural 

firing leads to a decrease in metabolic demand (Olshausen & Field, 2004); therefore, it should 

be easier for the visual system / more energetically efficient to process images that allow sparse 

coding (e.g. nature images) than images that do not. 

Urban environments, on the other hand, tend to have high-geometric and repetitive high-

contrast patterns that are far removed from the 1/f amplitude spectrum (Wilkins, Penacchio, & 

Leonards, 2018), such as, for example, high-frequency stripes in paving or crosshatch patterns 

in the brickwork. In other words, urban images do not possess the same spatial characteristics 

as nature images and should thus require more activity in early visual areas, in addition to 

attentional areas such as cuneus activation involved in their neural processing (Tang et al., 

2017). 

 

 

1.4.1.2. Fractals  

Together with their smaller range of contrast distributions, nature images have greater amounts 

of fractals than urban images (e.g. Ho, Mohtadi, Daud, Leonards, & Handy, 2019). Fractals are 

defined as self-similar and self-repetitive geometric patterns across different spatial scales, 

mostly found in nature (Spehar et al., 2003). Well-known examples of fractal structures are 

clouds, snowflakes, leaves, tree branches, and mountains. Fractal dimensions of an image can 

be measured in different ways, leading to different results. In the context of this thesis, fractal 

dimensions were based on Minkowski–Bouligand box-counting technique for photographic 

images (see Chapter 2.3.2.). For the creation of abstract images, image fractal content was 

established by calculating a fractal dimension parameter (“D”), which assesses the relationship 

between patterns and fractal scaling; thus, providing information on how complexity (i.e. 

fractal pattern detail) is changing across the scale of the image. The value of image fractal 

dimensions in such calculations is between 1-2. Repetitive smooth and sparse shapes are 

described as values closer to 1, whilst complex repeating structures containing a lot of details 
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are described as values closer to 2 (Spehar et al., 2003). Fractal dimension has been used as an 

objective measure of image complexity and statistical image regularity for studies on aesthetics 

preference (Bourchtein, Bourchtein, & Naoumova, 2014). The fractal content is associated with 

the above mentioned 1/f amplitude spectra, with an alpha mean of 1.2 (range 0.8 – 1.5) (e.g. 

Tolhurst, Tadmor, & Chao, 1992). 

 

1.4.1.3. Colour properties 

Nature and urban images further differ substantially in their colour distributions. In particular, 

the predominately green colour of nature images could account for some of the positive impact 

of nature environments on cognitive functioning described for people living in urban 

environments but in close proximity to green spaces (Zijlema et al., 2017).  

Kardan and colleagues proposed that the aesthetic preferences people usually show for nature 

over built environments are driven by bottom-up processing of the low-level visual features of 

nature, in particular their spatial and colour properties (Kardan et al., 2015). They demonstrated 

that the perceived “naturalness” of an image and its preference ratings could be predicted from 

low-level visual features such as hue, colour saturation, edges (fine texture details), edges 

density or brightness. Lower hue levels (yellow-green over blue-purple), greater saturation 

diversity (high saturation variation), and more non-straight borders (edge density) explained 

31% of the variance in ratings. Note that Kardan et at. (2015) calculated the colour properties 

of the images, using an HSV model (Hue, Saturation, Value):  in this context, Hue refers to the 

dominant wavelength of a colour; i.e. the degree to which the image can be classified as either 

similar or different to red, blue or green. Saturation refers to a degree of hue dominance 

(intensity), and value (brightness) refers to the colour dimension. Average hue, saturation and 

value (brightness) were calculated across image pixels. However, further work needs to be 

carried out to establish whether the amount of “greenery”/”chlorophyll” in a visual scene also 

impacts cognitive functioning. For the purpose of this thesis, I relied on stimulus material of 

green colour spectra synthesised from Griffin’s five-parameter model of spectral reflectance 

with realistic colour distributions (see Chapter 4.1.2. for description). 
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1.4.2. Mid-level visual processes: Visual Discomfort 

As raised above, urban images tend to diverge further from a 1/f contrast distribution than 

nature images (Wilkins et al., 2018, see also Chapter 1.2.1.1.). At the same time, they are more 

uncomfortable to look at than nature images (Ho et al., 2019), raising the question whether 

images of urban environments are more uncomfortable to look at than images of nature 

environments due to differences in their 1/f amplitude spectra. Such an assumption would be 

in line with findings that images diverging further from a 1/f amplitude spectrum are more 

likely to induce increased visual discomfort, often also called visual stress (Attwell & Laughlin, 

2001; Hibbard & O'Hare, 2015; Juricevic, Land, Wilkins, & Webster, 2010; O'Hare & Hibbard, 

2011; Simoncelli & Olshausen, 2001). It seems that visual discomfort for different built 

environments can be predicted from their image statistics: the more their image properties 

deviate from image properties typical of nature images, the more uncomfortable they tend to 

be (Le et al., 2017).  

Higher visual discomfort (or visual stress) reported during looking at visual stimuli is 

associated with adverse physiological symptoms such as headache, nausea, drowsiness, and in 

extreme cases, pattern-sensitive epilepsy; and it induces illusions of shape and colours 

(Radhakrishnan et al., 2005; Shepherd, 2010; Wilkins, 1995; Wilkins et al., 2018). Visual 

discomfort is thought to be related to overactivation within the visual cortex for metabolically 

demanding visual information (Patterson Gentile & Aguirre, 2020). Visual discomfort is 

reliably induced by repetitive and highly geometric patterns diverging far from a 1/f amplitude 

spectrum (Wilkins et al., 1984); for example, repetitive stripy patterns with high contrast such 

as often seen for acoustic panelling, commonly present in urban environments have been 

reported to induce visual discomfort (Le et al., 2017).  Visual discomfort has been found to be 

strongest for visual exposure to medium spatial frequencies (~3 cycles per degree of visual 

angle ±1 octave). Both increasing colour or luminance contrast results in increased visual 

discomfort, whilst balancing image levels for colour and luminance contrasts decreases visual 

discomfort, with the lowest visual discomfort ratings around the blue-yellow axes, i.e. colour 

statistics typical for nature images (Juricevic et al., 2010). In general, these findings support 

the hypothesis that  image statistics of urban images leading to metabolic overload in visual 

processing 

Whilst the neural processes underlying visual discomfort are still under debate, there is 

evidence emerging that visual discomfort is related to overactivation within the visual cortex 
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(Patterson Gentile & Aguirre, 2020): indeed, visual information has been shown to be 

processed efficiently when there is a sparse distribution of neural responses (activity of small 

number of neurons) in the visual cortex (Hibbard & O'Hare, 2015); see idea of sparse coding 

mentioned above for contrast distributions). Images diverging further from a 1/f amplitude 

spectrum seem highly metabolically costly to process due to their requirements of non-sparse 

cortical responses and increased metabolism (Attwell & Laughlin, 2001; Hibbard & O'Hare, 

2015; Juricevic et al., 2010; O'Hare & Hibbard, 2011; Simoncelli & Olshausen, 2001). 

Increased visual discomfort for urban images induced by basic image statistics could thus 

reflect metabolic overload in visual processing as suggested by Barlow (see Barlow, 2012).  

Interestingly, in  the study by Ho and colleagues, participants were significantly slower when 

rating nature and urban images that were more uncomfortable to look at (Ho et al., 2019) . 

These findings raise the question of whether the human visual system might have started to 

adapt to urban environments, and thus whether any restorative/stress-reducing effect of 

interacting with nature could be related to more efficient sensory processing. 

 

 

1.4.3. Mid- and Higher-level visual processes: Aesthetics 

and Semantic Associations 

A completely separate strand of research with a well-established literature revealed that adults’ 

positive affective responses to nature environments but not urban environments is related to 

increased aesthetic preferences for nature; an effect seen whether people were physically 

present in the environment or simply exposed to images, slides or videos of these environments 

(Han, 2010; Hartig & Staats, 2006; Ibarra et al., 2017; Kaplan & Kaplan, 1989; Purcell, Peron, 

& Berto, 2001; Ulrich, 1981, 1983; Valtchanov & Ellard, 2015; Van Hedger et al., 2019). For 

instance, exercising whilst viewing photographs of pleasant rural environments was more 

effective in reducing blood pressure than exercising whilst viewing photographs of pleasant 

urban environments, unpleasant rural and unpleasant urban environments (Pretty et al., 2005), 

supporting the hypothesis that landscape aesthetics might be associated with the benefits of 

interacting with nature environments. 
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The question of how human beings and environment are related is as old as the study of the 

arts itself. According to Morriss-Kay (2010), the origin of ‘birth’ of art can be tracked to 45 

000 BP when homo sapiens began migrating from the African continent to Europe. European 

Upper Palaeolithic rock and cave paintings and engraved stones are the oldest form of ‘art’, 

reflecting long history of rapid human evolution and culture (Morriss-Kay, 2010). The 

development of various artistic styles across millennia (e.g. Renaissance, Baroque, 

Modernism), and thus aesthetics diversity of “arts” reflects the interconnection between art and 

civilisation (Kozbelt, 2021) 

Although aesthetic preference has also been shown to differentially affect cognitive processing 

between nature and urban environments (Bratman et al., 2012), aesthetic preferences have 

rarely been accounted for studies exploring the nature benefit (e.g. Berman et al., 2008). 

Therefore, it cannot be excluded that many of the psychological studies reporting cognitive 

benefits during exposure to nature as compared to urban environments showed effects that were 

not specific to nature per se but rather due to an unintended aesthetic preference-related 

stimulus selection bias.  

But what do people really mean when they write about nature being more aesthetically pleasing 

than urban environments, and how much does this depend on differences in aesthetic 

appreciation between different types of nature environments? Before being able to attempt to 

answer such questions, it is crucial to look at the different definitions for aesthetics first before 

presenting theories that try to explain why nature is more aesthetically pleasing than urban 

environments and how aesthetic appreciation might impact on cognitive functioning.  

Since the birth of psychology in the 19th century, the experimental study of aesthetics has been 

a major topic for research. Debates on how to define aesthetics (from Greek: aisthanesthai - to 

perceive) have started, however, already millennia before amongst philosophers (Brielmann & 

Pelli, 2018). Aesthetics tends to refer to “beauty” whilst describing the aesthetic value of an 

object. For example, Plato defined “beauty” as pleasure through the eye to ear (Socratic dialogs, 

Hippias Major). Indeed, many philosophers, dating back to Plato, see “beauty” as being related 

to the specific properties of the particular object judged; properties which are producing 

pleasure for individuals interacting with the object (Tatarkiewicz, 1970). Sophists, in contrast, 

suggest that beauty is not objective but subjective (“in the eye of the beholder”), emphasizing 

that each individual perceives beauty differently (Tatarkiewicz, 1970). Philosophical debates 

whether aesthetics are a function of bottom-up processing (can be measured objectively) or 
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whether they are purely subjective has inspired scientists across the world to study aesthetics. 

A pioneer, who was the first to claim that aesthetics should be studied as an empirical science 

was Gustav Fechner (Fechner, 1876): he suggested that aesthetics should be studied through 

empirical observations in a bottom-up manner rather than philosophical supposition, in order 

to understand how physical properties of objects affect aesthetics judgements is crucial 

(Fechner, 1876). This has motivated researchers to explore which object features contribute to 

aesthetic appeal, such as symmetry (e.g. Arnheim, 1974), contrast (e.g. Gombrich, 1984), 

proportion/balance (e.g. Birkhoff, 1933 ) and complexity (e.g. Eysenck, 1942).  

However, despite many years of scientific research in empirical aesthetics, there has been no 

agreement on a clear definition of aesthetics among scientists (Brielmann & Pelli, 2018), nor 

are there standardised measurements of aesthetics (e.g. Balling & Falk, 2016; Hayn-

Leichsenring, Lehmann, & Redies, 2017). A common method is based on the use of basic 

rating scales to obtain aesthetic preferences by asking participants to rate objects or scenes for 

their likeability, pleasantness, beauty, or attractiveness without specifying what these terms 

actually mean (e.g. Balling & Falk, 2016; Hayn-Leichsenring et al., 2017; Spehar et al., 2003).  

Studies in neuro-aesthetics, an emerging field of research combining aesthetics with 

neuropsychology and cognitive science, suggest that aesthetics is a complex experience of 

knowledge, which arises from the interaction between visual features of objects and an 

individual’s perceptual processing (Consoli, 2015). Indeed, there is evidence that visual 

aesthetic perception is associated with visual and sensorimotor neural circuits in the brain, in 

particular regions of reward (see Kirsch, Urgesi, & Cross, 2016).  Therefore, based on the 

recent evidence, I decided to focus on two recent aesthetics models that capture the neural 

mechanisms underlying such basic judgements of aesthetics by focusing on the reward system, 

in particular the Aesthetic Triad Model (ATM, Chatterjee & Vartanian, 2014) and the Pleasure-

Interest Model of Aesthetic Liking (PIA Model, Graf & Landwehr, 2015). For example, Anjan 

Chatterjee and Oshin Vartanian (2014) define aesthetics explicitly as the experience of 

interactions with objects and/or scenes that evoke emotions associated with the reward system 

of “liking” or “pleasure” (Aesthetic Triad Model). In contrast, Laura Graf and Jan Landwehr 

(2015) have developed a model of aesthetics in which aesthetics is defined as a result of two 

hierarchical fluency-based processes. Their Pleasure-Interest Model of Aesthetic Liking (Graf 

& Landwehr, 2015) distinguishes between two routes to positive aesthetic responses: pleasure-

based liking (automatic processing; very much in line with Chatterjee and Vartanian’s 

proposed reward mechanisms) and interest-based liking (controlled cognitive processing). 
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More recent research suggests aesthetics liking is triggered by both pleasure and interest (Graf 

& Landwehr, 2017). As such, ‘Liking’ would be defined as preference or taste, whilst ‘aesthetic 

liking’ would refer to a positive aesthetic response. In other words, ‘liking’ and ‘aesthetics’ 

seem largely overlapping, not clearly separable concepts.  In this thesis, I measured aesthetics 

liking based on liking scores.   

There is a considerable amount of literature on the impact of low-level image properties, in 

particular scene complexity on aesthetics preference for nature environments over urban 

environments. For example, Kaplan and colleagues (1972) demonstrated that perceived 

subjective complexity of nature and urban images was predictive of aesthetic preference 

(Kaplan, Kaplan, & Wendt, 1972). More recent studies showed that fractal dimensions of the 

image – an objective measure of image complexity (see Chapter 1.4.1.2.) - are associated with 

aesthetics preference (Aks & Sprott, 1996; Peitgen & Richter, 1986; Spehar et al., 2003), and 

images with mid-range fractal dimensions between 1.1-1.5 were rated as the most aesthetically 

pleasing (e.g. Sprott, 1993). In addition, an increase in fractal dimension deviation from natural 

levels was shown to result in decreased aesthetic preference judgments (Spehar et al., 2003). 

However, preferences for nature environments over urban environments have been not only 

attributed to low-level image statistics (see Chapter 1.4.1.) but also to semantic associations 

with landscapes/built environments (e.g. Beute & de Kort, 2018; Korpela, Hartig, Kaiser, & 

Fuhrer, 2001; Ratcliffe, Gatersleben, & Sowden, 2016). For example, exposure to nature 

environments has been shown to elicit more positive associations than exposure to urban 

environments, even if people were asked to think of negative associations whilst looking at 

nature environments (Beute & de Kort, 2018). It has been shown that previous experience 

affects a person’s landscape preference (Balling & Falk, 2016), as well as prior expectations 

with regard to whether the place is selected to live and work, or whether it is just visited 

(Purcell, Lamb, Mainardi Peron, & Falchero, 1994). According to Purcell (1992), experience 

of landscape is associated with two existing knowledge structures (Purcell, 1992): similarity of 

previous experiences related to this domain (overlap), and organised general knowledge 

structures (organised memories of particular events). Within these structures, the environment 

can be described either at a perceptual level in terms of visual features (e.g. colour, shapes) or 

at an abstract level in terms of meanings associated with the particular environment judged. 

Purcell (1992)  provided evidence that people make landscape preference judgements based on 

the abstract set of characteristics, suggesting that knowledge structure could indeed be an 

important factor in producing an affective response to the environment. In addition, Collado 
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and colleagues (2016) found that children who were not familiar with nature environments 

described nature as more restorative than children who grew up on a farm (Collado, Staats, & 

Sorrel, 2016), suggesting that previous experiences contribute to landscape preference. 

Moreover, Ratcliffe et al. (2016) asked participants to rate bird sounds on perceived restorative 

potential scale and to describe semantic associations with these sounds. Bird sounds with high 

restorative potential values were associated with green spaces, daytime, two temperate seasons 

(summertime and springtime), and with outdoor activities. The authors concluded from these 

findings that there is a close relationship between environment semantics and restorativeness 

(Ratcliffe et al., 2016). Similarly, there seems to be an association between place attachment 

and nature restorativeness (Korpela et al., 2001), with restorativeness being experienced 

substantially in “favourite” places and mostly nature environments. “Favourite” places were 

commonly described as the ones which were associated with positive feelings (e.g. comfort, 

calmness, relaxation). This led Egner and colleagues (2020) to propose that nature 

restorativeness is simply due to conditioning (Egner, Sutterlin, & Calogiuri, 2020, Conditioned 

Restoration Theory; CRT), in which previous positive experience increases the likelihood of 

restorative responses whilst negative experience decreases them. According to this CRT 

framework, nature environments that had been associated with stressful experiences would 

then become non-restorative. Therefore, it cannot be excluded that semantics contribute to 

environmentally-induced cognitive load. As restorativeness remains a very vague term, this 

thesis will not investigate  whether the restorativeness of nature images is driven by bottom-

up processing of image features, but instead try to separate the effects of basic image statistics 

from semantics association with image content on cognitive load. 

 

1.4.4. Thesis Outline  

From the brief literature overview above it hopefully became evident that research on an 

environment’s cognitive benefit or cost has tended to focus on comparing rather crudely 

categorised nature and urban environments for which it was impossible to quantify and 

compare their sensory parameters (Bratman et al., 2012). It thus remains unclear what exactly 

it was within the different environments that impacted cognitive processing.  

Moreover, most research studies comparing the impact of nature and urban environments on 

cognition could not really answer the question whether exposure to nature improved cognitive 

abilities (“nature benefit”) or whether exposure to urban environments decreased cognitive 
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abilities (“urban cost”) as there was usually no baseline measure to which these environments 

could be compared (Bratman et al., 2012). Also, none of the theories described would provide 

us with a clear explanation of the mechanisms underlying restorativeness nor would allow us 

to predict a particular environment’s demands on cognitive resources. Therefore, the aim of 

this thesis was not to test or improve any of the existing theories, but instead to extract key 

sensory factors in visual environments that might contribute to environmentally-induced 

cognitive load (see Chapter 1.4.).  

Visual factors related to a range of low-level, mid-level and high-level visual processes were 

examined for their ability to contribute to environmentally-induced cognitive load.  

• Low-level visual processes: image statistics such as contrast distributions, fractal 

dimensions and greenery (See Chapter 3, 4, 5 and 6) 

• Mid-level visual processes: visual discomfort (See Chapters 3, 5 and 6).  

• Mid-level and high-level visual processes: aesthetics and semantic associations 

(Chapters 4, 5 and 6) 

Moreover, this thesis focuses on investigating the differences in the demands on cognitive 

resources posed by various environments during actual exposure to the respective 

environments. For this, it will first be necessary to establish whether a nature benefit / urban 

cost can be reliably observed in experiments that vary sensory input on a trial-by-trial basis 

(see Chapter 2 for experimental methods used here).  
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Chapter 2. Methodologies 

This chapter summarizes the major methodologies used throughout the thesis (see also Burtan, 

Burn, & Leonards, 2021; Burtan, Joyce, et al., 2021)1 

First, it describes the two experimental approaches to investigate different perceptual factors 

that might contribute to the differences in cognitive processing demands observed for different 

environments; in particular, the use of 3D motion capture data of human gait as a proxy for 

cognitive load, and reaction times for a basic shape discrimination task in the presence of task-

irrelevant environmental images to test participants’ distractibility induced by individual 

environments. 

• Then, the Chapter describes the statistical analysis, i.e. multi-level modelling, that 

was used to account for random variability within the data samples for a repeated-

measurement design and to investigate which factors explained the data variability 

best.  

• As multi-level modelling allowed us to include image characteristics into the 

statistical analysis, the Chapter finally describes how certain basic image 

characteristics, in particular contrast distributions and fractal dimensions, were 

calculated. 

 
1 Author contributions are described on page 15.  
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2.1. Experimental approaches 

2.1.1. Human gait analysis based on 3D-motion capture 

data 

As already alluded to in the introduction, differences in cognitive processing load between 

nature and urban environments have been mainly observed after prolonged exposure to these 

environments (Berman et al., 2008; Berto, 2005, it has been described in detail in Chapter 1.3). 

These studies use methods that first measure a “baseline” cognitive performance, and then 

expose their participants to nature or urban environments for a prolonged time before assessing 

their post-exposure cognitive performance. A substantial experimental constraint of such a 

design is that it does not allow to establish the impact of different sensory factors on 

environmentally-induced cognitive load in a parametric way. Therefore, I decided to use two 

different experimental measures that have been shown to be sensitive to cognitive demands on 

a moment-to-moment basis.  

 

Please note that cognitive load is a multidimensional construct proposed by Sweller in 1988 to 

describe the link between task demands and working memory capacity (Sweller, 1988). 

Working memory is defined as a temporary storage of information during a performance of a 

cognitive task such as problem-solving or driving (Baddeley, 1992). Research on cognitive 

load often distinguishes between high cognitive load and low cognitive load (Skulmowski, 

Pradel, Kühnert, Brunnett, & Rey, 2016): high cognitive load requires more control and more 

additional cortical activity than low cognitive load. Some studies distinguish between cognitive 

load and perceptual load (e.g. Causse, Imbert, Giraudet, Jouffrais, & Tremblay, 2016) in which 

perceptual load refers to a model of attention proposed by Nilli Lavie (Lavie, 1995; Lavie & 

Tsal, 1994) to explain visual search data (i.e. a person has to find a target amongst distractor 

items). This model suggests that the selection of information processed is stimulus-dependent 

and varies according to the complexity of the distractor stimulus. The main difference between 

cognitive load and perceptual load is that high cognitive load leads to reduced executive control 

responsible for prioritising the main task but allows distractors to be processed, whilst a high 

perceptual load inhibits or blocks irrelevant information processing before it even reaches 

executive functioning (in the low perceptual load condition, however, the irrelevant 

information can be processed, as attentional resources are not depleted). To-date, there is a 
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considerable controversy surrounding the differences between cognitive and perceptual load 

due to the comparatively vague definitions of the concepts outside their specific experimental 

setups and due to insufficient evidence. Despite these limitations, the overarching concept of 

cognitive load has been chosen to indicate increases in reaction times or otherwise slowing of 

responses such as found in changes of gait parameters i.e. slower walking speed, smaller steps, 

increased gait variability (Amboni et al. 2013). 

Evidence from clinical, experimental, neuropsychological and neuroimaging studies suggests 

that gait is not as fully automated as assumed by current biomechanical models (Guertin, 2009), 

but requires both cognitive functioning and attention (see for a review Al-Yahya et al., 2011; 

Amboni et al., 2013). For example, it has been demonstrated that gait kinematics such as 

walking speed, step length and stride variability depend on the difficulty of a cognitive task 

that is being performed at the same time in a so-called dual-task paradigm (see for a review 

Amboni et al., 2013). More generally, if performance in a task decreases when another task is 

performed at the same time, then the two tasks are thought to require cortical processing within 

the same cortical networks; thus, they are competing for the same neural resources available 

(see dual-task paradigms first introduced by Pashler, 1994).  

Dual-task paradigms have been widely used in clinical research to assess cognitive-motor 

interference during walking, mostly in older adults and clinical populations, in particular in 

individuals with varying degrees of cognitive and motor impairments such as individuals with 

dementia, mild cognitive impairment, or Parkinson’s disease (see for a review Amboni et al., 

2013). In such paradigms, individuals have to perform a cognitively demanding task (e.g. Trail 

Making Test) whilst walking. The more cognitively demanding the non-walking task, the more 

changes are found in participants’ gait parameters such as a decrease in velocity, increased 

stride time, increased stride length and time variability (Amboni et al., 2013). The underlying 

assumption is that as attentional resources are limited, the brain is forced to prioritise one of 

the tasks over the other at any given moment, with task switching leading to gait slowing and 

increased gait variability. This, in turn, leads to increased metabolic cost for walking (e.g. 

Stenum & Choi, 2021), and potentially increases the risk of falls (Hausdorff, Rios, & Edelberg, 

2001; Mirelman et al., 2012). 

Provided environmentally-induced cognitive load differences were big enough, changes in gait 

kinematics might be a sensitive way to objectively quantify the impact of visual environments 

on cognitive processing on a moment-to-moment basis. This idea was tested using 3D motion 
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capture to capture gait data for people walking toward nature vs. urban images (Experiment 1, 

see Chapter 3). The same method was later used to tease apart different visual parameters that 

might contribute to cognitive load (Experiments 3, 4, 6, see Chapters 4, 5, 6 respectively). 

 

  

2.1.1.1. Procedure 

To measure gait, small spherical retro-reflective markers were attached to participants’ 

shoulders (lateral clavicle), knees (patella), outside of their ankles (lateral malleolus), and their 

feet (first metatarsal-phalangeal joint). In addition, participants were given an elasticated belt 

to wear at hip height with three markers to locate the left hip, right hip and lower abdomen 

(hereon referred to as “hip” markers). The location of these markers was detected by a motion 

capture system (Oqus, Qualisys AB, Sweden) with a recording frequency of 100Hz. The 

system consisted of 12 cameras and was calibrated prior to testing each participant, leading to 

a typical spatial accuracy of 1mm³ across a captured space of 12m x 2m x 2.4m (see Figure 

2.1.). The room was dimly and consistently lit throughout the experimental session with 

blackout curtains all along the long sides of the room. Note that the surroundings were still 

clearly visible, allowing participants a good understanding of the space they were moving in 

with a flat, obstacle-free floor.  

Gait was recorded for each walking trial, using the motion capture system (x-direction 

depicting lateral movement, y-direction depicting direction of travel down the laboratory, z-

direction depicting vertical movement). 
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Figure 2.1: Bristol Vision Institute Movement laboratory funded by Wellcome-Trust (3D 

motion capture space). University of Bristol.  

  

 

2.1.1.2. 3D-motion capture data and measures of gait 

A pre-processing procedure was applied to the raw motion capture data. Raw data were pre-

processed using proprietary software (QTM, Qualisys AB) to identify automatically the 

trajectories of markers. During normal walking, steps of a typical length should alternate 

between the left and the right foot. If the analysis revealed missing markers, steps over 1.3m in 

length or consecutive steps from the same foot, this was highlighted as walking inconsistency. 

Such trials were manually checked, and errors in labelling of the markers by the model were 

corrected where appropriate and possible. Any trials with missing sensor data (foot and hip 

markers) were removed from further analysis. A low-pass filter was applied to the raw data of 

interest, i.e. the foot and hip markers, to remove high frequency noise. Specifically, a 

bidirectional 2nd order Butterworth filter was applied with a cut-off frequency of 5Hz. Data 

were truncated for each trial to remove all data from the first 0.5 metres (m) and the last 2m of 

captured space (i.e. 5m before the wall on which images had been presented), leaving 9.5m for 

gait analysis per trial. This excluded those parts of each trial where the subject was accelerating 
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or decelerating so that walking speed was approximately constant in the data used for 

subsequent analysis. 

From the kinematic data derived from each trial, key information was extracted from the 

velocity and position data of the foot markers to label individual steps. Steps were defined as 

the stationary periods for each foot; i.e. when the marker moved less than 5cm in 0.1s. The 

position of a step was determined by the position of the foot marker in the middle of this 

stationary period. The landing time was therefore labelled as the time corresponding to the 

maximum deceleration of the foot on the Y axis prior to this stationary period, and the lifting 

time as the point of maximum acceleration on the Y axis post stationary period.  

Subsequently, measures of gait were calculated from the pre-processed data for feet and hip 

(motion capture data from shoulders and ankles, although collected, were not considered for 

analysis). Specifically, trial velocity was calculated as the distance the hip marker travelled (i.e. 

9.5 m) divided by the time taken to complete the walk. Step length was defined as the distance 

from the foot marker on one foot to the foot marker on the other foot at landing time and was 

calculated by subtracting the Y-position of the rear foot from the Y-position of the forward-

stepping foot. Stride time was defined as the difference between one landing time and the 

subsequent landing time of the same foot. Finally, swing time was defined as the difference 

between the lifting time and the corresponding landing time of an individual foot. These data 

were then summarised as mean velocity, step length, stride time and swing time, respectively, 

for each trial. The variability in step length, stride time and swing time for each trial was also 

calculated. Note that for the first step for each foot as well as the last step, stride time, step 

length and swing time were undefined due to an indeterminate lifting time/start position of the 

rear foot or an indeterminate landing time/position of the front foot, respectively (as these were 

outside the measured area). As such, only the data for steps measured in their entirety were 

used for analysis.  

 

2.1.1.3. Exclusion criteria 

Participants’ data were excluded from analysis if participants did not properly follow the 

instructions for the experimental task or were having an unusual walking style (mean gait 

parameters > 2.5SD from the group mean) affecting too many trials. 
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Individual trials were excluded on the basis of missing data (unlabelled markers) or if a 

participant accidentally stopped their walk before reaching the end of the motion capture space. 

As these errors were only detected during the analysis stage, such trials could not be repeated. 

On rare occasions, synchronisation between stimulus computer and motion capture system 

failed. In these situations, the affected trial was repeated. 

 

 

2.1.2. Task - irrelevant attentional capture  

Attention Restoration Theory (Kaplan, 1995; S. Kaplan, 2001; Kaplan & Berman, 2010) 

proposes that interacting with urban environments exhausts top-down directed-attention 

mechanism whilst interacting with nature environments captures bottom-up involuntary 

attention mechanism and allows directed-attention mechanism to be restored (see also Chapter 

1.3.3.). The key factor here is that directed attention is associated with higher-order cognitive 

functions such as suppressing irrelevant information (see Ohly et al., 2016).  

To investigate differences in environments’ ability to automatically attract attention and thus 

distract from a task at hand, participants were asked to perform a shape discrimination task in 

the presence of task-irrelevant environmental images (Experiments 2 and 5; Chapters 3 and 5 

respectively). It can be expected that urban environments automatically engage directed 

attention mechanisms and thus distract more from a task at hand than nature environments; i.e. 

they are harder to suppress and thus it is harder to redirect attention to the task at hand. 

Image sets differed between experiments and will be described in detail in the respective 

chapters. 

 

2.1.2.1. Procedure 

The task consisted of a basic shape discrimination task on a computer screen (viewing distance 

of 57cm to the 21” monitor) in a quiet room with dimmed lighting. Each trial started with the 

presentation of a central fixation cross for a random duration of between 0.7 and 1.3 seconds. 

This was followed by the presentation of two shapes in addition to a task-irrelevant 

photographic image centred between them. The two shapes were a black circle (diameter of 61 
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pixels) and a black square (54x54 pixels); i.e., shapes matched in their overall number of pixels 

and thus luminance. Each shape was presented in the middle of a white circle (diameter of 130 

pixels). There were four shape-pair conditions: circle (L) – circle (R), square (L) – square (R), 

circle (L) - square (R), and square (L) – circle (R); each of which was presented equally often, 

but in random order. Which of the four shape combinations and which photographic image 

were presented, was determined pseudo-randomly. Participants were asked to decide as quickly 

and as accurately as possible whether the two geometric shapes were identical or different, by 

pressing the according key on a keyboard in front of them. Images stayed on the screen until 

participants responded. If participants pressed the wrong key, a short beep alerted them of their 

mistake. Response accuracy and reaction times were recorded.  

The photographic images subtended an area of 34° x 21° of visual angle. Shapes within their 

white circles subtended 3.5° of visual angle and were presented 20° degrees of visual angle 

from the centre of the screen, i.e. the outer line of the circle was 1.26° degrees of visual angle 

away from the corners of the photographic image. The screen background was a medium grey 

of average luminance (94.24 cd/m2) and subtended an area of 51° x 29° of visual angle. 

 

  

2.2. Multi-level modelling 

A multi-level modelling technique was used to tease apart possible effects of different factors 

(e.g. environment, image statistics) on dependent variables such as gait kinematics 

(Experiments 1, 3, 4 and 6) or reaction times (Experiments 2 and 5). For gait kinematics, multi-

level modelling was applied to velocity data only as I reasoned that as a composite measure of 

both step length and stride time, velocity should be the most sensitive gait measure to assess 

environmentally-induced cognitive load. 

For ease of interpretation, all continuous data were transformed into Z-Scores (e.g. gait, 

reaction times, visual discomfort and liking scores), and categorical variables were dummy 

coded (e.g. environment type). 

A series of models were fitted through three stages to establish the model of best fit. After each 

stage, the significance of each fixed effect (predictor) was assessed with chi-squared statistics, 

and insignificant predictors were discarded (models lettered ‘a’). 
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·        Model 1; a cross-classified model was created with random effects: participant and image 

crossed at level two as random effects and trial at level one. Each individual trial was treated 

as a case. A cross-classified model was fitted using the Markov chain Monte Carlo (MCMC) 

method with the Bayesian Deviance Information Criterion (DIC) to handle more complex 

cross-classified models (Kass, Carlin, Gelman, & Neal, 1998). 

·       Model 2; independent variables/predictors were added as fixed effects (e.g. environment 

type, image statistics: fractal dimensions, visual discomfort and liking scores). 

·       Model 3; all relevant two-way interactions were added as fixed effects (e.g. environment 

type and image statistics: fractal dimensions, environment type and visual discomfort). 

The model of best fit was selected from the final lettered ‘a’ models, showing the best 

combination of predictors at each stage, following the discarding of insignificant predictors. 

The selection of the model of best fit was based on Deviance Information Criterion (DIC) 

statistics. A lower DIC equates a better fit. For each model, burn-in (i.e. number of initial 

iterations discarded) = 500 and chain length (i.e. number of iterations after burn-in) are 

described. Parameters for all models are described in detail in the respective chapters.  

 

 

2.3. Methods used to calculate image statistics  

For all images that served as stimuli in experiments presented in this thesis, different basic 

image statistics were calculated: contrast distributions (Experiments 1 and 2) and fractal 

dimensions (Experiments 1, 2, 4, 5, 6 and 7). 

  

2.3.1. Contrast Distribution 

Contrast distributions as used for Experiments 1 and 2 were calculated by Katie Joyce (see 

Joyce, 2017) by applying a model developed by Penacchio & Wilkins (Penacchio & Wilkins, 

2015). This method had been chosen as it had been used before to measure the link between 

contrast distribution and visual discomfort (see Wilkins et al., 1984; Wilkins et al., 2018). 

Penacchio and Wilkins’s model calculates the amplitude of contrast at all visual frequencies 

(limited by pixels) for all orientations and outputs the residuals after comparison with a typical 
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1/f distribution. Higher residuals reveal a contrast distribution further from 1/f. For this, images 

were transformed into greyscale, and then cropped to 800x800 pixel square to be able to apply 

the procedure. To obtain a measure for the entire image (1280x800 pixels), residuals for the 

left and right part of the image were calculated separately, and the average residual of the two 

image parts was taken as the value for this stimulus’ residual (note that as a total image size is 

1280x800 pixels, there is a substantial spatial overlap between the two image halves used to 

calculate contrast). 

 

 

2.3.2. Fractal Dimension - Minkowski–Bouligand box-

counting technique 

In Experiments 1, 2, 4 and 5 fractal dimension calculations were based on the Minkowski–

Bouligand fractal dimension box-counting technique (Schroeder, 1991): in brief, after 

normalising colour images and converting them into greyscale images, images were binarized 

using the mean image value before running a box counting algorithm over a range of box sizes 

to calculate fractal dimensions. Fractal dimensions were calculated by Simon Ho for the images 

used in Experiments 1 and 2 (Ho et al., 2019). Fractal dimensions for Experiments 4 and 5 

were calculated by me using the code provided by Simon Ho. Box-counting is the most 

commonly used technique to measure fractal dimensions (Gonzato, Mulargia, & Ciccotti, 

2000) but it brings limitations. For example, converting the image to greyscale, and thus losing 

the information about the colour prior to applying the algorithm might result in inaccurate 

estimation of roughness (Nayak & Mishra, 2016). Therefore, applying a different method could 

have resulted in a different output, for example, manipulating the image amplitude spectrum – 

technique used to create images with different fractal dimensions in Experiment 6 (see Chapter 

6.2. for a description of this method). 
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Chapter 3. A novel method to measure 

the impact of visual environments on 

cognitive load 

3.1. Introduction 

As had been described in detail in the General Introduction, exposure to nature environments 

compared to exposure to urban environments has been shown to have a positive impact on 

cognitive functioning, an effect was observed after sustained environment exposure (Berman 

et al., 2008; Berto, 2005). Before being able to focus on key questions of my thesis about which 

visual environmental factors impose higher cognitive load, it was first necessary to confirm 

that a positive impact of nature environments (or a negative impact of urban environments) on 

cognitive functioning could be observed during exposure to the different visual environments. 

The aim of this study was to investigate whether a nature benefit/urban cost could be measured 

on a trial-by-trial basis, using gait kinematics and reaction times as proxy measures of cognitive 

load.  

The data presented in this study have been published in Burtan, Joyce, et al. (2021)2 

 
2 Author contributions are described on page 15. 
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3.2. Experiment 1: Measuring changes in gait kinematics to 

quantify cognitive load differences between nature and 

urban scenes 

Evidence from dual-task experiments suggests that there is a link between cognitive load and 

gait kinematics (see Chapter 2). Walking whilst preforming a cognitively demanding task has 

been shown repeatedly to lead to decreased walking speed, in addition to increased variability 

in stride length and stride timing (see for a review Amboni et al., 2013). The aim of this 

experiment was therefore to establish the impact of environment type (urban vs. nature) on 

cognitive processing load on a trial-by-trial basis, using changes in gait kinematics to quantify 

changes in cognitive load.  

 

3.2.1. Methods 

Participants: Sample size calculations took into account the substantial amount of repetitions 

within individual participants for all conditions of interest, and was based on modelling 

estimates for within-participant repeated measures correlations provided by Bakdash & 

Marusich (2017): to obtain 80% power for a medium effect size (0.3) and within participant 

repeated paired measures of 20 or more repetitions, a minimum of 12 participants would be 

sufficient (Bakdash & Marusich, 2017). Twenty participants (6 male; aged 18-36 years, M = 

23 years) took part in this study in the Bristol Vision Institute (BVI) movement laboratory at 

the University of Bristol. All participants reported normal or corrected-to-normal visual acuity, 

no injuries or conditions that might have impacted their walking, and all gave their informed 

written consent prior to commencing the study. The experiment was approved by the Faculty 

of Life Sciences’ Ethics Committee at the University of Bristol (ref: 27041635961). 

Participation took place by reimbursement to account for participants’ time. 

Stimuli: For this study, 100 images of nature and urban scenes had been selected out of a far 

larger image set taken by Ute Leonards (University of Bristol) and Todd Handy (University of 

British Columbia), in addition to five plain grey images. Images presented a range of 

landscapes and urban spaces across Europe and Canada (see Experiment 2 in (Ho et al., 2019), 

for the same image set). Image resolution was 1280x800 pixels. Firstly, nature and urban scenes 

had been visually matched as closely as possible for their spatial composition: for this, half of 
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the nature scenes and half of the urban scenes included a walkable path whilst the other half 

did not; thus, there were four image categories: nature path (25 images), nature no path (25 

images), urban path (25 images), urban no path (25 images). Secondly, images across all four 

categories were controlled for perceived depth (distance to the centremost point), perceptually 

grouping each image category by distance into five image groups: very close, close, medium, 

far, very far, with 5 images per distance. Each image within this 5 by 5 design had an image in 

the other four categories that was perceptually matched as closely as possible in its overall 

spatial layout as agreed on by three of the investigators involved in this study.  

For each image, contrast distributions were calculated by Katie Joyce (Joyce, 2017) by 

applying a model developed by Penacchio & Wilkins (Penacchio & Wilkins, 2015), see 

description of this method in Chapter 2.3.1. In line with earlier findings (Penacchio & Wilkins, 

2015), urban images had significantly higher residuals (M = 2.4E+14, ± 9.4E+13 SD) and thus 

sat further away from a 1/f distribution than nature images (M = 1.8E+14, ± 9.0E+13 SD);  

(t(98) = 3.241, p < 0.01). Fractal dimensions of images were taken from the calculations 

described in Ho et al., (Ho et al., 2019) for the same image set (see their Experiment 2) and 

based on the Minkowski–Bouligand fractal dimension box-counting technique described in 

Chapter 2.3.2. 

 

 

Figure 3.1: Example stimuli from a set of 100 nature and urban images taken by Ute Leonards 

(University of Bristol) and Todd Handy (University of British Columbia). 
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Procedure: On arrival, participants were given written and verbal explanations of the 

experiment. Following this, 3D motion capture markers were attached (see the description of 

the procedure in Chapter 2.1.1.), before the actual experiment began. The experiment was 

divided into two parts, each of which required the participant to walk down the laboratory 

repeatedly whilst performing different secondary tasks: a) a verbal cognitive load task, and b) 

an image rating task. The order of the two experimental parts was counterbalanced across 

participants.  

Experimental part 1 consisted of a cognitive motor interference task with walking as the motor 

task and a verbal trail making task (vTMT) (e.g. Nasreddine et al., 2005) as the cognitive (i.e. 

secondary) task: in a simple verbal version of the Trail Making A task, participants are asked 

to count aloud or recite the alphabet). In the verbal version of the Trial Making B task, 

participants have to switch repeatedly between the next letter of the alphabet and the next 

number  (e.g. A1,B2, C3, ….) (Bowie & Harvey, 2006). This part of the experiment served as 

a control to establish whether our methodology was sufficiently robust to observe changes in 

gait kinematics associated with changes in cognitive load as has been well established in the 

literature (Amboni et al., 2013). In this experimental part, each  participant was asked to walk 

repeatedly down a 15m long laboratory whilst completing one of four types of verbal tasks 

requiring different amounts of cognitive load: No speech (C1), “Lalala…” (C2), “ABC…” (C3) 

or “A1B2…” (C4). The least cognitive resources were required for C1 (no speech; i.e. no dual-

task requirements, and thus no interference between cognition and walking), and the most for 

C4. Indeed, gait kinematics should be sensitive enough to reflect slower and more variable gait 

with increasing levels of cognitive load when comparing gait during the performance of a 

simple verbal version of the Trail Making A task (counting aloud or reciting the alphabet) as 

compared to the Trial Making B task (A1,B2, C3, ….) (Bowie & Harvey, 2006);  

Procedure and results of this cognitive motor interference task can be found in the 

supplementary material of Burtan, Joyce, et al., 2021 and in Annex B.  

For experimental part 2, participants were asked to perform an environment-induced perceptual 

load motor interference task as the actual task of interest. For this part of the experiment, 

participants walked repeatedly toward images projected onto the back wall of the laboratory 

(one image per walk) and rated each image for its visual discomfort.  

One of the following images was displayed per walk: a nature scene (50), an urban scene (50) 

or a neutral grey image (5). The image display size was 3m wide x 2m high, corresponding to 
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11.4° x 7.6° of visual angle when viewed from the starting point of the walk, and 57 ° x 38° of 

visual angle when viewed from the end line of the 3D motion capture space. After each walk, 

participants were asked to rate the image seen for its visual discomfort. Visual discomfort 

ratings were given on a 7-point Likert Scale from ‘1 – extremely comfortable to view’ to ‘7 – 

extremely uncomfortable to view’ (participants had been familiarised with this scale and the 

definition of visual discomfort during the verbal briefing). All 105 stimuli (50 nature scenes, 

50 urban scenes, 5 grey control images) were presented in randomised order. This part of the 

experiment took approximately 40 minutes to complete, and participants were offered a break 

at the halfway point (after trial 52). Participants could ask for additional breaks, if they deemed 

it necessary.  

At the end of the experiment, participants were thanked for their contribution and debriefed. 

 

Data analysis experimental part 2: walking and rating images for visual discomfort:  

One participant’s data were excluded from analysis as they did not properly follow the 

instructions for this task. One further participant was excluded from analysis due to having an 

unusual walking style: mean gait parameters > 2.5SD from the group mean affecting too many 

trials (see also Chapter 2.1.1.3). This left 18 participants’ datasets for analysis; (5 male, 13 

female), aged 18-34 (mean age = 22). After excluding individual trials for these 18 participants 

(see exclusion criteria in Chapter 2.1.1.3.), the minimum of trials per participant was 43 trials 

per environment condition (nature/urban) and 4 trials per control condition for a participant to 

be included in the final analysis. The mean number of trials per nature environment per 

participant for step analysis was 49.28 (± 1.87 SD) and for velocity analysis 49.44 (± 1.69 SD) 

out of 50. The mean number of trials per urban environment per participant for step analysis 

was 49.44 (± 1.46 SD) and for velocity analysis 49.50 (± 1.47 SD) out of 50. The mean number 

of trials per neutral condition per participant for both step and velocity analysis was 4.89 (± 

0.32 SD) out of 5. In addition, for the multilevel modelling analysis outliers were removed 

from the data (walking speed per trial > 2.5 SD from the group mean). (Note that the study has 

not been pre- registered). 
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3.2.2. Results and Discussion 

Visual Discomfort ratings: In line with expectations from earlier studies on visual discomfort 

(Wilkins et al., 2018), subjective visual discomfort ratings were higher for urban images (M = 

3.38, ± 0.7 SD) than for nature images (M = 2.27, ± 0.38 SD); see Figure 3.2. A one-way 

ANOVA with repeated measures revealed that this effect was highly significant (F(1,49) = 

119.583, p < 0.001). 

 

Figure 3.2: Group averages of individual visual discomfort ratings per image (7 point- Likert 

Scale) for the two environment types: Nature and Urban. Error bars reflect ±1SEM (Figure 

taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 8(1), p. 6 

(doi:10.1098/rsos.201100)). 

 

Gait data: Repeated measures MANOVAs were applied to the gait data of this part of the 

experiment, adding order of experimental parts as a between-subjects variable and 

environmental stimulus type (Urban/Nature/Neutral) as a within-subjects variable for seven 

dependent gait measures (mean velocity, mean step length, mean stride time, mean swing time, 

variability of step length, variability of stride time and variability of swing time).  

Velocity: Analysis revealed a significant main effect of environment on mean velocity (F(2,32) 

= 32.34; MSE < 0.05; p < 0.001, partial η2 = 0.67), see Figure 3.3. Post-hoc tests with 

Bonferroni correction revealed a significant difference between all three environmental 

conditions; participants walked fastest toward neutral images, significantly slower toward 
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nature images (p < 0.01), and significantly slower again toward urban images (neutral – urban: 

p < 0.001, nature – urban: p < 0.05). 

Step Length: Analysis with Greenhouse-Geisser correction showed that there was also a 

significant main effect of environment on mean step length (F(1.47, 23.58) = 23.55; MSE < 

0.05; p < 0.001, partial η2 = 0.60), see Figure 3.3. Post-hoc tests with Bonferroni correction 

revealed significant differences between all conditions; neutral images resulted in the longest 

mean step length, with a significantly shorter step length for nature images (p < 0.01) and 

significantly shorter step length again for urban images (neutral – urban; p < 0.001, nature – 

urban; p < 0.01).  

Stride Time: In addition, analysis with Greenhouse-Geisser correction revealed that there was 

a significant main effect of environment on mean stride time (F(1.39, 22.30) = 29.33; MSE < 

0.01; p < 0.001, partial η2 = 0.65), see Figure 3.3. Post-hoc tests with Bonferroni correction 

showed that neutral images elicited shorter stride times than both nature (p < 0.01) and urban 

images (p < 0.001). However, there was no significant difference in stride time for nature and 

urban images (p > 0.05), suggesting that this measure is less sensitive than overall velocity and 

step length. 

Swing Time: In addition, analysis with Greenhouse-Geisser correction revealed that there was 

a significant main effect of environment on mean swing time (F(1.25, 20.04) = 7.66; MSE < 

0.001; p < 0.01, partial η2 = 0.32), see Figure 3.3. Post-hoc tests with Bonferroni correction 

showed that neutral images elicited shorter swing times than both nature (p < 0.05) and urban 

images (p < 0.05). However, there was no significant difference in swing time for nature and 

urban images (p > 0.05), suggesting that this measure is also less sensitive than velocity and 

step length. 

There was no main effect of environment on the variability of step length, the variability of 

stride time and the variability of swing time.  

Experimental part order did not affect any of the gait measures. However, there was a 

significant interaction between experimental part order and environment type for velocity 

(F(2,32) = 5.01; MSE < 0.01; p < 0.05, partial η2 = 0.24) and stride time (F(1.39, 22.30) = 4.57, 

MSE < 0.001; p < 0.05, partial η2 = 0.22) (see Annex A for more detail). 
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Figure 3.3: Group averages of individual mean a) velocity (metres per second), b) step length 

(in metres) c) stride time (in seconds) and d) swing time (in seconds) across environment type. 

Error bars reflect ±1SEM. * p < 0.05, ** p < 0.01. (Figure taken from Burtan, Joyce, et al., 

2021. Royal Society Open Science, 8(1), p. 7 (doi:10.1098/rsos.201100)). 

 

Multi-Level Modelling (Velocity): To tease apart possible effects of image statistics (i.e. 

contrast distributions and fractal content), subjective visual discomfort, image configuration 

(presence of a walkable pathway in the image) and environment type on walking speed, I 

applied a cross-classified multi-level model to the velocity data (see the detailed description of 

the method in Chapter 2.2.). See Table 3.1. for all models fitted. 

Neutral image trials were excluded from this analysis due to missing data for all predictors (i.e. 

image statistics, image configuration and subjective discomfort ratings) other than 

environment. In addition, 18 trials were excluded due to outlier screening. 
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Table 3.1: Model fit comparisons for models estimating velocity from the characteristics of the 

image viewed. (Table taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 8(1), 

p. 8 (doi:10.1098/rsos.201100)). 

 

Note. PT = Participant, IM = Image, T = Trial (n = 1764), ENV = Environment, DIS = 

Discomfort rating, IMS = Image statistics (1/f residuals), PA = Path, FD = Fractal dimension.  

 

The best fitting model was 4a. Parameter estimates for this model are displayed in Table 3.2.  

 

 

 

 

 

 

 

 

 

Model   DIC Fixed Random 

1   3483.390  PT, IM, T 

2   3422.810 ENV, DIS, IMS, FD, PA PT, IM, T 

2a 

3 

3a 

4 

4a 

 3420.733 

3419.824 

3422.476 

3419.996 

3419.996 

ENV, DIS, IMS 

ENV, DIS, IMS, ENV*DIS, ENV*IMS, DIS*IMS 

ENV, DIS 

ENV, DIS, ENV*DIS 

ENV, DIS, ENV*DIS (Model 4) 

PT, IM, T 

PT, IM, T 

PT, IM, T 

PT, IM, T 

PT, IM, T 
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Table 3.2: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with best fit (Model 4a; Table 3.1.) predicting velocity from the characteristics of the 

image viewed. (Table taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 8(1), 

p. 9 (doi:10.1098/rsos.201100)). 

Note. Estimates reflect size of the effect on standardised velocity. Burn-in = 500, Chain Length 

= 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. ***p < 0.001, **p < 0.01, 

*p < 0.05. 

 

Environment ( = 2.619, p < 0.01), visual discomfort ( = 36.604, p < 0.001) and interaction 

between environment and visual discomfort ( = 4.276 p < 0.05) were significant predictors of 

velocity, with people walking more slowly whilst walking towards images of urban 

environments and images they perceived as more uncomfortable to look at. Subjective 

discomfort and environment seem thus heavily interrelated and explain at least some of the 

variability in walking speed. 

      95% CI   

Parameter Estimate Std. Error Lower Upper  

Fixed      

Intercept 

Environment (Urban) 

0.314 

-0.222 

0.190 

0.085 

-0.097 

-0.388 

0.653 

-0.056 

1.648 

2.619** 

Discomfort 

Dis*Env 

-0.174 

0.076 

0.029 

0.037 

-0.231 

0.004 

-0.118 

0.148 

36.604*** 

4.276* 

Random      

Participant 0.637 0.252 0.315 1.261  

Image 0.004 0.003 0.001 0.010  

Trial 0.399 0.014 0.373 0.427  

Deviance Information Criterion (DIC)     3419.996 
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Basic image statistics (contrast distribution and fractal dimension) and presence of walkable 

path did not improve model fit (higher DIC statistics). In other words, these factors did not 

explain any of the variance over and above the other predictors.  

In line with our predictions, this part of the experiment provided first evidence that exposure 

to visual scenes of urban environments as compared to nature environments requires higher 

amounts of cognitive/perceptual resources: participants walked more slowly and with smaller 

steps towards urban scenes as compared to nature scenes, mirroring their behaviour in the 

verbal trail making control task (See Annex B for more detail) and more generally behaviour 

described for dual-task conditions in which walking is affected by the second task requiring 

higher cognitive resources (Al-Yahya et al., 2011; Amboni et al., 2013; Ho et al., 2019). The 

differences in cognitive/perceptual load requirements evoked by the two types of visual 

environment are thus big enough to be picked up on a trial-by-trial basis, using changes in gait 

kinematics as an objective measure of load. 

Whilst these results support our main hypothesis that changes in gait kinematics can be used to 

measure environmentally-induced cognitive load on a trial-by-trial basis, however, it remains 

unclear what exactly it was for the two different environmental scene types that contributed to 

the differences in cognitive load requirements.  

Whilst multilevel modelling revealed that environment, visual discomfort and the interaction 

between environment and visual discomfort explained some of the variance in gait kinematics 

(i.e. walking speed), neither image contrast distributions nor fractal dimensions had a predictive 

value on gait kinematics. This is a first indication that differences in basic image statistics 

between nature and urban scenes are not driving factors behind the nature benefit or higher 

cognitive demands induced by urban images. Chapters 4 and 6 present data in which I 

investigate the impact of low-level image properties: greenery (Chapter 4) and fractal geometry 

(Chapter 6) on environmentally-induced cognitive load. 
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3.3. Experiment 2: Exploring attentional capture for urban 

and nature images 

Outcomes of Experiment 1 confirmed that cognitive processing differences between exposure 

to nature and urban environments are so pronounced that they can be measured as changes in 

gait kinematics on a trial-by-trial basis. 

To confirm that this effect is task and measurement independent and environmentally-induced 

cognitive load can be picked up on trial-by-trial basis, UG project student Leny Dimitrova3 and 

I collected reaction times in a second experiment in which participants were asked to perform 

a simple visual shape discrimination task in the presence of the images of nature or urban 

environments used in Experiment 1 (Dimitrova, 2019). In other words, this time participants 

did not rate the actual images, but images served as task-irrelevant distractors. The reasoning 

behind this experiment was that if the scene content of urban environments were to capture 

people’s attention more readily than the scene content of nature environments (see Chapter 

1.3), this should require higher amounts of cognitive processing power to disengage from such 

images to perform the task at hand. As a consequence, participants’ responses in the unrelated 

shape discrimination task should be slower in the presence of urban images as compared to the 

presence of nature images. In addition, images were presented in both upright and inverted 

orientation to isolate the impact of low-level and higher-level cognitive processes. If low-level 

image properties rather than semantics contributed to environmentally-induced cognitive load, 

there should be no difference in reaction times for upright vs. inverted images. 

 

 

3.3.1. Methods  

Participants: Sample size calculations were based on two different assumptions to allow 

different analyses: a) taking a within-participant repeated measures design with multiple  

repetitions per condition into account as required for multi-level modelling, a minimum of 12 

participants would be sufficient to obtain 80% power for a medium effect size (0.3) and a 

number of intraindividual repeated paired measures of 20 or more (see Bakdash & Marusich, 

2017). For a repeated measures ANOVA based on mean values per condition per participant, 

 
3 Author contributions are described on page 15. 
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however, sample size calculations revealed that to obtain similar power (0.8 power) for a 

medium effect size of 0.3 and a conservative assumption of repeated measures correlation of 

0.5 at least 24 participants were needed for individual main effects as well as the interaction 

effect. To account for possible drop-outs and exclusions, forty-five participants (8 males aged 

between 18-29 years with a mean age of 21 years, and 37 females aged between 16 and 54 

years with a mean age of 22 years) took part in this study at the University of Bristol. All 

participants reported normal or corrected-to-normal visual acuity and normal colour vision. All 

gave written informed consent at the beginning of the study. Participants took part in the 

experiment for course credit. The experiment was approved by the Faculty of Life Sciences’ 

Ethics Committee at the University of Bristol (ref. 28071871142). 

Stimuli and Task: Participants were asked to perform a shape discrimination task (see the 

procedure description in Chapter 2.1.2.) in the presence of the same images of nature or urban 

environments used in Experiment 1. To distinguish between the impact of image statistics and 

associated higher-level cognitive image associations on task-unrelated distraction, each image 

was presented once upright and once in inverted orientation, resulting in a total of 200 trials. 

Image statistics remain the same irrespective of stimulus orientation; yet, it should be more 

difficult to detect automatically the gist of a scene when upside down, thus reducing the image’s 

ability to capture attention. Any reaction time differences between shape discrimination task 

trials performed in the presence of upright as compared to inverted images should thus be due 

to cognitive demands associated with depicting the image’s meaning. 

Procedure: On arrival, participants were given written and verbal information about the study 

and were then seated in front of the computer on which the experiment was run. Each trial 

started with the presentation of a central fixation cross for a random duration of between 0.7 

and 1.3 seconds. This was followed by the presentation of one of the 200 photographic images 

(50 nature upright, 50 nature inverted, 50 urban upright, 50 urban inverted) centred between 

the two shapes for the shape discrimination task. Which of the four shape combinations and 

which photographic image were presented, was pseudo-randomly determined. Images stayed 

on the screen until participants responded by pressing the according key on the keyboard. If 

participants pressed the wrong key, a short beep alerted them of their mistake. There was one 

break during the study halfway through, i.e. after 100 trials. Response accuracy and reaction 

times were recorded.  
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Figure 3.4: Shape discrimination task. The presentation of a central fixation cross for a random 

duration: ITI = Inter-Trial-Interval 0.7,0.8,0.9,1.0,1.1,1.2,1.3 (in seconds); RT = Reaction Time 

in seconds. (Image taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 8(1), p. 

10 (doi:10.1098/rsos.201100)). 

 

The first trial for each participant was removed as a practice trial. Participants with a task 

accuracy below 80% were excluded from analysis, leaving 41 datasets for analysis (7 males 

aged between 19-29 years with a mean age of 21 years, and 34 females aged between 16 and 

54 years with a mean age of 23 years; mean age of 22). Per participant, the median reaction 

times for the four stimulus distractor conditions (nature upright, nature inverted, urban upright, 

urban inverted) were calculated from 5% trimmed data (removal of outliers).  

 

 

3.3.2. Results and Discussion 

Figure 3.5 shows group averages of individual median reaction times per image type and image 

orientation. A 2 (environment) x 2 (image orientation) repeated measures ANOVA with 

median reaction times as dependent variable confirmed a significant main effect of 

environment (nature vs. urban) (F(1,40) = 23.111, p < 0.05, partial η2 = 0.366): participants 
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performed the shape discrimination task significantly slower exposure to urban images (M = 

0.79s, ± 0.14 SD) as compared to nature images (M = 0.76s, ± 0.13 SD). There was no 

significant main effect of orientation (upright vs. inverted) on median reaction times (F(1,40) 

= 1.041, p > 0.05, partial η2 = 0.025) nor was there a significant interaction between 

environment type and orientation (F(1, 40) = 0.001, p > 0.05, partial η2 = 0.000).  

 

 

Figure 3.5: Group mean of median reaction times (in seconds) across environment (urban, 

nature) and orientation type (upright: dotted line; inverted: solid line). Error bars reflect 

±1SEM. (Figure taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 8(1), p. 

12 (doi:10.1098/rsos.201100)). 

 

As for Experiment 1, I decided to go beyond analysis of this experiment included in Leny 

Dimitrova’s thesis (Dimitrova, 2019) by applying a cross-classified multi-level model to the 

data to tease apart possible effects of environment type, image orientation, contrast 

distributions, and fractal content as predictors of variation in reaction times (see Chapter 2.2. 

for a detailed description of the method). 
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Table 3.3: Model fit comparisons for models estimating reaction time from the characteristics 

of the image viewed. (Table taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 

8(1), p. 12 (doi:10.1098/rsos.201100)). 

 

Note. PT = Participant, IM = Image, T = Trial (n = 7346), ENV = Environment, ORI = 

Orientation, IMS = Image Statistics (i.e. 1/f residuals), FD = Fractal dimension.  

 

The best fitting model was 2a, with environment (urban) and fractal dimension as significant 

predictors. Parameter estimates for this model are displayed in Table 3.4.  

 

 

 

 

 

 

 

 

 

 

 

Model    DIC Fixed Random 

1    18007.577  PT, IM, T 

2    17998.087 ENV, ORI, IMS, FD PT, IM, T 

2a    17995.037 ENV, FD PT, IM, T 

3    17996.429 ENV, FD, ENV*FD PT, IM, T 

3a    17999.355 ENV PT, IM, T 
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Table 3.4: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with the best fit (Model 2a; Table 3.3.) predicting reaction time from the characteristics 

of the image viewed. (Table taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 

8(1), p. 13 (doi:10.1098/rsos.201100)). 

Note. Estimates reflect the size of the effect on standardised reaction times. Burn-in = 500, 

Chain Length = 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. ***p < 0.001, 

**p < 0.01, *p < 0.05. 

 

As predicted, environment type was highly predictive of reaction times (  = 26.235, p < 

0.001). Also, low-level image statistics (i.e. fractal dimensions) predicted reaction times (  = 

8.427, p < 0.01); yet, predictions went in the opposite direction of what would be expected: 

increasing fractal dimensions predicted increasing reaction times.  

Including contrast distribution (1/f residuals) as image statistics did not improve the model fit 

(see increased DIC statistics for model 2 as compared to model 2a), meaning that the model 

that included contrast distributions as image statistics did not explain as much variance as the 

model that included environment and fractal dimensions only.  

      95% CI   

Parameter Estimate Std. Error Lower Upper  

Fixed      

Intercept -0.052 0.096 -0.233 0.141 0.298 

Environment (Urban) 0.143 0.028 0.088 0.199 26.235*** 

Fractal dimension 0.041 0.014 0.013 0.068 8.427** 

Random      

Participant 0.347 0.084 0.219 0.546  

Image 0.008 0.003 0.004 0.014  

Trial 0.669 0.011 0.647 0.691  

Deviance Information Criterion (DIC)     17995.037 
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Due to the unexpected result of increasing reaction times with increasing fractal dimensions in 

Model 2a when combined with environment, I wondered whether this result might be due to 

an unexpected interaction between image type and fractal dimensions. Therefore, two further 

models were created to investigate the impact of environment and fractal dimensions 

separately. The two models were identical in structure to Model 2a but each of them contained 

only one of the two fixed predictors. The independent estimates for each predictor are outlined 

in Table 3.5. 

 

Table 3.5: Estimates from independent models for fractal dimension (FD) and environment 

(ENV). (Table taken from Burtan, Joyce, et al., 2021. Royal Society Open Science, 8(1), p. 8 

(doi:10.1098/rsos.201100)). 

 

 

 

 

 

These additional analyses revealed that environment remained predictive of reaction time even 

in the absence of another predictor. Fractal dimensions, in contrast, did not seem to have 

predictive power on their own, p > 0.05. 

 

Presence of people in the urban scenes:  

Human faces are known to automatically attract attention (Morrisey, Hofrichter, & Rutherford, 

2019). Half of the urban images used in this study contained people in the scenes but none of 

the nature environments contained scenes with the presence of people. This is raising the 

question whether the presence of people in some of the urban scenes might explain the elevated 

attentional capture of urban images. Therefore, an additional analysis was conducted to 

investigate whether the presence of people in urban scenes affected median reaction times. 

For this, the 50 urban images used in the experiment were regrouped into urban scenes with 

people present (25 images) and urban scenes without people (25 images). 

Estimate 

 FD ENV 

 -0.000  

  0.096*** 
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A 2 (presence of people) x 2 (image orientation) repeated measures ANOVA with median 

reaction times as dependent variable revealed no significant main effect of presence of people 

in the urban scenes (urban scenes with the presence of people vs. urban scenes without the 

presence of people) on median reaction times, F(1,40) = 3.839, partial η2 = 0.09, p > 0.05. 

There was also no significant main effect of image orientation on median reaction times, 

F(1,40) = 0.028, partial η2 = 0.001, p > 0.05. In addition, the interaction beetwen people in the 

urban scenes and orientation did not affect median reaction times, F(1,40) = 0.110, partial η2 = 

0.003, p > 0.05. 

In line with the hypothesis that images of urban environments capture attention more readily 

than nature images and are more difficult to disengage from (Berman et al., 2008), results 

revealed that participants were slower in taking a simple shape discrimination decision when 

exposed simultaneously to distracting urban images as compared to nature images. 

Intriguingly, this effect was similarly pronounced for both upright and inverted images, 

suggesting that at least some low-level basic image statistics might contribute to this effect and 

not just higher cognitive processes evoked by the meaning of the images. As established in an 

additional analysis, the observed effect cannot by explained by the presence of people in urban 

environments.  

The results of multi-level modelling revealed that both environment and low-level properties 

of images (fractal dimension) were predictive of reaction times when included in the same 

model. Contrary to expectation, increased fractal dimensions predicted increased rather than 

decreased reaction times when included in a model with environment type as the main 

predictor. On their own, however, fractal dimensions did not seem to serve as a reliable 

predictor for changes in reaction time whilst environment type did. As for the gait study before, 

this therefore suggests that there might exist a complex relationship between low and high-

level visual processes involved in the impact of environment on cognitive processing. 

 

 

3.4. General Discussion 

The aim of the two studies presented in this Chapter was to investigate whether the impact of 

urban vs. nature scenes on cognitive load processing can be measured on a trial-by-trial basis. 

The results provided converging evidence that consistent with theoretical predictions (Berman 
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et al., 2008; Berto, 2005) increased cognitive demands for processing of urban scenes as 

compared to nature scenes can also be observed on a far shorter time scale in real-time by using 

gait kinematics and reaction times as measures of cognitive load.  

A moment-to-moment difference in impact of nature vs. urban environments on cognitive 

processing load was present in both tasks, suggesting that differences in cognitive load between 

nature and urban environments are image-related rather than task-related. However, for the gait 

task, these results need to be interpreted with caution: in Experiment 1, participants were asked 

to rate each image for its visual discomfort after each walk. It cannot be excluded that it was 

simply more cognitively demanding to rate urban images for visual discomfort, in line with 

previous findings demonstrating that participants were slower when rating images they found 

more uncomfortable to look at (Ho et al., 2019). Indeed, in Experiment 1 urban images had 

significantly higher subjective visual discomfort ratings than nature images. It raises question 

whether the effect of gait slowing was simply due to aversive physiological symptoms related 

to increased visual discomfort for urban images. Such an interpretation is unlikely given that 

the effect of environmentally-induced cognitive load was present in two fundamentally 

different tasks.  

It is crucial to note that contrary to expectations, low-level image statistics: contrast 

distributions (Penacchio & Wilkins, 2015) and fractal content (Joye & Van den Berg, 2011) 

did not fully explain the changes in gait kinematics nor reaction times. Given that images were 

not controlled for contrast distributions nor fractal content variability, the effect might have 

been too little to be picked up in these two studies. To understand whether low-level image 

statistics impact cognitive processing load, they should parametrically vary across stimulus set 

to cover sufficient variability. This will be investigated in Experiment 6, presented in Chapter 

6. 

The positive effect of exposure to nature environment on cognitive functioning was linked to 

high aesthetics value (e.g. Hartig & Staats, 2006). Not only are urban images more 

uncomfortable to look at, but they might also be less aesthetically pleasing. Taken together, it 

is thus possible that environment type is confounded with both visual discomfort and aesthetics, 

also affecting cognitive load. It is thus important to keep in mind that the current study was not 

specifically designed to tease apart the impact of visual discomfort, aesthetics and environment 

type on cognitive load. Instead, it was the stimulus configuration / spatial layout that was 

controlled for. Therefore, future studies should distinguish between visual discomfort, 
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aesthetics and environment type per se in their stimulus choice. Experiments 4 and 5 (see 

Chapter 5) will therefore focus on investigating the effect of nature vs. urban environments on 

gait and reaction times when these two environment types are controlled for liking scores. In 

Chapter 7, I will present three studies investigating the interaction between liking and visual 

discomfort. 

It also needs to be considered that nature images used in this study were not very biodiverse as 

all nature images presented contained green spaces in temperate climates (UK and Canada). 

One possibility is therefore that it is not nature as such but the green colour within the images 

that was driving the differences in cognitive processing load between nature and urban images. 

Therefore, the aim of the next study is to investigate the impact of the amount of “greenery” in 

a visual scene on gait kinematics (Experiment 3, see Chapter 4). 

Another factor that could have possibly affected results is the presence of people in urban 

scenes. Half of the urban images, used in this study, presented scenes with the presence of 

people while all nature images presented scenes without the presence of people. However, an 

additional analysis did not reveal any effect of the presence of people in urban scenes on median 

reaction times. This suggests that cognitive load induced by exposure to urban environments 

is not associated with the presence of people. Nonetheless, further studies should control the 

presence of people in the scenes. Therefore, images selected for the next studies are presenting 

only nature and urban scenes without people (Experiments 4 and 5, see Chapter 5). 

Overall, this work confirmed that differences in cognitive processing load between exposure 

to nature environments and urban environments can be estimated on a trial-by-trial basis by 

using gait and reaction times as a measure of load. These results represent a compelling initial 

step toward developing a technique that will allow us to understand some of the mechanisms 

underlying the “nature benefit” (or “urban cost”), measuring effects in real time. I have used 

this approach throughout the thesis to tease apart different factors contributing 

environmentally-induced cognitive load. Chapters 4, 5, and 6 present data in which this method 

has been used to measure the moment-to-moment impact of low-level image properties on 

cognitive processing load by parametrically varying the amount of greenery (Experiment 3, 

Chapter 4) and fractal geometry (Experiment 6, Chapter 6) in visual scenes, in addition to 

understanding factors such as aesthetics and visual discomfort (Experiments 4 and 5, Chapter 

5). 
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Chapter 4. The impact of the amount of 

“greenery” on cognitive load 

 

4.1. Experiment 3: The impact of the amount of 

“greenery”/chlorophyll in a visual scene on gait kinematics 

 

4.1.1. Introduction 

The aim of this study was to explore whether colour as a low-level image property, in particular 

the amount of “greenery” in a visual scene, impacts visual cognitive processing load, using gait 

kinematics as a measure of load as established in Chapter 3 (see also Burtan, Joyce, et al., 

2021).  

This question arose from findings that blue-green infrastructure positively impacts physical 

and mental health (Pretty et al., 2017; Wells, 2000). Moreover, a closer look at images used in 

experiments 1 and 2 in Chapter 3 providing evidence that nature and urban environments 

affected gait kinematics, and in turn cognitive load, differently (see also Burtan, Joyce, et al., 
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2021), and revealed that the vast majority of our nature images consisted of primarily “green 

spaces” whilst the urban images had a different colour scheme.  

In other words, the distribution of colours, and in particular the amount of “greenery” / 

chlorophyll, in environmental scenes could have affected cognitive processing load in such a 

way that a higher amount of greenery increased walking speed or a lower amount of greenery 

decreased walking speed. Therefore, in this experiment, I hypothesised that walking speed 

would be faster whilst walking towards images with higher amount of ‘greenery’/ chlorophyll 

as compared to images with lower amount of “greenery” / chlorophyll. 

 

 

4.1.2. Methods 

Participants: On the basis of effect sizes observed in Experiment 1 (Chapter 3),  twenty-two 

participants took part in this study (4 male, 18 female; aged 18-23 years, M = 20 years). All 

participants were recruited via the University of Bristol Experimental Hours Scheme online 

platform and reimbursed with course credits for their time. All participants reported normal or 

corrected-to-normal visual acuity, normal colour vision and no injuries or conditions that might 

have impacted their walking. All participants gave their informed written consent prior to 

conducting the study. Ethical approval for the study was obtained from the Faculty of Life 

Sciences’ Ethics Committee at the University of Bristol (ref: 20111878362).  

Stimuli: The stimuli for this study were 100 abstract images, parametrically varied for the 

percentage of chlorophyll, i.e. “greenery”, they contained (0%, 25%, 50%, 75%, 100%, 20 

images per condition), in addition to 5 plain grey images. Images were provided by Professor 

Lewis D. Griffin, University College London, UK who synthesised them from his five-

parameter model of spectral reflectance with realistic colour distributions (L.D. Griffin, 

personal communication, October 2017): based on a Gaussian model of the distribution of 

natural spectral reflectance functions parameterized by analysis of images from the ImageNet 

database and Google StreetView images of the UK, colour histograms of images (mean RGB) 

were created that reproduced the colours of natural images. Please note that “100%”  

corresponds to the maximum amount of greenery extracted from real world images and not to 

an exclusively green image while 0% corresponds to the minimum amount of greenery 
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extracted from real world images. As such, these synthetic stimuli capture the colour spectra 

of natural scenes as closely as at all possible. Image resolution was 1280x800 pixels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Example stimuli from a set of 100 natural images with different distribution of 

‘greenery’/chlorophyll synthesized from the complex colour-from-reflectance model by Prof. 

Lewis D. Griffin. 

 

Procedure: Prior to the actual experiment, all participants were provided with a written 

explanation of the study, and they were informed about their right to withdraw at any time 

without having to give any explanation. They were asked to walk down the BVI Movement 
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laboratory and perform a secondary task whilst their gait parameters were recorded with 3D 

motion capture (for method see Chapter 2.1.1.). There were two parts to the experiment: a) 

Walking whilst performing a verbal task (see Annex B for description) - as described in detail 

already for Experiment 1 in Chapter 3. This part of the experiment served as a control only to 

confirm that participants’ gait kinematics were indeed affected by increases in cognitive load 

(outcomes are presented in Annex B), and b) Walking towards images with different amounts 

of “greenery” that were projected onto the far wall of the lab, followed by rating each image 

directly after the walk for its likeability. This was the actual task of interest. In this Experiment, 

participants were not asked to rate images for visual discomfort as images did not significantly 

differ in their spatial frequency, thus the visual discomfort ratings were expected to be similar. 

The order of the two experimental parts was counterbalanced across participants (see also 

Chapter 3, Experiment 1 for a similar procedure).  

Walking and rating images for likeability: For each trial, one of the following images was 

projected onto the back wall of the lab: 100% chlorophyll (20 images), 75% chlorophyll (20 

images), 50% chlorophyll (20 images), 25% chlorophyll (20 images), 0% chlorophyll (20 

images) or a plain grey image (5). Images were displayed in random order. 

The size of a projected image was 3m x 2m (11.4° x 7.6° of visual angle from the start point of 

the laboratory and 57 ° x 38° of visual angle from the end point of each walk). After each walk, 

participants were asked to rate the image displayed for its likeability on a 7-point Likert Scale 

from ‘1 – not at all to ‘7 – very much’, before returning to the starting point at the other side of 

the lab. The completion time of the two-part study task was approximately 60 minutes. 

Participants were offered a break between experimental parts in addition to two breaks during 

the experimental part of interest (after 35 and 70 trials), but they were allowed to ask for more 

breaks. After completing the study, participants were provided with a written debrief.  

Exclusion criteria: Two participants were excluded from analysis due to having an unusual 

walking style (see exclusion criteria in Chapter 2.1.3.), leaving 20 participants’ datasets for the 

analysis, 17 females and 3 males, aged 18-23 (M = 19.55, ± 1.39 SD). 
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4.1.3. Results 

As the task “Walking whilst performing a trail making task” served as a control only, similar 

to the control in Experiment 1 (Chapter 3), the procedure and data are not presented here but 

can be found in Annex B. 

 

Figure 4.2: Group averages of individual mean liking ratings (7 point- Likert Scale) for the five 

stimulus types categorised by the amount of 'greenery'/chlorophyll in a visual scene (0%, 25%, 

50%, 75%, 100%). Error bars reflect ±1SEM. * p < 0.05. 

 

Liking Scores: Figure 4.2. shows participants’ group mean liking scores for image categories 

parametrically varied for their amounts of greenery. Liking seemed to decrease with increased 

amounts of greenery. This was confirmed with a repeated measures ANOVA with Greenhouse-

Geisser correction applied to the liking rating data of the task of interest, with stimulus type 

(100% chlorophyll, 75% chlorophyll, 50% chlorophyll, 25% chlorophyll, 0% chlorophyll) as 

within-subjects variable. 

There was a significant effect of the amount of “greenery”/chlorophyll on liking ratings 

F(1.363, 25.906) = 8.925, p < 0.05, partial η2 = 0.320. A Bonferroni post-hoc test revealed that 

stimulus type 100% greenery had a significantly lower liking score than any other stimulus 

type: 0%, 25%, 50% and 75%, p < 0.05.  



80 

 

Gait: To investigate the impact of different amounts of image greenery on gait, repeated 

measures MANOVAs were applied to the gait data of the task of interest, adding order of 

experimental parts as a between-subjects variable and stimulus type (100% chlorophyll, 75% 

chlorophyll, 50% chlorophyll, 25% chlorophyll, 0% chlorophyll) as a within-subjects variable 

for three dependent gait measures: mean velocity, mean step length, mean stride time (note that 

this analysis follows the same principles as the analysis presented in Chapter 3 for Experiment 

1; analysis was restricted from the original 7 measures to the three measures that had been most 

sensitive before).  

Velocity: There was no statistically significant effect of the amount of “greenery”/chlorophyll 

on velocity, F(4,72) = 0.960, p > 0.05, partial η2 = 0.289. 

 

Step Length: Analysis with Greenhouse-Geisser correction of step length data further showed 

that there was no statistically significant effect of the amount of “greenery”/chlorophyll on step 

length, F(1.128, 47.276) = 1.128, p > 0.05, partial η2 = 0.267. 

 

Stride Time: Moreover, there was no statistically significant effect of the amount of 

“greenery”/chlorophyll on stride time, F(4,72) = 0.506 , p > 0.05, partial η2 = 0.164. 

Experimental part order did not affect any of the gait measures. 

Multi-Level Modelling: in line with additional analyses performed for Experiment 1 in Chapter 

3, a cross-classified multi-level model was applied to the velocity data to tease apart possible 

effects of liking and amount of “greenery” in a visual scene on walking speed.  
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Table 4.1: Model fit comparisons for models estimating walking speed from the characteristics 

of the image viewed. 

 

Note. PT = Participant, IM = Image, T = Trial (n = 1975). 

 

The results of the multi-level analysis revealed that the best fitting model was Model 1; thus, 

both greenery and liking were non-significant predictors ( p > 0.05) of walking speed. 

 

 

4.1.4. Discussion 

Contrary to expectations derived from earlier findings of the positive impact of blue-green 

infrastructure on restoration (Pretty et al., 2017), the results of this experiment suggest that the 

amount of “greenery”/chlorophyll in a visual scene on its own does not affect gait kinematics. 

The hypothesis that walking speed is faster whilst walking towards images with higher amount 

of ‘greenery’/ chlorophyll as compared to images with lower amount of “greenery” / 

chlorophyll had not been confirmed and thus had to be rejected. Thus, visual scenes with a 

lower amount of “greenery” do not seem to require higher cognitive processing load than visual 

scenes with higher amounts of “greenery”.  

These results cannot be explained by participant’s lower sensitivity to cognitive load changes 

as compared to participants in Experiment 1 (see Chapter 3) as the effect size of the impact of 

cognitive load on gait in Trial Making Task was similar in Experiments 1 and 3 (see Annex B). 

Whilst interindividual gait variability was slightly higher for participants in Experiment 3 as 

compared to participants in Experiment 1, the effect of slowing walking speed with increased 

cognitive load for verbal conditions was comparable. Thus, we can exclude the possibility that 

Model   DIC Fixed Random 

1   1752.810  PT, IM, T 

2   1755.569 Greenery, Liking PT, IM, T 

2a  1752.810 Model 1 PT, IM, T 
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our procedure was not sensitive enough to pick up on cognitive load changes, which points 

towards the interpretation that the different stimulus categories in this experiment might have 

not been varied enough even though they captured the entire range of greenery distributions 

observed in the UK. There were no technical issues that could have impacted the results.  

Moreover, as liking scores differed significantly between the different stimulus categories, we 

can also exclude the possibility that participants could not distinguish between different image 

types. This makes it even more notable that the analysis of gait kinematics data did not reveal 

either that liking scores were predictive of gait changes. The reason for a lack of both liking 

scores and greenery predicting gait changes is not entirely clear; yet, it is tempting to speculate: 

the images with lower amount of ‘greenery’/chlorophyll had higher liking scores as compared 

to images with higher amount of ‘greenery’/ chlorophyll; from anecdotal evidence such as 

comments by the participants, the abstract nature of the images made them appear rather as 

“pieces of art”. It could thus well be that aesthetics masked any low-level colour distribution 

effects, with greenery and likeability effects cancelling each other out.  

If this were the case, a masking effect related to likeability could only be excluded by 

controlling images for liking scores which in the case of abstract images as used here with 

regard to greenery is impossible.  

However, with regard to nature and urban real images, it is well-established that overall nature 

images are preferred over urban images (e.g. Han, 2010; Hartig & Staats, 2006; Ibarra et al., 

2017; Purcell et al., 2001; Van Hedger et al., 2019), even though likeability varies substantially 

also within both nature and urban categories. Therefore, balancing out likeability between 

nature and urban images should be achievable in image sets. The next chapter (Chapter 5) 

therefore presents two experiments to investigate whether environment type (nature vs. urban) 

still differentially affects gait kinematics when participants are presented with images of nature 

and urban scenes that have been matched for their liking scores beforehand by an independent 

participant sample.  

From the results presented in this Chapter, it is tempting to conclude that the positive effect of 

nature on cognitive functioning is not associated with the distribution of colour per se in a 

scene. However, even if the images created by Professor Lewis D. Griffin reproduced colour 

distributions of real-world scenes, the images themselves were abstract. In other words, I 

cannot exclude that if participants had been presented with real scenes controlled for the 

distribution of chlorophyll, thus preserving the meaning of the scene, the results would have 
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been different. Indeed, people tend to make clear semantic associations between objects and 

colours (Palmer & Schloss, 2009). 

The null result in this chapter further raises the question of whether the different rating tasks 

used in Chapters 3 and 4 differentially affected gait results: in Experiment 1 (see Chapter 3) 

participants were asked to rate nature and urban images for their visual discomfort whilst in 

this Experiment participants were rating images for their aesthetic preferences. Therefore, the 

goal of Experiment 4 in the following Chapter is not only to investigate whether cognitive load 

differences are present when nature and urban environments are matched for liking scores, but 

also whether the effect occurs irrespectively of whether the task consists of memorising images 

or of rating images for visual discomfort.  

In conclusion, the hypothesis of this Chapter that the amount of “greenery” in a visual scene 

(at least when presented in isolation within an abstract visual context) affects gait kinematics 

and thus cognitive load has not been confirmed. Moreover, liking was also not predictive of 

gait changes when dealing with abstract images, even though liking scores clearly varied with 

the amount of greenery present in the visual scenes.  
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Chapter 5: Do differences in cognitive 

load between nature and urban images 

still present when these two image types 

are controlled for likeability? 

5.1. Introduction 

In Chapter 3, converging evidence from two different experiments was presented that nature 

and urban environments impact cognitive processing load differently, and that this effect can 

be observed on a trial-by-trial basis by measuring gait kinematics and reaction times 

(Experiments 1 and 2). One of the limitations of studies on the nature benefit/urban cost, 

including our earlier study (Experiments 1 and 2) in Chapter 3, is that they tend not to control 

a key factor that could possibly impact environmentally-induced cognitive load, namely 

aesthetic preference (see e.g. Berman et al., 2008; Berman et al., 2012). Indeed, nature and 

urban environments have been repeatedly shown to differ with regard to their aesthetic 

properties (e.g. Han, 2010; Hartig & Staats, 2006; Ibarra et al., 2017; Purcell et al., 2001; Van 

Hedger et al., 2019). This is further reflected in most theories on the positive impact of nature 
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on cognitive functioning, explicitly highlighting aesthetics as a key factor to play a role in 

cognitive processing benefits that nature gives us (SRT;(Ulrich, 1983), ART;(Kaplan, 1995), 

PFA;(Joye & De Block, 2011)).  

In addition to such aesthetic differences between nature and urban images, and as discussed in 

Chapter 3 in more detail, experiments 1 and 2 (Chapter 3) revealed that images of urban 

environments were also more uncomfortable to look at than images of nature environments and 

that this visual discomfort was predictive of gait changes. This suggests that visual discomfort 

and, in turn, the physiological response to visual stimuli, might contribute to environmentally-

induced cognitive load. Therefore, I reasoned that if in Experiments 1 and 2 urban images were 

more uncomfortable to look at than nature images (Burtan, Joyce, et al., 2021), they might also 

have been less aesthetically pleasing than nature images. Clearly, I cannot exclude that 

environment type in my earlier study was not similarly confounded with visual discomfort or 

aesthetics.  

The aim of the Chapter here is to investigate whether differences in cognitive processing load 

between nature and urban scenes remain when each urban scene presented is matched for its 

liking score with a nature scene (see Chapter 5.2.1. for a description of the stimulus selection 

process). I tested this prediction with the same two experimental approaches used in Chapter 3 

to investigate whether both measures of load, gait kinematics and reaction times, will be able 

to pick up the differences in cognitive processing load posed by exposure to nature and urban 

scenes. In the first experiment (Experiment 4), changes in gait kinematics were measured 

during exposure to nature and urban scenes that had been matched for their liking scores a 

priori. Again, people were asked to perform a dual-task; but to control for task-related 

confounding factors, this dual-task consisted for half of the participants of walking and 

memorising each image, for the other half of walking and rating each image for its visual 

discomfort. In the second experiment (Experiment 5), reaction times were measured during the 

performance of the shape discrimination task, in which the same nature and urban images 

matched for liking scores were presented as task-irrelevant distractors.  

To control for the effect of low-level image statistics on cognitive load, fractal dimensions were 

calculated again for all images used.  

Experiment 4 was included in a paper that has been published in PLoS One (Burtan, Burn, et 

al., 2021).  
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5.2. Experiment 4: The impact of exposure to nature vs. 

urban images on gait kinematics when these two image 

types are matched for their liking scores 

The main aim of this experiment was to investigate the impact of environment type (urban vs. 

nature) on gait kinematics for an image set in which each nature image was matched with an 

urban image for their liking scores based on data from an independent participant sample rating 

a wide range of urban and nature images for their likeability. If the difference in gait kinematics 

during exposure to urban as compared to nature images observed in our earlier study was due 

to differences in likeability of these image sets rather than environment type per se, then 

differences in gait kinematics should not arise if these two image types were matched a-priori 

for their aesthetics.  

Further goals were to establish whether subjective visual discomfort and/or fractal dimension 

(image statistics) contribute to cognitive load differences and thus differences in gait 

kinematics (or reaction times) between environment types when liking is controlled for. 

Moreover, participants were asked to either memorise images during walking or rate images 

for visual discomfort after each walk to investigate whether the effect is task-related rather than 

image related. 

 

 

5.2.1. Stimulus collection (Pilot studies) 

Before being able to run the actual experiment, a stimulus set had to be created in which each 

nature scene was matched with an urban scene for their liking scores. For this, participants 

were asked in two online studies using the platform Gorilla to rate images of photographic 

environmental scenes for their likeability on 7-point Likert Scale (n = 150 per study). 

Participants: All participants reported normal or corrected-to-normal visual acuity. All 

participants were asked to read an information sheet and to provide consent prior to the 

beginning of the online study. Participants either volunteered by responding to social media 

announcements or were recruited via Prolific and reimbursed for their time. The experiment 
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was approved by the Faculty of Life Sciences’ Ethics Committee at the University of Bristol 

(ref. 2410201876401). Demographics are summarised in Annex C.  

Material and Task: The two online studies were both run on the ‘Gorilla’ Platform with the 

same procedure but different image sets. Images consisted of 200 nature and 200 urban scenes, 

which were equally distributed across the two studies; i.e. each image set consisted of 200 

images of which 100 were nature images and 100 were urban images. Scenes had been selected 

from the “places” category of the scene recognition database (Zhou et al., 2014), in addition to 

containing photographs of landscape and urban spaces taken in Europe by me, and in Europe 

and Australia by Ute Leonards. Images presented environmental scenes where people and 

animals were not visible and varied substantially across landscape types, lighting conditions, 

colours and viewing angles. Image resolution was 1280x800 pixels.  

At the beginning of the study, participants were asked to fill in a form requesting their 

demographics. In the actual task, participants looked at the images, one at a time, presented in 

random order, and rated each image for its likeability on a 7-point Likert Scale: “How much 

do you like the image?” from ‘1 – Not at all’ to ‘7 – Very much’. There was one break during 

each study halfway through, i.e. after 100 trials.  

Results: Liking scores for the different image types for the two studies and the results of 

independent t-tests are summarized in Table 5.1. Images of nature scenes had significantly 

higher liking scores than images of urban scenes in both studies (p < 0.001). 

 

Table 5.1: Results of independent t-tests and group means of liking score per image across 

image type for each of the two studies. (Table taken from Burtan, Burn, et al., 2021. PLoS One, 

16(8), p. 9 (doi:10.1371/journal.pone.0256635)). 

  
Nature  

(Mean ± SD) 

Urban  

(Mean ± SD) 

Comparison 

Liking (7-

point Likert 

Scale) 

Study 1 4.86 ± 0.80   3.59 ± 0.84 t(198)=10.88, p < 0.001 

Study 2 4.75 ± 0.79 3.44 ± 0.92 t(193)=10.76, p < 0.001 

 Total 4.81 ± 0.80 3.50 ± 0.88  
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Matching images of nature and urban scenes for liking scores: To create the image set for the 

main study, I used the outcomes of the two studies to select 50 image pairs of nature and urban 

scenes that had received similar mean liking scores (and, where possible, similarly small 

variance of liking scores) within the same sample; if two images of the same environment type 

had similar liking scores (and variance), other selection criteria such as viewing angle were 

considered in addition. This resulted in a stimulus set of 50 nature-urban image pairs with liking 

scores ranging from 2.82 to 5.61. An independent samples t-test confirmed that for the final 

stimulus set there was indeed no significant difference in mean liking scores between nature 

and urban images (Nature: M = 4.22, ± 0.67 SD, Urban: M = 4.22, ± 0.67 SD, t(98)= 0.001 p 

> 0.05, mean difference = 0.00013); also Figure 5.1. Nature images were entirely free of human 

artefacts such as buildings as well as of animals. Some of the urban images, whilst all 

dominated by buildings, included partially visible blue-green infrastructure. Images were 

without the presence of people. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: New stimulus set of 50 nature (green) and 50 urban (yellow) images matched for 

liking scores.  
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5.2.2. Methods  

Main Experiment 4 

Participants: Sample size calculations took into account the substantial amount of repetitions 

within individual participants for the conditions of interest (environment type) and were based 

on modelling estimates for within-participant repeated measures correlations provided by 

Bakdash & Marusich (2017) to obtain 80% power for a medium effect size (0.3) and within 

participant repeated paired measures of 20 or more, I needed a minimum of 12 participants 

(Bakdash & Marusich, 2017). As the cognitive task differed between participants, I doubled 

the number of participants per cognitive task to account for possible task-specific effects.  

Fifty participants (43 females and 7 males, aged between 18 and 61 years, mean age 21 years 

± 6.6 SD) took part in this study. The first twenty-seven (24 females and 3 males, aged between 

18-61 years, mean age = 22, ± 8.26 SD) participants were asked to walk towards images 

projected onto the back wall of the lab whilst having to memorise each presented image (i.e. 

walking whilst performing a memory task). The other twenty-three participants (19 females 

and 4 males, aged between 18-35 years, mean age = 21, ± 3.86 SD) were asked to walk towards 

the same images and to rate each image for visual discomfort after they had reached the far 

side of the lab. 

All participants reported normal or corrected-to-normal visual acuity as well as no neurological 

conditions that could affect their walking. They also confirmed that they were healthy and fit 

enough to walk without difficulties for an hour. All participants were provided with written 

and verbal information about the study and signed the consent form prior to their experimental 

session. They were also given information about the right to withdraw and possible breaks to 

take during the experimental session whenever they felt needed. Participants were either 

volunteers or took part in the experiment for course credit. The experiment was approved by 

the Faculty of Life Sciences’ Ethics Committee at the University of Bristol (ref. 20111878362). 

Stimuli: The stimulus set contained 50 images of nature and 50 images of urban scenes matched 

for their liking scores (see section on stimulus collection above), in addition to 5 plain grey 

images (Control). The resolution of images was 1280x800 pixels. Fractal dimensions were 

calculated for each image based on the Minkowski–Bouligand fractal dimension box-counting 

technique (see Chapter 2.3.2.). Fractal dimensions in the nature scenes (M = 1.65, ± 0.13 SD) 
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used were found to be significantly higher than those in the urban scenes (M = 1.59, ± 0.14 

SD), t(98) = 3.567, p < 0.01). 

Tasks and Procedure: a detailed description of the procedure is given in Chapter 2 (2.1.1.1.).  

In brief, for each trial, one of the following 105 photographs was displayed in random order: a 

nature scene (50), an urban scene (50), or a plain grey image as a control stimulus (5). 

Participants in the “walking whilst performing a memory task” condition were required to 

memorise each image during their walk and before returning to the starting position for the 

next walking trial (note that task compliance for this condition was checked in a separate 

behavioural experiment after the actual walking experiment had been finished – see below for 

further information). Participants in the “walking followed by performing a visual discomfort 

rating task” were required to verbally rate each image for its visual discomfort on a 7-point 

Likert Scale (from 1 = extremely comfortable to view to 7 = extremely uncomfortable to view; 

4 = neither comfortable nor uncomfortable) after each walk before returning to the starting 

position. Their responses were noted by the experimenter. The walking part of the study took 

approximately 60 minutes to complete with breaks where needed. After participants had 

performed their 105 walks, they were debriefed, signed the final consent form and were 

thanked for participation.  

After walking and before debriefing, participants in the “walking whilst performing a memory 

task” condition were tested to confirm whether they had indeed performed their task correctly 

(i.e. memorised the images seen). For this, participants were again presented with the same 

image set of nature and urban images, but this time randomly intermixed with 100 new images 

(50 nature, 50 urban). For each image, they had to decide as quickly and as accurately as 

possible whether they had seen this image before during the walking part of the study. Only 

participants who performed on this task with an overall accuracy above chance (62% correct 

or more) were included in data analysis. This part of the study took approximately 15 minutes 

to complete.  

Exclusion: Five participants were excluded from analysis due to technical issues with the 

motion capture system during testing (e.g. missing sensor data, below 80% of data; see methods 

in Chapter 2 for more detail). One further participant was excluded on the basis of their memory 

performance in the memory compliance check. This left 22 (2 male, 20 female) participants’ 

datasets for analysis for the “walking whilst performing a memory task” condition, aged 18 – 

61 years (M = 22, ± 9.12 SD), and 22 (4 male, 18 female) participants’ datasets for analysis for 



91 

 

the “walking followed by performing a visual discomfort rating task” condition, aged 18-35 

(M = 21, ± 3.85 SD).  

 

 

5.2.3. Results and Discussion 

Behavioural outcomes (Memory task): A non-parametric Wilcoxon signed-rank test of 

performance values for correctly memorised images revealed that participants remembered 

significantly more urban (M = 81%) than nature images (M = 70%); Z = -3.083, p < 0.05, 

indicating that features of urban images capture attention more easily than features of nature 

images. It should be kept in mind that the increased difficulty in memorising nature images 

might be related to their increased fractal content (self-repeating patterns) as compared to urban 

images (Ho et al., 2019) However, there was no significant difference in median reaction times 

for the two image types as confirmed by a non-parametric Wilcoxon signed-rank test rank test; 

Z = -0.503, p > 0.05. 

Visual Discomfort Rating Task: A Paired Samples t-test revealed that there was no significant 

difference in subjective visual discomfort ratings between nature scenes (M = 2.95, ± 0.80 SD) 

and urban scenes (M = 2.76, ± 0.88 SD), t(21) = 1.707, p > 0.05). 

Gait kinematics: Repeated measures MANOVAs were conducted on three dependent gait 

measures, combining the gait data for participants of the two cognitive tasks: mean velocity, 

mean step length and mean stride time with environment image type as a within-subject factor 

(Nature/Urban/Control) and cognitive task type as a between-subject factor (Memory 

Task/Visual Discomfort Rating Task); see also Figure 5.2. for group average velocity, step 

length and stride time per image type.  

Velocity: There was a statistically significant main effect of environment on velocity 

determined by a MANOVA with Greenhouse-Geisser correction, F(1.161, 48.776) = 81.947, 

p < 0.001, partial η2 = 0.661 (see Figure 5.2.). Post-hoc pairwise comparisons using Bonferroni 

correction revealed that the control condition had a significantly faster walking speed than both 

nature (p < 0.001) and urban conditions (p < 0.001). Crucially, there was no significant 

difference between gait velocities obtained for walking during nature and urban conditions (p 

> 0.05). 
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Step Length: There was a statistically significant main effect of environment on step length 

determined by a MANOVA with Greenhouse-Geisser correction, F(1.173, 49.266) = 70.862, 

p < 0.001, partial η2 = 0.628 (see Figure 5.2.). Post-hoc pairwise comparisons using Bonferroni 

correction revealed that the control condition had a significantly longer step length than both 

nature (p < 0.001) and urban conditions (p < 0.001), but nature and urban conditions did not 

differ from each other (p > 0.05). 

Stride Time: There was a statistically significant effect of environment on stride time 

determined by a MANOVA with Greenhouse-Geisser correction F(1.336, 47.711) = 65.835, p 

< 0.001, partial η2 = 0.611 (see Figure 5.2.). As for the two other gait measures, post-hoc 

pairwise comparisons using Bonferroni correction revealed that the control condition had a 

significantly shorter mean stride time than both nature (p < 0.001) and urban conditions (p < 

0.001) which again did not significantly differ from each other (p > 0.05). 

Cognitive task (memory task vs. visual discomfort task) did not differentially affect any of the 

gait measures, nor were there any significant interactions between task and environment.  

 

 

 

Figure 5.2: Group (n = 44) averages of a) individual mean velocity (m/s), b) individual mean 

step length (in metres) and c) individual mean stride time (in seconds) across environment type 

(nature, urban, control). Error bars reflect ± 1 SEM. (Figure taken from Burtan, Burn, et al., 

2021. PLoS One, 16(8), p. 8 (doi:10.1371/journal.pone.0256635)). 

 

Multi-Level Modelling: Multi-level modelling was applied to cross-classified data from both 

cognitive tasks (n = 44) to determine the impact of environment, pre-defined image liking 

scores, image fractal dimensions, and cognitive task on velocity (see Chapter 2.2. for the 

detailed description of the method). Control images were excluded from this analysis due to 

missing data for pre-defined liking scores and for fractal content.  
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Table 5.2: Model fit comparisons for models with standardised velocity as a dependent 

variable. (Table taken from Burtan, Burn, et al., 2021. PLoS One, 16(8), p. 9 

(doi:10.1371/journal.pone.0256635)). 

Random effects: PT = Participant, IM = Image, T = Trial (n = 4362). Fixed effects: ENV = 

Environment, LIK = Pre-defined Liking Score, FR = Fractal Dimension, TK = Task. a Please 

note that adding interactions to model 3 revealed that all predictors, including LIK, were 

insignificant; thus, model 3a equals model 1.  

 

The results of the analysis revealed that model 2a was the best fitting model, with predefined 

liking scores being a significant predictor (  = 4.657, p < 0.05) for walking speed: people 

walked faster towards images with higher liking scores. Parameter estimates for the model are 

displayed in Table 5.3. 

 

 

 

 

 

 

 

Model DIC Fixed Random 

1 4374.070  PT, IM, T 

2 4374.418 ENV, LIK, TK, FR PT, IM, T 

2a 4372.084 LIK PT, IM, T 

3 4376.349 LIK, LIK*ENV, LIK*TK, LIK*FR PT, IM, T 

3a 4374.070 Model 1a PT, IM, T 
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Table 5.3: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with best fit (Model 2a; Table 5.2.). (Table taken from Burtan, Burn, et al., 2021. PLoS 

One, 16(8), p. 10 (doi:10.1371/journal.pone.0256635)). 

Note. Estimates reflect the size of the effect on standardised velocity. Burn-in = 500, Chain 

Length = 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. *p < 0.05. 

 

 

Visual discomfort. To investigate the potential impact of subjective visual discomfort on 

walking towards nature and urban images matched for population level pre-determined liking 

scores, and to be able to compare these data to those of Experiment 1, I performed a second 

modelling analysis (see Chapter 2.2. for a detailed description of method). For this, I focused 

on the data of the “walking followed by performing a visual discomfort task” only, applying 

multilevel modelling to cross-classified data of this task (n = 22) on velocity. Again, control 

images were excluded from this analysis due to missing data for pre-defined liking scores, 

visual discomfort ratings, and fractal content.  

 

     95% CI   

Parameter Estimate Std. Error Lower Upper  

Fixed      

Intercept 0.023 0.128 -0.285 0.251 0.031 

Liking 0.016 0.007 0.001 0.030 4.657* 

Random      

Participant 0.904 0.205 0.587 1.375  

Image 0.002 0.001 0.001 0.003  

Trial 0.157 0.003 0.150 0.164  

Deviance Information Criterion (DIC)     4372.084 
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Table 5.4: Model fit comparisons for models with standardised velocity as a dependent 

variable. (Table taken from Burtan, Burn, et al., 2021. PLoS One, 16(8), p. 10 

(doi:10.1371/journal.pone.0256635)). 

Model DIC Fixed Random 

1 2301.433  PT, IM, T 

2 2282.580 ENV, LIK, VD, FR PT, IM, T 

2a 2279.459 VD PT, IM, T 

3 2281.759 VD, VD*ENV, VD*LIK, VD*FR PT, IM, T 

3a 2279.459 Model 2a a  PT, IM, T 

Random effects: PT = Participant, IM = Image, T = Trial (n = 2183). Fixed effects: ENV = 

Environment, LIK = Predefined Liking score, VD = Subjective Visual Discomfort, FR = 

Fractal Dimension. a Please note that adding interactions to model 3 revealed that all added 

predictors were insignificant (VD*ENV, VD*LIK, VD*FR) while VD was significant; thus, 

model 3a equals model 2a. 

 

The results of this analysis revealed that model 2a was the best fitting model. Visual discomfort 

was a significant predictor  = 29.240, p < 0.001, with people walking more slowly towards 

images they perceived as more uncomfortable to look at. Parameter estimates for the model are 

displayed in Table 5.5. 
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Table 5.5: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with best fit (Model 2a; Table 5.4.). (Table taken from Burtan, Burn, et al., 2021. PLoS 

One, 16(8), p. 10 (doi:10.1371/journal.pone.0256635)). 

Note. Estimates reflect the size of the effect on standardised velocity. Burn-in = 500, Chain 

Length = 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. ***p < 0.001. 

 

Note that under these conditions, pre-defined liking scores were not predictive of velocity 

changes whilst subjective visual discomfort ratings were. This raises the question of how 

subjective visual discomfort and group-matched liking scores are related. Results of Pearson's 

correlation analysis revealed that there was a negative correlation between subjective visual 

discomfort ratings and pre-defined group liking scores, r2 = - 0.497, p < 0.001, with liking 

scores explaining 5% of the variability in visual discomfort.  

 

     95% CI   

Parameter Estimate Std. Error Lower Upper  

Fixed      

Intercept -0.006 0.204 -0.425 0.378 0.001 

Discomfort -0.054 0.011 -0.074 -0.033 29.240*** 

Random      

Participant 0.961 0.329 0.516 1.795  

Image 0.002 0.001 0.000 0.004  

Trial 0.163 0.005 0.154 0.173  

Deviance Information Criterion (DIC)     2279.459 



97 

 

5.3. Experiment 5: The impact of exposure to nature vs. 

urban images environment on decision making when these 

two image types are matched for their liking scores 

 

To see whether nature and urban environments differentially captured attention despite being 

matched for liking scores, a further experiment was run with the shape discrimination task in 

the presence of the different images as task-irrelevant distractors. To separate the impact of 

low-level (image statistics) and higher-level perceptual processes (cognitive associations) on 

reaction times, images were again presented in two different orientations: upright and inverted.  

 

5.3.1. Methods  

Participants: On a basis of effect sample sizes observed in Experiment 2 (Chapter 3), forty-six 

participants (34 females, 12 males, mean age 21 years, ± 2.6 SD; 18-31 years) participated in 

the study in exchange for course credit. All participants signed a written consent form prior to 

the study and confirmed through self-report that they had normal or corrected-to-normal visual 

acuity and normal colour vision. The experimental procedure had been approved by the Faculty 

of Life Sciences’ Ethics Committee at the University of Bristol (ref. 28071871142).  

Participant were asked to perform a shape discrimination task (see Chapter 2.1.2. for a detailed 

procedure description) in the presence of 50 images of nature and 50 urban environments, 

matched in pairs for liking scores a priori. Note that the stimulus set was identical to the one 

for Experiment 4. Each image was displayed in two orientations: upright and inverted - to 

control for the impact of high-level and low-level cognitive processes. Therefore, there were 

four conditions: nature upright, nature inverted, urban upright, urban inverted; all images were 

presented in random order. In total, there were thus 200 trials and one break after 100 trials.  

Exclusion Criteria: The first trial for each participant was removed as a practice trial. 

Participants with a task accuracy below 80% were excluded from analysis, leaving 43 datasets 

for analysis (30 females, 13 males, mean age 21 years, ± 2.6 SD, 18 – 31 years). Median 

reaction times per condition were based on 5% trimmed data calculations. 
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5.3.2. Results and Discussion 

Figure 5.3. shows participants’ mean reaction times for the shape discrimination task in the 

presence of nature or urban images for the two different image orientations, indicating that 

despite matching images for likeability, participants seemed to respond faster in the presence 

of nature images than urban images. This was confirmed in a 2 (environment; nature vs. urban) 

x 2 (image orientation; upright vs. inverted) repeated measures ANOVA with median reaction 

times as dependent variable. There was a significant main effect of environment type, (F(1,42) 

= 21.212, p < 0.05, partial η2 = 0.336): participants were slower when performing the shape 

discrimination task whilst being presented with urban scenes (M = 0.75 s, ± 0.11 SD) as 

compared to nature scenes (M = 0.73 s, ± 0.11 SD). There was no significant main effect of 

image orientation on median reaction times (F(1,42) = 1.028, p > 0.05, partial η2 = 0.024). 

However, there was a significant interaction between environment type and orientation (F(1, 

42) = 0.001, p > 0.05, partial η2 = 0.013)(see Figure 5.3.).  

 

 

Figure 5.3: Group average of median reaction times (s) for four image types: nature upright, 

urban upright (dotted line), nature inverted, and urban inverted (solid line). Error bars reflect 

±1SEM.  
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Multi-level modelling: a cross-classified multi-level model was applied to the data to tease 

apart possible effects of environment type, image orientation, fractal content and liking as 

predictors of reaction times (see Chapter 2.2. for a detailed description of the method).  

 

Table 5.6: Model fit comparisons for models estimating reaction time from the characteristics 

of the image viewed. 

 

Note. PT = Participant, IM = Image, T = Trial (n = 7866), ENV = Environment, ORI = 

Orientation, FD= Fractal dimension, LIK = Liking Score. Burn-in = 500, Chain Length = 

10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. *p < 0.05. a Please note that 

adding interactions to model 3 revealed that all added predictors were insignificant (ENV*ORI, 

ENV*FD, ENV*LIK) while ENV was significant; thus, model 3a equals model 2a. 

 

As shown in Table 5.6. the best fitting model was model 2a, with environment (urban) as a 

significant predictor model. Parameter estimates for this model are displayed in Table 5.7. 

Environment type was predictive of reaction times (  = 30.989, p < 0.001) whilst image 

orientation, liking score and fractal dimension did not improve the model fit. 

 

 

 

 

Model    DIC Fixed Random 

1    19581.772  PT, IM,T 

2    19558.753 ENV, ORI, FD, LIK PT, IM,T 

2a    19554.836 ENV PT, IM,T 

3    19558.459 ENV, ENV*ORI, ENV*FD, ENV*LIK PT, IM,T 

3a    19554.836 Model 2a a  PT, IM,T 
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Table 5.7: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with the best fit (Model 2a ; Table 5.6.) predicting reaction time from the characteristics 

of the image viewed. 

Note. Estimates reflect the size of the effect on standardised reaction times. Burn-in = 500, 

Chain Length = 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. ***p < 0.001. 

 

 

5.4. General Discussion 

The results of Experiment 4 showed that, as predicted, environment type did not affect gait 

kinematics when participants were presented with images of nature and urban scenes matched 

for liking scores beforehand by an independent sample. It thus seems that the differences in 

gait kinematics observed for exposure to urban as opposed to nature images in earlier studies 

(Experiment 1) does not arise when images are controlled for their likeability; i.e. by presenting 

pairs of images in which the respective nature and urban images had similar aesthetic rating 

score. More importantly, Experiment 4 revealed that not only were there no differences in gait 

kinematics between the two environment types, but population-defined liking scores explained 

some of the gait variability found: pre-defined liking scores were predictive of velocity, with 

     95% CI   

Parameter Estimate Std. Error Lower Upper  

Fixed      

Intercept -0.053 0.083 -0.214 0.107 0.402 

Environment (Urban) 0.110 0.020 0.071 0.149 30.989*** 

Random      

Participant 0.319 0.074 0.205 0.494  

Image 0.002 0.001 0.000 0.004  

Trial 0.698 0.011 0.676 0.720  

Deviance Information Criterion (DIC)     19554.836 
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increased liking scores leading to increased velocity regardless of environment type. It is thus 

tempting to suggest that the lack of processing differences between the two image types is due 

to having accounted for the impact of aesthetic preference on cognitive processing (e.g. 

Bratman et al., 2012), in line with ideas that the more one likes the environment one is in, the 

less cognitively demanding it is (ART; R. Kaplan, 2001; Kaplan & Yang, 1990; Kaplan, 1995). 

At first glance, the results of Experiment 4, thus seem to support the idea that liking is a key 

factor underlying environmental processing differences, with the results of the multi-level 

analysis revealing that pre-defined liking scores were a significant predictor for walking speed: 

people walked faster towards images with higher liking scores. However, the results of 

Experiment 5 revealed that liking is not the only factor contributing to cognitive processing 

differences between nature and urban images: reaction time differences were still found in a 

shape discrimination task in which nature and urban images served as task-irrelevant 

distractors, even after matching image pairs for liking scores. Whilst multi-level analysis 

revealed that environment type was predictive of reaction times, orientation of images, pre-

defined liking scores, and image statistics (fractal dimensions) did not improve the model fit. 

Thus, differences in attentional capture between urban and nature images remained even after 

controlling for likeability. It thus seems that gait and reaction times as measures of cognitive 

load differ in terms of their sensitivity with regards to aesthetics.  

Some of the differences between the two studies with regard to a possible impact of likeability 

could be related to differences in image exposure time. Indeed, Graf and Landwehr (2017) 

proposed that liking consists of two processes – a fast initial response based on pleasure and 

reward, and a slower response based on interest. In the first study (Experiment 4), participants 

were exposed to each image during the walk for 10-15 seconds, and they were asked to 

memorise the image or rate it for its visual discomfort. Any liking rating should thus have been 

based on interest and thus controlled cognitive processing (Graf & Landwehr, 2017), 

eliminating any nature benefit. Participants taking part in the shape discrimination in 

Experiment 5, in contrast, were exposed to nature and urban images on average less than 1 

second, and the differences in cognitive processing load between nature and urban 

environments controlled for aesthetics might thus have occurred due to pleasure-based liking 

associated with automatic processing.  

Further, the results of Experiment 4 support the claim that stimulus input rather than task per 

se was responsible for any changes in gait kinematics as the two types of tasks helped to 
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exclude the caveat raised in Experiment 1 that rather than environmental differences, it was the 

interaction between environment type and the demands posed by the cognitive task that masked 

differences induced by stimulus processing itself. Indeed, whilst visual discomfort ratings had 

been shown to be more difficult (i.e. to take longer) for urban images (see Ho et al., 2019), it 

was more difficult to remember nature images than urban images. In other words, any cognitive 

load induced by the two cognitive tasks should have affected interactions with environment 

type in opposite directions. However, there was no task effect nor any task environment 

interaction that would support such an interpretation of these data.  

Analysis of the data in Experiment 4 for the visual discomfort rating task revealed that 

subjective visual discomfort ratings, rather than pre-defined liking scores or fractal dimensions, 

were predictive of velocity changes. In addition, Experiment 5 revealed that liking scores were 

not predictive of reaction times either. This suggests that subjective visual discomfort is a 

stronger predictor of gait changes than aesthetic preference or liking, as any impact of pre-

defined liking scores was absent when subjective visual discomfort was added as a factor to 

the multilevel model. These findings indicate that subjective visual discomfort rather than lack 

of aesthetic value might be at the core of gait slowing.  

Note, however, that I cannot decide on the basis of these findings alone whether visual 

discomfort has a direct impact on gait speed. If so, results could be interpreted as supporting 

Ulrich’s Stress Recovery Theory (Ulrich, 1984; Ulrich et al., 1991): SRT suggests that 

spending time in nature (with its higher aesthetic preferences) evokes positive affective 

responses, and thus fosters faster recovery from physiological stress (Ulrich, 1984; Ulrich et 

al., 1991). Spending more time in urban environments, in contrast, maintains physiological 

stress. Viewing images that are more uncomfortable to look at might therefore lead to 

perceptual distortions and other physiologically unpleasant/aversive symptoms which, in turn, 

make it more difficult and stressful to approach the evoking stimulus.  

Whilst not the primary focus of this study, it should also be noted that there is first evidence 

that visual discomfort and liking scores are not independent of each other but seem to be 

negatively correlated. Before speculating about a possible link between these two variables, it 

is important to point out that any proper examination of the relationship between liking and 

discomfort is limited through design and beyond the scope of this study: visual discomfort 

ratings for individual images were provided by each individual participant whilst liking scores 

were average liking scores for each image across an independent observer sample.  
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Overall, it thus seems to be safe to conclude from the findings in this study that it is crucial to 

avoid aesthetics-related stimulus selection biases when investigating cognitive aspects of the 

different environments. However, as cognitive differences between nature and urban images 

were still present when the same liking-matched images were presented as task-irrelevant 

distractors, this suggests that in addition to such mid-level processes as liking, low-level 

processes and/or semantic cognitive associations also play a role in the “nature effect”. As 

analysis of the data in Experiment 4 revealed that visual discomfort ratings rather than pre-

defined liking scores were predictive of walking speed. Moreover, visual discomfort and liking 

scores were not independent of each other but negatively correlated, requiring the relationship 

between liking and visual discomfort to be further investigated. This includes its impact on 

cognitive load. This will be examined in more detail in Chapter 7. In addition, these data 

suggest that the respective contributions of low-level and higher-level visual associations need 

to be examined further to gain an understanding of the positive effect of certain environments 

over others on cognitive functioning. 
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Chapter 6: The impact of image fractal 

properties on gait kinematics and its 

interaction with visual discomfort 

 

6.1. Introduction 

It has been suggested that differences between nature and urban environments in visual 

demands on cognitive processing load are related to low-level sensory processing (PFA; (Joye 

& De Block, 2011; Joye et al., 2016; Joye & Van den Berg, 2011)). PFA claims that nature 

scenes are processed more quickly than urban scenes as a by-product of the fluent perceptual 

processing of their low-level sensory features; i.e. their basic image statistics such as their 

increased fractal dimensions. Fractals are defined as patterns whose structural complexity is 

repeated multiple times across different spatial scales; the repeating pattern is identical in the 

so-called exact or mathematical fractals, while many natural forms and patterns exhibit 

statistical similarity across different spatial scales (Spehar et al., 2003).  

The aim of the current study was to investigate whether the fractal dimension of an image 

affects cognitive processing demands, using gait kinematics as the measure of demand. As 
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already briefly mentioned in the Introduction, the fractal properties of natural environments are 

related to the scale-invariant statistics revealed in their spatial frequency regularities, in 

particular in their 1/f amplitude spectra with an alpha range of 0.8 – 1.5 and a mean of 1.2 (e.g. 

Tolhurst et al., 1992), corresponding to a range of fractal dimensions (D) between 1.50-1.65. 

Moreover, sensitivity thresholds in the human fovea and parafovea have been found to be 

lowest for 1/f amplitude spectra with alphas between 1.2 - 1.4 (e.g. Hansen & Hess, 2006). If 

such low level statistics were to contribute to the “nature benefit”, then walking towards images 

with fractal properties outside the range typically found in nature scenes should result in a 

decrease in participants’ walking speed, smaller step length and an increase in stride time, in 

line with findings of gait changes for higher cognitive load (e.g. Amboni et al., 2013; Burtan, 

Joyce, et al., 2021; Ho et al., 2019; Patel, Lamar, & Bhatt, 2014). 

The experiment described in this Chapter was included in a manuscript that has been submitted 

for publication (Burtan, Burn, Spehar, & Leonards, 2022)4.  

 

 

6.2. Methods 

Participants: Based on effect sizes observed in earlier study (see Experiment 4, Chapter 5.2.2.), 

forty participants (33 females, 7 males, mean age = 20 ±3.02 SD years, aged between 18-33 

years) took part in this study. They were randomly assigned to one of two groups depending 

on the type of rating task they had to perform: twenty participants to the visual discomfort 

rating group (16 females, 4 males, mean age = 21 years ± 3.95 SD, aged between 18-33) and 

the other twenty participants (17 females, 3 males, mean age = 19 years ± 3.95 SD, aged 

between 18-24 years) to the likeability rating group. Prior to their experimental session, 

participants were provided with both verbal and written information about the study, including 

information about breaks and their right to withdraw from the study at any time. Participants 

reported normal or corrected-to-normal visual acuity and no neurological conditions that could 

affect their walking. Moreover, they reported good physical health and were aware that they 

would have to walk for about an hour for this experiment. All participants signed a consent 

form, were debriefed at the end of the experiment, and received compensation for their time in 

 
4 Author contributions are described on page 15. 
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form of course credit. The experiment was approved by the Faculty of Life Sciences’ Ethics 

Committee at the University of Bristol (ref. 10101994923). 

Stimuli: The stimulus set contained 105 synthetic images: 96 images were parametrically 

varied in their fractal dimension /D value, and 9 were plain grey images serving as control  

stimuli.  

Synthetic fractal images were created by Professor Branka Spehar from the University of New 

South Wales, Sydney, Australia, by manipulating the image amplitude spectrum (see Spehar, 

Walker, & Taylor, 2016; Viengkham & Spehar, 2018): two-dimensional greyscale fractal 

images (512 x 512 pixels) were generated in MATLAB by randomly selecting a pixel value 

from 0 – 255 for each pixel from a Gaussian distribution. Subsequently, a Fourier transform 

was applied to generate a series of amplitude frequency spectra with four different levels of 

amplitude spectrum slopes of alpha falloff (alpha = 0.8, 1.2, 1.6 and 2.0). An inverse Fourier 

transform applied each amplitude spectrum to the 512 x 512 Gaussian noise image, resulting 

in images possessing specific desired alpha values. Fractal properties of nature environments 

consist of 1/f amplitude spectra with an alpha that falls into the range of 0.8 – 1.5 and has a 

mean of 1.2 (e.g. Tolhurst et al., 1992); therefore, we decided to select four spectrum slopes of 

alpha falloff: one alpha of 1.2 as commonly found in nature, one alpha below and two above 

1.2. 

Four ranges of Fractal dimensions:  

1) High Dimension (HD 1.75-1.90) with amplitude spectrum slopes (alpha) of 0.8;  

2) Intermediate Upper Dimension (IUD 1.50-1.65) with amplitude spectrum slopes 

(alpha) of 1.2;  

3) Intermediate Lower Dimension (ILD 1.25-1.40) with amplitude spectrum slopes 

(alpha) of 1.6; 

4) Low Dimension (LD 1.0-1.15) with amplitude spectrum slopes (alpha) of 2.  

To increase the variability in visual appearance without changing fractal-like scaling and 

geometric properties, each fractal dimension was presented in three different image types: 

Greyscale, Thresholded, and Edges (see Figure 6.1.). 

The Thresholded image variants were created by bisecting the Greyscale images at the mean 

luminance value and converting all pixels below and above the mean luminance to black and 
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white respectively. Finally, Thresholded images were used to create the Edges images. The 

edge extraction procedure was applied to create lines on a dark background.  

Note that Greyscale images contain two-dimensional fractals (i.e. fractal variations are related 

to surface-texture appearances) whilst their Thresholded (black and white) and Edges 

counterparts contain one-dimensional fractals (i.e. fractal properties are determined by 

variations in fractal contours).  

Therefore, the 96 fractal images were categorised into twelve image conditions, with 8 images 

per condition:  

- HD: Edges (8), HD: Greyscale (8), HD: Thresholded (8);  

- IUD: Edges (8), IUD: Greyscale (8), IUD: Thresholded (8);  

- ILD: Edges (8), ILD: Greyscale (8), ILD: Thresholded (8);  

- LD: Edges (8), LD: Greyscale (8), LD: Thresholded (8).  

Image resolution of fractal images was 800x800 pixels. 
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Figure 6.1: Example of selected abstract images which were parametrically varied in their 

fractal dimension/ D value; and from the right to left: High Dimension (HD) with amplitude 

spectrum slopes (alpha) of 0.8 and fractal dimensions between 1.75-1.90, Intermediate Upper 

Dimension (IUD) with amplitude spectrum slopes (alpha) of 1.2 and fractal dimensions 

between 1.50-1.65, Intermediate Lower Dimension (ILD) with amplitude spectrum slopes 

(alpha) of 1.6 and fractal dimensions between 1.25-1.40, and Low Dimension (LD) with 

amplitude spectrum slopes (alpha) of 2.0 and fractal dimensions between 1.0-1.15. Image types 

were Edges, Greyscale and Thresholded (from top to bottom). 

 

Note that the stimulus set is quite diverse in both luminance and contrast domain. For each of 

the input amplitude spectrum slopes of the images, therefore the respective root mean square 

(RMS) contrast (SD of pixel intensities), mean luminance (cd/m2), measured fractal dimension 

(D) and amplitude spectrum slope values (α) of the resulting images, as provided by Professor 

Spehar (Spehar et al., 2016; Viengkham & Spehar, 2018), are detailed in Table 6.1.  
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Table 6.1: Measured image properties (with courtesy of Professor Branka Spehar, University 

of New South Wales, Sydney, Australia). 

  

RMS Contrast 

 

Luminance  

 

FD 

 

 

ASS 

 

M SD M SD M SD M SD 

Edges 

 HD 118.9 0.66 81.51 1.69 2.06 0.01 -0.41 0.02 

 IUD 81.24 4.93 29.42 3.98 1.73 0.04 -0.63 0.03 

 ILD 36.34 5.68 5.42 1.66 1.33 0.06 -0.6 0.04 

 LD 18.12 2.35 1.31 0.35 1.07 0.03 -0.52 0.02 

Greyscale 

 HD 38.20 0.00 127.50 0.00 1.94 0.01 -0.79 0.01 

 IUD 38.20 0.00 127.50 0.01 1.62 0.04 -1.17 0.03 

 ILD 38.20 0.01 127.50 0.00 1.22 0.06 -1.6 0.08 

 LD 38.20 0.00 127.50 0.00 0.93 0.03 -2.04 0.16 

Thresholded 

 HD 127.50 0 127.57 0.25 1.94 0.01 -0.69 0.01 

 IUD 127.03 0.07 128.78 4.76 1.62 0.04 -1.03 0.04 

 ILD 127.40 0.34 130.89 11.09 1.22 0.06 -1.31 0.13 

 LD 126.70 0.66 131.15 14.02 0.93 0.03 -1.49 0.10 

Note. SD was calculated of all pixels, RMS Contrast = Root mean square contrast (SD of the 

pixel intensities), FD = Fractal Dimension (D), ASS = Amplitude Spectrum Slope (α), 

Luminance (cd/m2), HD = High D, IUL = Intermediate Upper D, ILD = Intermediate Lower 

D, LD = Low D. 

 

Procedure: Prior to the actual experiment, all participants were provided with a written 

explanation of the study, and they were informed about the right to withdrawn. Following this, 

3D motion capture markers were attached (see the description of the procedure in Chapter 

2.1.1.), before participants were asked to walk down the laboratory whilst performing a 

secondary task. 
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The participants’ task was to walk repeatedly down the laboratory (15m) in their naturally 

preferred walking speed and in the straightest possible way towards the images projected onto 

the back wall, one image per walk. During each trial, one of the 105 images described above 

was projected in a random order. The image display size was 2m wide x 2m high, 

corresponding to 7.6° x 7.6° of visual angle at the start line and 38° x 38° of visual angle at the 

end line of the 3D motion capture space. 

After each walk and before returning back to the starting position for the next experimental 

trial, half of the participants were asked to rate verbally the image just seen for visual 

discomfort (How uncomfortable is this image to view?) on a 7-point Likert Scale from 1 = 

‘extremely comfortable to view’ to 7 = ‘extremely uncomfortable to view’ (visual discomfort 

rating group); the other half of the participants rated images verbally for likeability (How much 

do you like the image?) on a 7-point Likert Scale from 1 = ‘not at all’ to 7 = ‘very much’ 

(likeability rating group). Participants’ responses were recorded by the experimenter. 

There were two breaks during the session (after trials 35 and 70), and participants had been 

made aware that they could ask for additional breaks if required. The task took approximately 

60 minutes to complete. After completing the study, participants were debriefed. 

Exclusion criteria: One participant’s data were excluded from the analysis due to a loss of 

sensor data during testing. This left 19 (2 male, 17 female) participants’ datasets for analysis 

for the likeability group, aged 18 – 24 years (M = 19, SD = 1.53). Across the two task 

conditions, there were thus a total of 39 participants’ datasets included in the analysis (7 male, 

32 female), aged between 18 - 33 years (M = 19, SD = 3.06). 
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6.3. Results 

Fractal Dimension and Gait Parameters  

 

Figure 6.2: Group averages (n=39) of a) individual mean velocity (m/s), b) individual mean 

step length (in meters) and c) individual mean stride time (in seconds) across fractal 

dimensions: HD (High D: 1.75-1.90), IUD (Intermediate Upper D: 1.50-1.65), ILD 

(Intermediate Lower D: 1.25-1.40), and LD (Low D: 1.0-1.15) for the three image types (Edges 

– green circles; Greyscale – red squares, Thresholded – blue rhombi). Error bars reflect ± 1 

SEM. Group averages for the respective control conditions are shown for comparison as black 

triangles. 

Repeated measures MANOVAs, 2 (cognitive rating task) x 4 (fractal dimension) x 3 (image 

type), were conducted on the following gait measures: mean velocity, mean step length, and 

mean stride time. Note that this analysis did not include the control condition (see Figure 6.2. 

for group averages of three gait measures: velocity, step length and stride time across four 

fractal dimensions: HD, IUD, ILD and LD for three image types: Edges, Greyscale, 

Thresholded). 

Velocity: There was a statistically significant main effect of fractal dimension on velocity 

determined by MANOVA with Greenhouse-Geisser correction, F(2.374, 1.483) = 8.012, p < 

0.001, partial η2 = 0.178 (see Figure 6.2. left panel). Post-hoc pairwise comparisons using 

Bonferroni corrections revealed that the IUD condition had a significantly faster walking speed 

than both ILD (p < 0.05) and LD conditions (p < 0.001). There was no significant difference 

between HD and IUD conditions, nor between HD and ILD or LD conditions (p > 0.05).  

Step Length: There was a statistically significant main effect of fractal dimension on step 

length, F (3, 111) = 7.813, p < 0.001, partial η2 = 0.174, p < 0.05 (see Figure 6.2. middle panel). 

Post-hoc pairwise comparisons using Bonferroni correction revealed that the IUD condition 

had a significantly longer step length (p < 0.05) than any of the other conditions.  
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Stride Time: As for velocity and step length, there was also a statistically significant main 

effect of fractal dimension on stride time determined by MANOVA with Greenhouse-Geisser 

correction, F(2.274, 57.211), p < 0.001, partial η2 = 0.121 (see Figure 6.2. right panel). Post-

hoc pairwise comparisons using Bonferroni correction revealed that the IUD condition led to 

significantly shorter stride times than the LD condition (p < 0.05); but there were no significant 

differences between any other comparisons (p > 0.05). 

 

Image Type and Gait Parameters 

There was a statistically significant main effect of image type on velocity determined by 

MANOVA with Greenhouse-Geisser correction, F(1.483, 54.861) = 8.500, p < 0.05, partial η2 

= 0.187. Post-hoc pairwise comparisons using Bonferroni correction revealed that participants 

walked significantly slower when presented with Edges images than with either Greyscale (p 

< 0.05) or Thresholded (p < 0.05) images. 

Further, there was a statistically significant main effect of image type on step length, F(2, 74) 

= 8.892, p < 0.05, partial η2 = 0.194. Post-hoc pairwise comparisons using Bonferroni 

correction revealed that participants walked with significantly shorter steps towards Edges 

images as compared to both Greyscale (p < 0.05) or Thresholded (p < 0.05) images. 

There was a statistically significant main effect of image on stride time determined by 

MANOVA with Greenhouse-Geisser correction, F(1.546, 57.211) = 5.511, p < 0.05, partial η2 

= 0.130. Post-hoc pairwise comparisons using Bonferroni correction revealed that participants 

had significantly longer stride times during exposure to Edges images as compared to exposure 

to both Greyscale (p < 0.05) and Thresholded images (p < 0.05). 

 

Cognitive Task and Gait Parameters 

Cognitive task (visual discomfort rating task vs. liking rating task) did not differentially affect 

any of the gait measures, nor were there any significant interactions between task and fractal 

dimensions, task and image type, or fractal dimensions and image type for any of the gait 

measures.  
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Fractal Dimensions and Ratings 

 

 

Figure 6.3: Group averages of a) visual discomfort (n=20; left panel) and b) liking (n=19; right 

panel) across fractal dimensions: HD (High D: 1.75-1.90), IUD (Intermediate Upper D: 1.50-

1.65), ILD (Intermediate Lower D: 1.25-1.40), and LD (Low D: 1.0-1.15)] for three image 

types (Edges – green circles, Greyscale – red squares, Thresholded – blue rhombi). Error bars 

reflect ± 1 SEM. 

Visual Discomfort: As can be seen in Figure 6.3 (left panel), visual discomfort decreased with 

a decrease in fractal dimensions and was particularly high for the HD and IUD images of the 

Edges type. This is reflected in the outcomes of a repeated measures ANOVA with 

Greenhouse-Geisser correction on visual discomfort ratings (n=20) as dependent measure, and 

fractal dimension [HD, IUD, ILD, LD] and image type as independent factors (E for Edges, G 

for Greyscale, T for Thresholded).  

There was a statistically significant main effect of fractal dimension on visual discomfort, 

F(1.265, 24.027) = 16.018, partial η2 = 0.427, p < 0.001. Post-hoc pairwise comparisons using 

Bonferroni correction revealed that the HD condition had a significantly higher visual 

discomfort score than IUD, ILD and LD conditions (p < 0.05). Moreover, IUD had a 

significantly higher visual discomfort score than ILD and LD conditions (p < 0.05). There was 

no significant difference between ILD and LD conditions (p > 0.05). 

Liking: Liking ratings seemed to follow an inverted U-shape for different fractal dimensions 

as can be seen in Figure 6.3. (right panel). This was confirmed by a repeated measures ANOVA 

with Greenhouse-Geisser correction on liking scores (n=19) as the dependent measure, and 
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fractal dimension [HD, IUD, ILD, LD] and image type (E, G, T) as independent measures. 

There was a statistically significant main effect of fractal dimension on liking, F(1.483, 26.876) 

= 1.472, partial η2 = 0.252, p < 0.05. Post-hoc pairwise comparisons using Bonferroni 

correction revealed that the HD condition had a significantly lower liking score than IUD (p < 

0.05) and ILD (p < 0.05) conditions. Also, the ILD condition had a significantly higher liking 

score than the LD condition (p < 0.05). None of the other comparisons were significant. 

 

Image Type and Ratings 

Whilst image type per se did not impact visual discomfort ratings (p > 0.05), there was a 

statistically significant interaction between fractal dimension and image type on visual 

discomfort, F(3.551, 67.474) = 5.076, partial η2 = 0.211, p < 0.05). Post-hoc pairwise 

comparisons using Bonferroni correction revealed that the HD-E condition led to significantly 

higher visual discomfort scores than the corresponding HD-G and HD-T conditions (p < 0.05). 

Similarly, the IUD-E condition had a significantly higher visual discomfort score than the IUD-

T condition. Visual discomfort ratings for ILD and LD conditions, in contrast, did not differ 

between image types. 

Image type did not affect liking scores but, as for visual discomfort, there was a statistically 

significant interaction between fractal dimension and image type. Post-hoc pairwise 

comparisons using Bonferroni correction revealed, however, that none of the meaningful 

comparisons reached significance. 

 

Multi-Level Modelling (Fractal dimensions, Image type, Task, Ratings and Gait 

Parameters ) 

Multi-level modelling was applied to cross-classified data from both cognitive tasks (n=39) to 

determine the impact of fractal dimensions, image type, and task on gait velocity (m/s). Note 

that this analysis was restricted to velocity for comparison with studies 1 (Chapter 3), 3 

(Chapter 4), and 4 (Chapter 5) in which velocity had been the most sensitive of the three gait 

measures. Data for control images were excluded from this analysis due to missing data for 

fractal and image type content. Velocity data were transformed into Z-scores. See the detailed 

description of the method in Chapter 2.2. 

Table 6.2. shows the results for all models fitted. 
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Table 6.2: Model fit comparisons for models with standardised velocity as a dependent 

variable. 

 

Random effects: PT = Participant, IM = Image, T = Trial. Fixed effects: FD = Fractal 

Dimension, IT = Image type, T = Task. 

 

Model 2a was the best fitting model, with fractal dimension (  = 7.022) and image type (  = 

2.231) both being significant predictors (p < 0.05) for velocity, in line with the results of the 

earlier MANOVA. Parameter estimates for the model are displayed in Table 6.3. 

 

 

 

 

 

 

 

 

 

 

Model DIC Fixed Random 

1 4242.919  PT, IM, T 

2 4237.634 FD, IT, T PT, IM, T 

2a 4237.487 FD, IT PT, IM, T 

3 4239.068 FD, IT, FD*IT, FD*T, IT*T PT, IM, T 

3a 4242.919 Model 1 PT, IM, T 
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Table 6.3: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with the best fit (Model 2a; Table 6.2.). 

Note. Estimates reflect the size of the effect on standardised velocity. Burn-in = 500, Chain 

Length = 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. *p < 0.05. 

 

Multilevel modelling (Visual Discomfort rating group only) 

To investigate the potential impact of subjective visual discomfort on walking speed, a second 

multilevel modelling analysis was performed, focusing on cross-classified velocity data of the 

visual discomfort rating group only (n=20). Again, control images were excluded from this 

analysis due to missing data for fractal and image type content. Both velocity and rating data 

were transformed into Z-scores. See the detailed description of the method in Chapter 2.2. 

Table 6.4. shows the results for all models fitted. 

 

 

               95% CI  

Parameter Estimate Std. Error Lower Upper  

Fixed 

Intercept 0.035 0.191 -0.334 0.391 0.879 

Fractal Dimension -0.020 0.008 -0.035 -0.005 7.022* 

Image Type 0.023 0.01 0.003 0.044 2.231* 

Random 

Participant 0.900 0.217 0.569 1.413  

Image 0.002 0.001 0.001 0.004  

Trial 0.180 0.004 0.172 0.189  

Deviance Information Criterion (DIC) 4237.487 
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Table 6.4: Model fit comparisons for models with standardised velocity as a dependent 

variable; visual discomfort group (n=1887). 

Model DIC Fixed Random 

1 2732.676  PT, IM, T 

2 2705.245 FD, IT, VD PT, IM, T 

2a 2706.540 FD, VD PT, IM, T 

3 2703.640 FD, VD, FR*VD, FR*IT, VD*IT PT, IM, T 

3a 2703.025 FD, FD*VD PT, IM, T 

Random effects: PT = Participant, IM = Image, T = Trial. Fixed effects: FD = Fractal 

Dimension, IT = Image type, VD = Visual Discomfort. 

 

The results of this analysis revealed that model 3a was the best fitting model: both, fractal 

dimension (  = 6.853) and its interaction with subjective visual discomfort (  = 32.388) were 

significant predictors, p < 0.05. Note that, in contrast to the MANOVA, the interaction between 

image type and fractal dimension was not a significant predictor for walking speed; also, please 

note that Visual Discomfort on its own did not predict walking speed. 

Parameter estimates for the model are displayed in Table 6.5. 
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Table 6.5: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with best fit (Model 3a; Table 6.4.). 

Note. Estimates reflect the size of the effect on standardised velocity. Burn-in = 500, Chain 

Length = 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. **p < 0.001, *p < 

0.05. 

 

Multilevel modelling (Liking rating group only) 

To investigate the potential impact of subjective liking on walking speed, a further multilevel-

modelling analysis was performed on the cross-classified and Z-scored velocity data of the 

likeability rating group only (n=19), with also Z-scoring. Note that the data from the likeability 

rating task suggested a nonlinear relationship between fractal dimensions and liking (see Figure 

6.3.); therefore, liking-squared was included as an additional predictor variable. Control images 

were again excluded due to a lack of rating data. See the detailed description of the method in 

Chapter 2.2. 

Table 6.6. shows the results for all models fitted. 

   95% CI  

Parameter Estimate Std. Error Lower Upper  

Fixed 

Intercept 0.058 0.243 -0.427 0.539  

Fractal Dimension -0.032 0.012 -0.056 -0.008 6.853* 

FD * VD -0.031 0.005 -0.041 -0.020 32.388** 

Random 

Participant 0.883 0.331 0.455 1.706  

Image 0.004 0.002 0.001 0.009  

Trial 0.239 0.008 0.224 0.256  

Deviance Information Criterion (DIC) 2703.025 
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Table 6.6: Model fit comparisons for models with standardised velocity as a dependent 

variable; likeability group (n=1816). 

Model DIC Fixed Random 

1 1644.237  PT, IM, T 

2 1643.738 FD, IT, LIK, LIK^2 PT, IM, T 

2a 1639.064 FD PT, IM, T 

3 1642.242 
FD, FD*IT, FD*LIK, FD*LIK^2, 

IT*LIK, IT^LIK^2 
PT, IM, T 

3a 1640.101 FD,FD*IT,IT*LIK^2 PT, IM, T 

Random effects: PT = Participant, IM = Image, T=Trial. Fixed effects: FD = Fractal 

Dimension, IT = Image type, LIK = Liking. 

 

The results of this analysis revealed that model 2a was the best fitting model with fractal 

dimension as the only significant predictor (  = 8.366, p < 0.05) for walking speed. Please 

note that this differs from findings for visual discomfort ratings. 

Parameter estimates for the model are displayed in Table 6.7. 
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Table 6.7: Fixed effects estimates (top) and random effect variance estimates (bottom) for the 

model with best fit (Model 2a; Table 6.6.). 

Note. Estimates reflect the size of the effect on standardised velocity. Burn-in = 500, Chain 

Length = 10,000. Degrees of freedom is 1 for all Chi-square ( ) statistics. *p < 0.05. 

 

 

6.4. Discussion 

The present study provides support for the hypothesis that the fractal dimension of an image 

affects a person’s gait kinematics which were used here as a proxy measure of cognitive load 

(see Amboni et al., 2013): walking speed and step length increased whilst stride time decreased 

with increasing fractal dimensions from a fractal scaling range of 1.0 to 1.65. Thus, walking 

towards images with fractal properties outside the range typically found in nature scenes, 

corresponding to a range of fractal dimensions (D) between 1.50-1.65 seemed more cognitively 

demanding than walking towards images with fractal dimensions within this range (i.e. 

dimensions with an alpha mean of 1.2; (Tolhurst et al., 1992)).  

   95% CI  

Parameter Estimate Std. Error Lower Upper  

Fixed 

Intercept -0.015 0.164 -0.358 0.276 0.008 

Fractal Dimension -0.026 0.009 -0.044 -0.008 8.366* 

Random 

Participant 0.997 0.369 0.516 1.913  

Image 0.002 0.001 0.001 0.005  

Trial 0.141 0.005 0.132 0.151  

Deviance Information Criterion (DIC) 1639.064 
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Interestingly, the data also indicate that not only fractal dimensions but also image type impacts 

cognitive load: walking towards Edges images resulted in a decrease in participants’ walking 

velocity, and smaller step length as compared to walking towards Thresholded and Greyscale 

images, suggesting that Edges stimuli were more cognitively demanding despite having the 

same fractal dimensions as their Thresholded and Greyscale counterparts. It is important to 

note, however, that the interpretation of data for Edges stimuli is complicated by the fact that, 

unlike with the Greyscale and Thresholded stimuli, their mean luminance does not remain 

constant across fractal dimensions. As can be seen in Table 6.1, both the mean luminance and 

the standard deviation of luminance values are much higher for HD and IUD images than for 

ILD and LD images, making the latter abstract patterns potentially harder to visually discern 

and rate for liking and/or visual discomfort. These decreases in walking speed, related to 

different image properties, are observed on top of participants’ general task-related slowing as 

compared to the speed of natural self-paced walking without exposure to images and related 

rating task (i.e. control condition), a slowing effect in line with the gait literature on dual tasking 

(see for a review Amboni et al., 2013).  

Together, these findings thus seem to support Joye and colleagues’ Perceptual Fluency Account 

(PFA; Joye & De Block, 2011; Joye et al., 2016; Joye & Van den Berg, 2011) of nature scenes 

being less cognitively demanding than urban scenes due to their low-level visual features; in 

particular, as tested here, their fractal content.  

Before drawing any firm conclusions, however, there are some caveats to consider.  

Firstly, it needs to be ascertained that instead of fractal content, changes in rating difficulty 

across the different fractal and stimulus conditions could not explain the observed gait changes. 

Such an interpretation is unlikely as gait kinematics did not differ between likeability rating 

and visual discomfort rating groups. Moreover, the likeability group revealed the same kind of 

gait changes for changes in fractal dimension as the visual discomfort group although liking 

itself was an insignificant predictor of walking speed, nor was there an interaction between 

likeability scores and fractal dimension. Thus, neither aesthetics nor its interaction with low 

level image statistics seemed to contribute to environmentally-induced cognitive load. Whilst 

dual tasking thus generally affects gait kinematics for all conditions compared to self-paced 

natural walking speed without cognitive task or without image content (see differences between 

coloured and black symbols in Figure 6.2.), neither the observed change in gait kinematics for 
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different fractal dimensions nor the interaction between fractal dimensions and visual 

discomfort ratings can be explained by changes in task difficulty.  

The second caveat concerns the observation that participants’ gait seemed most affected / 

slowed by Edges stimuli, in particular when walking toward images with low fractal 

dimensions. Rather than an effect of stimulus type-related increase in perceptual processing 

load, this slowing could be simply due to a drop in overall luminance levels (e.g. Kesler et al., 

2005) at the far end of the laboratory for these particular stimuli. Indeed, participants walked 

in a laboratory with dimmed lighting where the predominate source of illumination stemmed 

from the stimulus projected to the end wall. Low dimension fractal Edges images were 

generally darker than any other image type due to the high amount of black, which could thus 

have affected gait speed. Therefore, in the next study in which participants will be asked to rate 

the same images for liking and discomfort, stimulus set should include images with high-

contrast black and white vertical square-wave gratings of different spatial frequencies as 

control stimuli instead of plain grey stimuli. 

The finding of an interaction between fractal content and visual discomfort ratings predicting 

changes in gait speed for multi-level analysis of data for the visual discomfort group only (n = 

20) seems at first glance to be in line with previous findings for real images (Experiment 1, see 

Chapter 3.2.): the higher the subjective visual discomfort of an environment, the slower a 

person walks toward it. A closer look at this interaction, however, speaks against such an 

interpretation: participants rated not only images with high fractal dimensions as the most 

uncomfortable ones, in line with predictions, but also images with intermediate upper fractal 

dimensions thought to fall right into the range of fractal dimensions typical for nature scenes. 

This rating behaviour contrasts with participants’ gait kinematics, where participants walked 

the fastest toward intermediate upper fractal dimensions as one would predict for reduced 

perceptual load for image statistics within the range of fractal dimensions typical for nature. 

What might have induced this discrepancy between visual discomfort ratings and gait 

kinematics will have to be answered in future experiments. 

Against expectations, participants rated images with intermediate upper fractal dimensions 

typical for nature scenes as more uncomfortable to look at than images with low and 

intermediate lower fractal dimensions. Aesthetics did not explain this effect as neither fractal 

dimensions nor interaction between fractal dimensions and image type affected liking scores. 

It is more likely that the interaction between fractal dimensions and image type played a role 
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in this effect. Edges images with high fractal dimensions had higher subjective visual 

discomfort ratings than Greyscale and Thresholded images. Similarly, Edges images with high 

fractal dimensions had higher subjective visual discomfort ratings than Thresholded images for 

intermediate upper condition. However, it needs to be kept in mind that visual discomfort and 

liking ratings were collected from two different groups of participants, making it difficult to 

directly compare the results. Therefore, I decided to further explore the relationship between 

visual discomfort and liking ratings in the next experiments (See Chapter 7). 

In conclusion, the hypothesis that walking towards images with fractal properties outside the 

range typically found in nature scenes (D = 1.50-1.65) is more cognitively demanding, has 

been largely confirmed, supporting Joye’s Perceptual Fluency Account (Joye & De Block, 

2011; Joye et al., 2016; Joye & Van den Berg, 2011). However, these data also provide 

evidence for a more complex interaction between low-level image statistics such as fractal 

dimensions and visual discomfort ratings that contributes to environmentally-induced 

cognitive load. It is tempting to speculate what might underlie this latter interaction. If one 

accepts that visual discomfort is an indicator of physiological stress (Wilkins et al., 1984), then 

that would align with Ulrich’s Stress Recovery Theory (Ulrich, 1984), namely that 

physiological stress contributes to environmentally-induced cognitive load measurable as 

changes in gait kinematics. Moreover, it seems crucial to further investigate the exact 

relationship between visual discomfort and liking. Few researchers have addressed the question 

of the relationship between aesthetics and visual discomfort (Fernandez & Wilkins, 2008; 

Juricevic et al., 2010), and there is no general agreement on whether these two factors are 

associated with each other (Fernandez & Wilkins, 2008) or not (Juricevic et al., 2010). 

Therefore, the relationship between subjective aesthetics and subjective visual discomfort 

within the same people will be explored in more detail in Chapter 7.  
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Chapter 7. The relationship between 

liking and visual discomfort 

7.1. Introduction 

Throughout the walking experiments included in this thesis, participants had been asked to rate 

images either for their liking (Experiments 2 and 6, Chapters 4 and 6, respectively) or for their 

visual discomfort (Experiments 1, 4 and 6, Chapters 3, 5, and 6, respectively). Yet, the exact 

relationship between the two subjective measures is still comparably little understood (e.g. 

Juricevic et al., 2010). 

The aim of the three studies presented in this Chapter was therefore to further explore the 

relationship between visual discomfort and liking ratings for image sets used in the previous 

studies. This included the synthetic images parametrically varied in their image statistics such 

as their fractal dimensions (Experiment 6, see Chapter 6) or their amount of “greenery” 

(Experiment 3, see Chapter 4), as well as images of real scenes (nature and urban environments 

used in the pilot study of Experiment 4, see Chapter 5).  

The need to further our understanding of the relationship between visual discomfort and liking 

arose from findings that either subjective visual discomfort (Experiments 1 and 4) or its 

interaction with fractal content predicted walking speed (Experiment 6), whilst neither liking 

on its own (Experiments 4, 6) nor the interaction between liking and fractal content affected 
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gait (Experiment 6), even though visual discomfort and liking scores seemed to be negatively 

correlated. Moreover, in Experiment 4 (see Chapter 5), although environment type did not 

affect gait kinematics when participants were presented with images of nature and urban scenes 

matched for population-defined liking scores, visual discomfort ratings but not pre-defined 

liking scores, were predictive of velocity changes.  

These observations suggest that even though liking seems not strong enough to affect gait on 

its own, it interacts with visual discomfort, impacting gait indirectly. 

Indeed, from a conceptual perspective, visual discomfort and aesthetic merit of a scene have 

been considered as related processes (Fernandez & Wilkins, 2008). For example, images closer 

to natural image properties have been perceived as less uncomfortable and more aesthetically 

pleasing (Fernandez & Wilkins, 2008), suggesting they are inversely related (similar to our 

findings so far); yet, visual discomfort scores for images generated from noise or rectangles 

varying in 1/f amplitude spectra for contrast and luminance did not correlate with aesthetic 

appeal ratings (Juricevic et al., 2010).  

As in none of the walking experiments, liking and visual discomfort ratings had been collected 

from the same participants, the intrapersonal relationship between the two measures in our 

studies remains unclear. Here, in three exclusively behavioural experiments, the same groups 

of participants were therefore asked to rate the same images for both liking and visual 

discomfort.  

 

7.2. Experiment 7: The impact of fractal content on liking 

and visual discomfort 

The aim of this study was to establish the relationship between visual discomfort and liking 

ratings for images parametrically varied in their fractal content. Images were the same as the 

ones used in Experiment 6 (see Chapter 6).  
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7.2.1. Methods 

Participants: On the basis of effect sample sizes observed in Experiment 6 (Chapter 6), twenty-

two participants (2 males, 19 females, 1 prefer not to say), aged between 18 and 23 years with 

a mean age of 19.5 years ± 1.14 SD, took part in this study at the University of Bristol. All 

participants reported normal or corrected-to-normal visual acuity and normal colour vision. 

One participant reported suffering from migraines without aura. 

Participants took part in the experiment for course credit and provided informed written 

consent. The experiment was approved by the Faculty of Life Sciences’ Ethics Committee at 

the University of Bristol (ref. 040220100122). 

Stimuli: The stimulus set contained 103 images. These were the 96 synthetic images 

parametrically varied in their fractal dimension (D) value as described in more detail in the 

study in Chapter 6 (See Experiment 6), and 7 images (control conditions) presenting high-

contrast black and white vertical square-wave gratings of different spatial frequencies (0.30, 

0.59, 1.18, 2.36, 4.72, 9.45, 18.90 cycles per degree (cpd) of visual angle). All images 

subtended an area of 21° x 21° of visual angle. The screen background was a medium 

luminance grey and subtended an area of 51° x 29° of visual angle. Image resolution was 800 

x 800 pixels.  

Procedure: On arrival at the laboratory, participants were given information about the study. 

They were asked to sit in front of the computer (21” monitor) with a distance of 57cm. The 

room had dimmed lighting, and participants had time to light adapt. The experiment was 

divided into two blocks: one block for visual discomfort judgements, and one block for liking 

judgements, in which participants were asked to rate one image after the other, using visual 

analogue scales. Each block used the same 103 images, presented in random order. The order 

of the two blocks was counterbalanced across participants. Individual trials started with the 

presentation of a central fixation cross for 1 second. This was then followed by the presentation 

of one of the 103 images centred on the screen. Images remained on the screen until participants 

had rated the image for the respective task of the experimental block they were in. In the visual 

discomfort rating task, participants rated the image for visual discomfort (‘How uncomfortable 

is the image to view?’ on a visual analogue scale from ‘Not at all’ (pixel 0) to ‘Very much’ 

(pixel 1800) with neutral at the centre of the line. In the liking rating task, participants were 

asked to rate the image for liking (How much do you like the image?”) on a visual analogue 

scale from “Not at all” (pixel 0) to “Very much” (pixel 1800), again with neutral (pixel 900) at 
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the centre of the line. Visual analogue scales were presented below the actual images, and 

participants used the mouse with their right hand to place a marker on the scale and clicking 

the left mouse button when they were happy with the position of the marker.  

Between the two experimental blocks, there was a break of about 10 minutes during which 

participants had time to take some refreshments in addition to filling in a form requesting some 

demographic details, including participants’ age, gender, and medical conditions that could 

have affected their vision. In addition, participants were presented with a 5-minutes YouTube 

video about the history of the camera to distract them from the actual study. Then, they 

performed the second block of the experiment. The study took approximately 30 minutes to 

complete, including the break. In addition to rating scores, reaction times were recorded. 

 

 

7.2.2. Results and Discussion 

 

Figure 7.1: Group averages for visual discomfort (left) and liking (right) outcomes across 

fractal dimensions: High Dimension (HD, 1.75-1.90), Intermediate Upper Dimension (IUD, 

1.50-1.65), Intermediate Lower Dimension (ILD, 1.25-1.40), and Low Dimension (LD, 1.0-

1.15) for three image types (Edges – green circles, Greyscale – red squares, Thresholded – blue 

rhombi). Error bars reflect ± 1 SEM.  
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Figure 7.1. shows (a) participants’ visual discomfort ratings and (b) their liking scores for 

different fractal dimensions for three different stimulus types (Edges, Greyscale and 

Thresholded). Visual discomfort decreased with decreasing fractal dimensions, similarly to the 

outcomes seen in Experiment 6. Liking scores increased with decreasing fractal dimensions 

while liking scores in Experiment 6 seemed to follow an inverted U-shape for different fractal 

dimensions. Moreover, the relationship between fractal dimension and the respective rating 

was far less pronounced for Greyscale images than for their Thresholded and Edges image 

counterparts, in contrast to the results of Experiment 6 in which this effect has not occurred.   

A repeated measures ANOVA on rating scores with Greenhouse-Geisser correction, with task 

[visual discomfort, liking], image type [Edges, Greyscale, Thresholded] and fractal dimensions 

[High D (fractal dimension: 1.75-1.90), Intermediate Upper D (fractal dimension: 1.50-1.65), 

Intermediate Lower D (fractal dimension: 1.25-1.40), and Low D (fractal dimension: 1.0-1.15)] 

as within-subject-factors revealed a significant two-way interaction between fractal dimension 

and task, F(1.185, 24.880) = 2.543, p < 0.05, partial η2 = 0.539, and a significant three-way 

interaction between fractal dimension, image type and task, F(3.331,69.965) = 19.294, p < 0.05, 

partial η2 = 0.479 (see Figure 7.2.). For visual discomfort ratings of LD, there was a significant 

difference between Greyscale and both Edges and Thresholded images. For liking scores of 

LD and ILD, there was a significant difference between Greyscale and both Edges and 

Thresholded images. 

None of the main effects or other interactions were significant (p > 0.05). 

A Pearson’s correlation of group rating averages for individual images irrespective of image 

type revealed that there was a negative correlation between liking and visual discomfort (r = - 

0.848, p < 0.05). Pearson’s correlations for individual image types are plotted in Figure 7.2. 
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Figure 7.2: Correlation between visual discomfort and liking scores per image averaged across 

participants, for three image types: Edges – green circles; (r = - 0.97, p < 0.05), Greyscale – 

red circles (r = - 0.71, p < 0.05), Thresholded – blue circles (r = - 0.95, p < 0.05).  

 

 

 

Figure 7.3: Group averages of visual discomfort (red squares) and liking scores (cyan circles) 

for the control patterns with high-contrast spatial frequency patterns differing in stripe width: 

0.30, 0.59, 1.18, 2.36, 4.72, 9.45, 18.90 cycles per degree (cpd) of visual angle. Error bars 

reflect ± 1 SEM. 
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In line with expectations from the literature for high-contrast spatial frequency square-wave 

gratings (Wilkins et al., 1984), visual discomfort ratings for the control images followed an 

inverted u-shape (see Figure 7.3., dark yellow square symbols). In contrast to Wilkins et al. 

(1984) who described spatial frequencies between 2–8 cpd induced visual discomfort, 

discomfort ratings were slightly shifted toward higher spatial frequencies, peaking somewhere 

between 4.72-9.45 cpd. Moreover and also in line with expectations (Ogawa & Motoyoshi, 

2020), liking ratings decreased approximately linearly with increased spatial frequencies (see 

Figure 7.3. dark blue circular symbols). Grating data, therefore, show a similar negative 

relationship between visual discomfort and liking ratings for most (but not all) of the spatial 

frequency range tested, similar to observations for fractal images (see Figure 7.1.).  

The results of this experiment indicate that not only do fractal dimensions impact ratings, but 

also image type: whilst there was a linear relationship between fractal dimensions and the 

respective ratings for Edges and Thresholded images, this did not hold for Greyscale images. 

Spehar et al. (2016) found that Edges and Thresholded images have shallower 1/f amplitude 

slopes, in particular for higher amplitudes (Spehar et al., 2016) (see also image characteristics 

provided by Spehar in Table 6.1.). Thus, differences in 1/f amplitude slope between the three 

image types could be underlying these results. 

This study demonstrated that when tested in the same participant, there is a clear negative 

correlation between liking and visual discomfort ratings for the range of fractal stimuli used, 

but not for the entire range of spatial frequency gratings participants had seen. These findings 

therefore raise the question of whether the negative linear relationship between visual 

discomfort and liking is related to particular types of stimuli (i.e. their fractal content) or can 

be generalised to other stimuli. This will be investigated in the next two studies.  

Due to the COVID-19 pandemic, both of the following studies were performed online; thus 

requiring a slightly different setup than used so far. 
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7.3. Experiment 8: The impact of the amount of “greenery” 

in a visual scene on liking and visual discomfort 

The aim of this study was to establish the relationship between visual discomfort and liking 

ratings for images parametrically varied in their amount of “greenery”. The same stimuli were 

used as those in Experiment 3 provided by Lewis D. Griffin (see Chapter 4).  

 

 

7.3.1. Methods 

Participants: On the basis of effect sample size observed in Experiment 7 (Chapter 7), I would 

have needed to recruit twenty-two participants; however, accounting for possible drop-outs, 

exclusions and higher noise due to lack of control over participants’ online study settings, I 

doubled the number of participants. Fifty participants took part in this online study with a mean 

age of 27 years ± 9.35 SD (17 – 64 years), 17 females (mean age = 27, ± 12.33 SD, 18 – 64 

years) and 33 males (mean age = 26, ±  7.12 SD, 17 – 45). All participants reported normal or 

corrected-to-normal visual acuity and provided informed consent for participation at the 

beginning of the study. Participants were recruited via the ‘Prolific’ platform and reimbursed 

for their time. The experiment was approved by the Faculty of Life Sciences’ Ethics Committee 

at the University of Bristol (ref. 040220100122). 

Stimuli: The stimuli for the study were 100 abstract images, parametrically varied for the 

percentage of “chlorophyll” or “greenery” they contained (0%, 25%, 50%, 75%, 100%; 20 

images per condition). The stimuli are described in more detail in Chapter 4.1.2. (Experiment 

3). Image resolution was 1280 x 800.  

Procedure: This was an online study set up on the ‘Gorilla’ platform. Prior to performing the 

task, participants were asked to fill in a form with demographics questions (e.g. age, gender, 

eye sight) and made aware that the task needed to be performed on a computer or a laptop; not 

a phone or tablet. Participants were asked to look at images on their computer screen. Only one 

image was presented per trial, and image presentation order was randomised. The experiment 

was again divided into two parts: one for visual discomfort ratings (How uncomfortable is the 

image to view?), one for liking ratings (How much do you like the image?). In contrast to the 

former experiment, however, participants rated each image on a 7-point Likert Scale from ‘1 – 
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Not at all’ to ‘7 – Very much’. Images remained on the screen until the participant had rated 

the image by clicking the (left) mouse button on the according number of the Likert Scale. The 

two parts of the study were again counterbalanced between participants. There was one break 

during the study (between two blocks, after 100 trials), but no film to distract people between 

tasks. 

 

 

7.3.2. Results and Discussion 

 

 

Figure 7.4: Group averages of visual discomfort (red squares), liking (cyan circles) across 

greenery conditions: 0%, 25%, 50%, 75%, 100%. Error bars reflect ± 1 SEM. 

 

As shown in Figure 7.4., visual discomfort and liking ratings hardly varied between the 

different greenery conditions, with people rating the images as neither 

uncomfortable/comfortable nor likeable/dislikeable instead of using the entire Likert Scale. 

Despite the small variability in image ratings, a repeated measures ANOVA on rating scores 

with Greenhouse-Geisser correction, with task [visual discomfort, liking], and greenery [0%, 

25%, 50%, 75%, 100%] as within-subject-factors, revealed a statistically significant two-way 

interaction between greenery and rating task, F(1.646, 80.638) = 3.686, partial η2 = 0.070. Post-

hoc pairwise comparisons, using LSD correction, revealed that the 100% greenery condition 

had a significantly lower visual discomfort score than all other (0%, 25%, 50%, and 75%) 
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greenery conditions. In addition, the 100% greenery condition had a significantly higher liking 

score than the 75% greenery condition, in contrast to the outcomes of Experiment 4 in which 

the 100% greenery condition had a significantly lower liking score than any other stimulus 

type: 0%, 25%, 50% and 75%.  

None of the main effects were significant (p > 0.05). 

A Pearson’s correlation irrespective of image type revealed an overall negative correlation 

between visual discomfort and liking, r = - 0.615, p < 0.05. Individual correlations per image 

type are shown in Figure 7.5., revealing that the correlations were primarily driven by images 

with higher greenery content. 

 

 

Figure 7.5: Correlations between group average visual discomfort and liking scores per image, 

for the five different greenery conditions: 0% greenery – blue circles (r = -0.19, p > 0.05), 25% 

greenery – orange circles (r = -0.26, p > 0.05), 50% greenery – grey circles (r = -0.17, p > 0.05), 

75% greenery – yellow circles (r = -0.48, p < 0.05) 100% greenery – green circles (r = -0.45, p 

< 0.05). Note that there was a low variability in ratings between the images with different 

amounts of “greenery”.  

 

 

2.5

3.0

3.5

4.0

4.5

2.5 3.0 3.5 4.0 4.5

L
ik

in
g

Visual Discomfort

0%
25%
50%
75%
100%



134 

 

The results of the experiment therefore suggest that both the amount of greenery and the task 

(liking vs. visual discomfort rating task) impact ratings, with visual discomfort and liking being 

again negatively related, in particular for images with higher content of greenery for which 

inter-stimulus responses were more variable than for images with lower greenery content.  

Interestingly, the findings for liking in this experiment do not correspond to the ones in 

Experiment 3 (see Chapters 4), in which participants were asked to walk towards the same 

images and rate them for liking. In the walking condition, images with 100% greenery had 

consistently lower liking scores than images with 0%, 25%, 50%, and 75% greenery. It is 

difficult to know what might underlie these differences in likeability scores between the two 

studies. Potential candidates are differences in the experimental setup. This experiment here 

consisted of simple rating tasks performed online, whilst Experiment 3 consisted of a dual-task 

which required both walking toward the images and then rating them. This means that not only 

the distance from the image changed in Experiment 3, meaning that image size increased when 

approaching the stimulus, but exposure to the image before providing the aesthetics judgement 

was far longer than in the current experiment (around 12 seconds compared to around 1 

second). Indeed, it has been shown that aesthetic judgements change with extended exposure 

times from milliseconds to seconds, with longer exposure times involving higher cognitive 

judgements (see Augustin, Leder, Hutzler, & Carbon, 2008).  

Note that visual discomfort scores were not collected in Experiment 3. However, it is tempting 

to speculate that the close negative relationship between visual discomfort and likeability, at 

least for abstract images such as the ones used here, can only be found when participants are 

performing a very fast rating judgement. 

To conclude, the negative correlation between visual discomfort and liking ratings for abstract 

images found in the current study, irrespective of the amount of “greenery” in the visual scene, 

further supports the hypothesis that liking and visual discomfort ratings are highly correlated - 

at least when these judgements are based on comparably brief image presentation times. The 

next study examines whether the same relationship between liking and visual discomfort can 

be found for real images of different environments. 
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7.4. Experiment 9: The impact of nature vs. urban scenes 

on liking and visual discomfort 

The aim of this final study was to establish the relationship between visual discomfort and 

liking ratings for real-world nature and urban images. Images used were the same as those for 

the Pilot study in Experiment 4 (see Chapter 5).  

 

7.4.1. Methods 

Participants: Based on similar assumptions as in Experiment 8, fifty-one participants took part 

in this online Gorilla study with a mean age of 27 years ± 8.94 SD (18 – 55 years), 23 females 

(mean age = 25, ± 5.33 SD, 19 – 39 years) and 27 males (mean age = 29, ± 11.04 SD, 18 – 55), 

1 non-binary (age = 20). All participants had normal or corrected-to-normal visual acuity and 

provided informed consent for participation at the beginning of the study. Participants were 

recruited via ‘Prolific’ and reimbursed for their time. The experiment was approved by the 

Faculty of Life Sciences’ Ethics Committee at the University of Bristol (ref. 040220100122). 

Stimuli: The stimuli for this study were 200 images of nature and urban environments (100 

nature images, 100 urban images), selected from the image database “Places” (Zhou et al., 

2014), in addition to photographs of landscape and urban spaces taken in Europe by me, and 

in Europe and Australia by Ute Leonards.  The same images had been part of the image sets 

used for the stimulus collection part of Experiment 4 (see Chapter 5). Images did not contain 

people or animals. Image resolution was 1280x800 pixels. 

Procedure: The procedure was identical to the one described for Experiment 8.  

 

 

 

 

 



136 

 

7.4.2. Results and Discussion 

 

Figure 7.6: Group averages of visual discomfort (red squares) and liking (cyan circles) across 

nature and urban environments. Error bars reflect ± 1 SEM. 

 

Figure 7.6. shows group averages of visual discomfort and liking ratings across nature and 

urban environments. A repeated measures ANOVA with Greenhouse-Geisser correction was 

conducted on rating scores, with task [visual discomfort, liking], and environment [nature, 

urban] as a within-subject factors. There was a significant main effect of environment, F(1,50) 

= 24.943, p < 0.05, partial η2 = 0.333, a significant main effect of task, F(1,50) = 133.390, p < 

0.05, partial η2 = 0.727 with liking ratings significantly higher than visual discomfort ratings, 

and there was a statistically significant two-way interaction between environment and task on 

ratings, F(1,50) = 63.485, p < 0.05, partial η2 = 0.559. Nature images had significantly lower 

visual discomfort scores but higher liking scores than urban images (see Figure 7.6.). 

To establish again the relationship of visual discomfort ratings and liking ratings for individual 

images, a Pearson’s correlation was performed. It revealed again a clear negative correlation 

between visual discomfort and liking (r = -0.789, p < 0.001) irrespective of stimulus 

environment type. Furthermore and more importantly, correlations for nature and urban 

environments did not differ (see Figure 7.7.).  
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Figure 7.7: Correlation between mean visual discomfort and liking scores for nature images -

green circles (r = -0.71, p < 0.05) - and urban images - orange circles (r = -0.67, p < 0.05). 

Correlations for nature and urban environments do not significantly differ. 

 

In line with expectations from the literature, nature images as compared to urban images had 

overall higher liking scores (e.g. Hartig & Staats, 2006) and lower visual discomfort scores 

(see also e.g. Wilkins et al., 1984); yet liking and discomfort variability between images of the 

same environment type was comparable for nature and urban images. Moreover, a similarly 

strong negative relationship between liking and visual discomfort was found for both types of 

environment. 

These findings further support the hypothesis that there is a negative linear relationship 

between liking and visual discomfort.  

 

7.5. General Discussion 

Over three experiments with very different stimulus material, my hypothesis that liking and 

visual discomfort ratings are negatively correlated, has been confirmed. All three experiments 

showed similar results, suggesting that both liking and visual discomfort tap into similar 

underlying mechanisms.  
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However, a number of limitations need to be considered that could have influenced the results 

obtained. 

Experiments 8 and 9 have differed from Experiment 7, not only with regard to the type of 

stimuli used, but also in their experimental design enforced by the need to move to online 

testing due to the COVID-19 pandemic: Experiment 7 had been conducted in a fully controlled 

environment on a fully calibrated computer screen in the laboratory whilst both Experiments 8 

and 9 were run on online platforms with very little control over perceived image size or exact 

colours etc. In addition, in Experiment 7 participants were asked to rate images on visual 

analogue scales, whilst in the two other studies 7-point Likert Scales were used. The negative 

relationship of the data for the two scales seems to be robust as similar findings were obtained 

in these three studies despite the differences in experimental design. However, these two online 

experiments should be replicated in a more controlled laboratory environment to tease out small 

details/ differences. 

Interestingly, the results of the Experiment 7 demonstrated that there was a linear relationship 

between fractal dimensions and the respective ratings for Edges and Thresholded images; this 

did not hold for Greyscale images. Note that there is a difference in 1/f amplitude slope between 

the three image types: Edges and Thresholded images have shallower 1/f amplitude slopes 

compared to Greyscale images  (see Spehar et al., 2016),  which might explain these results. 

Last but not least, I have focused here on contrasting visual discomfort as a negative rating 

scale and liking as a positive rating scale. To fully understand their relationship, it is important 

to keep in mind that some literature suggests that disliking and liking judgements are not on a 

continuum but based on different underlying processes, with liking being associated more with 

affective processing (Zajonc, 1980) and disliking being a more controlled cognitive process 

(see Page & Herr, 2002). Similarly, discomfort and comfort are thought not lie on opposite 

sides of a continuum as the absence of visual discomfort does not lead to visual comfort (Vink 

& Hallbeck, 2012). This raises the question whether instead of comparing liking with visual 

discomfort, a comparison of disliking ratings with visual discomfort would have been more 

appropriate. Future studies might therefore want to include disliking ratings instead of liking 

ratings throughout. 
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Chapter 8: General Discussion 

Exposure to nature environments has been found to be less cognitively demanding than 

exposure to urban environments, leading to extensive psychological theories about the 

mechanisms underlying the so-called nature benefit or also urban cost (Berman et al., 2008; 

Berman et al., 2012; Cimprich, 1992; Cimprich & Ronis, 2003; Hartig et al., 2003; Kaplan, 

1995; S. Kaplan, 2001; Kaplan & Berman, 2010; Ottosson & Grahn, 2005; Taylor et al., 2002; 

Tennessen & Cimprich, 1995). Yet, issues with experimental design and a lack of objective 

measures hamper progress in understanding the sensory factors leading to differences in 

environmentally-induced cognitive load. The aim of this thesis was therefore to quantify and 

objectively measure different visual parameters that might contribute to environmentally-

induced increases in cognitive load, answering primarily three questions: 

a) Do low-level image statistics (“greenery/chlorophyll” and fractal dimension) impact visual 

cognitive processing load?  

b) Do differences in cognitive load between different environmental stimulus categories, i.e. 

nature and urban images, still present when these two image categories are controlled for 

likeability? 

c) What effect does subjective visual discomfort have on cognitive load, and thus gait 

kinematics? 
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In this General Discussion, I will revisit the research aims, and address each of these aims 

separately. As individual experiments have already been discussed in detail, this General 

Discussion should be understood as a more general summary and evaluation of the most 

relevant findings, and reflection on my experimental approach rather than as an extensive 

review. I will outline the strengths and limitations of my research, provide an outlook of future 

research directions and finish with some more general remarks on potential impact of this kind 

of work. 

 

8.1. Summary of Findings 

The positive impact of exposure to nature environments (or negative impact of urban 

environments) on cognitive functioning has been observed only after prolonged exposure to 

these environments (Berman et al., 2008; Berto, 2005). At the start of my work, it was thus 

first necessary to establish whether cognitive processing differences could be observed during 

brief exposure to different visual environments, and measured on a trial-by-trial basis. Only if 

this was possible, would I be able to isolate different sensory factors contributing to 

environmentally-induced cognitive load by parametrically varying individual stimulus 

parameters within environmental scenes. 

In two experiments using fundamentally different approaches (see Chapter 3), converging 

evidence was presented that, indeed, cognitive processing differences evoked by urban and 

nature scenes could be captured in real-time and on a trial-by-trial basis: changes in gait 

kinematics revealed that participants walked slower with smaller steps when exposed to images 

of urban environments as compared to nature environments, in line with results from dual-task 

studies (Al-Yahya et al., 2011; Amboni et al., 2013). Also, using reaction time measures, 

participants responded much slower in a simple shape discrimination task when urban images 

instead of nature images were presented as task-irrelevant distractors.  

Even though performing a shape discrimination task and performing a dual-task (walking 

towards an image and performing a cognitive task) are based on different cognitive 

mechanisms – the shape discrimination task requires suppression of task-irrelevant information 

to perform the task at hand whilst the dual-task requires task switching - they both established 

a simple method by which the impact of different visual environments on cognitive processing 



141 

 

load could be tested in a fully randomised within-participant experimental design. This 

provided me with a methodology that allowed me to conduct six studies in which I investigated 

the impact of low-level visual processes (image statistics : greenery, fractals), mid-level visual 

processes (visual discomfort) and high-level visual processes (aesthetics) on gait kinematics 

and reaction times. 

 

 

8.1.1. Low level image statistics: Greenery and Fractal 

Dimensions 

As nature images differ in some of their low-level visual image statistics, in particular their 

colour and fractal compositions (Ho et al., 2019; Kardan et al., 2015), it was first tested whether 

the amount of “greenery” or the fractal composition of a scene impacted cognitive functioning. 

In Chapter 4 (see Experiment 3), I demonstrated that the parametrically varied amount of 

“greenery”/”chlorophyll” in otherwise abstract images did not impact gait kinematics. From 

these results, it seemed thus unlikely that the differences between nature and urban 

environments in cognitive processing load requirements were due to differences in the amount 

of low-level image characteristics such as “greenery” in the scenes, at least not when greenery 

was presented in isolation  (see Figure 8.1 greenery). 

In contrast to colour, Experiment 6 (see Chapter 6) revealed that walking towards images with 

fractal properties outside the range typically found in nature scenes was more cognitively 

demanding: people walked more slowly towards abstract black-and-white fractal images with 

Intermediate Low D and Low D (1.0-1.4) as compared to images with Intermediate Upper D 

(1.50-1.65) fractal properties. These findings suggest that cognitive load differences between 

nature and urban scenes could at least partially be due to differences in fractal content. These 

data thus seem to support Joye and colleagues’ Perceptual Fluency Account (PFA; Joye & De 

Block, 2011; Joye et al., 2016; Joye & Van den Berg, 2011) of urban scenes being more 

cognitively demanding than nature scenes due to their low-level visual features; in particular, 

as tested here, their fractal content (see Figure 8.1 fractal dimensions).  
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8.1.2. Mid- and higher-level visual processes: Visual 

Discomfort and Image Aesthetics 

Yet, nature and urban images do not only differ in their low-level image statistics, but also in 

associated higher-level processes such as visual discomfort and aesthetic properties associated 

with an environment. For example, urban images had been found on average to be more 

uncomfortable to look at than nature images (e.g. Ho et al., 2019). In line with this literature, 

multi-level modelling revealed that visual discomfort and its interaction with environment type 

(nature vs. urban) explained some of the gait variability found in my first experiment (Chapter 

3) comparing nature and urban scenes. Similarly, multi-level modelling of the data of 

Experiment 4 in which individual nature images had been matched for their likeability with 

urban images showed that visual discomfort ratings were predictive of walking speed (see 

Chapter 5) (see Figure 8.1 visual discomfort). If one accepts that visual discomfort is an 

indicator of physiological stress (Wilkins et al., 1984), these findings would thus be supporting 

Ulrich’s Stress Recovery Theory (Ulrich, 1984), which claims that physiological stress 

contributes to environmentally-induced cognitive load. 

Also aesthetic preference had been claimed in the literature to differentially affect cognitive 

processing between nature and urban environments (for review see Bratman et al., 2012); yet 

to the best of my knowledge such differences were not controlled for in the studies explicitly 

examining the nature benefit / urban cost idea (see e.g. Berman et al., 2008; Kaplan & Berman, 

2010; Ulrich, 1984). Experiment 4 (see Chapter 5) therefore established whether cognitive load 

differences between environment types (nature vs. urban) could still be detected when images 

of nature and urban scenes were matched for liking scores beforehand by an independent 

participant sample. Whilst indeed, no differences in gait kinematics were observed between 

environmental categories (nature and urban scenes), environment type still affected cognitive 

load differentially when assessed with the shape discrimination task. Any conclusion that liking 

might explain some of the differences in cognitive demands between nature and urban scenes 

would thus be premature (see Figure 8.1 aesthetics). As argued in detail in Chapter 5, one of 

the potential reasons for finding cognitive load differences between liking-matched images of 

urban and nature scenes for reaction times but not for gait kinematics could be the differences 

in stimulus exposure duration between the two experimental setups. During the walking 

experiment (e.g. Experiment 4; see Chapter 5), participants were exposed to each image for at 

least 10 seconds, whilst during the shape discrimination task (e.g. Experiment 5; see Chapter 
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5), participants were exposed to each image serving as task-irrelevant distractors for a few 

hundred milliseconds only. Following Stress Recovery Theory (Ulrich, 1981, 1984), aesthetic 

and affective reactions to environments are not isolated from but strongly linked to cognitive 

processes. If one accepts the definitions of aesthetics provided in this theory, one can thus 

reasonably assume that differences related to attentional capture of the two environment types 

in Experiment 5 were driven by pleasure-based liking (automatic processing) for the short 

exposure times rather than interest-based liking (controlled cognitive processing) that requires 

longer exposure times (Graf & Landwehr, 2017). 

As shown in Chapter 7, aesthetics cannot be entirely separated from visual discomfort as visual 

discomfort and liking ratings were shown to be negatively correlated (Experiments 7 , 8 and 

9), irrespective of the type of stimulus material used. It was out of the scope of this thesis to 

investigate this relationship in more detail, but future work should explore the exact nature of 

this relationship in more detail in order to understand the exact impact they might have on 

environmentally-induced cognitive load.  
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Figure 8.1: Overview of some of the core factors suggested to contribute to environmentally-

induced cognitive load based on research presented in this thesis. The question marks refer to 

the still unknown impact of semantic associations with image content and aesthetics on 

environmentally-induced cognitive load. “Greenery” has been crossed out as it did not seem to 

impact processing load (see Experiment 3). Arrows are influences of visual parameters that 

contribute to environmentally-induced increases in cognitive load, and relationships between 

variables demonstrated in this thesis. See Figure 1.1. for a comparison. Note, in particular, that 

image stats and visual discomfort seem highly inter-dependent factors as are visual discomfort 

and aesthetics, in contrast to original suggestions in Figure 1.1. 

 

8.2. Novelty and Strength of the current approach 

Differences in cognitive processing demands evoked by exposure to nature and urban 

environments have long been established in the literature (for review see Bratman et al., 2012; 

Corazon, Sidenius, Poulsen, Gramkow, & Stigsdotter, 2019; Weber & Trojan, 2018); yet, what 

makes an environment more or less cognitively demanding is, as yet, little understood. 

Moreover, the mechanisms underlying different cognitive processing demands remain unclear, 

with most of the psychological theories focusing on “restorative” responses to nature 

environments and thus assuming a cognitive benefit induced by exposure to nature rather than 

a cognitive cost induced by exposure to urban environments (see Chapter 1.3. for review of 
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psychological theories such as Stress Recovery Theory (Ulrich, 1984), Attention Restoration 

Theory (S. Kaplan, 1995, 2001) and Perceptual Fluency Theory (Joye et al., 2016). 

All above proposals assume that there is a fundamental difference between nature and urban 

environments in their cognitive processing load; i.e. that they are two distinct categories like 

cats and dogs. A closer look at the data presented here, however, raises the question whether 

such a dichotomy really exists or whether environmentally-induced cognitive load depends 

rather on low-level, mid-level and higher-level cognitive processes irrespective of environment 

category.  

Throughout this thesis, I demonstrated that the use of gait kinematics and reaction times as a 

measure of the moment-to-moment cognitive state provides a method to objectively quantify 

and track the impact of different visual environments on cognitive processing load. Crucially, 

cognitive load differences could be observed in real-time and on a trial-by-trial basis. It is this 

novel approach of measuring the impact of cognitive processing load during the actual 

exposure, that allowed me to parametrically vary individual components within environmental 

stimuli and thus establish the contributions low-level, mid-level or high-level visual factors 

might have on environmentally-induced cognitive load.  

The most remarkable result to emerge is that walking towards images with fractal properties 

outside the range typically found in nature scenes is more cognitively demanding. This suggests 

that low-level cognitive processes explain at least some of the differences in cognitive demands 

between nature and urban environments. At first glance, these findings seem to support Joye 

and colleagues’ Perceptual Fluency Account, PFA (Joye & De Block, 2011; Joye et al., 2016; 

Joye & Van den Berg, 2011). PFA claims that nature environments are easier to process than 

urban environments due to their low-level image properties, in particular the amount of fractals. 

However, as clearly seen in Chapter 6, not only fractal content but also its interaction with 

visual discomfort were predictive of gait kinematics, with visual discomfort being a far stronger 

predictor than fractals. This not only suggests that there is a more complex interaction between 

low-level and mid-level cognitive processes that contributes to environmentally-induced 

cognitive load, but also opens up the possibility that visual stress is the core factor to explain 

cognitive load differences, in line with previous studies suggesting that nature environments 

reduce physiological stress (e.g. Hedblom et al., 2019; Jiang, Chang, & Sullivan, 2014; Ulrich 

et al., 1991; Wang et al., 2016), and thus supporting Stress Recovery Theory (Ulrich, 1981, 

1984; Ulrich et al., 1991, see also Chapter 1.4.).  
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As already alluded to, another important finding of this thesis is that results seem to speak 

against a fundamental dichotomy between the impact of nature and urban environments on 

cognitive processing load. Indeed, when these two environments were matched for liking 

scores, no differences in gait kinematics could be observed, suggesting that the comparative 

approach between nature and urban used in previous studies should better be rejected (see 

Bratman et al., 2012). The data presented in this thesis suggest that differences between nature 

and urban environments fall on a continuum with a clear overlap in terms of sensory (in 

particular visual) parameters between these two environments. As such, these findings 

therefore lend support to Gibson’s (1979) environmental affordances theory that different 

environments affect us differently depending on their sensory parameters, irrespective of 

whether they belong to nature or built environment.  

 

8.3. Challenges and Limitations  

The key limitations of the present studies lie in the selection of the stimulus material used. 

Indeed, none of the image sets used in this thesis were able to control for all possible criteria 

that could underlie environmentally-induced cognitive load, with both the use of real-world 

images and abstract images bringing their own sets of limitations. In addition, the visual stimuli 

used in these studies were static. A full understanding of environmentally-induced cognitive 

load would require the addition of dynamic stimulus material; something that needs to be 

considered in future work.  

Although nature and urban images used in Experiments 1, 2, 4 and 5 were controlled for their 

images’ spatial composition and perceived depth (Experiments 1 and 2) or for their aesthetic 

properties (Experiments 4 and 5), it was not really possible to control for all of these factors at 

the same time. Moreover, a range of other factors (such as the presence of people) had not been 

considered (although a separate analysis revealed that the few urban images containing people 

in Experiment 1 did not seem to contribute more to the amount of cognitive load than the urban 

images without people). The main concern was that images were not controlled for image 

statistics (e.g. symmetry, spatial frequencies, hue, saturation, luminance, or, most crucially, 

image complexity). Moreover, due to the vast range of scenes that could be included in such 

overarching environmental categories, it seems next to impossible to control for all parameters 

at the same time; a reason why future studies might want to aim to continue isolating the impact 

of different parameters on environmentally-induced cognitive load rather than investigating the 
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seeming categorical differences between nature and urban scenes. Regarding the limitations of 

image selection, it could also be argued that some of the urban images, whilst all dominated by 

buildings, included partially visible blue-green infrastructure and thus contained a certain 

amount of nature content. Future studies might want to try to parametrically vary the amount 

of nature as compared to urban components within images to gather further insights into the 

cognitive processing demands nature and urban environments impose.  

Whilst the use of abstract images as in Experiments 3 and 6 (see Chapter 4 and 6 respectively), 

parametrically varied for their amount of “greenery” (Experiment 3) and fractal dimensions 

(Experiment 6), seemed the strongest approach to stimulus selection as it allowed me to isolate 

individual low-level image characteristics and investigate them for their ability to affect 

cognitive processing load, even this approach showed clear limitations. In particular, even for 

the null result for “greenery”, I cannot exclude that other factors such as image liking – which 

turned out to be higher for images with smaller amounts of greenery (see Experiment 3) – 

cancelled any cognitive benefits colour brings. In other words, greenery might still contribute 

to environmental benefits if images had been controlled for liking (if this is at all possible). In 

Experiment 8, visual discomfort and liking rating were more variable for images with higher 

content of greenery than images with lower greenery content. Moreover, I cannot conclude that 

colour presented together with other low-level or higher-level image properties common in 

nature could add to the cognitive load differences found between nature and urban images. 

Indeed, if participants had been presented with real images controlled for low-level image 

statistics such as colour whilst preserving the meaning of the scene, cognitive differences 

between nature and urban scenes might have indeed been largely reduced. Future studies 

should look at this, in addition to investigating how the meaning of scenes affects cognitive 

processing load. Note, however, that this will first require a solution to the many pitfalls current 

methods have to measure semantic associations in a scene (see Chapter 1.3). 

At the current stage, it seems safe to conclude that low-level factors on their own such as fractal 

content can explain at least some of the variance in cognitive processing between different 

environments, whilst higher-level factors such as visual discomfort (and potentially aesthetics) 

and their interactions with low-level factors explain a far higher amount of cognitive load 

differences between environments. 

Another apparent limitation of the studies is the method used to measure visual discomfort. 

Present evidence relies on subjective ratings of visual discomfort and thus fails to provide a 
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comprehensive assessment of (visual) stress, defined as a physiological response to stimuli. 

Future work exploring whether stress (Ulrich, 1984) rather than attention (S. Kaplan, 1995) is 

at the core of any “nature benefit”/“urban cost” should aim to use objective measures of 

physiological stress (e.g. wearable devices to measure heart rate variability). Also, future 

research might want to use eye-tracking to further our understanding of what is capturing 

someone’s attention in a visual scene and what exactly is causing visual discomfort. The 

definition of visual discomfort used here originally stems from research looking into the 

relationship between contrast distributions and an aversive physiological response (e.g. 

Juricevic et al., 2010). In this thesis, findings suggest that  there might be a similar relationship 

between visual discomfort and fractal dimensions; therefore, the concept of visual discomfort 

needs to be revisited. 

Similarly to the limitations for visual discomfort, also aesthetics was measured on a basis of 

subjective liking ratings as it is still poorly understood how to quantify and objectively measure 

aesthetics (Bratman et al., 2012). A first attempt to resolve this issue for future studies might 

be to provide participants with a clearer definition of aesthetics prior to participation in the 

actual experiments. Whilst several authors have attempted to define aesthetics before (e.g. 

Chatterjee & Vartanian, 2014; Graf & Landwehr, 2017), none of the proposed definitions is as 

yet more widely accepted; thus hampering any objective quantification of aesthetic preference.   

Last but not least, two further aspects have to be considered:  

The studies included in this thesis were not specifically designed to test involvement of directed 

attention nor other cognitive processes in environmentally-induced cognitive load. However, 

findings nevertheless suggest that both directed attention (as tapped into by the shape 

discrimination task) and other cognitive processes such as those involved in dual-tasking 

(Strobach, Wendt, & Janczyk, 2018) were differentially affected by exposure to different 

environments. Future work might want to focus specifically on factors such as automatic 

attentional capture and the need to suppress irrelevant information as a factor defining 

affordances of an environment.  

This thesis does not answer the question of whether exposure to nature improves cognitive 

abilities (“nature benefit”) or whether exposure to urban environments decreases cognitive 

abilities (“urban cost”). Participants walked fastest toward neutral images, significantly slower 

toward nature images and slower again toward urban images, suggesting that urban 

environments are more costly to process as compared to nature environments, but nature 
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environments are more costly than a completely empty environment. Also, reaction times for 

the shape discrimination tasks in the presence of any distractor stimulus are slower than without 

distractors; raising the question of what exactly the baseline of cognitive abilities is from which 

to measure an environment’s cognitive impact. This points to another limitation of this work 

and the literature more widely, namely that the conceptualisation of cognitive load is not yet 

fully developed; including the distinction between cognitive load and perceptual load.  

8.4. Potential wider impact of research 

Whilst the research presented in this thesis was performed to further our fundamental 

understanding of how a person’s environment impacts their cognitive abilities, it is tempting 

to consider it for its wider impact for society and, in particular, population health. Indeed, 

understanding and tackling environmental stressors of urban environments is one of the major 

global challenges: 54% of the world’s population lives in cities with an expected increase to 

almost 76% in the next 30 years (Nations, 2014). A deeper understanding of what makes an 

environment as expressed in sensory terms more comfortable and cognitively less demanding 

is thus a fundamental prerequisite to the future design of healthy and inclusive cities. My 

research shows that environmental stressors are not only those currently considered such as air, 

sound or light pollution (see Evans, 2001; Rentfrow & Jokela, 2016), but include visual factors 

such as low-level image statistics and aspects of sensory discomfort and aesthetics. Moreover, 

measuring gait changes (at least for flat hazard free environments) might become a way to 

measure an environments affordances in the real world in an objective way. 

 

8.5. Conclusions 

The current studies demonstrated that cognitive processing load differences between nature 

and urban environments are not due to a fundamental dichotomy between these environments 

but that they share their underlying mechanisms. A such, they have gone some way towards 

enhancing our understanding of how different sensory factors contribute to environmentally-

induced cognitive load, using gait kinematics and reaction times as an objective measure of 

cognitive load changes. Being able to measure cognitive load changes induced by an 

environment during actual exposure is a crucial step toward understanding how even subtle 

changes in the sensory makeup of an environment affect cognitive functioning, and, in turn, a 

person’s health and wellbeing.  
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Annex A (Experiment 1): Interaction 

between environment and experimental 

block order for gait parameters 

  

Interaction between environment and experimental block order for velocity and stride time in 

environmentally-induced perceptual load – motor interference task. 

 

See Table below for Group averages of mean velocity (m/s) + standard deviations across 

environment type and order. 

  Order 1 Order 2 

Velocity M SD M SD 

Nature 

Urban 

Neutral 

1.30 

1.29 

1.33 

0.07 

0.07 

0.07 

1.30 

1.28 

1.36 

0.06 

0.06 

0.06 

Note. Order 1 = cognitive motor interference control task as the first task and 

environmentally-induced perceptual load – motor interference task as the second task; n 

= 10, Order 2 = environmentally-induced perceptual load – motor interference task as 

the first task and cognitive motor interference control task as the second task; n = 8. 

 

See Table below for Group averages of mean stride time (in seconds) + standard 

deviations across environment type and order. 
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  Order 1 Order 2 

Stride Time M SD M     SD 

Nature 

Urban 

Neutral 

1.04 

1.04 

1.03 

0.04 

0.04 

0.03 

1.04 

1.05 

1.02 

0.04 

0.04 

0.03 

Note. Order 1 = cognitive motor interference control task as the first task and 

environmentally-induced perceptual load – motor interference task as the second 

task; n = 10, Order 2 = environmentally-induced perceptual load – motor interference 

task as the first task and cognitive motor interference control task as the second task; 

n = 8. 

 

These data suggest that participants who were asked to perform the cognitive motor 

interference control task as the first task and the environmentally-induced perceptual 

load – motor interference task as the second task, were walking slower with longer 

stride times towards neutral images, as compared to the group with reversed 

experiment order.  It is possible that participants who performed the environmentally-

induced perceptual load – motor interference task (105  trials) as the first task and 

cognitive motor interference control task (20 trials) as the second task were walking 

faster with shorter stride times towards neutral images as they settled into a more 

sustained rhythm of walking as they have been already walking for an hour. 
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Annex B: Cognitive motor interference 

control tasks (Experiments 1 and 3). 

 

Experiments 1 and 3 included cognitive motor interference control task, a control to establish 

whether the methodology was sufficiently robust to observe changes in gait kinematics 

associated with changes in cognitive load as has been well established in the literature (Amboni 

et al., 2013). 

Procedure: Using a repeated measures design, each participant walked repeatedly down a 15m 

long laboratory whilst completing verbal trail making tasks requiring different amounts of 

cognitive load (vTMT). Dependent on condition, each trial required one of the following 

vocalisations to be completed: No speech (C1), “Lalala…” (C2), “ABC…” (C3) or “A1B2…” 

(C4). The least cognitive resources were required for C1 (no speech; i.e. no dual-task 

requirements, and thus no interference between cognition and walking), and the most for C4.  

For each trial, the participant started by standing on a marked cross at one end of the laboratory. 

The respective trail making condition was then indicated by text projected onto the floor in 

front of them. When the participant was ready, the text would disappear and the participant 

walked the length of the laboratory in their natural walking speed whilst carrying out the 

relevant trail making condition through audible vocalisation. On reaching the end of the 

laboratory, the participant stopped the verbal task before returning to the starting cross at the 

other side of the lab. Four practice trials were carried out (1 for each trail type), followed by 20 

experimental trials; 5 of each condition, presented in random order.  This part of the study took 

approximately 10 minutes.   

Note that even though I recorded participants’ actual trail making performance to ensure task 

compliance, I did not include any verbal task performance measures into the analysis. 
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Experiment 1 (Methods and Results) 

Participants were the same as in Experiment 1 (see Chapter 3.2.1.).  

 

Exclusion criteria: One participant was excluded from the analysis due to a technical problem 

with the motion capture system. One further participant was excluded from analysis due to 

having an unusual walking style (see the exclusion criteria in Chapter 2.1.1.3.). This left 18 

participants’ datasets for analysis; (6 male), aged 18-34 (M = 22).  

Results: To determine the impact of verbal trail making-induced cognitive load on gait, 

repeated measures MANOVAs were applied to the gait data of the verbal trail making task, 

with order of experimental parts (Control task; Experiment 1 main task) as a between-subjects 

variable and trail making task condition as a within-subjects variable (Cognitive Load; 

C1/C2/C3/C4) for seven dependent gait measures (gait velocity, mean step length, mean stride 

time, mean swing time, step length variability, stride time variability and swing time 

variability).  

Velocity: Analysis showed a significant effect of cognitive load on overall velocity (F(3,48) = 

20.82; MSE = 0.05; p < 0.001, partial η2 = 0.57). Post-hoc tests using Bonferroni correction 

revealed that participants walked significantly slower during C4 trials (highest cognitive load) 

than during all other conditions (C1 and C2 p < 0.001, C3 p < 0.01). All other post-hoc 

comparisons yielded insignificant results. 

Step Length: Analysis with Greenhouse-Geisser correction showed that there was also a 

significant main effect of cognitive load on mean step length (F(2.14, 34.28) =11.52; MSE < 

0.01; p < 0.001, partial η2 = 0.42). Post-hoc tests using Bonferroni correction showed a 

significantly shorter Step Length for C4 trials (highest cognitive load) as compared to all other 

conditions (C1 p < 0.05, C2 and C3, p < 0.01). All other post-hoc comparisons yielded 

insignificant results.  

Stride Time: Analysis with Greenhouse-Geisser correction showed that there was a significant 

main effect of cognitive load on mean stride time (F(1.97, 31.51) = 17.24; MSE < 0.001; p < 

0.001, partial η2 = 0.52). Post-hoc tests using Bonferroni correction revealed significantly 

longer stride times for C4 trials (highest cognitive load) as compared to all other conditions 

(C1 and C2 p < 0.01, C3 p < 0.05). Moreover, stride times for C3 trials were also significantly 

longer than for C1 trials (p < 0.01) and C2 trials (p < 0.05). 
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Swing Time: There was a significant main effect of cognitive load on mean swing time (F(3,48) 

=6.42; MSE < 0.001; p < 0.01, partial η2 = 0.29). Post-hoc tests using Bonferroni correction 

showed a significantly longer swing time for C4 trials (highest cognitive load) as compared to 

C1 (p < 0.05). Moreover, swing times for C3 trials were also significantly longer than for C1 

trials (p < 0.05). 

There was no main effect of cognitive load on the variability of step length, the variability of 

stride time and the variability of swing time.  

There was no effect of experimental part order on any of the seven dependent measures. 

However, there was a significant interaction between cognitive load and part order for swing 

time (F(3,48) = 3.36; MSE p < 0.001; p < 0.05, partial η2 = 0.17). Post-hocs with Bonferroni 

correction revealed that swing times were slower for higher cognitive load tasks when the 

cognitive load task was performed after the actual walking task, potentially indicating fatigue. 

 

See the Table below for Group averages of mean velocity (m/s), step length (m) stride time (s), 

and swing time (s) + standard deviations across varying levels of cognitive load. 

 

 

 

 

 

 Velocity (m/s) Step Length (m) Stride Time (s) Swing Time (s) 

 M SD M SD M SD M SD 

C1 

C2 

C3 

1.38 

1.38 

1.36 

0.02 

0.02 

0.02 

0.70 

0.71 

0.70 

0.01 

0.01 

0.01 

1.01 

1.02 

1.03 

0.01 

0.01 

0.01 

0.51 

0.51 

0.51 

0.004 

0.005 

0.005 

C4 1.30 0.03 0.68 0.01 1.05 0.01 0.51 0.005 

Note. C1 = no speech, C2 = lalala, C3 = ABC, C4 = A1B2.   
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Experiment 3 (Methods and Results) 

Participants were the same as in Experiment 3 (see Chapter 4.1.2.).  

 

Exclusion criteria: Two participants were excluded from analysis due to having an unusual 

walking style (see the exclusion criteria in Chapter 2.1.3.), leaving 20 participants’ datasets for 

the analysis, 17 females and 3 males, aged 18-23 (M = 19.55, ± 1.39 SD). 

Results:  To determine the impact of verbal trail making-induced cognitive load on gait, 

repeated measures MANOVAs were applied to the gait data, with experimental order as a 

between-subjects variable and trail making task condition as a within-subjects variable 

(Cognitive Load; C1/C2/C3/C4) for three gait measures (mean velocity, mean step length, 

mean stride time). Note that swing times were not included in the gait analysis of Experiment 

3 due to the insignificant effects of environmentally-induced cognitive load (nature vs. urban 

environments) on swing times in Experiment 1. 

Velocity: Analysis determined that there was a statistically significant effect of cognitive load 

on velocity, F(3, 57) = 29.563, p < 0.001, partial η2 = 0.622. Post-hoc tests using Bonferroni 

correction revealed that participant walked significantly slower during C4 trials as compared 

to C1, C2 and C3 conditions (p > 0.05). 

 

Step Length: There was a statistically significant effect of cognitive load on step length, F(3, 

57) = 7.012, p < 0.05, partial η2 = 0.280. Post-hoc tests using Bonferroni correction showed a 

significantly shorter step length for C4 trials as compared to C2 and C3 conditions (p < 0.05). 

 

Stride Time: There was a statistically significant effect of cognitive load on stride time, F(3, 

57) = 13.876, p < 0.001, partial η2 = 0.435. Post-hoc tests using Bonferroni correction showed 

a significantly longer stride times for C4 trials as compared to C1 and C2 trials (p < 0.05). 

There was no significant difference between C3 and C4 conditions. 

Experimental part order did not affect any of the gait measures. 
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See Table below for Group averages of mean velocity (m/s), step length (m) and stride time (s) 

+ standard deviations across varying levels of cognitive load. 

Overall, these results confirm that performing a cognitively demanding task lead to gait 

changes (see for a review Amboni et al., 2013). In both experiments, participants were walking 

slower with smaller steps and longer stride times when asked to perform high cognitive load 

task as compared to lower cognitive load tasks. 

 

 

 

 

 

 

 

 

 

 

 Velocity (m/s) Step Length (m) Stride Time (s) 

 M SD M SD M SD 

C1 

C2 

C3 

1.38 

1.37 

1.36 

0.13 

0.14 

0.15 

0.70 

0.70 

0.70 

0.05 

0.06 

0.06 

1.01 

1.02 

1.03 

0.05 

0.05 

0.06 

C4 1.29 0.16 0.69 0.07 1.07 0.09 

Note. C1 = no speech, C2 = lalala, C3 = ABC, C4 = A1B2. 
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Annex C: Online rating task 

(Experiment 4) 

 

In Experiment 4, participants were asked in two online studies to rate images of photographic 

environmental scenes for their likeability on 7-point Likert Scale (see the description of the 

procedure in Chapter 5.2.1.). 

 

Participant demographics for the two studies are summarized in table below: 

 Study 1 

 

Study 2 

Age range (and mean age) 18-81 (31 years) 17-66 (31 years) 

 

Gender 60 males,  

90 females 

76 males, 72 females,  

2 gender not disclosed 

 

Migraine 33 

 

17 

Grew up in a city  

(> 100.000 inhabitants) 

67 

 

 

70 

Grew up in the town  

(< 100.000 inhabitants) 

 

58 55 

Grew up in the countryside 28 

 

22 

Grew up in two places 2: city and countryside, 

1: city and town 

 

1: city and town, 

1: countryside and town 

Places where participants grew 

up 

Africa (1), America (18), 

Asia (2), Australia (1), 

Europe (123), America-

Asia (1), America-Europe 

(3), Prefer not to say (1) 

Africa (1), America (25), 

Asia (9), Europe (108), 

Africa-America (1), Asia-

Europe (3), Australia-Europe 

(1) Prefer not to say (1) 

 

 


