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Abstract—Smart home systems with AI planning functionality
have the potential to improve the lives of users. However, there is
an emerging expectation that users should understand and trust
the decision-making processes of these systems. In this paper, a
smart home battery system is developed with a supplementary
explanation module that allows non-expert users to intuitively
visualise the planning process and to better understand its
recommendations. The module relies on a notion of contrastive
explanations, related to iterative planning, allowing users to ask
contrastive questions based on state- and action-constraints that
may or may not be satisfiable. The system is intended for an
experimental study where participants interact with the planning
system and complete an questionnaire, with the research objective
being to evaluate the usefulness of the explanation module.

Index Terms—planning, explainable AI (XAI), contrastive
explanations

I. INTRODUCTION

Artificial intelligence (AI) technology is developing at a
rapid rate, yet as AI systems become more complex, it
is increasingly difficult for stakeholders to understand their
decision-making processes [1]–[3]. The field of explainable
AI (XAI) seeks to address this issue by improving human-
understanding of AI methods [4].

The authors of [5], [6] identify several challenges faced
by XAI research. Firstly, there are many subfields of AI and
each has a need for explanations, yet much of the current
XAI research has focused on machine learning, with other
subfields (e.g. AI planning) receiving less attention. Secondly,
AI systems exhibit many stakeholders, including non-expert
end-users, yet much of the current XAI research has focused
on expert stakeholders (e.g. machine learning experts). Thirdly,
different stakeholders interact with AI technology in different
ways, and in the case of non-expert stakeholders evaluating
XAI research depends on an underlying AI system that can
sufficiently engage users and thus give rise to a need for
explanations. In this paper, we address some aspects of the
above challenges by developing a smart home battery system
for non-experts that relies on AI planning and offers an
explanation module.

Planning is an important subfield of AI. For example, plan-
ning can navigate scattered robots to reach a predetermined
formation [7] and reduce global vehicle scheduling times [8].
However, fully understanding planning algorithms and their
solutions can be extremely difficult for non-experts, if not

This work is partially funded by the EPSRC CHAI project (EP/T026820/1).

experts. The field of explainable AI planning (XAIP) is the
subfield of XAI as it relates to planning [9]. One example is the
work of Eifler et al., who in [10] propose an approach to XAIP
inspired by planning as an iterative process. This setting refers
to a type of human-in-the-loop planning where features of the
planning problem (e.g. goals, preferences) are only partially
understood. The basic idea is that these aspects of the planning
problem can be refined through an iterative process of altering
the problem, (re)planning, and then observing the outputs.

The notion of contrastive explanation is well-established in
philosophy and social science [11]. The observation is that
when humans seek explanations they do not ask simply why
P? but instead ask why P rather than Q? where Q is some
contrastive event known as a foil. In AI planning, a planning
problem describes a state-action transition system with an
objective (e.g. goal states) such that a solution is an optimal
plan that specifies applicable actions to execute in order to
achieve the objective. If we specify constraints on valid states
or actions then it is possible to limit the space of valid plans
such that every solution must satisfy the constraint. In the
human-in-the-loop setting for example, such constraints may
express user preferences. A natural application of contrastive
explanations to the setting of AI planning then is to allow
users to ask of the system questions of the form why did
the system recommend this plan rather than one that satisfies
constraint C?. Suitable explanations may be that the constraint
is unsatisfiable, that the constraint is satisfiable but leads to
higher cost, or that the constraint can indeed be satisfied with
equal cost.

A planning system was proposed in [5] for scheduling a
smart home battery so as to optimise home electricity costs.
In this paper we extend this work by developing an interactive
planning system that offers constrastive explanations. There
are three main contributions of this paper. First, we design
and implement a fully interactive planning system. Second,
we propose a notion of contrastive explanations based on
state- and action-constraints. Third, we design an explanation
module that allows users to request contrastive explanations,
having both visual and textual representations. The system
includes two variants: in one variant (for the treatment group)
the XAI module is included, and in the other variant (for the
control group) the XAI module is excluded. The rest of the
paper is organized as follows. In the Section 2, we introduce
the main concepts used in smart home battery planning.



In Section 3, we give the formal definition of contrastive
explanation in planning and describe the architecture of the
system. In Section 4, we provide details of the interactive
interface and how it is used by two different user groups. In
Section 5 we conclude with a short discussion.

II. PRELIMINARIES

In this section we give a very brief introduction of MDP
and the main definitions in [5] that are used to design and
implement the back-end of a smart home battery planner.

MDP is a tuple (S,A, T,C) where S is a set of states, A is a
set of actions, T : S×A → S is a transition function, and C :
S ×A → R is a cost function. A finite-horizon MDP extends
the standard MDP definition by including a (decision) horizon
tmax ∈ N with D = {1, . . . , tmax} the set of timesteps. A
(non-stationary) policy is a function π : S × D → A where
the cumulative cost of π in state s ∈ S at timestep t ∈ N is
defined as:

V (s, t, π) =


C(s, a)
+ V (s′, t+ 1, π)

if 1 ≤ t ≤ tmax

0 otherwise
(1)

such that a = π(s, t) and s
′
= T (s, a). A policy π∗ is an

optimal policy if it minimises V (s, t, π∗) for all s ∈ S and all
t ∈ D.

Definition 1. A battery scheduling problem is a tuple
(β, s1, λ, tmax, U, PI , PE) where:

• β ∈ R≥0 is the (battery) capacity constant
• s1 ∈ [0, β] is the current (battery) level
• λ ∈ [0, β] is the (dis)charge rate per timestep
• tmax ∈ N is the horizon with D = {1, 2, . . . , tmax}
• U : D → R the (electricity) consumption forecast
• PI : D → R the (electricity) import price forecast
• PE : D → R the (electricity) export price forecast

Definition 2. Let (β, s1, λ, tmax, U, PI , PE) be a battery
scheduling problem. A battery scheduling model is an MDP
(S,A, T,C, tmax, s1) where:

• S = [0, β] is the set of (battery level) states
• A = {−1, 0, 1} is the set of (battery) actions with 1 the

charge action, -1 the discharge action, and 0 the no-op
action

• T : S×A → S is the transition function defined for each
s ∈ S and each a ∈ A:

T (s, a) = min{β,max{0, s+ aλ}} (2)

• C : S ×D × A → R≥0 is the cost function defined for
each s ∈ S and t ∈ D as:

C(s, t, a) = u+
a PI(t) + u−

a PE(t)− C∗(t) (3)

C∗(t) = min

{
u+
maxPI(t) + u−

maxPE(t),

u+
minPI(t) + u−

minPE(t)

}
(4)

where, given s and t:

ua =


U(t) + min{λ, β − s} if a = 1

U(t)−min{λ, β − s} if a = −1

U(t) if a = 0

(5)

umax = U(t) + λ (6)
umin = U(t)− λ (7)

such that x+ = max{0, x} and x− = min{0, x} for any
x ∈ R

• tmax ∈ N is the horizon with D = {1, 2, . . . , tmax}
• s1 ∈ S is the initial state

III. DESIGN OF SMART HOME BATTERY XAI SYSTEM

This section introduces the design of the Smart Home
Battery (SHB) XAI system. Our first research question is
to examine if visual information alone is sufficient or visual
information plus contrastive explanation is more useful for
non-experts to understand a planner’s output. In order to
achieve this, we designed two versions of a user interface,
one for each user group (which will be discussed in detail in
the next section).

A. State-constraint and action-constraint

Fig. 1 shows the dynamic process of planning without con-
straints, which is implemented as a search algorithm traversing
the MDP model as nodes to obtain the lowest cost path (or
plan), as introduced in Preliminaries.

Fig. 1. Planning without constraints is shown, the yellow node is the initial
state, the green node is the optimal goal state and the red path is the optimal
plan (optimal policy π∗) in this goal state.

State-constraint and action-constraint are formalised as fol-
lows:

Definition 3. Let S be a set of states and D be a set of
timesteps. A state-constraint is a function f : D → 2S where
f(t) ⊆ S is the set of acceptable states at timestep t ∈ D. A
plan π satisfies state-constraint f if, for any execution of π
from initial state s1 ∈ S, it is guaranteed that si ∈ f(ti) for
every timestep ti ∈ D with si the state at ti.

According to Definition 3, a scenario of dynamic process
of planning with state-constraint is shown in Fig. 2.

Definition 4. Let S be a set of states, A be a set of actions
and D be a set of timesteps. An action-constraint is a function
g : D → 2A where g(t) ⊆ A is the set of acceptable actions
at timestep t ∈ D. A plan π satisfies action-constraint g if, for



Fig. 2. Following from Fig. 1, when state-constraint is enforced, s2 ̸∈ f(1)
removes the left most branch forcing the planner to search for other policies
as indicated by the red-coloured path.

any execution of π from initial state s1 ∈ S, it is guaranteed
that π(si) ∈ g(ti) for every timestep ti ∈ D with si the state
at ti.

According to Definition 4, a scenario of dynamic process
of planning with action-constraint is shown in Fig. 3.

Fig. 3. Planning with action-constraint is shown, where a2 ̸∈ g(2) affects
the search path of an optimal policy.

The definiton on contrastive explanation for planning is
given in Definition 5.

Definition 5. Let Ψ(·) denotes an explanation function. Let
Ψ(π) be an explanation for plan π and Ψ(π|f) (or Ψ(π|g)) be
an explanation for plan π after state-constraint and/or action-
constraint are imposed on π. Then the visual and/or textual
comparison of the effects of Ψ(π) and Ψ(π|f) (or Ψ(π|g)) is
called contrastive explanation.

In this study, we instantiate function Ψ(·) to be a proce-
dure which accepts new constraint values on state or action
variables, passes the values to the back-end planner and then
feeds both the original plan and the newly generated plan to
the front-end.

B. System Architecture

The architecture of SHB system is shown in Fig. 4, this
system is developed according to the Model-View-Controller
(MVC) design pattern. Once the system is released, users can
access the SHB system through a browser.

The visualisation pages belong to the View. The back-end
is divided into two modules, the module interfacing with the
front-end belongs to the Controller and the other modules for

Fig. 4. System Architecture

data processing belong to the Model. After the user selects a
specific operation in the front-end, the instruction is passed
from the View to the Controller, where the instruction finds
the corresponding interface to call the module in the Model to
address the specific task, and then the result is returned to the
view according to the previous route.

Module Plan contains the code related to planning and
Module problem refers to the code related to the MDP model.
The Dataset is used to store information about the user’s
ratings in the questionnaire which will serve the evaluation
task at a later stage.

An interface of the SHB system is shown in Fig. 5 and con-
sists of two panel: the Visual Information panel (Visualisation
panel) on the right, and the Textual Information modules on
the left, both presenting the outcomes of a plan in the most
visual way possible.

Fig. 5. An interface for presenting visual and textual information to non-
experts.

C. Visual Information Interface Design

The Visual Information panel consists of three plots which
show the Scheduled battery modes, Electricity consumption
and Electricity costs from top to bottom.

The plot of Scheduled battery modes plots the data at this
period on a scatter plot and tells the user exactly which
action (mode) the battery to perform at each time step. For
example, in 02:10-02:15 on 4 April the battery in the mode
of “discharged” and in 13:30-13:35 on 6 April the battery in
the mode of “charged” .



The plot of Electricity consumption is a line graph plot-
ting the capacity of the battery at each point in time. The
Scheduled battery modes and the Electricity consumption are
precisely correlated. For example, if the battery is discharged
at 3:55 on 3 April, the battery capacity falls and if the battery
is charged at 18:45 on 3 April, the battery capacity rises.

The plot of Electricity costs depicts the costs of standard
electricity (yellow line) and the costs of accessing (red line)
the battery at each time point.

D. Textual Information Interface Design

Fig. 6. The Why not ...? panel

The Textual Information is made up of two panels, the
Summary panel and the Why not ...? panel. This module
describes the most important information compactly.

The Summary Panel contains six data items as well as the
Schedule Battery button; the Period indicates which period
of time the system is currently displaying; the Consumption
shows how much power was consumed during that period;
the Average cost indicates the average cost to the user during
that period; the Cost tells the user how much it has cost under
standard conditions; and the Cost with Battery column tells the
user how much it costs with battery access. For example, the
Summary Panel in Fig. 5 shows that the customer consumed
93.64 kWh of electricity from 1 April 2021 to 7 April 2021,
costing £10.80, with an average cost of 11.53 pence per kWh.
If the battery was used, the customer would only have been
charged with £6.62.

The function of the Why not ...? panel allows the user to
set constraints and to re-plan according to the constraints.
The constraints in re-planning and its outcome can be easily
compared with the original planning data in the Summary
panel demonstrating the contrastive explanation effect. The
Why not ...? panel consists of three rows of input, two buttons
and four items of data. This panel is described by the example
in Fig 6, and the specific interaction functions are described
in the next section. The original plan in Fig 6 gives the user
a standard cost of £10.80, whereas the constrative replanned

cost with using a battery is £6.71, a saving of £4.09. The user
is then told via textual information that the new plan with the
user’s constraints actually costs £0.09 more than the original
plan.

IV. INTERACTION OF XAI IN SHB

In our interactive interface, we allow users to reset one or
both of constraints in order to see the effects of these changes
on battery status and prices. Therefore, our second research
question is: which type of constraints do users use often, state-
based (change the mode of battery) or action-based (change
the charging state of a battery).

We plan to divide our users into two groups: one is the
Control group with only visual and summary information,
and another is the Treatment group with visual, summary and
contrastive interactions.

A. Interaction for Users in the Control Group

The Control group interface is shown in Fig. 7. The figure
shows that users in this group can see Visual Information and
limited Textual Information. The interactive functions of the
control group are described next.

Fig. 7. Control group system interface

In Summary panel, the system provides the user with the
function to select a time period. If the Schedule Battery button
is clicked, a modal box will pop up allowing the user to select
a new time period to be observed. The system will always
display a default setting (e.g., 1st April to 7th April 2022) to
start with.

In Visualisation panel, at the bottom of this area there is a
Datazoom slider, which can be dragged to zoom in (see Fig.
8(a)) and out (see Fig. 8(b)) on the data in the Visualization
interface.

(a) Zoom in on data (b) Zoom out on data

Fig. 8. Zoom in and out operations in the Visualisation panel



In this panel, there is a synchronous relationship between
the three plots in terms of zooming in and zooming out
operations. When a user selects a specific point on any plot,
the data for all three plots corresponding to the same timestep
will be displayed in the style of bullet points in tooltip.

For instance, in Fig. 7, with timestep at 16:25 on the 3rd
April, the pop-up box provides all the details relevant to
battery power, price of using the battery, standard price and
the battery mode at the time.

B. Interaction for Users in the Treatment Group

Treatment Group users can use all the functions available
to the Control Group. Functions specific to this group are
introduced below.

The three lines of the input box are intended to allow a user
to do the following three things: (i) set the period for re-plan;
(ii) change actions; (iii) change states. The latter two affect
the mode of a battery. These interactions are for gathering
constrains from a user for generating contrastive explanations.
For the start date/time and end date/time input boxes, the user
is allowed to enter them manually, or select them by clicking
on the points in the plot of Scheduled battery modes because
the plot is a scatter plot and it is easier for the user to find
a specific point by zooming in and out. Note that if a user
chooses the latter, the selected points will replace the previous
inputs in turn. Once a user has entered all the constraints, the
system will re-plan upon the user clicking on the Ask question
button.

The green lines/dots are for after re-plan whilst the red
line/dots are for the original plan. This way, we can constra-
tively visulize the effects of the two plans. The user can also
look at a particular plan by clicking on the legend in each
plot. If a user wants to experience more about the effects of
different constrains on new plans and their associated cost
savings/losses, they can use the reset button to remove the
previously entered constraints and enter new constraints to re-
plan again.

C. Gamification in contrastive explanation

Gamification is a useful way for a user to learn in a
given setting. Here in our design, we borrow the concept of
gamification which means we allow a use to reset some values

of variables which can affect the outcome of a planner. This
way, a user is able to see the comparisons through contrastive
explanation. The outcome is displayed in the Summary panel
and the planner is informed of the difference in cost savings
between the re-plan and the original plan. The smaller this
value is the less impact the restrictions added by the user have
on the original plan and the closer the effect of the re-plan is
to that of the original plan.

By allowing a user to experiment multiple times, we
can observe if a user has gained the understanding of the
explanations provided, so that their next round of reset of
constraints values are closer to producing optimal outcomes
(e.g., maximal savings).

Fig. 9. Action-constraint

Once constraints are entered and a new plan generated
(e.g., a revised cost obtained), the user can focus on the
modified part by means of a zoom operation and visual
displays of different colour-coded lines in Fig.9, where the red
and green lines (or points) show details of process on planning
without constraints and planning with action-constraints or
state-constraints respectively. The user can clearly see the
comparisons of changes in the two planned actions at each
moment and the changes in battery state, as well as the changes
in costs at each moment. Each user will be allocated 10
minutes to experience the system freely and after which the
user will stop all operations and will proceed to click on a
button leading to the questionnaire. Users can have unlimited
number of tries, and for each round they do so, constraints
they entered will be recorded in the log for later analysis.

TABLE I
QUESTIONNAIRE

Likert scale labels
Question (1) (7)

C
an

d
T

G
ro

up Q1 How difficult was it for you to understand the visual information on the right panel very easy very difficult
Q2 Was the visual information and additional information provided for any specific datapoint useful? not useful at all very useful
Q3 Was the visual information helpful for you when you look at the Summary information? not useful at all very useful
Q4 Were you able to enter more appropriate values using Schedule Battery button in subsequent attempts? not any better much better
Q5 Would you like to have some explanations about a Summary? no preference very much so
Q6 Would you have expected to see some textual explanations in addition to visual information? not expected fully expected

T
G

ro
up Q7 How useful was it to allow you provide constrains to see different prediction results in the “Why not”

panel? not useful very useful

Q8 Were the contrasting visual displays of the original predictions versus alternative predictions useful? not useful very useful

Q9 How satisfied were you with the textual information provided in the “Why not” panel following the
click of the “Ask question” button? not useful very useful



V. DISCUSSION AND CONCLUSION

A. Discussion

The evaluation of XAI differs from machine learning.
Machine learning has explicit evaluation standards and a
reference baseline, and typically model performance metrics,
such as accuracy, increase with the number of training rounds
and eventually converge to a specific value. However, these
methods are difficult to be transferred directly to the evaluation
of existing XAI systems, as each individual has a subjective
view, which makes it difficult to obtain a uniform standard for
evaluating systems.

Authors in [12] explained the decision tree model with the
help of an explanatory tool, then designed a questionnaire
to invite participants to evaluate the model according to its
characteristics, and finally analysed the data collected.

Authors in [13], [14] first conducted a theoretical study
of planning, after which the previous research results were
developed into an explanatory system [15]. The way both
studies evaluated the explanation was similar that is, both
invited users to evaluate their system through a questionnaire.
The questionnaires used the Likert scale, the former on a 5-
point scale and the latter on a 7-point scale.

However, there are still some differences in the workflow,
[12] did not develop a complete system and only presented
the explanation of the model to the user in a static interface,
there was no interaction in the process. Research in [13]–
[15] was much more systematic in that they first conducted
theoretical work and then developed the theoretical results
plus explanations into a system for users to experience and
evaluate. These studies also introduced a control group into
their evaluation so that comparisons could more visually high-
light the usefulness of the explanations. The latter evaluation
will be more convincing than the former. However, whereas
the latter gives explanations involving a large amount of
text, our explanations are predominantly visual and we show
more detail as well as provide action-constraint and state-
constraint service. Different from the above two studies, our
XAI interface is interactive, with both visula and textual
information. Furthermore, we provide constrstive explanation
in both of these forms too. Table I, shows the questions we
are going to use in our questionnaire.

Our next step is to invite participations and randomly divide
them into the Control and Treatment groups. Our analysis
and evaluation are to address the two research questions we
posed early and to provide some deeper understanding as how
contrastive explanation can influence a user’s understanding
of an XAI system. We will also want to discover if visual
information alone can achieve significant satisfaction from
user about the basic understanding of the system, so that
in some situations, textual or contrastive explanation can be
omitted.

B. Conclusion

In this paper, we introduced, designed and implemented
an XAI system for a planner for battery management at

homes. Our XAI interface design was guided by two research
questions, that is, is visual information alone useful or shall
we always provide more sophisticated explanation options
(e.g., contrastive explanation). The paper discussed how users
can better understand the system and build trust with it
through comparative explanations and iterative planning. This
is followed by a discussion of related research and our future
work.
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