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Abstract—Non-expert users are increasingly affected by the
decisions of systems that rely on machine learning (ML), yet it
is often difficult for these users to understand the predictions of
ML models. In this paper, we propose a web-based platform to
evaluate explainable AI (XAI) for non-experts in the context of
time series forecasting, focusing on energy price predictions as
an exemplary use case. The XAI methods we consider include
local feature importance and counterfactual explanations. The
platform relies on gamification to encourage user engagement.
Our research objective is to evaluate the effectiveness of these
different approaches from the perspective of non-expert under-
standing of machine learning models.

Index Terms—XAI, global, local, counterfactual explanation

I. INTRODUCTION

Machine learning (ML) and Artificial Intelligence (AI) has
demonstrated effectiveness across a range of domains such as
finance [1], medicine [2], social media [3] and autonomous
driving [4], [5]. However, for those who interact with AI, the
lack of transparency and ability to understand their actions
may affect their trust in such systems. This is especially notice-
able when the system is making high-stake decisions [6] where
human understanding of those decisions is vital. In the medical
industry [2], for example, diagnosing a condition early can
be critical. In the banking sector, AI-enabled banking systems
may use credit scores to decide if a loan request is granted, and
suitable explanations are expected if a loan request is denied.
Explanations are required not just by researchers, but may also
be required by regulatory obligations that are becoming more
prevalent, such as the General Data Protection Regulation
(GDPR) [7] which requires that the underlying principles for
algorithmic predictions be transparent, and that the rationale
behind those predictions be explainable, if necessary.

One common categorisation of machine learning models,
within this context, is white box and black box models, with
the former models decision-making considered transparent,
and the latter less so. Further, XAI approaches can be char-
acterized as producing global or local explanations, or as
being post-hoc or ante-hoc [8]. That is, global explanations
provide a higher level insight into a model while local expla-
nations provide individual instance-specific explanations. Post-
hoc methods provide explanations for an already trained model
whilst ante-hoc methods produce an additional component (to
the trained model) to aid explanations.

This work is partially funded by the EPSRC CHAI project (EP/T026820/1).

In [9], the authors divided users of an AI system into
three classes based on their expertise: AI beginners, domain
experts, and AI experts. This is based on the belief that distinct
groups have different requirements. While AI experts may find
utility in global explanations of how machine learning models
function, beginners and (non-AI) domain experts may benefit
more from local explanations about the relationship between
specific inputs and outputs. Although explanation has been
found to increase understanding of ML systems for a wide
range of audiences [10] [11], non-experts are chosen as an
important but under-represented class of stakeholder within
XAI research [12].

Gamification is the incorporation of game elements into
systems or activities for the purpose of motivating and engag-
ing users [13]. Gameplay data from users can be logged and
analyzed, with the aim of to improve the underlying system.
For example, [27] utilised a type of gamification called games
with a purpose (GWAP) [14] to evaluate XAI at scale. The
authors concentrated on explaining deep learning models that
have been built for image recognition, and claim it is the first
time that GWAP has been used within XAI research. In [15],
the authors replaced the game design with user objectives in
XAI planning, and added money as an incentive. They connect
the user’s objective (or goal) to payment via a bonus that
grows in proportion to the goal value attained, which gives
an incentive to develop a successful strategy.

In this paper, we design and develop an interactive XAI
system for non-experts. As an application domain we use an
ML model that performs energy price prediction. We design
two interactive user interfaces. One interface is intended for
users in a control group, whilst another interface is intended
for users in a treatment group. Our proposed gamification uses
a simple game to allow users to experience how the value of
different features influences predictions of the underlying ML
model. A simple score mechanism is used to inform a user how
their own predictions differ from the system’s predictions so
that, with repeated play, a user can gain a better understanding
of the underlying ML model.

The rest of the paper is as follows: Section 2 introduces the
dataset and gamification. Section 3 discusses global, local and
counterfactual explanations. Section 4 describes the system
design. Finally, we provide a brief summary and our plans for
the future in the conclusion.



II. PRELIMINARIES

A. Dataset Description

The dataset used in this study is Octopus Energy import
prices1 for the London region during a two-year period be-
ginning midnight on 1 January 2018 and ending at midnight
on 31 December 2019. The original dataset is a time series
dataset containing 34,993 instances at 30 minute intervals,
with the current electricity price with and without tax2. In
order to use standard regression algorithms we pre-process
the dataset to extract the following set of time-based features:
year, month, day, hour, day of week, is weekend. In addition to
those, weather and carbon intensity features are also added to
the dataset to improve the predictive performance of the model.
Carbon intensity data comes from carbon intensity forecast in
National Grid ESO3, which is described in terms of a 96+ hour
forecast of CO2 emissions per kWh of consumed electricity.
Meteomatics4 provides temperatures in degrees Celsius for the
London area and is updated every half-hour.

To select a regression model we first evaluate several
common regression models to identify a performant model for
our XAI experiment. We emphasise that we are not interested
in identifying a state-of-the-art model for this task, but that
any reasonably well-performing model will suffice. We trained
several regression models, using the final month for evaluation.
Mean squared error (MSE) is the evaluation metric used which
measures the mean squared difference between the predictions
and the ground truth. Table I provides the performance of the
top three regression models we tested, in terms of MSE, with
the Random Forest model achieving the best performance.
Furthermore, the performance from these models improved
when carbon intensity and temperature were added as extra
features, with the MSE for the best performing model reducing
from 6.33 to 3.31.

TABLE I
TOP THREE PERFORMING REGRESSION MODELS.

Regression Model MSE
Random Forest 3.31

Extra Trees 3.56
Histogram-based Gradient Boosting Regression Tree 3.75

B. Gamification

The inclusion of a gamification component in our XAI
system provides a metric for us to evaluate user performance.
In our study, we seek to measure the understanding that a
non-expert has of an underlying ML model. To aid this,
we design a game where the user receives a score based
on their understanding. This Score will be received during
gameplay. Despite the fact that there are presently a variety of

1https://api.octopus.energy/v1/products/AGILE-18-02-21/electricity-
tariffs/E-1R-AGILE-18-02-21-C/standard-unit-rates/

2The original column is:value exc vat, value inc vat, valid from, valid to
3https://carbonintensity.org.uk/
4https://www.meteomatics.com/en/

explanatory approaches for black box models, such as LIME
and SHAP, quantitative assessment methodologies for XAI are
presently lacking. There is currently no agreement on how best
to assess explanations [16]. In one example, [16] evaluated
explanations in terms of application-ground, human-ground
and function-ground. However, no precise objective evaluation
techniques are provided. Several researchers have validated
the efficacy of explanations by conducting user studies. In
[17], over 200 participants were asked to evaluate an XAI
interface. The study deployed an assessment measure called
the Explanation Satisfaction Scale to measure satisfaction after
providing explanation. However, this assessment approach is
static and not based on incentives, while the subjective nature
of user-reported satisfaction makes it difficult to judge the
real usefulness of explanations. Our gamification and scoring
mechanism aims to overcome this limitation.

Our game interface asks the user to estimate the relationship
between a model’s predicted price X and a hypothetical
estimated price Y , given a specific input instance, with a
limited number of qualitative options for the user to choose
from. Those options are much less than, less than, similar
to, greater than, much greater than. The reason we ask for
a qualitative estimation is to place less cognitive load on the
(non-expert) user. Each option is associated with a qualitative
numeric value from {−2,−1, . . . , 2} as shown in Table II.
The absolute difference between the qualitative numeric value
of the model’s prediction and the user’s choice, normalised
by the maximum absolute difference (i.e. |2 − (−2)| = 4),
is then taken as the user’s score. Thus, scores are taken from
{0, 1, . . . , 4} with 4 being the best score and 0 being the worst.
For example, if the user estimates that X is much greater than
Y, and X is actually less than Y, then the user will be awarded
the score of 4 − |2 − (−1)| = 1. Scores thus provide a way
to measure user understanding of the underlying ML model,
and follow the common-sense understanding in games that a
higher score is better.

TABLE II
AN OVERVIEW OF THE SCORING SYSTEM.

Option Semantics Numeric value
Much less than X <Y-20 -2

Less than Y-20 <= X <Y-5 -1
Similar to Y-5 <= X <= Y+5 0

Greater than Y+5 <X <= Y+20 1
Much greater than Y+20 <X 2

III. EXPLANATIONS FOR BLACK BOX MODELS

Broadly speaking, machine learning models can be divided
into two categories related to their interpretability, namely,
black box models and white box models. Black box models
models are difficult to understand on their own [18], and as
a result, their is a greater need for explanation. On the other
hand, white box models [18] are regarded as interpretable by
design, and hence are easier to explain.

According to the results of our experiments, the Random
Forest model, which may be considered a black box model,



performs the best at our task. A random forest model is a
collection of decision trees, each trained on a different subset
of the data with random subsets of the features. As a result,
viewing each tree (of the typically large number) is not a viable
explanation approach for non-experts.

Some explanation methods that do not consider the specifics
of the machine learning model model, but only the inputs
and outputs, are collectively referred to as model-agnostic ex-
planations [19]. Model-agnostic explanation can be separated
into global and local approaches, depending on the aim of
interpretation.

A. Global Explanation

To interpret the model’s global output, the model must be
trained to understand the algorithm and the data. This level of
interpretability refers to the model’s decision-making process
in relation to the full feature space and model structure.
The most popular global approach is Permutation Feature
Importance (PFI) [20] The PFI is used to determine which
feature has the most influence on the prediction. The PFI
selection approach evaluates a model’s performance after elim-
inating each unique feature and replacing it with random noise.
Individual feature importance may thus be directly compared,
and a quantitative threshold can be utilised to determine feature
inclusion. In Fig. 1, the rows towards the top are the most
important features, and those towards the bottom matter least.
Thus, hour is regarded as the most important feature, whereas
day is seen as the least important.

Fig. 1. Global explanation for the energy price dataset

B. Local Explanation

[21] points out that local explanation offers a tailored
explanation that is focused on the particulars of each instance.
It provides a thorough explanation of how a machine learning
model may provide precise predictions about the features
effecting a specific prediction. The authors studied the global
and local interpretability of machine learning in Type 2
diabetes screening, and found that characteristics such as age,
gender and body mass index (BMI) contributed significantly
to global explanation. However, for a specific patient they
found that depression, smoking status or physical health had
a significant impact on the development of Type 2 diabetes in
that patient.

In our work, we use SHapley Additive exPlanations (SHAP)
[22] to generate the local explanation. SHAP can find the
feature importance which can interpret the predictions of

any machine learning classifier or regressor. SHAP includes
two sub-methods: KernelSHAP and TreeSHAP. We utilise
TreeSHAP to explain our Random Tree regressor.

To illustrate, we use the SHAP method to provide a local
explanation for one instance of our dataset. Table III depicts
the feature values of an instance that we want to investigate.

TABLE III
AN INSTANCE FROM OUR DATASET.

Temperature Carbon intensity Year
2.4◦C 229 gCO2/kWh 2019
Month Day Hour

December 1 0 am
Day of week Isweekend -

Saturday Yes -

According to Fig. 2, we can not only see the influence trend
of each feature, but we can also see how the features contribute
to a single prediction. Shap values deconstruct a prediction to
demonstrate the impact of each feature. The resulting price is
£7.52, while the base value is £12.24. The feature values that
cause greater predicted values are highlighted in pink, and their
visual size indicates the magnitude of the feature’s effect. Blue
represents feature values that decrease the predicted value.

Fig. 2. Local Explanation

In this scenario, the local explanation concludes that features
“temperature” and “carbon intensity” have a positive influence
on the prediction, while “hour”, “year”, and “day” have a
negative influence. Based on this plot, we could generate the
following textual local explanation in a pop-up window: “tem-
perature” and “carbon intensity” are the two most inferential
features for energy price in this case”.

C. Counterfactual Explanation

[23] discussed that the end-user may not be particularly
interested in why a certain prediction was obtained and which
features of the input led to the prediction. Instead, they may
be more interested in understanding the changes that can be
made to obtain other predictions. Counterfactual explanations
primarily address the issue of how the prediction will change if
a certain change in the features of the input occurs. It compares
the user’s expectations with the actual predicted outcomes, and
provides suggestions about how to change feature values in
order to alter prediction results. In some cases, counterfactual
explanation is more intuitive and useful within the local ex-
planation category. Furthermore, some psychologists [24] [25]
have demonstrated that counterfactuals elicit causal reasoning
in humans.

Counterfactual explanations are commonly selected based
on some measure of proximity to the original input. By
restricting which features to focus on (and what range of



values they can take), specific counterfactual instances can be
found to better meet a user’s expectation.

We can use the same instance in Table III as an example to
generate explanations for using DiCE [26], which generates
counterfactual explanations of machine learning models. In
Fig. 3, the top row represents the feature values of the
explainee datapoint and the bottom rows represent two coun-
terfactual datapoints. In these two rows, features with “-” mean
that these features have the same values as the explainee data-
point. Accordingly, the features with values present are those
which are different from the explainee datapoint’s features.

Fig. 3. Counterfactual Explanation

We implemented and integrated DiCE as part of the inter-
face and Fig. 3 is part of the interface, where a pop-up arrow
will point to the feature values that have influenced the ML
to produce the alternative outcomes.

IV. SYSTEM DESIGN

A. System Architecture

Fig. 4 illustrates how the architecture of our proposed
system. The system involves three main components. They
are front-end, back-end and the dataset. The front-end is end-
user facing, which receives user input to be transmitted to
the back-end via an API, which then performs tasks such as
prediction and explanation generation. The dataset component
is used purely to train the underlying ML model which the
user is seeking to understand.

Fig. 4. System architecture

B. Interface Design

The interface has three panels. They are the visualisation,
game interface and game board panel. Fig. 5(a) depicts the
visualisation panel. The visualisation is presented to the user
with a stepped line chart. In our system it displays the energy
tariff price in the future (e.g., one year from now), with a
point at every half-hour interval. Additionally, for exploration,
the top of this panel displays a week calendar picker to allow
users to change calendars week by week. Fig. 5(b) illustrates
two sliders for the carbon intensity and temperature feature

values. The default carbon intensity is set to 150 gCO2/kWh,
and the default temperature is set to 20 ◦C. The scale of the
carbon intensity is from 0 gCO2/kWh to 300 gCO2/kWh and
the scale of temperature is from 0◦C to 40◦C.

(a) Visualization (b) Slider

Fig. 5. Visualisation and feature slider controls.

The game interface panel is depicted in Fig. 6(a). The
purpose of this panel is for users to explore the system
interactively. Fig. 6(b) shows the game board displaying the
results of each round of the game. There are five rounds
for each player to play. The game board is divided into six
columns for treatment group participants. They are as follows:

• day/time: it shows the date and time of each round.
• User’s answer: it show the result inferred from the

visualisation screen.
• Whether the user requests explanation or not: it shows

whether an explanation is required (i.e, yes or no)
• User’s answer (second): it shows the result inferred after

viewing the textual explanation.
• Correct answer: it shows the true answer.
• Score: it shows the score received for each round.

(a) Game Interface

(b) Game board

Fig. 6. Game interface and game board panel

C. Interaction Design and Gamification for Local Explanation

The treatment group user interface uses gamification for
local explanation. That is, each round of games is about one
specific datapoint where data feature values are given, and
through gamification, a user is tasked with the predicting the
prediction of the underlying ML model for that datapoint. Al-
though gamification used in this paper does not provide coun-
terfactual examples, through the process of playing games, a
user can obtain comparisons between different instances. The
user can analyse the correlation between feature input values
and their predictions and could learn from each round of play.



We provide a case study of the gamification interface for
the treatment group. Fig. 7 demonstrates the whole interface
for treatment group participants.

Step 1: The game interface is populated by the feature values
of the datapoint whose price is to be predicted.

• datetime: 07:00–07:30 on Wednesday 1 January
2025 (this should occur in the future)

• carbon intensity: 112 gCO2/kWh.
• temperature: 2.4◦C.

Step 2: The task is for the user to utilise explanations in order
to determine if the a hypothetical price is close to what
the underlying model would predict given the features.
For this reason, each round of the game includes a
hypothetical price. To utilise the visualisation, the user
can modify the carbon and temperature features via
the sliders (e.g., move temperate slider to 2.4◦C, and
the carbon intensity slider to 112 gCO2/kWh). They
can then inspect the chart for time-related trends by
changing e.g. the month or year. For example, users
may inspect:

• Prices at 07:00am-07:30am every day.
• Prices every Wednesday.
• Prices on the first day of every month.
• Prices in May every year.

After completing all operations and analysis, the user
triggers the button to refresh the visualization with the
matching parameters

Step 3: The system asks the following question: What do
you think the relationship is between the model true
predicted value and the hypothetical estimated price?
A user needs to select a Radio button (corresponding
to the qualitative options introduced previously) as an
answer based on their analysis of the visualization.
The system will then display a message to tell the
user whether their choice is correct.

Step 4: Users are asked further questions Do you require
some explanation?. User can select either Show or No,
Finish. If the user selects Show, a local explanation
will be displayed. If the user selects No, Finish, the
game will move on to the next round. After selecting
Show, the user is prompted to select again by the
sentence “Please choose again:”. Once done, the user
can Submit. The game repeated in this way 5 times.

Step 5: All recorded information is shown in the game board
with Score being calculated by the system.

In the game board panel, two critical pieces of information
will be recorded by the system. Firstly, it is important for users
in the treatment group to determine whether the user requests
the textual explanation or not. This information may indicate
whether the user felt confident in their understanding of the
visualisation. Secondly, the users score is important as a metric
of their understanding and will aid in further analysis of user
performance.

Fig. 7. The complete XAI user interface.

V. CONCLUSION

In this paper, we proposed a web-based XAI system con-
sisting of visual and textual components using gamification
to measure non-expert user understanding of a ML prediction
model. For illustrative purposes, we used home energy price
prediction as the application. The proposed system is flexible
in that it supports not only various explanation modalities, but
also different types of explanations, i.e., local and counterfac-
tual explanations. In future work, we will conduct real-world
user experiments using the proposed system.
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