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Abstract

Studies leveraging gene-environment (GxE) interactions within Mendelian randomization

(MR) analyses have prompted the emergence of two similar methodologies: MR-GxE and

MR-GENIUS. Such methods are attractive in allowing for pleiotropic bias to be corrected

when using individual instruments. Specifically, MR-GxE requires an interaction to be explic-

itly identified, while MR-GENIUS does not. We critically examine the assumptions of MR-

GxE and MR-GENIUS in the absence of a pre-defined covariate, and propose sensitivity

analyses to evaluate their performance. Finally, we explore the effect of body mass index

(BMI) upon systolic blood pressure (SBP) using data from the UK Biobank, finding evidence

of a positive effect of BMI on SBP. We find both approaches share similar assumptions,

though differences between the approaches lend themselves to differing research settings.

Where a suitable gene-by-covariate interaction is observed MR-GxE can produce unbiased

causal effect estimates. MR-GENIUS can circumvent the need to identify interactions, but

as a consequence relies on either the MR-GxE assumptions holding globally, or additional

information with respect to the distribution of pleiotropic effects in the absence of an explicitly

defined interaction covariate.

Introduction

Mendelian randomization (MR) is an epidemiological approach applied to observational data,

wherein genetic variants are used as instrumental variables (IVs) to estimate the effect of a

modifiable exposure on a downstream outcome [1]. MR encompasses a wide range of statisti-

cal methods, and typically relies upon three assumptions to test for causality. A suitable genetic

IV is strongly associated with the exposure of interest (IV1), independent of confounders of

the exposure and outcome as well as confounders of the genetic IV and outcome (IV2), and

independent of the outcome when conditioning on the exposure (IV3) [1, 2].
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Violation of assumptions IV2–3 can introduce bias into MR effect estimates, and as a con-

sequence methods for identifying and correcting for such bias have formed a central theme

within the MR methods literature [2–4]. In many cases, such methods focus upon correcting

for bias resulting from associations between a genetic IV and an outcome which are unrelated

to the exposure of interest, defined as horizontal pleiotropic pathways [5]. Pleiotropy robust

methods frequently use heterogeneity in causal effect estimates across multiple genetic IVs as

an indicator of horizontal pleiotropy, though such approaches are less feasible as the number

of available genetic IVs decreases [6, 7].

One solution to the problem of limited available genetic IVs is to leverage variation in

instrument strength across one or more covariates within a target population, representing a

gene-by-covariate interaction [8–10]. Intuitively, were it possible to identify a population sub-

group for which a genetic IV and exposure are independent (i.e., a ‘no-relevance group’), it fol-

lows that, in the absence of horizontal pleiotropy, the genetic IV and outcome should also be

independent. A non-zero instrument-outcome association for such a group would therefore

be indicative of pleiotropic bias [8, 11, 12]. It is, however, rare that no-relevance groups of suf-

ficient size are observed in practice.

MR approaches utilising gene-by-covariate interactions, here referred to as interaction-MR,

overcome this limitation by using statistical assumptions to extrapolate back to a hypothetical

no-relevance group. Two such methods are MR using Gene-by-Environment interactions

(MR-GxE) and MR G-Estimation under No Interaction with Unmeasured Selection (MR-GE-

NIUS) [8, 13]. MR-GxE uses an explicitly defined gene-by-covariate interaction to estimate

causal effects, and has previously been framed within a summary-level data context [8]. In con-

trast, MR-GENIUS accommodates both observed and unobserved interactions, provided they

induce a dependence between the genetic IV and exposure variance [13]. MR-GENIUS has the

advantage of circumventing the need to explicitly identify gene-by-covariate interactions,

though the relative strengths and limitations of the approach compared to MR-GxE have pre-

viously been unclear.

In this paper we outline the implementation of MR-GxE in the individual level data setting,

and critically evaluate the performance of MR-GxE and MR-GENIUS. Specifically, we focus

upon the application of MR-GENIUS in the absence of a pre-defined interaction covariate,

which is not possible using MR-GxE. Through simulation we demonstrate how both

approaches share similar underlying assumptions, and highlight how implicitly leveraging all

potential gene-by-covariate interactions using MR-GENIUS can imply more stringent

assumptions with respect to the distribution of pleiotropic effects. Throughout we also propose

sensitivity analyses to test the assumptions of the MR-GxE. Finally, we conduct applied analy-

ses using MR-GxE and MR-GENIUS to estimate the effect of body mass index (BMI) on sys-

tolic blood pressure (SBP). For both approaches we find evidence of a positive causal effect

using data from the UK Biobank, comparing results to conventional MR and observational

methods.

Materials and methods

The data generating model

Interaction-MR approaches use differences in instrument strength across one or more covari-

ates to estimate and correct horizontal pleiotropic bias [8]. For i 2 {1, 2, . . ., N} observations,

let Gi denote a single genetic IV for an exposure Xi, and let Yi represent the outcome of interest.

Further, assume there exists an unmeasured confounder Ui of Xi and Yi, and a set of interac-

tion covariates Zi 2 {Z1, . . ., ZK} across which the instrument-exposure association varies. In

order to make our ideas concrete, we now define an underlying data generating model for a
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continuous exposure and outcome, which are themselves a function of Gi, Zi and Ui.

Zki ¼ pk0 þ pk1Gi þ �Zki ð1Þ

Ui ¼ y0 þ y1Gi þ
XK

k¼1

ðy2kZki þ y3kGiZkiÞ þ �Ui ð2Þ

Xi ¼ g0 þ g1Gi þ
XK

k¼1

ðg2kZki þ g3kGiZkiÞ þ g4Ui þ �Xi ð3Þ

Yi ¼ b0 þ b1Xi þ b2Gi þ
XK

k¼1

ðb3kZki þ b4kGiZkiÞ þ b5Ui þ �Yi ð4Þ

In Eqs 1–4, the �(.i) terms represent independent error terms, and relationships with refer-

ence to a single interaction covariate Zki are illustrated in Fig 1 wherein Gi, Zki, and Ui are

assumed independent for clarity.

An overview of MR-GxE and MR-GENIUS

The MR-GxE and MR-GENIUS approaches rely upon one or more first-stage interactions

which induce variation in the association between the genetic IV and exposure. Specifically,

the MR-GxE approach requires an interaction covariate (Zki) to be explicitly observed, in con-

trast to MR-GENIUS which leverages variance differences for a given exposure (Xi) across

Fig 1. Illustration of data generating model. A directed acyclic graph showing the relationship between a genetic

instrument G, an interaction covariate Zk, exposure X, outcome Y, and one or more confounders U. GZk denotes the

interaction G × Zk, and G, Zk, and U are assumed independent.

https://doi.org/10.1371/journal.pone.0271933.g001
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subgroups of a genetic IV (Gi). In this paper we illustrate how both approaches are reliant

upon three assumptions, summarised as assumptions GxE1–3 below. A suitable interaction

(GiZki) is:

1. Strongly associated with the exposure of interest (GxE1).

2. Independent of confounders of the exposure and outcome (GxE2).

3. Not directly associated with the outcome of interest (GxE3).

MR-GxE was originally implemented using an approach analogous to MR-Egger regression

in two-sample summary MR [7, 8]. Initially sets of instrument-exposure and instrument-out-

come associations are obtained across strata of a pre-specified interaction covariate, after

which the instrument-outcome associations are regressed upon the instrument-exposure asso-

ciations including an intercept [8]. While in principle the approach can be performed using

publicly available data from genome-wide association studies (GWAS), the summary level

MR-GxE approach has two notable limitations. First, summary MR-GxE does not readily pro-

vide a means of evaluating interaction strength, relying on observed heterogeneity across

gene-exposure associations across interaction covariate strata [8]. Second, ambiguities sur-

rounding the optimal number of interaction covariate strata can have a substantial impact of

effect estimates [8]. To address these issues, we propose an individual-level form of MR-GxE

within a two-stage least squares (TSLS) framework.

Individual level MR-GxE is implemented by using a gene-by-covariate interaction as an

instrument within a TSLS regression model. In the first-stage model (Eq 5), the exposure is

regressed upon the genetic IV and observed interaction covariate including an interaction

term (γ3). The second-stage model (Eq 5) then regresses the outcome upon the genetic IV,

interaction covariate, and fitted values for the exposure (X̂ i) obtained using the first-stage

model.

X̂ i ¼ g0 þ g1Gi þ g2Zki þ g3GiZki ð5Þ

Yi ¼ b0 þ b1X̂ i þ b2Gi þ b3Zki þ �Yi ð6Þ

This returns a causal effect estimate (b̂1), as well as a horizontal pleiotropic effect estimate

as the coefficient of the genetic IV (b̂2) in the second-stage model. To define the MR-GxE esti-

mand, a reduced form model for Yi given Gi and Zki incorporating Eqs 5 and 6 can initially be

written as

Yi ¼ a0 þ a1Gi þ a2Zki þ a3GiZki þ �i ð7Þ

Using Eqs 5 and 6 the MR-GxE estimand is then defined as

b1 ¼
covðY;GZkÞ � a1covðG;GZkÞ � a2covðZk;GZkÞ

covðX;GZkÞ � g1covðG;GZkÞ � g2covðZk;GZkÞ
ð8Þ

Note that a Gi × Zki term is omitted from the second-stage model given in Eq 6 due to its

role as an instrument, whilst the inclusion of Gi allows for estimation of a horizontal pleiotro-

pic effect on the outcome, denoted by β2.

The MR-GENIUS approach is an adapted form of Robins’ G-estimation which is robust to

additive confounding and pleiotropic bias [13–15]. This essentially involves leveraging differ-

ences in the variance of a given exposure Xi across subgroups of a genetic instrument Gi,

which are likely the consequence of one or more gene-by-covariate interactions. In the case of
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a binary instrument and exposure, and using notation from Eqs 1–4, the MR-GENIUS estima-

tor can be written as:

b̂1 ¼
Pn½fGi � PnðGÞgfXi � ÊðXijGiÞgYi�

Pn½fGi � PnðGiÞgfX � ÊðXijGiÞgXi�
ð9Þ

where Pn ¼ n� 1
Pn

i¼1
½��i and ÊðXijGi ¼ gÞ ¼ Pn½Xi1ðGi ¼ gÞ�=Pn½1ðGi ¼ gÞ� [13].

MR-GENIUS is implemented by first regressing Xi upon Gi and obtaining a set of residuals

∊̂Xi. These residuals are then used to create an instrument ðGi �
�GÞ∊̂Xi which is incorporated

within a TSLS model as a single instrument for Xi [13]. Estimates of b̂1 remain unbiased, pro-

vided the instrument Gi is associated with the exposure of interest, the effect does not change

across values of the unmeasured confounders, and the MR-GENIUS model is identified such

that the change in variance across levels of the instrument is non-zero [13].

In the binary exposure case, the MR-GENIUS model is identified when cov(Gi, var(Xi|Gi)) 6¼

0, and for a continuous exposure when the residual error �X is heteroskedastic, that is, not con-

stant across levels of Gi [13]. This can be evaluated using a Breusch-Pagan test for heteroskedas-

ticity, and these conditions also restrict the degree of joint effect modifiers of both Xi and Yi
[13, 16].

Importantly, it should be noted that the interaction covariate need not be explicitly identi-

fied using MR-GENIUS, illustrated by the absence of Zki in Eq 9. However, identification of

the MR-GENIUS model implicitly relies upon the presence of one or more gene-by-covariate

interactions to induce the desired dependence between Gi and var(X|G). In the absence of a

predefined interaction covariate, MR-GENIUS estimates the total effect of X upon Y, without

adjusting for the interaction covariate Zk. This contrasts with MR-GxE, which estimates the

direct effect of X upon Y adjusting for the interaction covariate in the second stage model.

GxE1: Interaction strength

The MR-GxE estimator can be viewed as an extension of the Wald ratio, including an adjust-

ment for the direct effects of Gi and Zki. Thus, in the special case where Gi and Zki are margin-

ally independent of the exposure and outcome (but their interaction via a single covariate Zki
is not), the MR-GxE estimator simplifies to:

covðY;GZkÞ

covðX;GZkÞ
ð10Þ

From Eq 10 MR-GxE is clearly reliant upon a strong first-stage interaction, such that

γk3 6¼ 0 in order to make the denominator non-zero (GxE1). When individual-level data are

available, the first-stage F-statistic for the gene-by-covariate interaction can be used to quantify

instrument strength, though several aspects of this approach warrant consideration. First,

when using a single interaction the F-statistic cannot be related to the magnitude of relative

bias towards the observational estimate in a one-sample setting and null in a two-sample set-

ting. This is because such a relationship between instrument strength and the direction of bias

only holds when multiple instruments, in this case interactions, are used. Therefore, while an

F-statistic of 10 may satisfy the standard threshold for sufficient instrument strength, it would

not be possible to relate this to a 10% relative bias towards the observational estimate obtained

by regressing the outcome on the exposure without incorporating additional interaction

covariates. Second, interaction strength does not mitigate bias from violations of assumptions

GxE2–3, just as is the case in conventional MR analyses. Finally, where possible candidate

interactions should be identified in separate samples to avoid issues related to Winner’s curse,
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where instruments, in this case interactions, are selected using spurious associations which

may be sample population specific [17].

The reliance of MR-GxE upon explicitly defined interactions also invites two potential

interaction-specific issues: scale dependency and non-linear interactions. First, as interactions

are scale dependent it is possible that applying transformations can create spurious associa-

tions [18]. Such spurious associations can exist as an artefact of the data, and consequently esti-

mates leveraging such information are unlikely to be reliable. Gene-by-covariate interactions

may also be non-linear, which could potentially be considered by fitting more flexible models

(e.g., fractional polynomial models, which include varying exponents with respect to GiZki) to

allow for non-linear interactions to be identified. It is, however, important to take care to

avoid issues of over-fitting [19].

As MR-GENIUS does not require gene-by-covariate interactions to be identified, testing

for identification is performed globally by evaluating heteroskedasticity with respect to the

residuals �Xi. Specifically, MR-GENIUS relies upon the residual error in a regression of the

exposure upon the genetic IV to be heteroskedastic, evaluated using a Breusch-Pagan test for

heteroskedasticity [13].

As a means of identifying candidate gene-by-covariate interactions for MR-GxE we propose

using the first-stage F-statistic for the interaction term in the first stage, in a similar fashion to

utilising GWASs to identify genetic variants associated with a phenotype of interest. Interac-

tions of sufficient strength can be identified by fitting the first-stage MR-GxE model for each

candidate interaction covariate Zki and calculating the F-statistic with respect to GiZki (see Eq

5) [10]. Applying a Bonferroni multiple testing correction, and plotting the −log10(p − value)
for the F-statistic then allows for instrument strength to be effectively visualised using a scatter

plot, following a similar intuition to the use of Manhattan plots in the presentation of results

from GWAS [20]. Note that as it is often the case that multiple independent genetic variants

are associated, it is often appropriate to use a polygenic risk score as an instrument to maxi-

mise instrument strength.

GxE2: Interaction exogeneity

In previous work we show how assumption GxE2 is potentially violated when certain con-

founding structures exist, specifically, where Gi and Zki are simultaneously downstream of a

confounder Ui or where there is an open path between the two variables through Ui [8]. To

briefly recapitulate how such associations can induce bias, consider the path diagram shown in

Fig 2. In this case, the interaction covariate Zki is independent of Xi and Yi, and determined by

a confounder Ui. Further, Ui is downstream associated with the genetic instrument Gi.

In Fig 2Ui serves not only as a confounder of Xi and Yi, but also of Zi and Yi. As the

MR-GxE model only instruments Gi, it is likely estimates for the effect of Zi on Yi will exhibit

bias. When Gi is not independent of Ui, however, the resulting induced association between Zi
and Yi from failing to control for Ui mimics a pleiotropic association, such that a pathway

from Gi to Yi is created through Ui and Zi. Importantly, such associations do not necessarily

bias estimates of the effect of Xi on Yi, but can inflate type-I error rates when evaluating instru-

ment validity.

Assumption GxE2 can also be violated when a gene-by-covariate interaction is simulta-

neously associated with the exposure and one or more confounders of the exposure and out-

come, as depicted in Fig 3.

In Fig 3 a bidirectional arrow is included to highlight that any direction of association

between GZk and U can potentially introduce bias into MR-GxE estimates. Where GZk is

upstream of U this can be viewed as instrument strength varying across levels of the
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confounder, with pleiotropic effects being associated with interaction strength. This issue can

be viewed as analogous to the INstrument Strength Independent of Direct Effect (InSIDE)

assumption in two-sample summary MR [7]. An association from U to GZk would suggest that

a three-way interaction may be present, such that interaction strength γ3k varies across levels

of U. This can bias effect estimates by inducing an association between GZk and Y, violating

the constant pleiotropy assumption GxE3.

Fig 2. An example of GxE2 through confounding. A path diagram illustrating a case in which the instrument Gi is a

determinant of the interaction covariate Zi through a confounder Ui. The bidirectional dashed arrow from Zk to Y
represents an association induced due to confounding as a result of not adjusting for U in the second stage MR-GxE

model.

https://doi.org/10.1371/journal.pone.0271933.g002

Fig 3. Illustration of general GxE2 violation. A directed acyclic graph showing the relationship between a genetic

instrument G, interaction covariate Zk, exposure X, outcome Y, and one or more confounders U. In this case, the

presence of an association between a gene-by-covariate GZk and U violates assumption GxE2.

https://doi.org/10.1371/journal.pone.0271933.g003
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To understand how an association between GZk and U can induce bias into MR-GxE esti-

mates, we can extend the MR-GxE estimand (Eq 8) to incorporate violation of GxE2, by

including covariance terms between Ui and (Zki, GiZki)Ui, such that were it possible to include

Ui in the TSLS model, the resulting estimate could be written as:

b̂1 ¼
covðY;GZkÞ � b

�

YGcovðG;GZkÞ � b
�

YZcovðZ;GZkÞ � b
�

YUcovðU;GZkÞ

covðX;GZkÞ � b
�

XGcovðG;GZkÞ � b
�

XZcovðZ;GZkÞ � b
�

XUcovðU;GZkÞ
ð11Þ

where each b
�

�
indicates a multivariable regression estimate pertaining to the second subscript

variable when regressed upon the first, including the unmeasured confounder Ui. As it is not

possible to directly measure and adjust for Ui, the independence Ui and GiZki is relied upon for

Eq 11 to be equivalent to the MR-GxE estimator in Eq 8.

A further consideration is the introduction of collider bias when estimating fitted values X̂ i

in the first-stage MR-GxE model. As shown in Eq 5, it is necessary to include the interaction

covariate in the first-stage model. However, in cases where Gi and Ui are both simultaneously

upstream associated with Zki, conditioning on Zki will induce collider bias in the first-stage

MR-GxE model, such that the estimate of pleiotropic effect b̂2 and subsequent adjustment will

be inaccurate. This case is illustrated in Fig 4.

Relating assumption GxE2 to the MR-GENIUS approach, associations violating GxE2

would imply associations vary across values of the unmeasured confounders violating the sec-

ond MR-GENIUS assumption [13]. However, this problem can be mitigated by incorporating

additional interaction covariates within the MR-GENIUS model, as described in Eric Tchetgen

et al., 2021 [13]. This would necessitate the inclusion of specific interaction covariates within

the MR-GENIUS model, such that differences in the variance of X would be evaluated across

subgroups of Gi, conditional on one or more interaction covariates Zk.
For MR-GxE we present two strategies for addressing GxE2 violation. To evaluate the pos-

sibility of collider bias in the first-stage model estimating the correlation between Gi and Zki
could serve as an initial test for GxE2 violation. Intuitively, if Gi and Zki are independent, then

Fig 4. Illustration of collider bias when estimating X̂ . A diagram showing a situation in which conditioning on Zk
when G and U are simultaneously upstream associated with Zk would induce collider bias, as shown by the dashed

bidirectional arrow.

https://doi.org/10.1371/journal.pone.0271933.g004
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conditioning on Zki would not induce an association between G and U. However, it is impor-

tant to emphasise that independence cannot necessarily be interpreted as GxE2 being satisfied.

This would primarily be the case where a three-way interaction exists between the instrument

Gi, interaction covariate Zki, and one or more confounders Ui. Rather than removing the possi-

bility, an observed correlation between Gi and Zki can highlight a potential issue in the analysis

which warrants further consideration.

A potentially more robust approach would be to adopt a genetic proxy variable for the

interaction covariate Zki, as this would share the same benefits with regard to causal direction

as Gi with respect to environmental confounders. For example, when estimating the effect of

alcohol consumption on SBP using education as an interaction covariate, adopting a polygenic

risk score (PRS) for education would in principle utilise the explained variation in education

excluding environmental confounders such as socio-economic status.

GxE3: Constant pleiotropy

The third MR-GxE assumption requires pleiotropic effects of Gi upon Yi to remain constant

across values of Zki, with the gene-by-covariate interaction being independent of Yi when con-

ditioning on Xi (i.e. β4 = 0). Where this is not the case estimates of causal effect will exhibit bias

in the direction of β4 in a similar fashion to horizontal pleiotropic bias in univariate MR analy-

ses, equal to:

bias ¼
b4

covðX;GZkÞ � bXGcovðG;GZkÞ � bXZkcovðZk;GZkÞ
ð12Þ

By reframing MR-GxE within a TSLS framework, it is possible to apply tests of over-identi-

fication to evaluate the constant pleiotropy assumption, though this is not possible where only

one instrument is available, for example, a single genetic variant. In cases where the single

instrument is comprised of many instruments, such as a PRS, it is possible to examine different

configurations of instruments iteratively using MR-GxE and assess heterogeneity in the set of

MR-GxE estimates obtained from each iteration. These subsets of instruments are hereafter

referred to as sub-instruments.
In this scenario, a Sargan test can be used to compare different MR-GxE estimates of the

same causal parameter (the coefficient of Xi in Eq 6—i.e., β1), assuming we have more instru-

ments than we need to consistently estimate the parameter [21]. However, it is important to

note that in applying this test it is crucial for each of the sub-instruments to be sufficiently

strong to overcome weak instrument bias, though practically the test can be applied where

weak interactions are present if assessing the strength of individual instruments of interest.

To illustrate how over-identification tests can be applied in the context of MR-GxE, con-

sider an extension of Eqs 5 and 6 to include an arbitrary number of sub-instruments, wherein

a single instrument Gi is comprised of m 2 {1, 2, . . ., M} sub-instruments. Where Gmi denotes

the mth sub-instrument in Gi, we can define a corresponding data generating model as:

Xi ¼ g0 þ
XM

m¼1

�

g1mGmi þ
XK

k¼1

ðg2kZki þ g3kmGmiZkiÞ

�

þ g4Ui þ �Xi ð13Þ

Yi ¼ b0 þ b1Xi þ
XM

m¼1

ðb2mGmiÞ þ
XK

k¼1

ðb3kZkiÞ þ
XM

m¼1

XK

k¼1

ðb4kmGmiZkiÞ þ b5Ui þ �Yi ð14Þ

A Sargan test can be applied by fitting multiple sub-instruments Gmi in the same TSLS

model. Alternatively, a heterogeneity test such as Cochran’s Q-statistic could be used to
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evaluate heterogeneity in MR-GxE effect estimates using all sets of non-overlapping sub-

instruments.

Results

An illustration of assumptions GxE1–3 through simulation

To illustrate the importance of assumptions GxE1–3 with respect to MR-GxE and MR-GE-

NIUS we present six simulation studies, categorised by assumption, using the data generating

model presented in Eqs 1–4. Throughout, we demonstrate the utility of the sensitivity analyses

proposed, and highlight the relative performance of both MR-GxE and MR-GENIUS. In each

simulation gene-by-covariate first-stage effects (γ3k) are generated to be positive, to avoid the

possibility that the combined effects of all candidate interactions have a mean of zero. This

would potentially invalidate the MR-GENIUS approach in the unlikely event that leveraged

candidate interactions have effects such that cov(Gi, var(Xi|Gi))� 0. Code for performing each

simulation study and further information is available at https://github.com/WSpiller/GxE_

Simulation.

Simulation set 1: Interaction selection and strength. As an illustration of how gene-by-

covariate interactions can be identified through the evaluation of their first-stage F-statistics,

we generated 1, 000 independent data sets, containing 100, 000 observations for a single instru-

ment G, exposure X, outcome Y, and 100 candidate interaction covariates Zk (Simulation 1).

All variables were treated as continuous, with observations of exogenous variables randomly

sampled from a normal distribution with mean 0 and standard deviation 1. Endogenous vari-

ables, determined by one or more additional covariates, were generated following the popula-

tion models defined in Eqs 1–4, with error terms randomly sampled from a normal

distribution with mean 0 and standard deviation 1. The effect of X upon Y was defined as β1 =

1. Of the 100 interaction covariates, 10 were designated to have a non-zero first-stage interac-

tion, assigning a value for γ3k sampled from a normal distribution with mean 2 and standard

deviation 2, ensuring that all coefficients for non-zero first stage interactions were greater than

1. The complete set of interaction covariates ZK were also generated so as to be independent

of Gi, such that πk1 = 0. Fig 5A shows how a scatter plot can be constructed in a similar

fashion to a Manhattan plot in GWAS analyses. Each value on the scatter plot represents the

mean −log10(p − value) value for the first-stage F-statistic corresponding to each candidate

Fig 5. Plots corresponding to simulations 1–2, identifying interactions and visualising the impact of weak

instrument bias for MR-GxE. Panel A shows a scatter plot of −log10(p − value) for the mean first-stage F-statistic

across the set of 100 potential interaction covariates in simulation 1. A solid horizontal line is included representing the

Bonferroni correction threshold for statistical significance in panel A. Panel B shows a forest plot of mean causal effect

estimates and confidence intervals under varying mean interaction strengths in simulation 2. The dotted vertical line

in panel B represents the true causal effect β1 = 1, and arrows are used to indicate confidence intervals exceeding the

limits of the forest plot.

https://doi.org/10.1371/journal.pone.0271933.g005
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interaction across the set of 1, 000 simulated data sets. A Bonferroni multiple testing correction

is shown using a solid horizontal line.

In Fig 5A the 10 defined non-zero gene-by-covariate interactions have been identified, with

super-imposed numbers indicating the identity of each interaction covariate Zk. The corre-

sponding estimates for the 10 identified interactions show no evidence of apparent bias, with a

mean MR-GxE estimate of 1.000 (95% CI = 0.996, 1.004) and a mean F-statistic of 3616.15

(p − value< 0.001). Individual mean estimates for each interaction are provided in the Supple-

mentry material (see S1 Table). Using MR-GENIUS resulted in mean estimate of 1.000 (95%

CI = 0.994, 1.006), producing an estimate comparable to MR-GxE without the need to explic-

itly identify an interaction covariate. Performing a Breusch-Pagan test for identification in the

MR-GENIUS model yielded a mean value of 1041.74 (p − value< 0.001), suggesting MR-GE-

NIUS estimates are sufficiently strong so as to overcome weak instrument bias.

To further investigate the impact of weak instrument bias using MR-GxE we perform addi-

tional simulations, evaluating the performance of MR-GxE using a single non-zero interaction

covariate of varying strength (simulation 2). Specifically, first-stage F-statistics of approxi-

mately 1, 5, 10, 25, 50, and 100 are considered, generating 1, 000 data sets for each F-statistic

value and presenting mean MR-GxE effect estimates and 95% confidence intervals. In each

case the genetic instrument G is generated so as to satisfy assumption IV1 (γ1 = 1), with a

causal effect of X on Y again equal to 1 (β1 = 1). Fig 5B shows a forest plot including the mean

MR-GxE effect estimate and 95% confidence interval for each interaction covariate with a

mean F-statistic as indicated on the y-axis. The precision of MR-GxE increases substantially as

the mean F-statistic increases, and there does not appear to be evidence of directional bias

using weak interactions.

In simulation 1 MR-GENIUS appears to perform well when many gene-by-covariate inter-

actions are present, with the potential to outperform MR-GxE when individual stronger inter-

actions are not observed (see S1 Table). To explore the extent to which MR-GENIUS is reliant

on a global non-zero mean first-stage interaction, an additional simulation is conducted vary-

ing the proportion of non-zero interactions present in the data (simulation 3). A total of

K = 100 interactions were generated, such that the number of non-zero interactions represent

1%, 5%, 10%, 50%, and 100% of all candidate interaction covariates. For each predefined pro-

portion, 1,000 independent data sets were generated, using previous parameter definitions

from simulation 1. MR-GxE effect estimates were obtained using a single randomly sampled

non-zero interaction covariate, while MR-GENIUS estimates do not specify an observed inter-

action covariate. The mean MR-GxE and MR-GENIUS estimates for each proportion are pre-

sented in Table 1.

From Table 1 it appears the precision of MR-GENIUS estimates improves as the mean

interaction strength across all leveraged instruments ( �gK ) increases in magnitude, indicated by

the increase in mean F-statistic across the set of candidate interaction covariates. This suggests

that in cases where few gene-by-covariate interactions of moderate strength are available,

Table 1. Simulated results using differing proportions of non-zero interaction covariates (simulation 3).

Proportion

γ3K 6¼ 0

Mean MR-GxE β̂1
(95% CI)

MR-GENIUS β̂1
(95% CI)

Mean

F-statistic

BP-Test

p-value

1% 1.000 (0.99,1.01) 1.002 (-2.34,4.34) 6.14 0.202

5% 1.000 (0.99,1.01) 0.999 (0.96,1.04) 23.68 0.007

10% 1.000 (0.99,1.01) 1.000 (0.98,1.02) 39.25 0.002

50% 1.000 (0.99,1.01) 1.000 (0.99,1.01) 76.51 <0.001

100% 1.000 (0.98,1.02) 1.000 (0.99,1.01) 87.90 <0.001

https://doi.org/10.1371/journal.pone.0271933.t001
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MR-GxE can furnish more precise estimates than MR-GENIUS, though MR-GENIUS can

outperform MR-GxE as the number of non-zero gene-by-covariate interactions increases. It is

also important to highlight that, just as was the case for MR-GxE, weak instrument strength

for MR-GENIUS does not appear to induce observed directional bias.

This reliance of MR-GENIUS upon mean interaction strength across candidate interactions

has two important implications. First, the precision of MR-GENIUS estimates is a function of

both interaction strength and the number of candidate non-zero interactions present, and

consequently it is possible for MR-GENIUS to outperform MR-GxE as the number of strong

gene-by-covariate interactions increases. Second, it is possible that interactions of similar mag-

nitude acting in opposite directions can counteract each other, such that cov(Gi, var(Xi|Gi))�

0. This scenario is unlikely to occur beyond a simulation setting, and motivates using a data

generating model where first-stage interactions are generated so as to be in the same direction,

to ensure �gK 6¼ 0.

Simulation set 2: Interaction exogeneity. The MR-GxE approach relies upon the selected

gene-by-covariate interaction being independent of all confounders U of the exposure X and

outcome Y. As previously discussed, this is most likely to be the case where either the associa-

tion between G and U varies across levels of Zk, or the association between Zk and U varies

across levels of G. To demonstrate how such associations can introduce bias into both

MR-GxE and MR-GENIUS effect estimates, we present a simulation with a similar structure

to simulation 3, in this case varying the proportion of interactions for which θ3k 6¼ 0 (simula-

tion 4). Specifically, proportions of 0%, 1%, 5%, 10%, 50%, and 99% are considered for which

θ3k = 1, generating 1, 000 independent data sets for each proportion. For each data set, the

mean MR-GENIUS and MR-GxE estimates were obtained across all interaction covariates.

Additionally, a mean estimate using a randomly sampled interaction for which θ3k 6¼ 0 is also

presented, to illustrate how assumption GxE2 is interaction covariate specific for MR-GxE.

The simulation results are given in Table 2.

From Table 2 both MR-GxE and MR-GENIUS exhibit bias in the direction of the interac-

tion coefficient θ3k. MR-GENIUS appears to be more robust to GxE2 violation compared to

MR-GxE, though estimates decrease in precision as the magnitude of θ3k increases. When

selecting a single interaction covariate for which θ3k = 0, MR-GxE provides an unbiased causal

effect estimate, in contrast to MR-GENIUS. This can be explained by MR-GENIUS implicitly

relying upon �yK � 0 when an interaction covariate is not specified. As a consequence,

MR-GxE appears to be capable of producing results with markedly less bias using a single

GxE2 satisfying interaction, compared to MR-GENIUS where �yK ¼ 0.

Simulation set 3: Constant pleiotropy. To demonstrate the impact of GxE3 violation, as

well as the utility of employing an adapted Sargan test as a sensitivity analysis, we present a two

Table 2. Simulated results using differing proportions of non-zero gene-by-covariate interaction with respect to confounders (simulation 4).

Proportion

θ3K 6¼ 0
Valid MR-GxEaβ̂1
(95% CI)

Mean MR-GxE β̂1
(95% CI)

MR-GENIUS β̂1
(95% CI)

Mean

F-statistic

0% 1.000 (0.998,1.002) 1.000 (0.990,1.010) 1.000 (0.995,1.005) 67.62

1% 1.000 (0.998,1.002) 1.003 (0.990,1.016) 1.001 (0.995,1.008) 67.71

5% 1.000 (0.997,1.004) 1.014 (0.993,1.035) 1.008 (0.997,1.019) 68.17

10% 1.000 (0.995,1.005) 1.027 (0.999,1.055) 1.015 (1.001,1.030) 68.94

50% 1.000 (0.990,1.010) 1.136 (1.088,1.184) 1.070 (1.042,1.097) 72.80

99% 1.000 (0.987,1.014) 1.268 (1.268,1.304) 1.122 (1.090,1.153) 76.49

a Valid MR-GxE is used to indicate MR-GxE estimates obtained using a single interaction covariate for which GxE2 is satisfied.

https://doi.org/10.1371/journal.pone.0271933.t002
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simulated examples. Initially, we generated data as in simulations 3–4, instead varying the pro-

portion of candidate interactions with non-zero second stage interactions (β4k 6¼ 0) (simula-

tion 5). The first-stage interaction coefficient across all interaction was set to γ3k = 1, with

designated invalid interactions having a second stage interaction(β4k = 1). For each proportion

the mean MR-GENIUS estimate was obtained, as well as the mean MR-GxE estimate across all

candidate interactions. In addition, a mean MR-GxE estimate using a single randomly sam-

pled interaction for which β4 = 0 is also provided, with results presented in Table 3.

In this scenario it can be seen that MR-GxE and MR-GENIUS exhibit bias in the direction

of GxE2 violation, while utilising a single interaction for which GxE3 is satisfied provides unbi-

ased estimates. This would suggest that MR-GENIUS is reliant upon �b4k ¼ 0 across all implic-

itly leveraged interactions.

To further demonstrate the impact of GxE3 violation, as well as the utility of employing an

adapted Sargan test as a sensitivity analysis, we present a further simulation shown in Table 4

(simulation 6). In this case, a score analogous to a PRS was used as a single IV, comprised of 1,

000 individual sub-instruments of approximately equal strength. Mirroring the previous simu-

lated example, the true causal effect was defined as β1 = 1 with a horizontal pleiotropic effect

β2 = 0.05. Sub-instruments violating assumption GxE3 were estimated to have a value β4 = 0.2,

varying the proportion of invalid sub-instruments. The mean F-statistic across all iterations

simulations was 98.80 (Breusch-Pagan 31.80, p − value = 0.013), and MR-GENIUS estimates

are presented for comparison.

As shown in Table 4, both MR-GxE and MR-GENIUS produce biased causal effect esti-

mates when the constant pleiotropy assumption is violated. Violation of the constant pleiot-

ropy assumption is also detected by applying a Sargan test, provided all sub-instruments do

Table 3. Simulated results using differing proportions of non-zero gene-by-covariate interaction with respect to the outcome (simulation 5).

Proportion

β4K 6¼ 0
Valid MR-GxEaβ̂1
(95% CI)

Mean MR-GxE β̂1
(95% CI)

MR-GENIUS β̂1
(95% CI)

Mean

F-statistic

0% 1.000 (0.998,1.002) 1.000 (0.990,1.010) 1.000 (0.995,1.005) 67.62

1% 1.000 (0.998,1.002) 1.004 (0.990,1.017) 1.001 (0.995,1.008) 67.64

5% 1.001 (0.997,1.004) 1.019 (0.995,1.042) 1.008 (0.997,1.019) 67.66

10% 1.000 (0.995,1.005) 1.036 (1.004,1.069) 1.016 (1.001,1.031) 67.69

50% 1.000 (0.990,1.010) 1.185 (1.117,1.254) 1.082 (1.054,1.110) 67.52

99% 0.997 (0.987,1.014) 1.366 (1.300,1.432) 1.163 (1.131,1.194) 67.63

aValid MR-GxE is used to indicate MR-GxE estimates obtained using a single interaction covariate for which GxE3 is satisfied.

https://doi.org/10.1371/journal.pone.0271933.t003

Table 4. Simulated results illustrating use of Sargan test to identify GxE3 violation (simulation 6).

Proportiona

β̂4k 6¼ 0
MR-GxE β̂1
(95% CI)

MR-GENIUS β̂1
(95% CI)

Mean

F-statistic

Sargan

p-value

0% 1.000 (0.997, 1.003) 1.000 (0.963,1.036) 98.95 0.480

1% 1.010 (1.006, 1.014) 1.005 (0.956,1.054) 98.95 <0.001

5% 1.050 (1.045, 1.056) 1.022 (0.940,1.104) 98.88 <0.001

10% 1.100 (1.093, 1.110) 1.049 (0.937,1.161) 98.92 <0.001

50% 1.499 (1.485. 1.514) 1.256 (1.012,1.551) 98.95 <0.001

100% 2.000 (1.981, 2.020) 1.505 (1.149,1.861) 98.77 0.456

aProportion β4K 6¼ 0 refers to the proportion of sub-instruments which violate assumption GxE3.

https://doi.org/10.1371/journal.pone.0271933.t004
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not identically violate GxE3. As the Sargan test relies upon at least one instrument being valid,

identical violation of assumption GxE3 would also violate the assumptions of the conventional

Sargan approach.

Estimating the effect of adiposity on systolic blood pressure within the UK

Biobank

To demonstrate each of the sensitivity analyses previously described, we performed MR analy-

ses estimating the causal effect of adiposity (measured using BMI) on SBP using data from the

UK Biobank. The UK Biobank obtained written consent from all participants, and received

ethical approval from the Research Ethics Committee (REC reference for UK Biobank is 11/

NW/0382). This analysis was approved by the UK Biobank access committee as part of project

8786. Consent was sought by UK Biobank as part of the recruitment process. This serves as a

re-examination of the original applied example in Spiller et al. (2019) who first proposed the

MR-GxE model [8]. The UK Biobank has approval from the North West Multi-centre

Research Ethics Committee (MREC) as a Research Tissue Bank (RTB) approval, and conse-

quently separate ethical clearance was not required for this project which was conducted

under the RTB approval. In this study we evaluate each underlying assumption using the diag-

nostic tools described above, and contrasting the results with MR-GENIUS [8, 13]. After per-

forming quality control, removing participants with missing data, and restricting the sample

to unrelated individuals of European ancestry, a total of 358, 928 participants were included in

the analyses.

MR-GxE was implemented by constructing a weighted PRS informed using genetic variants

previously identified from the GIANT consortium [22]. As the GIANT consortium represents

a subset of the most recent UK Biobank release, subsequent analyses have been conducted in a

one-sample framework. A total of 95 independent genetic variants were used after performing

linkage disequilibrium (LD) pruning, and removing tri-allelic or palindromic variants. Finally,

we standardized BMI, SBP, and the weighted PRS using a z-score transformation prior to per-

forming analyses. In previous work we found evidence of a positive association between BMI

and SBP using OLS and TSLS regression approaches [8, 23–25].

Initially, a discovery subset (N = 100, 000) was randomly sampled from the UK Biobank

data for use in identifying interactions for MR-GxE analyses. Causal effect estimates and sensi-

tivity analyses were performed using the remaining data. Candidate gene-by-covariate interac-

tions were detected by estimating the first-stage F-statistic for 576 candidate interaction

covariates within the UK Biobank. After applying a multiple testing correction, the 20 interac-

tion covariates with the strongest association were selected and utilised in subsequent analyses.

Table 5 shows MR-GxE estimates of causal effect and corresponding sensitivity analyses with

respect to each interaction covariate. The strength of each interaction across the set of candi-

date interaction covariates is illustrated in Fig 6, where annotations give the UK Biobank field

ID for each interaction covariate.

To assess assumption GxE3, we created 9 sub-instruments sampling from the 95 SNPs used

to create the initial PRS instrument. Fitting the MR-GxE model using multiple sub-instru-

ments allows for over identification tests to be performed, testing the extent to which causal

effect estimates differ when using individual sub-instruments. In each case, a failure to reject

the null can be considered to be evidence of interaction exogeneity as previously outlined. To

implement this approach, the set of SNPs were randomly assorted into 9 sub-instruments of

approximately equal strength, quantified using the F-statistic with respect to BMI. Repeating

this procedure using sub-instruments containing differing SNPs yielded similar results. We

also present the mean F-statistic across the set of sub-instruments to emphasise their strength.
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Table 5. MR-GxE estimates and sensitivity analyses using each candidate interaction covariate and MR-GENIUS.

Covariate (UK Biobank Field ID) F-Statistic β̂1
(p-value)

ρ(G, Z)a

(p-value)

Sarganb

(p-value)

Mean

Fc

Waist circumference

(f.48.0.0)

182.86 -0.524

(<0.001)

0.103

(<0.001)

7.531

(0.481)

79.40

Weight (kg)

(f.21002.0.0)

123.16 -0.687

(<0.001)

0.119

(<0.001)

9.342

(0.314)

48.79

Diabetes diagnosis

(f.2443.0.0)

54.22 -0.065

(0.470)

0.020

(<0.001)

12.19

(0.143)

41.22

Alcohol intake frequency

(f.1558.0.0)

50.65 0.163

(0.006)

0.001

(0.526)

5.69

(0.682)

41.62

Physical activity (vigorous)

(f.904.0.0)

42.10 0.017

(0.862)

0.004

(0.003)

20.40

(0.009)

17.03

Vascular/ heart problem diagnosis

(f.6150.0.0)

33.65 -0.446

(<0.001)

0.028

(<0.001)

7.22

(0.513)

16.76

Time number displayed during memory test

(f.4253.0.5)

28.42 -2.155

(0.333)

0.015

(0.002)

14.54

(0.069)

13.51

Number of days per week walked 10+ mins

(f.864.0.0)

27.87 0.208

(0.011)

0.001

(0.705)

6.87

(0.551)

18.98

DBP (automated, baseline)

(f.4079.0.0)

26.45 -0.324

(<0.001)

0.020

(<0.001)

6.39

(0.603)

16.32

Physical activity (moderate)

(f.884.0.0)

23.60 0.165

(0.107)

0.001

(0.324)

3.66

(0.886)

14.27

Townsend deprivation index

(f.189.0.0)

23.01 0.108

(0.489)

-0.016

(<0.001)

9.24

(0.323)

16.80

Comparative body size at age 10

(f.1687.0.0)

20.65 0.283

(0.004)

0.048

(<0.001)

9.94

(0.269)

14.62

Time to complete pair matching activity

(f.400.0.2)

20.49 0.052

(0.689)

-0.007

(<0.001)

29.50(<

0.001)

11.84

Pulse rate

(f.4194.0.0)

20.45 0.031

(0.873)

-0.010

(<0.001)

13.78

(0.088)

4.77

Time watching television

(f.1070.0.0)

20.01 -0.140

(0.211)

0.017

(<0.001)

14.83

(0.063)

15.08

DBP (automated, follow-up)

(f.4079.0.1)

19.55 -0.501

(<0.001)

0.016

(<0.001)

6.37

(0.606)

11.72

Own or rent accommodation

(f.680.0.0)

18.41 0.078

(0.607)

-0.006

(<0.001)

19.84

(0.011)

10.13

Age at assessment

(f.21003.0.0)

18.15 0.697

(<0.001)

0.013

(<0.001)

17.28

(0.027)

14.03

Birthweight known

(f.120.0.0)

17.93 0.067

(0.851)

-0.014

(<0.001)

14.16

(0.078)

4.94

Year of birth 15.85 0.710

(<0.001)

-0.014

(<0.001)

17.12

(0.029)

13.94

OLS - 0.186

(<0.001)

- - -

TSLS 7776.52 0.130

(<0.001)

- - -

MR-GENIUS 1332.7

(<0.001)d
0.034

(0.009)

- - -

aρ(G, Z) represents the correlation between the PRS and interaction covariate,
b Sargan shows the results to over identification tests using sub-instruments,
c The mean F-statistic for sub-instruments,
d BP Heterogeneity Test.

https://doi.org/10.1371/journal.pone.0271933.t005
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As shown in Table 5, there exists substantial disagreement across the range of selected inter-

action covariates, suggesting that one or more violate underlying assumptions of the MR-GxE

approach.

Considering assumption GxE2, several of the identified gene-by-covariate interactions are

proxy measures of adiposity, specifically waist circumference, weight in kilograms, and com-

parative body size at age 10. Such interaction covariates are often problematic, as associations

between the genetic variants and the interaction can result in collider bias where the interac-

tion covariate is downstream of the exposure (see Materials and methods). In this case, higher

estimates of ρ(G, Zk) for these variables supports this interpretation, and their subsequent

exclusion from further analyses. A similar argument can also be made with respect to interac-

tion covariates downstream of BMI, including diabetes diagnosis, vascular/heart problem

diagnosis, and diastolic blood pressure (DBP).

By applying Sargan tests, a number of interaction covariates related to cognition, physical

activity, and age appear to violate assumption GxE3. This could be explained by the gene-by-

covariate interactions relating to one or more underlying risk factors, which are not adjusted

for in the corresponding MR-GxE models.

After applying sensitivity analyses, three interaction covariates can be identified as appro-

priate choices for estimation using MR-GxE. This selection was made using Sargan test and

correlation p-value thresholds of p-value<0.0025, applying a multiple testing correction.

Selected covariates include alcohol intake frequency and physical activity, both days walked

and moderate levels of exercise. Considering alcohol intake and physical activity, the lack of a

substantial correlation between each interaction covariate and the PRS suggests that violation

of GxE2 is unlikely.

In previous work Townsend deprivation index (TDI) was selected as an interaction covari-

ate in a summary MR-GxE analysis and returned estimates in agreement with both alcohol

consumption and physical activity measures identified above. However, it is important to note

that TDI shows evidence of a non-zero instrument-interaction covariate correlation,

Fig 6. Identified gene-by-covariate interactions with respect to genetically predicted body mass index. A scatter

plot showing the first-stage F-statistics for instrument-by-covariate interactions using data from UK Biobank. A

horizontal line is included representing the Bonferroni correction for statistical significance. For clarity, blue points

represent interactions identified after multiple testing. The 20 strongest interactions have been annotated using their

UK Biobank field identification number.

https://doi.org/10.1371/journal.pone.0271933.g006
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potentially highlighting a violation of assumption GxE2. This can be explained by TDI being

plausibly downstream of both BMI and the instrument, representing situation in which the

correlation does not invalidate estimates of causal effect.

Crucially, adopting alcohol and physical activity as interaction covariates yields causal effect

estimates which appear biologically plausible, and support evidence from both observational

and MR studies suggesting a positive association between BMI and SBP. Estimates using each

interaction covariate are presented in Fig 7.

As a final analysis, we implemented MR-GENIUS using the PRS, BMI, and SBP measures

from UK Biobank. This resulted in a more precise estimate in comparison to MR-GxE, how-

ever, the effect estimate appears to strongly disagree with evidence from MR-GxE and alternate

approaches. Given MR-GENIUS implicitly relies upon analogous assumptions to MR-GxE, it

seems reasonable to assume that such a discrepancy could arise from bias due to violations

stemming from one or more unmeasured interactions. This is further supported by MR-GxE

estimates of similar direction and magnitude which appear to show evidence of bias, such as

vigorous physical activity which shows evidence of GxE3 violation.

Discussion

In this paper we examine two related interaction-based MR approaches: MR-GxE and

MR-GENIUS. Both MR-GxE and MR-GENIUS rely upon similar underlying assumptions,

Fig 7. A forest plot showing MR-GxE causal effect estimates using the interaction covariates presented in Table 5.

Observation f.4253.0.5 has been omitted for clarity. Red points indicate analyses for which assumptions may likely be

violated, while blue points show potentially valid interaction covariates using accompanying sensitivity analyses.

Observational, two-stage least squares (TSLS), and MR-GENIUS estimates are also shown as black points.

https://doi.org/10.1371/journal.pone.0271933.g007
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whilst differing based on whether a gene-by-covariate interaction needs to be explicitly incor-

porated within the estimation model. Specifically, MR-GxE relies upon at least a single mea-

sured gene-by-covariate interaction which satisfies assumptions GxE 1–3, whilst MR-GENIUS

does not require such an interaction to be observed. However, as a consequence of implicitly

leveraging multiple underlying interactions, the MR-GENIUS approach requires assumptions

GxE 1–3 to hold globally. Essentially, stronger assumptions are required to mitigate the

absence of an observed gene-by-covariate interaction. It should be emphasised however, that

evaluation of MR-GENIUS in this paper does not consider the inclusion of observed gene-by-

covariate interactions.

Through an examination of the MR-GxE assumptions, several approaches aiming to evalu-

ate assumptions GxE 1–3 have been outlined. Interaction strength (GxE1) can be evaluated

using the first-stage F-statistic for the interaction term, analogous to evaluating instrument

strength in conventional MR. The corresponding global test for interaction strength using

MR-GENIUS and a continuous exposure is the Breusch-Pagan test for heteroskedasticity

[13–16].

Assumption GxE2 can initially be evaluated by estimating the correlation between Zi and

both Gi and Xi respectively. Where Zi is observed to be correlated with Gi, it is possible that a

confounding relationship exists violating assumption GxE2. Further, the simultaneous associa-

tion of Zi with Gi and Xi can result in bias where Zi is downstream of Xi. However, as the exis-

tence of such correlations does not necessarily imply that this assumption is violated, a more

promising approach may be to adopt an interaction covariate Zi which is highly likely to be

exogenous (see Materials and methods). For example, one could employ genetic variants

which instrument a likely interaction covariate. Future work will explore this possibility.

The constant pleiotropy assumption (GxE3) can be tested in cases where the initial instru-

ment Gi is a composite instrument, that is, comprised of multiple sub-instruments such as

genetic variants within a PRS. Heterogeneity in effect estimates obtained using sub-instru-

ments can be considered as evidence of violation of the constant pleiotropy assumption, analo-

gous to heterogeneity in two-sample summary MR [7, 26]. In principle, a similar approach can

be applied using sub instruments with MR-GENIUS, though such an examination is beyond

the scope of this paper. A summary of the MR-GxE assumptions and proposed tests is given in

Table 6.

In the applied analysis the effect of BMI on SBP was estimated using MR-GENIUS and a

range of interaction covariates in conjunction with MR-GxE. We identified three suitable

interaction covariates, which suggest a positive effect of BMI upon SBP in agreement with pre-

vious observational and MR analyses. Importantly, we highlight interaction covariates which

Table 6. A summary of the MR-GxE assumptions and proposed sensitivity analyses.

Assumption Description Consequence of violation Tool to assess plausibility

Interaction

strength (GxE1)

An observed gene-by-covariate interaction GZ
should be selected, such that the association between

the instrument G and exposure X varies across levels

of Z

Insufficient precision to detect causal

effects and directional bias when multiple

interactions are used.

Estimating the first stage F-statistic for GZ and

adopting an interaction covariate such that

F � 10.

Interaction

exogeneity

(GxE2)

The gene-by-covariate interaction GZ should be

independent of confounders of the exposure X and

outcome Y.

Inflated type-I error rates when

evaluating instrument validity and biased

effect estimates for the effect of X on Y.

Estimating the association between the

instrument G and interaction covariate Z,

selecting an interaction such that G and Z are

independent.

Constant

pleiotropy

(GxE3)

The direct effect of an instrument G on the outcome

Y should remain constant across levels of the

interaction covariate Z.

Estimates of the effect of the exposure X
on Y will be biased in the direction of the

effect of GZ on Y.

Using a Sargan test when sub-instruments can

be constructed from a composite instrument G.

https://doi.org/10.1371/journal.pone.0271933.t006
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violate the MR-GxE assumptions and link these issues to the possibly biased effect estimates

obtained using MR-GENIUS.

Several limitations remain with respect to MR-GxE which warrant further explanation.

Firstly, reliance upon an observed gene-by-covariate interaction limits the extent to which the

method can be applied in contrast to MR-GENIUS. We advocate the use of MR-GENIUS in

cases where no interaction covariate is available, though care needs to be taken in justifying

the more stringent assumptions MR-GENIUS entails if an interaction covariate is not speci-

fied. Second, evaluating GxE2 using the correlation of between Zi and Gi does not provide a

clear indication of whether the assumptions hold. It is possible that GxE2 can be violated when

Zi and Gi appear to be independent, and assuming the direction of effect between Zi and Xi

relies upon a priori knowledge regarding the direction of association. It is therefore critical to

identify plausible biological mechanisms underpinning the observed relationships in the

MR-GxE model.

Finally, whilst an overidentification test has been presented for evaluating GxE3, there is

not at present a method aiming to correct for violation of the constant pleiotropy assumption.

It is likely that pleiotropy robust methods, such as median or modal regression, could be uti-

lised to correct for resulting bias, and the application of such methods will be fully explored in

future work.

Conclusion

MR-GxE and MR-GENIUS are two interaction-based MR approaches which leverage gene-

by-covariate interactions to estimate causal associations, while correcting for instrument inval-

idity. MR-GxE can be adapted to the individual level data setting and allows for the underlying

assumptions of the approach to be tested provided a gene-by-covariate interaction is explicitly

identified. In contrast, MR-GENIUS does not require such an interaction to be identified, but

instead relies upon a more stringent set of assumptions analogous to MR-GxE. The use of each

method should therefore reflect the specific research questions considered, as each approach is

especially suited to particular research contexts. However, it is essential that the strengths and

limitations of each approach are given sufficient consideration prior to their application.

Supporting information

S1 Table. Simulated results and effect estimates for subset of interaction (denoted Z) iden-

tified from Fig 5A (simulation 1).

(PDF)
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