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Internal resonances can be widely observed in
nonlinear systems; even a simple nonlinear system
can exhibit intricate internal resonances when
vibrating at large amplitudes. In this study, the
existence and locations of internal resonances of
a general two-mode system with an arbitrary
eigenfrequency ratio are considered. This is achieved
by first considering the symmetric case, where the
internal resonances are found to be approximately
captured by the Mathieu equation. It is shown that
the bifurcations can exist in pairs; and, for each
pair, the bifurcated solution branches capture modal
interactions with the same commensurate frequency
relationship but different phase relationships. To
determine the existence and locations of internal
resonances the divergence and convergence for
correlated bifurcation pairs are then considered.
Lastly, the internal resonances in asymmetric cases
are analytically derived, where the asymmetry
induced bifurcation splitting is captured by a non-
homogeneous extended Mathieu equation. This
work explores the mechanism underpinning internal
resonances, and explains their topological features,
such as which internal resonances are observed as
amplitude increases. A graphical method is also
proposed for efficient determination of the existence
and locations of internal resonances.

1. Introduction
Nonlinear systems can exhibit intricate dynamic
behaviours that cannot be seen in linear counterparts,
e.g. internal resonances, bifurcations, instability and
chaos [1,2]. Among these, internal resonances are
captured by modal interactions and are governed by
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equations of motion in which nonlinear terms couple the different modal components. Such
nonlinear phenomena have been extensively observed and studied in many mechanical systems,
e.g. cables [3,4], beams [5–8], and shells [9]; as such, quantifying internal resonances is important
in modelling these systems. On the other hand, exploiting the energy transfer triggered by
internal resonances has given rise to promising engineering applications such as vibration
suppression [10–12], and energy harvesting [13,14].

The presence of internal resonance can be linked to the commensurate relationships between
the nonlinear response frequencies of the interacting modes. This results in the established
terminology of a m : n internal, or autoparametric, resonance [15,16], where m and n denote
the commensurate frequency matches of modes. For nonlinear systems vibrating at small to
moderate amplitudes, the detuning between the eigenfrequency and nonlinear frequency is small;
in this case, the types of internal resonances can be approximately determined by referring to the
ratio of eigenfrequencies [17]. For example, two coupling modes with an eigenfrequency ratio of
approximately 1 : 3 is expected to exhibit a 1 : 3 internal resonance. Extensive works, addressing
particular types of internal resonances, can be found in a wide range of systems [3–9,18–20].
In practice, fully exploiting the performance of nonlinear systems may lead to large-amplitude
responses. In this region, the small detuning condition is no longer satisfied and the analysis of
internal resonances becomes challenging due to the necessity of access to the nonlinear frequency
[17]. In this case, a series of intricate internal resonances can exist, even in a simple two-mode
system [21–23]; however, the existence of internal resonances is usually determined via numerical
simulations and case-by-case studies. The existence and locations of internal resonances for an
arbitrary system, regardless of the response frequency range, remains an open problem.

Besides the commensurability of nonlinear frequencies, an alternative tool to characterise an
internal resonance is referring to the geometric feature of responses via the concept of nonlinear
normal modes (NNMs). This approach was introduced by Rosenberg [24,25], where an NNM
is defined as a family of synchronous periodic responses of a conservative system. It requires
that the motions of all components reach their extrema and equilibrium points simultaneously.
This definition was later extended to periodic responses (not necessarily synchronous) of a
conservative system in [21]. For dissipative systems, alternative definitions include an invariant
manifold tangent to a linear modal subspace at the origin [26], and the smoothest invariant
manifold of a spectral subspace, i.e. a spectral submanifold (SSM) [27]. In [4,28,29], synchronous
and asynchronous NNMs were studied for nonlinear systems with 1 : 1 internal resonances.
However, more general scenarios of m : n internal resonances, and how these two geometrically
different synchronous and asynchronous responses are connected, to the best knowledge of the
authors, have not yet been addressed.

In this paper, we study the existence and locations of internal resonances for conservative
nonlinear systems using the concept of NNMs [21]. In §2, the motivating example of a two-mode
beam is first considered. When vibrating at large amplitudes, we show the existence of intricate
internal resonances, where multiple commensurate relationships of nonlinear frequencies are
satisfied. To account for the geometry of internal resonances in the configuration space, the NNMs
are re-generalised by referring to the Fourier components of the interacting modes. In accordance
with this generalisation, we propose the terminology of Fourier-real and Fourier-complex NNMs.
In §3, in order to explain and interpret the topological features of internal resonances, the specific
example is extended to a general two-mode system with an arbitrary eigenfrequency ratio.
The mixed-mode NNMs, in the neighbourhood of the primary single-mode NNM branch, is
derived, and shown to be approximately captured by the Mathieu equation, whose solution
sets are associated with the Fourier-real and Fourier-complex generalisations. In addition, on the
primary NNM branch, the bifurcations that lead to mixed-mode NNMs are shown to exist in
pairs. For each pair, the bifurcated solutions show interacting modes with the same frequency
commensurability but with different Fourier components, or phase relationships. Considering
the converging and diverging behaviours of such pairs, the existence and locations of internal
resonances can be determined. In §4, the symmetry breaking induced bifurcation splitting of
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internal resonances is derived and shown to be captured by an extended nonhomogeneous
Mathieu equation. Finally, conclusions are presented in §5.

2. Internal resonances in two-mode systems
In this section, a two-mode conservative system, with cubic nonlinearities, is considered. Such
a two-mode system is representative of many mechanical systems with two interacting modes,
e.g. a pinned-pinned beam [23], a vibration absorber attached to a primary system [19], or a rotor
system [28]. The governing equations of motion are given by

q̈r + ω2
nrqr + Ψ4,0q

3
r + 3Ψ3,1q

2
rqs + Ψ2,2qrq

2
s + Ψ1,3q

3
s = 0 , (2.1a)

q̈s + ω2
nsqs + Ψ3,1q

3
r + Ψ2,2q

2
rqs + 3Ψ1,3qrq

2
s + Ψ0,4q

3
s = 0 , (2.1b)

where qr and qs denote linear modal displacements of two interacting modes, whose
eigenfrequencies are ωnr and ωns respectively, and Ψm,n are nonlinear coefficients, where m and
n denote the exponent of qr and qs respectively for the Lagrangian, written as

L=
1

2
q̇2r+

1

2
q̇2s−

1

2
ω2
nrq

2
r−

1

2
ω2
nsq

2
s−

1

4
Ψ4,0q

4
r−Ψ3,1q

3
rqs−

1

2
Ψ2,2q

2
rq

2
s−Ψ1,3qrq

3
s−

1

4
Ψ0,4q

4
s . (2.2)

Such a two-mode model (2.1) can also be derived via the Galerkin’s method using a two-
mode truncation. Here, we consider a pinned-pinned beam with a two-mode truncation and show
the intricate modal interactions between the first two modes, qr and qs, when vibrating at large
amplitudes. The parameters of the equations, i.e. ωnr, ωns, Ψ4,0, . . . , Ψ0,4 can be obtained during
the Galerkin’s procedure, applied to a von Kármán model, i.e.

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
−N

∂2w(x, t)

∂x2
= 0 , (2.3)

where ρ,A,E, I and N denote the density, cross-sectional area, Young’s modulus, second moment
of area and axial force of the beam, respectively, and where w(x, t) represents the transverse
displacement at axial position x at time t. As this motivating example is used for illustration
rather than providing a complete study on beam dynamics, the derivations of the coefficients are
not provided here; however, interested readers are directed to references [5,23,30] for details.

Here, an example system with ωnr = π2, ωns = 4π2, Ψ3,1 = Ψ1,3 = 0, Ψ2,2 = 2π4, Ψ4,0 = π4/2

and Ψ0,4 = 8π4 is considered; this represents a dimensionless two-mode truncation of a pinned-
pinned beam, derived in [5,23]. Note that, due to the symmetric configuration, such a beam
system has Ψ3,1 = Ψ1,3 = 0. The NNM branches, or backbone curves, are computed via numerical
continuation package COCO [31], and shown as the frequency-amplitude plot and frequency-
energy plot in panels (a) and (b) respectively in figure 1 to aid comparison1. The primary
NNM branch, Sr , emerges from the eigenfrequency, ωnr , and contains only qr components. Four
further NNM branches, emerging from modal interactions between qr and qs, bifurcate from the
primary branch via pitchfork bifurcations [23]. By considering the schematic time-parameterised
responses of these four mixed-mode solution branches, shown in panels (c), (d), (e) and (f), it
can be seen that the modal frequencies are commensurate. The correlated internal resonances
can be categorised by accounting for this frequency commensurate relationship between the two
interacting modes, resulting in the internal resonances being classified as 1 : 3 internal resonances
(see panels (c) and (d)), and 1 : 2 internal resonances (i.e. panels (e) and (f)). An alternative
method to check the 1 : 3 commensurability is dividing the response frequency of Ss by three,
where the two mixed-mode NNM branches intersect Ss, see panels (a) and (b). Analysis of
internal resonances of the beam system can also be found in [5,23].

The internal resonances can also be specified by referring to Rosenberg’s definition of NNMs,
where panel (d) represents a synchronous NNM [24,25]; whilst the other panels, (c), (e) and (f),
are asynchronous [21]. Having geometrically different NNM solutions defined using the same
terminology is certainly less than optimal. To obtain a unique classification for each NNM, and
1Note that, in the following study, we chose the frequency-amplitude projection for interpretations and analysis.
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Figure 1. Internal resonances in a pinned-pinned beam with a two-mode truncation. Panel (a) shows the NNMs in the

projection of response frequency, ω, against displacement amplitude of the first mode, Qr ; whilst panel (b) shows the

NNMs in the frequency-energy projection. The grey line, labelled Ss, represents the primary backbone emerging from

ωns, with response frequency divided by three to denote 1 : 3 frequency commensurate relationship. The stable and

unstable solutions are represented by solid and dashed lines respectively. Panels (c)∼ (f) show the schematic time-

parameterised responses, i.e. qr(t) against qs(t), of NNMs in panels (a) and (b). (Online version in colour.)

Table 1. Classification of NNMs by referring to Fourier components of qr and qs.

NNM type Fourier components of qr and qs Examples

Fourier-real NNM qr : real Fourier components; qs : real Fourier components figures 1d and 1e

Fourier-complex NNM qr : real Fourier components; qs : complex Fourier components figures 1c and 1f

also to capture its geometric features in the complex plane, we refer to the Fourier components
of qr and qs. Here, we define an NNM where both qr and qs consist of real Fourier components
(equivalently, consisting of only cosine components) as a Fourier-real NNM (a line in the time-
parameterised space), e.g. panels (d) and (e); whilst a Fourier-complex NNM denotes the case
where qr is composed of real Fourier components and qs is composed of complex Fourier
components (a loop in the time-parameterised space), e.g. panels (c) and (f). The definitions are
summarised in table 1. Note that, referring to Fourier components is equivalent to considering the
phase relationships between two modes. Combining the commensurate frequency relationships
and the phase relationships between the two modes, these four NNMs, in panels (c), (d), (e)
and (f), can be uniquely termed 1 : 3 Fourier-complex, 1 : 3 Fourier-real, 1 : 2 Fourier-real and
1 : 2 Fourier-complex NNMs, respectively; and their corresponding branches are denoted by SC,3,
SR,3, SR,2 and SC,2 in figure 1.

It is shown in figure 1a that the pitchfork bifurcations are either subcritical or supercritical [23],
leading to unstable and stable mixed-mode NNM branches, respectively. Unlike the 1 : 2 internal
resonances where the two associated NNM branches are well-separated, the 1 : 3 Fourier-real and
-complex branches, SR,3 and SC,3, in this case, are almost indistinguishable in panels (a) and
(b). To further study this case, evolutions of the bifurcation amplitudes with respect to Ψ2,2 (with
other parameters fixed) are shown in figure 2. As Ψ2,2 increases, the response amplitudes of the
bifurcations diverge, and two corresponding asymptotes can be observed, where the amplitudes
become infinite. The limiting case of Ψ2,2 →+0 denotes when the two bifurcations converge to
an identical point with a finite value. As such, the coexistence of SR,3 and SC,3 can be observed
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Figure 2. Evolutions of bifurcations that lead to 1 : 3 Fourier-real and -complex NNMs, SR,3 and SC,3. The embedded

plot presents the bifurcations for the two-mode beam system shown in figure 1. (Online version in colour.)

when Ψ2,2 is below the values of asymptotes. Note that, the converging and diverging behaviours
of bifurcations and NNMs will be revisted in §3. The two-mode beam case, studied above, has
Ψ2,2 = 2π4, and the bifurcations are marked by dots in the embedded plot of figure 2. Note that,
in both figures 1 and 2, due to the similarity in amplitudes and response frequencies for SR,3

and SC,3, an extremely small step size is required in the numerical continuation to differentiate
them. Such a refined step size can be considered analogous to accounting for harmonic effects in
the analytical derivations. When only the fundamental components of the modes are considered
in modal interactions, the two similar, yet independent, bifurcations, leading to SR,3 and SC,3,
degenerate to a multiple root [5].

In practice, NNMs have proven to be an efficient tool for studying internal resonances in
nonlinear systems [21,32,33]. To achieve this, a complete structure of NNMs is required; however,
a particular computational effort and a prior knowledge may be needed if a purely numerical
technique is used to determine the internal resonances, e.g. to distinguish the two solutions of
1 : 3 internal resonances in the example two-mode beam system. In this study, we consider the
existence and locations of internal resonances between two interacting modes with an arbitrary
eigenfrequency ratio. A graphical method is also proposed for efficient determination/prediction
of the internal resonances.

3. Existence and interpretation of internal resonances
In this section, we consider the general two-mode system whilst the specific two-mode beam
case will be revisted to aid interpretation whenever necessary. Here, the symmetric case where
Ψ3,1 = Ψ1,3 = 0 is first considered, this represents the case where a system has a symmetric
layout/configuration2 [5,29]. The effect of symmetry breaking, or invariant-breaking considered
in [17], will be considered in §4.

With symmetry, the equations of motion (2.1) in the modal domain can be reduced to

q̈r + ω2
nrqr + Ψ4,0q

3
r + Ψ2,2qrq

2
s = 0 , (3.1a)

q̈s + ω2
nsqs + Ψ2,2q

2
rqs + Ψ0,4q

3
s = 0 . (3.1b)

Without loss of generality, we consider the scenario that internal resonances exist in the
neighbourhood of Sr , i.e. the single-mode NNM branch that emerges from eigenfrequency ωnr .

2Note that this is equivalent to having Z2 ⊕ Z2 symmetry as discussed in [34].
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As such, any internal resonance can be captured by an NNM in which qr is the dominant mode
and qs is the mode with which it is resonating. In this case, qs may be assumed to be small when
compared with qr , which allows q2s and q3s to be considered as higher-order small terms, O(q2s),
hence equations (3.1) may be written

q̈r + ω2
nrqr + Ψ4,0q

3
r +O(q2s) = 0 , (3.2a)

q̈s + ω2
nsqs + Ψ2,2q

2
rqs +O(q2s) = 0 . (3.2b)

Trivial solutions can be found when qr = qs = 0, corresponding to static equilibrium. Whilst,
for non-trivial solutions, one case is related to qr ̸= 0 and qs = 0, which describes the single-mode
NNM branch, Sr . In this case, qr can be expressed as a sum of harmonic components, i.e.

qr =

∞∑
m=0

Qr,m cos(mωt) . (3.3)

Here, a single-harmonic approximation is first considered by assuming that qr ≈Qr,1 cos(ωt); and
thus, this formulation is termed having a first-order of accuracy [35]. Using qs = 0, equations (3.2)
can be solved to give the approximate expression for Sr , i.e.

Sr(ω,Qr,1) : ω2 = ω2
nr +

3

4
Ψ4,0Q

2
r,1 . (3.4)

Another non-trivial solution set is related to qr ̸= 0 and qs ̸= 0, emerging from internal
resonances. Ignoring the contributions from higher-order small terms, i.e. considering internal
resonances in the neighbourhood of Sr , expressions for mixed-mode NNMs can be obtained
by substituting solutions of qr , i.e. qr ≈Qr,1 cos(ωt), into equation (3.2b). After some algebraic
manipulation, the internal resonances can be captured by the Mathieu equation, given by

∂2qs
∂τ2

+ [δ + ϵ cos(τ)] qs = 0 , (3.5)

where

τ = 2ωt, δ=
2ω2

ns + Ψ2,2Q
2
r,1

8ω2
and ϵ=

Ψ2,2Q
2
r,1

8ω2
. (3.6)

The equivalence between the internal resonances (of a first-order accuracy) and the Mathieu
equation offers a novel perspective to understand internal resonances – dynamic responses in
the internally resonant mode, qs, triggered by the parametric forcing from the dominant mode,
qr . Seen from equation (3.5), with an assumed solution for qr , the dynamics of qs is entirely
determined by the two parameters, δ and ϵ. These parameters are functions of ω and Qr,1,
and hence will vary for different responses on the single-mode NNM branch, Sr . To solve this
equation, the response of qs is approximated using a sum of harmonics, i.e.

qs =Qsa,0 +

∞∑
n=1

Qsa,n cos (nωt) +Qsb,n sin (nωt)

=Qsa,0 +
∞∑

n=1

Qsa,n cos
(n
2
τ
)
+Qsb,n sin

(n
2
τ
)
. (3.7)

Substituting solutions (3.7) into equation (3.5), the harmonic components can be balanced to give
four independent groups of equations [36], dealing with unknown variables, Qsa,n and Qsb,n

respectively, with n denoting either even or odd non-negative integers, i.e.

1 : n Fourier-real NNMs for even n, SR,n:
δ ϵ/2 0

ϵ δ − 1 ϵ/2 · · ·
0 ϵ/2 δ − 4

...




Qsa,0

Qsa,2

Qsa,4

...

= 0 , (3.8a)
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1 : n Fourier-complex NNMs for even n, SC,n:
δ − 1 ϵ/2 0

ϵ/2 δ − 4 ϵ/2 · · ·
0 ϵ/2 δ − 9

...




Qsb,2

Qsb,4

Qsb,6

...

= 0 , (3.8b)

1 : n Fourier-real NNMs for odd n, SR,n:
δ − 1/4 + ϵ/2 ϵ/2 0

ϵ/2 δ − 9/4 ϵ/2 · · ·
0 ϵ/2 δ − 25/4

...




Qsa,1

Qsa,3

Qsa,5

...

= 0 , (3.8c)

1 : n Fourier-complex NNMs for odd n, SC,n:
δ − 1/4− ϵ/2 ϵ/2 0

ϵ/2 δ − 9/4 ϵ/2 · · ·
0 ϵ/2 δ − 25/4

...




Qsb,1

Qsb,3

Qsb,5

...

= 0 . (3.8d)

Nontrivial solutions to these four equation sets capture internal resonances of the system.
Considering equation set (3.8a) for example, any qs solution is composed of a series of cosine
components, whose response frequencies are even multiples of that of qr . Recalling qr ≈
Qr,1 cos(ωt), both qr and qs are composed of cosine components; thus, solutions to equation
set (3.8a) are 1 : n Fourier-real NNMs for even n, e.g. the 1 : 2 Fourier-real NNM shown in figure 1e.
Likewise, solutions to equation sets (3.8b), (3.8c) and (3.8d) denote 1 : n Fourier-complex (even n),
1 : n Fourier-real (odd n), and 1 : n Fourier-complex (odd n) NNMs, respectively; corresponding
examples are shown in panels (f), (d) and (c) of figure 1.

As discussed in previous sections, the existence of internal resonances is captured by NNM
branches bifurcating from the primary branch via pitchfork bifurcations. To determine the
stability-changing bifurcations, and the existence of internal resonances, the Hill’s method is
used [36]. The so-called Hill’s method is formulated by constructing zero determinants of the four
coefficient matrices in equations (3.8), termed Hill’s determinants, which are also conditions to
obtain non-trivial solutions. Using Hill’s method in determining stability yields the same results
as that by referring to Floquet exponents [37]. In figure 3, the stability boundaries are shown
as coloured solid lines in the (δ, ϵ) space, with the unstable regions shaded in colour. Using
interpretations of the four equation sets (3.8), the stability boundaries are labelled with the types
of bifurcated NNMs. This diagram is also termed the Ince-Strutt diagram, and has been widely
used to study the stability of mechanical systems [38,39]. For the context considered in this paper,
i.e. internal resonances between two modes, this diagram coincides with the formulation with a
first-order of accuracy.

Using expressions (3.6), the single-mode NNM branch, given by equation (3.4), can be
projected to the (δ, ϵ) space as a straight line with a finite length, given by

Sr(ω,Qr,1) 7→ Sr(δ, ϵ) : ϵ=
2Ψ2,2ω

2
nr

2Ψ2,2ω
2
nr − 3Ψ4,0ω

2
ns

δ −
Ψ2,2ω

2
ns

2
(
2Ψ2,2ω

2
nr − 3Ψ4,0ω

2
ns
) , (3.9)

where

δ ∈
[

ω2
ns

4ω2
nr

,
Ψ2,2

6Ψ4,0

)
and ϵ∈

[
0,

Ψ2,2

6Ψ4,0

)
. (3.10)

That is, Sr originates at coordinate
(

ω2
ns

4ω2
nr

, 0
)

with a zero amplitude at its eigenfrequency,

and approaches the coordinate
(

Ψ2,2

6Ψ4,0
,

Ψ2,2

6Ψ4,0

)
as the response amplitude tends asymptotically
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Figure 3. Determining the existence and locations of internal resonances. The boundaries, representative of collections of

bifurcations on Sr for arbitrary systems, are labelled with types of the bifurcated NNMs. The first single-mode NNM branch

for the pinned-pinned beam system, studied in §2, is projected as a straight line with a finite length via equation (3.9) with

bifurcations denoted by solid dots. Note that the discrepancies between bifurcations and stability boundaries arise due to

the fact that bifurcations are numerical solutions whilst the boundaries are computed with a first-order approximation via

equation (3.8). (Online version in colour.)

towards infinity. Indeed, it is the asymptotic feature of the primary NNM that leads to asymptotic
divergence of bifurcations, shown in figure 2; this will be revisted in the following discussions.
In this space, the intersections between Sr and the boundaries represent bifurcations, leading
to NNMs of the labelled types, along with stability changes on Sr . For example, the primary
NNM branch of the two-mode beam system, considered in §2, is computed via numerical
continuation and shown as a straight line with a finite length in figure 3. The bifurcations
are marked by dots, which approximately lie on the boundaries, capturing the existence of
internal resonances, observed in figure 1. This provides a graphical method for efficiently
predicting the internal resonances that can be observed by checking the existing intersections.
There are some small discrepancies between the numerically obtained bifurcations and the
stability boundaries, especially at higher amplitudes. This is because the formulation of a first-
order accuracy, presented here, only accounts for the fundamental component in qr ; whilst, as
amplitude increases, the contributions from harmonics become more significant. To account for
the harmonic contributions, the formulation with a higher-order approximation is derived in
Appendix A, which results in an extended Mathieu equation and having an improved accuracy.
As the essential topologies of internal resonances are captured by this first-order-accuracy
formulation, the following discussions retain this formulation for simplicity. In the following, the
existence of internal resonances are further investigated to understand their topological features.

(a) Topologies of internal resonances: the converging behaviour
In the (δ, ϵ) space, figure 3, the 1 : n Fourier-real and Fourier-complex stability boundaries exist as
a pair, and those two boundaries share an identical solution for the limited case when ϵ→+0. The
coalescence of the stability boundaries indicates the convergence of two bifurcations, as already
observed with the limited condition when Ψ2,2 →+0 in figure 2.

Taking the 1 : 3 internal resonances as an example, the evolutions of bifurcations and correlated
NNMs, SR,3 and SC,3, are shown with respect to a varied Ψ2,2 in figure 4. Example cases are
shown in panels (a) to (e) in the frequency-amplitude projection; schematic responses on the
NNMs are shown in the time-parameterised space in the embedded plots. As with that in figure 2,
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two-mode system with ωns/ωnr = 4, Ψ4,0 = π4/2 and a varied Ψ2,2, in the projection of response frequency, ω, against

amplitude of qs. The embedded plots show the schematic responses of the backbone curves in the time-parameterised

space, i.e. qr(t) against qs(t). (Online version in colour.)

the decrement of Ψ2,2 leads to the convergence of bifurcations. In addition, the two correlated
mixed-mode NNM branches, SR,3 and SC,3, also converge, as shown in panels (a), (b) and
(c). Considering the limited condition when Ψ2,2 → 0, SR,3 and SC,3 share identical amplitudes
and response frequencies – it can be derived analytically from equations (3.8c) and (3.8d),
where these two associated solution sets converge to multiple roots when Ψ2,2 → 0. However,
these two solutions exhibit different Fourier components in qs, as indicated by the subscripts
of vector elements in equations (3.8c) and (3.8d); this is equivalent to having different phase
relationships between qr and qs, as schematically shown in the (qr(t), qs(t)) space in figure 4.
In this case, the 1 : 3 internal resonances are captured by NNMs that exhibit undetermined phase
relationships, which can be either Fourier-real or Fourier-complex. These undetermined phase
relationships, or unlocked phase relationships, represent resonances that are rarely observed in
the presence of forcing and damping [40]. This feature can also be directly observed from the
equations of motion (3.1), which reduce to two uncoupled Duffing’s oscillators when Ψ2,2 → 0

(as Ψ2,2 is the only coupling parameter for symmetric case). In this case, the converged solutions
denote cases where the two modes vibrate independently rather than interactionally, yet with a
constant response frequency ratio. Similar phenomena can be observed for other types of internal
resonances. In contrast, as shown in figure 4, the increment of Ψ2,2 leads to the divergence of
bifurcations and their correlated mixed-mode NNMs, see panels (c), (d) and (e). This results in
the annihilation of internal resonances, analysed in the following section.

(b) Topologies of internal resonances: topological divisions
As shown in figure 3, the primary NNM branch of the two-mode beam intersects with multiple
boundary pairs, leading to 1 : 2 and 1 : 3 internal resonances. Such an intricate topology of internal
resonances has been reported in other systems [21–23]. To determine the existence and types of
internal resonances, discussions are further extended to consider the combined effect of multiple
internal resonances for a general two-mode system. To facilitate the interpretations of internal
resonance, the boundary pairs, shown in figure 3, are remapped from the (δ, ϵ) space to the(
Ψ2,2/Ψ4,0, Q

2
r,1

)
space. This allows the physical interpretations, namely the required system

parameters and response amplitudes, of internal resonances to be directly determined from the
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Figure 5. Topological evolutions of NNMs that bifurcate from the first single-mode NNM for a two-mode system with

ωns/ωnr = 4 and Ψ4,0 = π4/2. Panel (a) shows the evolutions of bifurcation amplitudes with respect to a varied

coefficient Ψ2,2/Ψ4,0. Asymptotes of the loci divide the space into six regions, (1)∼ (6), capturing the topological

changes of internal resonances. The topologies of NNMs for these regions are shown in panel (b). Panel (c) presents

the schematic time-parameterised responses on the bifurcated NNM branches. (Online version in colour.)

mapping axes. Using expressions (3.4) and (3.6), the projection is defined as

(δ, ϵ) 7→ (Ψ2,2/Ψ4,0, Q
2
r,1) :

Ψ2,2

Ψ4,0
=

6ϵω2
ns

ω2
ns − 4ω2

nr (δ − ϵ)
, Q2

r,1 =
4 (ϵ− δ)ω2

nr + ω2
ns

3Ψ4,0 (δ − ϵ)
. (3.11)

First, the case where ωnr <ωns is considered to study the NNMs that bifurcate from the first
primary NNM branch for a two-mode system. With ωns/ωnr = 4 and Ψ4,0 = π4/2, the results are
shown in figure 5, where the remappings of the stability boundaries are shown in panel (a).
It is shown that the bifurcations for 1 : n Fourier-real and Fourier-complex NNMs converge
with the decrement of Ψ2,2, similar to the numerically obtained example in figure 2. In this
projection, the primary single-mode NNM, Sr , for any system with determined Ψ2,2/Ψ4,0 is a
vertical line; and as previously discussed, the intersections between the primary NNM and the
boundaries indicate bifurcations that lead to mixed-mode NNMs of the labelled types. Example
time-parameterised responses on these NNMs are shown in panel (c), where the commensurate
frequency relationships can be checked – qs (the mode with a higher eigenfrequency), is resonating
at frequencies that are integer multiples of that of qr (the mode with a lower eigenfrequency).

In figure 5a, it can be observed that each boundary has an asymptote, corresponding to
a critical case where the bifurcation amplitude grows to infinity, when the correlated internal
resonances become non-existent. As such, these asymptotes serve as boundaries for topological
changes of bifurcations and their correlated internal resonances. The asymptotic values can be
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Figure 6. Topological evolutions of NNMs that bifurcate from the second single-mode NNM branch for a two-mode system

with ωns/ωnr = 0.3 and Ψ4,0 = 1. Panel (a) shows the evolutions of bifurcation amplitudes with respect to a varied

coefficient Ψ2,2/Ψ4,0. Asymptotes of the loci divide the space into seven regions, (1)∼ (7), where the topologies of

NNMs in these regions are shown in panel (b). Panel (c) presents the schematic time-parameterised responses on

bifurcated NNM branches. (Online version in colour.)

obtained by checking the Hill’s determinants via mapping (3.11). Here, the asymptotic features
are further investigated. Using these asymptotes, figure 5a can be divided into six regions3, the
corresponding topologies of NNMs are shown in panel (b) in the frequency-amplitude projection.
In region (1), Sr only intersects with the stability boundary related to SC,3, as such, the NNM
topology (1) in panel (b) can be observed. Note that, for this case, SC,3 is unstable due to the
subcritical bifurcation. Moving from region (1) to region (2), the bifurcation, leading to SR,3,
merges from an infinite amplitude, and evolves to a lower amplitude as Ψ2,2/Ψ4,0 decreases. The
topologies of NNMs, for systems in region (2), are shown in plot (2) of panel (b). Decreasing
Ψ2,2/Ψ4,0 leads to region (3), where SR,2 merges, and where the two bifurcations of 1 : 3 internal
resonances further converge to similar amplitudes. Likewise, further decreasing Ψ2,2/Ψ4,0 leads
to the emergence of SC,2, SC,1 and SR,1 in turn respectively. The topological evolutions of NNMs
are shown in plots (4∼ 6) of panel (b). For small values of Ψ2,2/Ψ4,0, e.g. in region (6), the
1 : 2 internal resonances, as well as 1 : 3 resonances, exhibit almost identical amplitudes and
response frequencies for the NNMs, see plot (6) in panel (b). A small step size in numerical
continuation would be required to distinguish between them. Note that the two-mode beam
system, considered in §2, has Ψ2,2/Ψ4,0 = 4. Its first primary NNM branch lies in region (4), as
such, 1 : 3 and 1 : 2 internal resonances are expected, with NNMs topologically shown in figure
5b(4), in line with numerical results in figure 1a.
3Unlike figure 3, where the projection is universal for any single-mode NNM branch, the divisions in figure 5a are particular
for the parameters considered here. For a system with a different eigenfrequency ratio, different divisions may be found.
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dots; whilst that on mixed-mode NNMs are marked by diamonds. (Online version in colour.)

So far, the existence and interpretations of internal resonances, in the neighbourhood of the
first single-mode NNM branch, have been studied. It is also of interest to consider the scenarios on
the second single-mode NNM branch in a two-mode system, i.e. cases where ωnr >ωns. Figure 6
shows the topological evolutions of internal resonances for a system with ωns/ωnr = 0.3, Ψ4,0 = 1

and a varied Ψ2,2. As with the case in figure 5a, there is an asymptote for each stability boundary
in panel (a), differentiating the topologies of NNMs, shown in panel (b), in the frequency-
amplitude projection; whilst plots in panel (c) show the schematic time-parameterised responses
on corresponding NNMs.

As with the cases considered in figure 5, qs is resonating at frequencies that are integer
multiples of that of qr . Note that, in panel (c), some distortions can be observed in the responses
due to the increment of amplitudes for different frequency components. In addition, in figure 6a,
the stability boundaries converge as Ψ2,2 increases (in comparison to the convergence as Ψ2,2

decreases in figure 5a). As such, along the second single-mode NNM with an increased amplitude,
the very first internal resonance to be observed is the 1 : 1 Fourier-real type. This also results in a
region where no internal resonance can be observed in the neighbourhood of the second single-
mode NNM, see region (7) in panel (a) for systems with small Ψ2,2/Ψ4,0 values. Such a region
with no internal resonance can be expected for all cases where ωnr >ωns.

The NNMs for an example system with Ψ2,2/Ψ4,0 = 30 are computed via numerical
continuation and shown in figure 7. The stable and unstable solutions are denoted by solid and
dashed lines respectively. The bifurcations on the primary NNM branch are marked by solid dots.
As predicted in figure 6a, a series of mixed-mode NNMs, SR,1, SC,1, SC,2, SR,2, SR,3 and SC,3 can
be observed. Note that, some pitchfork bifurcations, on the mixed-mode NNMs, are also detected
and marked by diamonds. As these bifurcations are beyond the scope of this study, the bifurcated
branches are not shown here.

In this section, the Fourier-real and Fourier-complex NNMs, defined in §2, are shown to
exist as pairs – an extension of the special 1 : 1 case studied in [4]. The converging behaviour
of such a pair leads to uncoupled oscillators with phase-unlocked resonances – exact cases of
that studied in [40]. Whilst the diverging behaviour of these pairs leads to the annihilation of
internal resonances, and thus serving as their topological boundaries. For a particular two-mode
system with an arbitrary eigenfrequency ratio, a finite number of internal resonances can be
determined by checking the intersections between the primary NNM branch and boundaries.
Besides determining the existence and locations, topological features of internal resonances
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can be studied via this technique, e.g. the first mixed-mode NNM that bifurcates from the
higher-natural-frequency primary NNM, as amplitude increases, is the 1 : 1 Fourier-real type.

4. Effect of symmetry breaking on internal resonances
Up to this point, the discussion has centred around symmetric systems. In practice, asymmetry
can be widely observed in mechanical systems, for example, asymmetry can arise due to the
imperfection of pinned-pinned beams [7,40]. When asymmetry is taken into account, i.e. Ψ3,1 ̸= 0

and Ψ1,3 ̸= 0, single-mode solutions with either qs = 0 or qr = 0 are no longer obtainable for
equations of motion (2.1), whilst only solutions with both modal components can be found.
Such mixed-mode solutions can arise due to two coupling mechanisms – one is the dynamic
coupling considered in previous sections, where the interactions between qr and qs lead to
internal resonances; the other one corresponds to quasi-static coupling, where the behaviour of
a mode is dictated by the other [41–43]. To account for both quasi-static and dynamic coupling,
qs is defined as a combination of a quasi-static component, g (dictated by qr), and a dynamic
component, h (capturing the internally resonant components), given by

qs = g(qr) + h . (4.1)

In this representation, internal resonances are referring to dynamic interactions between qr and
h. As defined in [42], the quasi-static function, g, represents a solution of

ω2
nsg + Ψ3,1q

3
r + Ψ2,2q

2
rg + 3Ψ1,3qrg

2 + Ψ0,4g
3 = 0 , (4.2)

equivalent to a static solution of qs to equation (2.1b). Note that, alternative methods, e.g. the
centre manifold theorem [44] or the normal form method [45] can be used to analyse the
aymmetric case. Here, the solution (4.1) is employed to extend discussions to weakly asymmetric
case rather than provide a complete overview of the asymmetric case. Such a formulation also
allows connections to be established to obtain comparisons between the asymmetric case and the
symmetric case considered in previous discussions.

The Lagrangian of the system is still given by equation (2.2). Replacing qs = g(qr) + h, and
applying the Euler-Lagrange equation to expression (2.2), the equations of motion can be obtained
with respect to unknown variables qr and h, given by[(

∂g

∂qr

)2

+ 1

]
q̈r +

∂g

∂qr

∂2g

∂q2r
q̇2r +

∂g

∂qr
ḧ+ fr +

∂g

∂qr
fs = 0 , (4.3a)

ḧ+
∂2g

∂q2r
q̇2r +

∂g

∂qr
q̈r + fs = 0 , (4.3b)

where

fr = ω2
nrqr + Ψ4,0q

3
r + 3Ψ3,1q

2
r (g + h) + Ψ2,2qr (g + h)2 + Ψ1,3 (g + h)3 ,

fs = ω2
ns (g + h) + Ψ3,1q

3
r + Ψ2,2q

2
r (g + h) + 3Ψ1,3qr (g + h)2 + Ψ0,4 (g + h)3 .

This model was proposed in [46] to predict internal resonances, between qr and h, during
reduced-order modelling. As with discussions in §3, the internally resonant component, h, may
be assumed to be small when compared with the dominant mode, qr . Ignoring the higher-order
small terms, O(h2), the quasi-static coupling between qr and qs can be captured by equation (4.3a)
and interpreted as a primary NNM branch containing the modal component qr and quasi-
statically coupled component g(qr). Whilst the internal resonances between qr and h is captured
by equation (4.3b). This is equivalent to considering internal resonances in the neighbourhood of
the primary NNM branch; for details of this derivation please see [46].
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Firstly, the quasi-static coupling function is solved via equation (4.2), where g(qr) is
approximated by a Taylor series up to a cubic order4, i.e.

g(qr)≈−
Ψ3,1q

3
r

ω2
ns

. (4.4)

Expression (4.4) shows how asymmetry, Ψ3,1 ̸= 0, leads to quasi-static coupling. Combining
expressions (4.2), (4.3b) and (4.4), and ignoring the effect of higher-order small terms, one has

ḧ+

(
ω2
ns + Ψ2,2q

2
r −

6Ψ1,3Ψ3,1

ω2
ns

q4r +
3Ψ0,4Ψ

2
3,1

ω4
ns

q6r

)
h=

6Ψ3,1

ω2
ns

qr q̇
2
r +

3Ψ3,1

ω2
ns

q2r q̈r . (4.5)

In the neighbourhood of the primary NNM branch, the solution for qr is, as previous discussions,
approximated using a single-harmonic component, qr ≈Qr,1 cos(ωt), i.e. having a first-order of
accuracy. Substituting qr back to equation (4.5), it can be simplified to

∂2h

∂τ2
+ [δ0 + ϵ1 cos (τ) + ϵ2 cos (2τ) + ϵ3 cos (3τ)]h= P1

[
cos

(
1

2
τ

)
+ 3 cos

(
3

2
τ

)]
, (4.6)

where

δ0 =
ω2
ns

4ω2
+

Ψ2,2

8ω2
Q2

r,1 −
9Ψ1,3Ψ3,1

16ω2ω2
ns

Q4
r,1 +

15Ψ2
3,1Ψ0,4

64ω2ω4
ns

Q6
r,1 ,

ϵ1 =
Ψ2,2

8ω2
Q2

r,1 −
3Ψ1,3Ψ3,1

4ω2ω2
ns

Q4
r,1 +

45Ψ2
3,1Ψ0,4

128ω2ω4
ns

Q6
r,1 ,

ϵ2 =−
3Ψ1,3Ψ3,1

16ω2ω2
ns

Q4
r,1 +

9Ψ2
3,1Ψ0,4

64ω2ω4
ns

Q6
r,1 ,

ϵ3 =
3Ψ2

3,1Ψ0,4

128ω2ω4
ns

Q6
r,1 ,

P1 =−
3Ψ3,1Q

3
r,1

16ω2
ns

.

This represents a nonhomogeneous extended Mathieu equation with two additional terms
(characterised by coefficients ϵ2 and ϵ3). Here, h is approximated via a sum of harmonics, i.e.

h=Ha,0 +

∞∑
n=1

Ha,n cos
(n
2
τ
)
+Hb,n sin

(n
2
τ
)
. (4.7)

Applying harmonic balancing, the mixed-mode NNMs, emerging from internal resonances in the
neighbourhood of the primary NNM branch, can be obtained, given by

1 : n Fourier-real NNMs for even n, SR,n:
δ0 ϵ1/2 ϵ2/2

ϵ1 δ0 − 1 + ϵ2/2 (ϵ1 + ϵ3)/2 · · ·
ϵ2 (ϵ1 + ϵ3)/2 δ0 − 4

...




Ha,0

Ha,2

Ha,4

...

= 0 , (4.8a)

1 : n Fourier-complex NNMs for even n, SC,n:
δ0 − 1− ϵ2/2 (ϵ1 − ϵ3)/2 ϵ2/2

(ϵ1 − ϵ3)/2 δ0 − 4 ϵ1/2 · · ·
ϵ2/2 ϵ1/2 δ0 − 9

...




Hb,2

Hb,4

Hb,6

...

= 0 , (4.8b)

4The same conclusions can be obtained when considering additional higher-order terms in the Taylor series, as such, a cubic
approximation is considered for simplicity.
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Figure 8. Effect of symmetry breaking on internal resonances. This plot presents NNMs for an asymmetric example

system with ωnr = 1, ωns = 0.3, Ψ3,1 = 1.5, Ψ2,2 = 30 and Ψ4,0 = 1. NNMs for the symmetric case, where Ψ3,1 = 0,

are shown as thin grey lines for comparison. (Online version in colour.)

1 : n Fourier-real NNMs for odd n, SR,n:
δ0 − 1/4 + ϵ1/2 (ϵ1 + ϵ2)/2 (ϵ2 + ϵ3)/2

(ϵ1 + ϵ2)/2 δ0 − 9/4 + ϵ3/2 ϵ1/2 · · ·
(ϵ2 + ϵ3)/2 ϵ1/2 δ0 − 25/4

...




Ha,1

Ha,3

Ha,5

...

=


P1

3P1

0
...

 , (4.8c)

1 : n Fourier-complex NNMs for odd n, SC,n:
δ0 − 1/4− ϵ1/2 (ϵ1 − ϵ2)/2 (ϵ2 − ϵ3)/2

(ϵ1 − ϵ2)/2 δ0 − 9/4− ϵ3/2 ϵ1/2 · · ·
(ϵ2 − ϵ3)/2 ϵ1/2 δ0 − 25/4

...




Hb,1

Hb,3

Hb,5

...

= 0 . (4.8d)

Solutions of these four equation sets represent asymmetric evolutions to that described by
expressions (3.8). Except for equation set (4.8c), others remain as homogeneous equation sets.
As such, semi-trivial solutions can be obtained for SR,n and SC,n for even n, and SC,n for odd
n, determined by equations (4.8a), (4.8b) and (4.8d) respectively. This indicates these three mixed-
mode NNMs remain bifurcating from the primary NNM branch via bifurcations. As for equation
set (4.8c), only non-trivial solutions can be obtained due to nonhomogeneous terms on the right-
hand side, indicating mixed-mode NNMs related to unfolded, or imperfect, bifurcations. This
demonstrates the effect of symmetry breaking, arising from a cubic nonlinearity, on the internal
resonances – it splits the bifurcations that lead to SR,n for odd n. Likewise, if the asymmetry
is induced by nonlinear terms that have qr with an even valued exponent, e.g. a quadratic
nonlinearity, the bifurcations of SR,n for even n are unfolded; whilst the other three types remain
bifurcating from the primary NNM branch. As with discussions in §3, the stability boundaries,
for asymmetric cases, can be determined by the Hill’s determinants for equations (4.8). It results
in four-dimensional stability boundaries in the (δ0, ϵ1, ϵ2, ϵ3) space.

Symmetry breaking is introduced to the example system shown in figure 7 by considering
Ψ3,1 = 1.5. The asymmetric evolutions of the NNMs are computed via numerical continuation
and shown in figure 8, where the NNMs for the symmetric case are denoted via thin grey lines for
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Figure 9. Existence and locations of internal resonances for an asymmetric system. Panel (a) shows the primary NNM

branch in figure 7 (symmetric case), projected as a straight line with a finite length, whose bifurcations are marked by

solid dots. Panel (b) shows the asymmetric evolutions of these bifurcations with Ψ3,1 = 1.5. (Online version in colour.)

comparison. It can be observed in breaking the symmetry two of the bifurcations, those leading
to SR,1 and SR,3 have become imperfect bifurcations; whereas all the other bifurcations remain
perfect, as also indicated by equations (4.8).

Another particular case of interest is when the system is seen as a small perturbation from the
symmetric case. In this case, the symmetry-breaking parameters, Ψ3,1 and Ψ1,3, may be assumed
as small terms. As such, ignoring the higher-order small terms in expression (4.6), it can be further
simplified to

∂2h

∂τ2
+ [δ + ϵ cos(τ)]h= P1

[
cos

(
1

2
τ

)
+ 3 cos

(
3

2
τ

)]
, (4.9)

which represents a nonhomogeneous Mathieu equation, with left-hand side terms the same
as that for symmetric case, considered in §3. The formation of expression (4.9) indicates that
an asymmetric perturbation is equivalent to a nonhomogeneous perturbation to the internal
resonances for a symmetric case; and it leads to bifurcation splitting, the same as elaborations
of equations (4.8). In addition, as the frequencies of the nonhomogeneous terms are half integers
to that on the left-hand side, there is no difference in the stability charts between the homogeneous
and nonhomogeneous Mathieu equation [47]. This means the stability boundaries, shown in
figure 3 for symmetric case, can be used to evaluate near-symmetric cases.

In figure 9a, the primary NNM branch in figure 7 (for a symmetric system) is projected to the
(δ, ϵ) space via expression (3.9) as a straight line. The bifurcations, leading to mixed-mode NNMs,
are marked by solid dots, which approximately lie on the stability boundaries. The asymmetric
evolutions of these bifurcations are also projected to this space in panel (b) for the system whose
NNMs are shown in figure 8. There are some discrepancies between the numerically obtained
bifurcations and the stability boundaries due to the formulation of a first-order accuracy. This can
be addressed by referring to the formula of a higher-level accuracy, given in Appendix A.

5. Conclusion
Nonlinear coupling can give rise to rich dynamic phenomena, among which the internal
resonance is an important feature. This work has considered the existence and locations of internal
resonances for a two-mode system with an arbitrary eigenfrequency ratio.
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This study starts with a general symmetric system, and it has been shown that the internal
resonances can be approximately captured by the Mathieu equation. The associated bifurcations
exist in pairs, leading to mixed-mode NNMs with the same commensurate frequency relationship
but different phase relationships. Considering the topological evolutions of such pairs of
bifurcations, the convergence of a pair leads to uncoupled oscillators with phase-unlocked
resonances; whereas their divergence leads to the annihilation of internal resonances. Using these
insights, a finite number of internal resonances can be determined; in addition, their topological
features have been studied and explained, e.g. it has been shown that, as amplitude increases, the
first mixed-mode NNM that bifurcates from the higher-natural-frequency primary NNM branch
is the 1 : 1 Fourier-real type.

The study then extends to asymmetric cases to account for the effect of symmetry breaking
on internal resonances. Analytical derivations have shown that the unfolded bifurcations are
captured by the non-homogeneous components of an extended Mathieu equation; whilst the
remaining bifurcations are related to homogeneous components.

By exploring the existence and locations of internal resonances, this study provides an
understanding of the mechanism underpinning internal resonances. A graphical method has also
proposed for efficient determination and interpretation of internal resonances.
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A. Internal resonances with a second-order accuracy
In this Appendix, a formulation considering two harmonics in qr is derived (termed as having
a second-order-accuracy [35]) to study the internal resonances between qr and qs. Its accuracy is
then compared with the first-order formulation, given in §3.

Accounting for the first and third harmonics, qr is given by

qr =Qr,1 cos(ωt) +Qr,3 cos(3ωt), (A.1)

where response amplitude Qr,3 may be assumed to be small when compared with Qr,1.
Substituting expression (A.1) into equation (3.2b), the mixed-mode NNMs in the neighbourhood
of Sr are given by

∂2qs
∂τ2

+
[
δ̃ + ϵ̃1 cos(τ) + ϵ̃2 cos(2τ)

]
qs = 0, (A.2)

where

τ = 2ωt, δ̃=
2ω2

ns + Ψ2,2Q
2
r,1

8ω2
, ϵ̃1 =

Ψ2,2

(
Q2

r,1 + 2Qr,1Qr,3

)
8ω2

and ϵ̃2 =
Ψ2,2Qr,1Qr,3

4ω2
, (A.3)

and where the contributions from higher-order small terms, O(q22) and O(Q2
r,3), are ignored.

Compared with equation (3.5), equation (A.2) represents an extended Mathieu equation with
an additional term characterised by coefficient ϵ̃2. To determine the mixed-mode solutions for
equation (A.2), harmonic balance technique is again used. Assuming q2 as a sum of harmonic
components, i.e. expression (3.7), the obtained equation sets are given by

1 : n Fourier-real NNMs for even n, SR,n:
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
δ̃ ϵ̃1/2 ϵ̃2/2 0

ϵ̃1 δ̃ − 1 + ϵ̃2/2 ϵ̃1/2 ϵ̃2/2 · · ·
ϵ̃2 ϵ̃1/2 δ̃ − 4 ϵ̃1/2

0 ϵ̃2/2 ϵ̃1/2 δ̃ − 9
...




Qsa,0

Qsa,2

Qsa,4

Qsa,6

...

= 0, (A.4a)

1 : n Fourier-complex NNMs for even n, SC,n:
δ̃ − 1− ϵ̃2/2 ϵ̃1/2 ϵ̃2/2 0

ϵ̃1/2 δ̃ − 4 ϵ̃1/2 ϵ̃2/2 · · ·
ϵ̃2/2 ϵ̃1/2 δ̃ − 9 ϵ̃1/2

0 ϵ̃2/2 ϵ̃1/2 δ̃ − 16
...




Qsb,2

Qsb,4

Qsb,6

Qsb,8

...

= 0, (A.4b)

1 : n Fourier-real NNMs for odd n, SR,n:
δ̃ − 1/4 + ϵ̃1/2 (ϵ̃1 + ϵ̃2) /2 ϵ̃2/2 0

(ϵ̃1 + ϵ̃2) /2 δ̃ − 9/4 ϵ̃1/2 ϵ̃2/2 · · ·
ϵ̃2/2 ϵ̃1/2 δ̃ − 25/4 ϵ̃1/2

0 ϵ̃2/2 ϵ̃1/2 δ̃ − 49/4
...




Qsa,1

Qsa,3

Qsa,5

Qsa,7

...

= 0, (A.4c)

1 : n Fourier-complex NNMs for odd n, SC,n:
δ̃ − 1/4− ϵ̃1/2 (ϵ̃1 − ϵ̃2) /2 ϵ̃2/2 0

(ϵ̃1 − ϵ̃2) /2 δ̃ − 9/4 ϵ̃1/2 ϵ̃2/2 · · ·
ϵ̃2/2 ϵ̃1/2 δ̃ − 25/4 ϵ̃1/2

0 ϵ̃2/2 ϵ̃1/2 δ̃ − 49/4
...




Qsb,1

Qsb,3

Qsb,5

Qsb,7

...

= 0. (A.4d)

Using Hill’s determinants, the stability boundaries can be computed in the (δ̃, ϵ̃1, ϵ̃2) space.
In this space, any primary NNM branch is a three dimensional line with a finite length, whose
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intersections with the boundaries denote bifurcations, leading to labelled NNMs. An example is
shown in figure 10b, which clearly shows an improved accuracy when compared with the formula
of a first-order accuracy, derived in §3 and shown in panel (a) for comparison.
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