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Abstract: In recent investigations of magnetoelectric sensors based on microelectromechanical can-
tilevers made of TiN/AlN/Ni, a complex eigenfrequency behavior arising from the anisotropic
ΔE effect was demonstrated. Within this work, a FEM simulation model based on this material
system is presented to allow an investigation of the vibrational properties of cantilever-based sensors
derived from magnetocrystalline anisotropy while avoiding other anisotropic contributions. Using
the magnetocrystallineΔE effect, a magnetic hardening of Nickel is demonstrated for the (110) as
well as the (111) orientation. The sensitivity is extracted from the field-dependent eigenfrequency
curves. It is found, that the transitions of the individual magnetic domain states in the magnetization
process are the dominant influencing factor on the sensitivity for all crystal orientations. It is shown,
that Nickel layers in the sensor aligned along the medium or hard axis yield a higher sensitivity than
layers along the easy axis. The peak sensitivity was determined to 41.3 T−1 for (110) in-plane-oriented
Nickel at a magnetic bias flux of 1.78 mT. The results achieved by FEM simulations are compared to
the results calculated by the Euler–Bernoulli theory.

Keywords: delta E effect; magnetoelectric sensor; Nickel; anisotropy

1. Introduction

Magnetic field sensors based on electromechanical systems have gained a lot of at-
traction in the last decade as the magnetoelectrical sensor concept exhibits promising
device characteristics enabling the detection of the weakest magnetic fields as needed for
example in biomedical applications or geophysical explorations. In this kind of sensors,
the ∆E effect, which describes the change of Young’s modulus in presence of a magnetic
field, is the basic physical property utilized in this sensor concept. High sensitivities
and low limits of detection in the low pT/

√
Hz regime [1–3] have been realized in the

last decade, paving the way down to the f T/
√

Hz range at room temperature [4], where
usually only superconducting quantum interference devices (SQUID) [5] could be used.
Magnetoelectric sensors exhibit the great advantage that in contrast to SQUIDs no extensive
cooling is required to achieve their superconducting state for operation, leading to less
complex and costly operation. Currently, common magnetoelectric sensors exhibit sizes in
the millimeter [3,6,7] up to the centimeter range [8–10] and are usually based on amorphous
soft magnetic materials, for example FeCoSiB [11], FeGaB [12] or Terfenol-D [2], in combi-
nation with a piezoelectric material for the output signal generation, such as polycrystalline
AlN [12], single crystalline PZT [13] or PMN-PT [14]. However, hard magnetic materials
such as Nickel are also in the focus of research. In magnetoelectric sensors, Nickel is often
used in combination with a second magnetostrictive material to realize magnetization-
graded structures for the optimization of the magnetoelectric coupling [15,16]. Nickel is
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also an easy-to-process material for thin-film applications and, compared to magnetostric-
tive compound materials, relatively simple to describe as a model system. Additionally, if
necessary, it provides the possibility to be processed as a single crystalline material, e.g.,
an inverted stack allows the deposition of AlN on (polycrystalline) Ni foils, which can
be replaced with single crystalline ones, with a high interface quality and c-axis orienta-
tion of AlN, resulting in a strong magnetoelectric response compared to Fe and Co [17].
Comparably few references can be found that target sensors in the microelectromechanical
system (MEMS) regime [18–20], a highly interesting transition region where anisotropic
material properties show increasing influence on the device characteristics, when the sen-
sor dimensions start to reach the order of magnitude of individual crystals within the
(poly-)crystalline material. However, in small MEMS structures size effects also start to
play a role, e.g., influencing Young’s modulus [21] and the magnetization [22] of Nickel
or the piezoelectric layer [23,24]. This makes a detailed investigation of the material and
scaling properties inevitable.

In recent studies, the properties of MEMS structures were investigated in regards to
the implications of anisotropy of the elastic [25] and the magnetoelastic parameters [26].
The angle-dependent analysis of the ∆E effect sensors based on TiN/AlN/Nickel revealed
a complex eigenfrequency behavior in the presence of a magnetic field (see Figure 1a,b).
It was found that uniaxial magnetic anisotropy is able to describe the ∆E effect in general
and that additional anisotropy contributions besides the shape anisotropy are too complex
for fitting the results within an analytic model. To identify different contributions from
magnetic anisotropy, finite element simulations are nowadays a powerful tool based on
advanced and well-tested models.
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Figure 1. (a) SEM images of 4 µm wide magnetoelectric cantilevers consisting of a TiN(90 nm)/
AlN(450 nm)/Ni(100 nm) layer stack investigated in recent work [26]. (b) Eigenfrequency character-
istics in dependency of the magnetic flux of four 25 µm long and identically aligned cantilevers as
marked in (a). (c) Solution of the 2D model used for the simulation study with the layer configuration
from (a). The bending effect due to magnetostrictive strains in the 25 µm cantilever is upscaled for
better visibility.

To investigate the intrinsic potential of tuning the crystalline texture of the Nickel as a
magnetostrictive material, the anisotropic properties and the respective dependency of the
sensitivity on different crystal orientations are analyzed within the proposed finite element
study. Another design parameter to be optimized depending on the cubic anisotropy is
the Nickel layer thickness. The layers are modeled as single crystals to be able to study
the different effects from the point of view of a most general (ideal) case. This allows the
study of the intrinsic anisotropic behavior of Nickel while minimizing the influence of the
specific lateral sensor design which has usually a high impact on the device performance.
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2. Model Details
2.1. Analytic Description of theΔE Effect in Nickel

Magnetostriction in general describes the structural response of the lattice of a ferro-
magnetic material to the change of an external magnetic field. The magnetic domains in
ferromagnetic materials such as Nickel are randomly oriented in the unmagnetized state,
each with saturation magnetization Ms. In the presence of a magnetic field, the minimiza-
tion of the internal energy density function u, Equation (1), leads to an increasingly parallel
alignment of the domains along the field direction until saturation.

u = uZ + ush + uσ + ucr + . . . (1)

The energy density function contains contributions from the Zeeman energy uZ de-
scribing the dependency of the external field strength H and the magnetization direction
as well as several anisotropy terms. Those are the shape anisotropy ush, which considers
demagnetizing effects, the magnetoelastic anisotropy uσ, taking into account mechanical
stresses, and the crystalline anisotropy ucr. In this work, only the latter for the case of a
cubic crystalline anisotropy and the Zeeman energy were considered. The influence of the
remaining contributions is discussed in Section 2.3 [26].

In isotropic or ideal polycrystalline materials the magnetostrictive strain λ in a direc-
tion θ relative to the magnetization direction is given by [27]

λ =
3
2

λs

(
cos2θ − 1

3

)
, (2)

with λs as the isotropic saturation magnetostrictive strain. In the anisotropic case, the
magnetostriction is dependent on the principal axes (hkl) of the materials lattice. The
magnetostriction is thus given (and used by Comsol) by

λhkl =
3
2

λ100

(
3

∑
i=1

m2
i ψ2

i −
1
3

)
+ 3λ111

(
3

∑
i,j=1

~mi ~mjψiψj

)
, (3)

with i 6= j and cyclic permutation. Here, ψi,j is the angle cosine of the respective direction
in relation to ~M and ~mi,j the direction vector of ~M/Ms. Within Equation (3), the volume
conservation is assumed. Other effects breaking the volume conservation such as the
volume magnetostriction [28] were thus not considered. The magnetostriction constants of
Nickel are all negative [29] leading to compression strains along the three principal axes.
The experimental curves are given in Appendix A with their respective fits. The curve
for the (110) direction is also presented for completeness, though not needed according to
Equation (3). As the curve fits exhibit an increasing error for H < 1000 A/m, the discussion
of the sensor characteristics in Section 3 is limited to B > 1 mT.

The development of magnetically induced strains λhkl in a magnetostrictive material
results in a change of Young’s modulus, the so-called ∆E effect. It can be described
analytically [30], so that

1
ENi

hkl
=

∂(εhkl + λhkl)

∂σhkl
=

1
ENi

hkl,sat
+

1
∆ENi

hkl
, (4)

while ∆Ehkl is directly dependent on the derivations of λhkl and the magnetization Mhkl :

1
∆ENi

hkl
=

(∂λhkl/∂H)2

µ0∂Mhkl/∂H
. (5)
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The static inverse elastic modulus 1/Ehkl,sat of the cubic Nickel lattice in Equation (4)
can be calculated using the compliance matrix Sii and the direction cosines α, β and γ
by [31]:

1
ENi

hkl,sat
= S11 − (2(S11 − S12)− S44)(α

2β2 + α2γ2 + β2γ2). (6)

The tensor elements of the compliance matrix for Nickel were derived from the lit-
erature values [32] and averaged to S11 = 7.47× 10−12 Pa−1, S12 = −2.84× 10−12 Pa−1

and S44 = 8.33× 10−12 Pa−1 (see Appendix A). The resulting Young moduli for the three
directions in saturation were E100,sat = 134 GPa, E110,sat = 228 GPa and E111,sat = 297 GPa,
respectively. The Poisson ratios for the single crystalline Nickel derived from the elastic con-
stants equaled ν(〈1,0,0〉),(〈0,1,0〉) = 0.381, ν(〈1,1,0〉),(〈1,1,0〉) = −0.06 and ν(〈1,1,1〉),(〈1,1,0〉) = 0.142.
ν(〈1,0,0〉),(〈0,1,0〉) was thus higher than reported values for other single crystals (0.315–0.329) [33]
or nanowires (0.305–0.335) [34]. A stiffness matrix could then be generated based on the
nonlinear ENi

hkl curves (similar to TiN discussed later in this section), which was independent
from stress anisotropy.

In the cubic crystal, different transitions are passed through during magnetization.
For low fields, domain wall shifts appear which are followed by the domain rotation out
of the easy axis towards the external magnetic field direction, eventually followed by the
magnetization reversal of antiparallel-oriented domains and saturation. In Nickel, the (111)
direction is the easy axis and the (110) and (100) directions are the medium and hard axes,
respectively. This is depicted in Figure 2a in combination with the derived Young moduli
Ehkl according to Equation (4).
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Figure 2. (a) Computed magnetic-field-dependent curves of Young’s modulus for the three principal
axes. (b) Eigenfrequencies of the simulated cantilevers in magnetic saturation as a function of the
crystalline orientation of the Nickel layer and its thickness.

The domain wall shift region is beyond the accurate fit limit, which is why an in-
vestigation in this range is not possible with the given data. The domain rotation region
describes the reorientation of the domains along the hard axis and exists only for the
hard axes of magnetization. The transition from the wall shift to the domain rotation
introduces a decrease in E100/110 with a distinct minimum at around 2 mT. At higher
fluxes, E100/110 increases again and reaches a maximum in the saturation region. The
easy axis is in contrast characterized by the direct transition from domain wall shifts
to magnetic domain reversal, as the magnetic domains are already aligned along (111).
This leads to a rather flat dependency up to the point where saturation happens at
H > 6000 A/m. This is accompanied by a strong increase in Young’s modulus, the known
effect of magnetic hardening. This is also observable for the (110) direction, while it
has to be noted that the (100) direction exhibits no such hardening, i.e., E100,0 = E100,sat.
Not only is the shape of the ∆E effect direction-dependent but also the magnitude. In the
(100) direction, the maximum change of Young’s modulus E100,min/E100,sat is 7.5%. The
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other two directions exhibit a much higher change of 17%, which is similar to the reported
value of 20% [35]. Observations in Nickel nanocrystals revealed even increases of 31%
along (111) [35], nearly twice as high as the calculated increase in this work.

2.2. Description of the Finite Element Model

The sensor design was based on a three-layer cantilever structure with the length
lc = 25 µm and width wc = 4 µm investigated recently [26] and shown in Figure 1a,b.
Accordingly, the respective layer parameters were derived from the experiment and given
by TiN (90 nm) as the back electrode, AlN (450 nm) as piezoelectric and the magnetostric-
tive Nickel on top with varying thickness tNi between 0 and 1000 nm. In contrast to the
experimental structures, where the actual distribution in size and orientation of the Nickel
polycrystals were unknown, all materials were treated as a single crystal within this study
as it allowed us to investigate the sensor characteristics solely in regard to the respective
Nickel crystal orientation. For the investigation of the vibrational behavior with Comsol 5.6
(Comsol Multiphysics GmbH, D-37073 Göttingen, Germany) a 2D model with coupled mul-
tiphysics (solid mechanics and magnetostriction) was used to minimize the calculation time
while allowing a high accuracy using dense meshes. The precise parameters are given later
in this section. AlN and TiN were treated as anisotropic linear elastic materials following
the relationship between the strain tensor ε and the stress tensor σ of Hooks’s law:

εij = C−1
ijklσkl , (7)

with C−1
ijkl being the compliance matrix of the respective material within the stack. For

TiN with the cubic fcc lattice and space group Fm3m, as well as for a hexagonal AlN
with space group P63mc, the C−1

ijkl are given in Appendix B. The orientation of the AlN
layer is fixed with the c-axis perpendicular to the film plane, just as in the experimental
structures, and a <100> direction is fixed in the cantilever length direction, contrarily to the
experimental random in-plane orientation distribution. The latter simplification should
be negligible as there is only a weak mechanical anisotropy within the AlN’s basal plane.
For TiN the cubic [100] axis was oriented perpendicular to the film plane and [010] into the
cantilever direction.

The sensor model contained two different sets of boundary conditions. Within the
structural mechanics domain, fixed constraints were applied at the left end of the multilayer
structure (see Figure 1c or Figure 3a). In the magnetic domain, the boundaries of the Nickel
layer were set to be magnetically insulated. This led to a homogeneous distribution
of the magnetic flux in the magnetostrictive material, and it suppressed the formation
of shape anisotropy and design-dependent magnetic stray fields. The direction of the
external magnetic flux B was kept constant throughout the analysis and applied along the
longitudinal direction of the cantilever. B was logarithmically scaled between 1 mT and
400 mT using 54 sampling points.

The static mesh was adjusted to the respective layers with a quad mesh for TiN
(mesh size of 106,250 elements), a triangular mesh for AlN (mesh size of 276,812 elements)
and a quad mesh for Nickel (mesh size of 100,000 elements). The minimum and maxi-
mum element sizes were 1 nm/20 nm, 10 nm/100 nm and 1 nm/(tNi/20) for TiN, AlN
and Nickel, respectively. The element growth rate was 1.1 and constant for all layers.
Accordingly, the minimum element quality was >0.5. The model was solved using a linear,
fully coupled (stationary and eigenfrequency), direct MUMPS solver with tolerances≤10−6.
The convergence curves of the magnetic potential and the displacement field are given
in Appendix C. It is noticeable that the convergence rate decreased with an increasing
magnetic/magnetostrictive load. The stationary solution of a cantilever with tNi = 100 nm
is shown in Figure 1c.
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Figure 3. (a) Deflection in magnetic saturation of the simulated cantilever for different thicknesses
tNi. (b) Influence of the cantilever curvature on the eigenfrequency. The curvature caused by
magnetostriction is derived for comparison from (a).

2.3. Limits of the Proposed Model

As different constraints were made to the model to be able to investigate the crystalline
anisotropy solely, the generated results are less suited to describe the specific behavior of
experimental sensors (as in Figure 1a,b), but should be seen as an approach to find an in-
trinsic limit of the anisotropic sensitivity. As a consequence of the proposed (2D) model, the
analysis of effects arising from the complex state of experimental (polycrystalline MEMS)
structures is not possible, e.g., a non-rectangular cross-section with specific surface and
interface roughness of the different layers affecting the shape anisotropy or contributions
of other anisotropy types such as the uniaxial anisotropy. The complex stress distribution
in such structures induced by the undercut thermal treatment or the growth-induced
stress anisotropy, influences the eigenfrequency, especially at shorter cantilevers [25].
Within the single crystalline approximation, mechanical or magnetic effects arising from
defects (vacancies, interstitial and substitution atoms, dislocations, grain boundaries) in
(textured) polycrystalline layers cannot be reproduced.

3. Results

The calculated natural eigenfrequencies in magnetic saturation for the cantilevers
with different crystal orientations of the Nickel layer are given in Figure 2b. In addition,
analytically derived curves from the generated ∆E effect curves using the Euler–Bernoulli
theory are shown for comparison. Here, the eigenfrequencies i of a cantilever are given by

fi,c =
κ′i

2

2πlc2

√
(E(H)I(H))tot

(ρA)tot
, (8)

with κ′i as the curvature-dependent eigenvalue, (E(H)I(H))tot as the bending stiffness
of the multilayer stack and (ρA)tot as the reduced mass. For low thicknesses tNi, the
eigenfrequencies converge to the natural frequency of the residual layer stack of TiN/AlN
at 1.312 MHz for the FEM calculation and at 1.35 MHz for the Euler–Bernoulli theory,
which is in good agreement. In accordance to the change in Ehkl,sat for the respective
directions, the eigenfrequencies show the expected increase when rotating the crystal
orientation away from (100) and reaching magnetic saturation. However, the results
from the Euler–Bernoulli theory exhibit stronger deviations from the results of the FEM
simulation. While the softening for the (100)-oriented Nickel can be reproduced by both,
the minimum of the softening is shifted towards a higher tNi within the analytic approach.
Above approximately 300 nm in the case of (100)-Ni and 200 nm for the (110)/(111)-Ni,
the eigenfrequencies scale linearly according to the simulation, which can be observed
qualitatively also using Equation (8). It appears, that the Euler–Bernoulli theory is not able
to reproduce the FEM results quantitatively for the magnetic saturation. The reason might
be the lack of additional influencing factors that are not covered by the Euler–Bernoulli
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theory, such as the anisotropic material properties of the material stack or the Zeeman
energy in Equation (1). The simulated eigenfrequencies at tNi = 100 nm are 20–30% higher
than the respective experimental eigenfrequencies [26] of the structures in Figure 1a, on
which the model is based. The main reason is the undercut that was neglected in the
simulation, which can lead to a frequency shift in the range of 20% [25] or even higher,
depending on the undercut depth. A second important influencing factor is the single
crystal approximation of the individual layers in contrast to the experimental data.

3.1. Magnetostriction and Bending

In presence of a magnetic field, the magnetostriction λhkl in Equation (4) applies
stresses to the Nickel layer and hence to the adjacent AlN resulting in a bending of the
cantilever. As λhkl is always negative in Nickel, cantilevers are bent upwards for the
modeled stacking order, regardless of the crystalline orientation. The magnetostriction-
induced tip deflection is presented in Figure 3a for the three orientations and different
thicknesses tNi.

In magnetic saturation, the tip deflection is mainly reflecting the different saturation
magnetostriction values (see Appendix A), where the (100) direction exhibits the largest
strain and the (111) direction the lowest. The tip deflection is maximized at tNi = 400 nm for
(100) and at 300 nm for the (110)/(111) orientation and thus at the same tNi where the linear
eigenfrequency region in Figure 2b begins. A further increase of tNi leads to a decrease
of the deflection which is caused by the shift of the neutral axis towards the Nickel layer
within the cantilever, leading to a decrease of the bending moment. The absolute deflection
is in the range of 4–6.5 nm, which is small compared to the total thickness of the cantilever
of around 1 µm. The curvature of a cantilever has influence on its eigenfrequency behavior.
This consideration is important for parameter extraction, where the Euler–Bernoulli theory
is used [25]. Using Equation (8), the bending induced cantilever deflection allows an
estimation of the shift of its eigenfrequency in magnetic saturation. Here, κ′i was calculated
by [36]

κ′i
2
=

√
κi

4 + cϑi
4, (9)

with c = (lc/r)2 as the curvature coefficient, where r is the curvature radius and ϑi is
the curvature correction term given by ϑ4

i = (p1 + p2k)/(p3 + p4k), where k = Al2
c /I.

For the analysis of the impact of the cantilever deflection according to Figure 3a on its
natural mode (i = 1) in Figure 2b, the respective parameters were set to κ1 = 1.875,
p1 = 0.7365, p2 = −0.5017, p3 = 1.215 and p4 = −1. The curvature-dependent change
in the eigenfrequency fi,c/ fi,0 is presented in Figure 3b. The respective parameters in
Equation (8) were taken from the model parameters in saturation. Interestingly, the relative
impact on the eigenfrequency is not directly dependent on the Nickel crystal orientation,
but only on the curvature radius. Assuming a circular arc, the deflection was coupled with
the curvature radius by δ = r(1− cos(lc/r)). This dependency is also plotted in Figure 3b
along with the maximum deflections gathered from Figure 3a. The curvature resulting from
magnetostriction alone within the proposed model was very small and the curvature radius
comparably large. Consequently, the relative change in eigenfrequency was also very small
for any crystal orientation, while for (100), the highest, and for (111) the lowest deviation
can be observed. The difference between the directions was approximately 24%, having
almost no effect at such low radii. However, if a prestressed cantilever is given with a static
radius much smaller than 0.1 m as shown in thin AlN layers [23], the anisotropic effect of
the crystal orientation should be considered in the bending correction of the eigenfrequency
in Equation (8).

3.2. Eigenfrequency Behavior in the Magnetic Field

For an easier comparison of the different anisotropic eigenfrequency curves, their
relative change f (B)/ fsat was chosen. These are shown for different tNi in Figure 4, as well
as the respective specific sensitivities ∂ f /∂B for each crystal orientation. Independent on
the orientation, the magnitude of the ∆E effect increases with increasing tNi until a steady
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state is reached. While the ∆E effect magnitude for (110)- and (111)-Ni starts to saturate
at approximately 200 nm, in the (100) orientation, saturation appears noticeably between
300 and 400 nm. The individual saturation thicknesses of the ∆E magnitude are of partic-
ular interest in the sensor fabrication. Due to the adjacent functional layers in the sensor
structure, the magnitude is decreased compared to the pristine ∆E curves of Figure 2a.
In the (100) orientation the magnitude is reduced from 7.5% to 2.1% while for the (110)- and
(111)-oriented Nickel it is reduced from 17% to 5.4% and 4%, respectively. This decrease
in the magnitude also affects the sensitivity and cannot be avoided in a magnetoelectric
MEMS device, but only minimized by design optimization. For comparison, f (B)/ fsat
generated by the Euler–Bernoulli theory is presented in Appendix D. As the dependencies
are qualitatively the same as in Figure 4, these results are interpreted later in terms of
sensitivity. The specific sensitivity ∂ f /∂B shows a similar dependency between the hard
axes with an identical absolute sensitivity maximum at 1.78 mT. This maximum is related to
the transition from domain shift to domain rotation and thus is not observable for the easy
axis. The local maximum of (111)-oriented Nickel at approximately 1.5 mT is originating
from a steeper slope of the magnetostriction at this point and strongly dependent on the
fitting accuracy in this approach. In contrast to the visual appearance of the f (B)/ fsat
curves, ∂ f /∂B is absolutely much higher in the transition from domain shift to rotation at
1–2 mT than for the transition from domain rotation to magnetization reversal at >2 mT.
The difference in ∂ f /∂B is an order of magnitude for (100) while for (110) it is a factor of
approximately three. That is, ∂ f /∂B is mainly driven by (∂λhkl/∂H)2 for the hard axes
and less dependent on the regime of magnetization reversal. For (111)-oriented Nickel, the
highest ∂ f /∂B can be found at the magnetization reversal transition as expected from the
f (B)/ fsat curve. Though the specific sensitivity shows high absolute values, the general
characteristic of the curves is nonlinear, independent from the orientation of the Nickel.
As a consequence, the dynamic range in terms of the usable bandwidth of the magnetic
flux that can be used for magnetic field detection is quite small. For (100)-oriented Nickel,
the dynamic range determined for ∂ f /∂B ≈ 0 at the tails of the point of highest sensitivity
yields 2.9 mT. For the (110) and (111) orientations 1.8 mT and 8 mT can be found, respec-
tively. However, these values derived from crystalline anisotropy can/will be affected by
other anisotropy contributions in real sensors. Within MEMS-based sensors, a decrease of
∂ f /∂B is to be expected due to the impact of stress anisotropy at the supporting region.

The sensitivity as a figure of merit of a magnetoelectric, mechanical sensor, e.g., singly
clamped cantilevers or doubly clamped beams, is usually described by the normalized
∂ f /∂B:

SH =
1

fsat

∂ f
∂B

. (10)

In Figure 5a the peak sensitivities of the three principal axes of Nickel are presented
for the FEM results as well as for the results gained from the Euler–Bernoulli theory in de-
pendency of tNi. The sensitivities for the latter are based on the normalized eigenfrequency
curves shown in Appendix D. Independent of the approach, the used models exhibit a
saturation behavior with observable sensitivities nearly twice as high for Euler–Bernoulli-
derived data compared to the FEM results. Additionally, the saturation thicknesses are
shifted by a similar factor of around two to higher tNi for the Euler–Bernoulli-generated
curves leading to much less accurate results when using Equation (8), similar to the ob-
servations made in Figure 2b. The saturation thicknesses depend on the specific layer
configuration in terms of materials chosen for the back electrode and the piezoelectric ma-
terial as well as their respective thicknesses. For the given stack of 90 nm TiN and 450 nm
AlN, the saturation thicknesses were calculated numerically to approximately 500 nm,
400 nm and 300 nm for (100), (110) and (111) and appear to scale antiproportionally with
Ehkl . The saturation region is strongly dependent on the stresses and the internal magnetic
stray field of the magnetostrictive layer. This can result in a decrease of the sensitivity at
increasing thicknesses [11]. In soft magnetic materials with usually positive magnetostric-
tion, such as the frequently used amorphous FeCoSiB [37], FeGaB [38] and Terfenol-D [39],
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internal strains (e.g., stress gradients arising from layer growth) lead to a decrease of the
∆E effect according to Equation (4). However, such strains can be minimized or tuned
experimentally by controlling the growths conditions, e.g., via the substrate temperature
or an applied substrate bias, via a DC offset applied to the piezoelectric layer [40] or by
using a symmetric sensor design. A great benefit of Nickel in this case are the negative
saturation magnetostriction constants for all axes. Nickel grows typically tensile-strained
on AlN layers leading to a potentially increased magnetostriction [41] and thus ∆E effect.
Similarly, this was used to optimize the sensor performance based on FeCoSiB [42]. In an
otherwise unstressed cantilever, magnetostrictive bending has negligible influence on the
eigenfrequency and thus sensitivity. The magnetic stray field as the second influencing
factor affects the sensor performance when vertical domain separation occurs, which is
usually negligible within the thin layers of MEMS structures. For comparison, the domain
wall size in Nickel is approximately 125 nm [43] with typical domain sizes of about 200 nm
in the unmagnetized state at room temperature [44]. Consequently, the saturation regime
of the numerically derived sensitivities in Figure 5a should be a good/better estimation for
real sensors than the sensitivities determined by the Euler–Bernoulli theory.
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Figure 4. Relative eigenfrequency change f / fsat (left hand side) and the respective specific sensitivity
∂ f /∂B (right hand side) of the three principal axes (a) (100), (b) (110) and (c) (111) for Nickel layer
thicknesses tNi in the range of 50–1000 nm. The point of highest absolute sensitivity as well as the
dynamic range is marked by the lines, respectively.
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Figure 5. (a) Absolute values of the maximum sensitivities derived from Figure 4 (FEM) and from
the Euler–Bernoulli theory (EBT) for the three principal axes and tNi,sat at the given offsets of the
magnetic flux. The experimentally achieved sensitivity is added for comparison. The value for
zero thickness is extrapolated. (b) Extracted dynamic range in dependence of |SH | for the three
orientations.

In Table 1, the extracted peak sensitivities are summarized in comparison with experi-
mentally derived sensitivities of the structures in Figure 1a,b, as well as of magnetoelectric
sensors based on other material combinations. A clear gap is visible in the experimentally
realized sensors compared to the theoretical expectations. The recently measured sensitivity
of hard magnetic polycrystalline Ni/AlN/TiN sensors lies in the order of 1 T−1 which is
comparable to other references based on soft magnetic FeGa or FeCo compounds. Sensors
based on FeCoSiB are able to reach higher sensitivities by a factor of 5–10 in combination
with a high degree of optimization. The theoretical results still remain significantly higher
but are similar between soft magnetic FeCoSiB and the (110)-oriented Nickel. The given
simulated FeCoSiB sensitivity of 48 T−1 is obtained for the second bending mode, which
yields a higher value than the first/natural mode. The first bending mode should yield
a sensitivity approximately 20% lower according to the data in [11], leading to an almost
identical result as Ni(110). The direct growth of (110) in-plane-oriented Nickel is experimen-
tally difficult on a hexagonal substrate such as AlN. However, there are approaches using
150 nm thick Au/Ge interfacial layers [10] for larger sensors. Additional interface engineer-
ing is needed to see whether this configuration can be scaled down to MEMS structures.
Further similarities between FeCoSiB and Nickel apply to the saturation magnetostriction [45]
or the density [46] leading to a similar mass inertness in the vibrational behavior, e.g., in
passive operation. However, MEMS structures are less suitable for passive operation due to
the size dependence of the limit of detection [47]. In actively operated sensors, the limit of
detection plays a negligible role, which is why the sensitivity in combination with the dynamic
range are the figures of merit to be used.

Table 1. Comparison of simulated and experimental sensitivities of the natural frequency of elec-
tromechanical system based on magnetoelectric sensors. (Values calculated according to Equation (10)
if not given in the reference). * Sensitivity for the second eigenmode.

Material Reference Sensitivity (1/T)

Ni(100)/AlN/TiNsim this work −14.9
Ni(110)/AlN/TiNsim this work −41.3
Ni(111)/AlN/TiNsim this work 8.8
poly-Ni/AlN/TiNexp [26] −0.9 . . .−1.4

FeCoSiB/poly-Si/AlNexp [11] 10
FeCoSiB/poly-Si/AlNexp [11] 13 *
FeCoSiB/poly-Si/AlNsim [11] 48 *

FeCoB/Al/AlN/Ptexp [19] −0.7
FeGaB/AlN/Ptexp [48] −2.2

FeGa/Ti/Diamondexp [20] 0.5
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In Figure 5b a correlation between the extracted dynamic range for the specific ori-
entations and their sensitivity is presented. A decreasing dynamic range with increasing
sensitivity is found. In accordance to the discussion of Figure 4, the dynamic range derived
solely from crystalline anisotropy might/will not resemble the properties of real sensors
as it is affected by contributions of other anisotropies. However, such an antiproportional
coupling can also be observed for Hall effect sensors [49] using a modified bias current;
the similarity found here is presumably by accident. On the basis of the presented results
a stepwise integration of experimental conditions can be realized in further studies, for
example in terms of polycrystallinity, stresses or design related changes. The knowledge
gained in the MEMS regime might also help understand and optimize larger sensors.

4. Conclusions

In this work the anisotropic ∆E effect of Nickel was used to study its influence on the
sensitivity of a magnetoelectric sensor within a finite element simulation approach based
on recent experimental results and to evaluate the intrinsic potential of this hard magnetic
material. For the three principal axes of the fcc lattice, the anisotropic Young modulus
of single-crystalline Nickel was derived from the direction-dependent magnetostriction
and magnetization and its elastic constants. It could be shown that the resulting magnetic
field dependency of Young’s modulus was highly dependent on the orientation of the
crystal and the different transitions between domain wall shift, rotation and the reversal
of magnetization. As a result, the known magnetic hardening effect of Nickel could be
reproduced field dependently for the (110) medium axis and the (111) easy axis in an
in-plane orientation while the (100) hard axis did not exhibit this effect. The magnitude
of the intrinsic ∆E effect of Nickel was anisotropic with peaks at 7.5% for (100) and at
17% for the (110) and (111) orientations, respectively. Within the sensor, the ∆E effect
magnitude decreased to 2.1% for the (100), 5.4% for the (110) and 4% for the (111) orientation.
The magnetostriction-induced bending of the cantilever was investigated to determine its
impact on the eigenfrequency. It was shown that magnetostriction alone has negligible
influence on the eigenfrequency of cantilevers. The impact of the different transitions in
the magnetic field on the eigenfrequency and on the sensitivity showed that the transition
from the domain wall shift to the domain rotation in the hard axes directions led to a strong
sensitivity, especially along (111), yielding SH = 41.3 T−1 at a magnetic bias flux of 1.78 mT.
Such a high sensitivity is nearly identical to that of frequently used soft magnetic materials,
such as FeCoSiB. However, the comparison between simulations and experiment was
limited due to some assumption of the simulation that were in the general case not true in
real sensor samples and partly not easy to achieve even if they would lead to an improved
sensitivity. Especially, the magnetostrictive film is normally not single crystalline and it
is more realistic to generate a polycrystalline microstructure with a strong preferential
orientation. Other limitations, as listed in Section 2.3, were the 2D instead of 3D modeling,
which changed the shape anisotropy behavior, and also of course no defects such as point
defects or dislocation were considered, which would change the magnetization behavior.
In any case, the simulation results gave a good indication of a high potential for further
optimizations of the sensor performance, regardless of the used material.
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Appendix A

The magnetostriction and magnetization curves were taken from the literature [29,50]
and fitted according to [51]

λhkl(H) = ∑
i

κhkl,sat,i

(
1− 3

cosh(αi(H − H0,i)) + 2

)
. (A1)

The extracted curves as well as the fits are presented in Figure A1 for i = 2. The
given formula for M(H) in [51] is not able to reproduce the magnetization curve accurately
enough. Therefore, Equation (A1) was also used here to minimize the fitting error, since
∂M/∂H is highly sensitive to deviations and thus the derived ∆E effect in Equation (6).
The determined constants are given in Table A1.

 (111)      Fit (111)

(a)

 (111)      Fit (111)

(b)

Figure A1. (a) Experimental magnetostriction curves of Nickel taken from [29] and their respective
fits for the three principal axes. (b) Experimental magnetization curves of Nickel taken from [50] and
their respective fits with respect to the magnetic field.

Table A1. Fit constants for the magnetostriction and magnetization curves according to Equation (A1).

Parameter κhkl,sat,1 κhkl,sat,2
α1

(10−4 m/A)
α2

(10−4 m/A) H0,1 (A/m) H0,2 (A/m)

λ100 −1.61·10−5 −1.34·10−4 2.17 1.40 0 −22,132
λ110 −7.95·10−6 −1.27·10−4 −52.4 2.80 0 −11,500
λ111 −2.24·10−5 −7.16·10−6 −26.2 −5.35 −200 −500
M100 260,000 276,100 −2.08 9.43 −5000 0
M110 403,234 248,314 42.8 −2.50 0 −10,000
M111 10,621 483,372 8.86 37.9 0 0

The angle cosines for the fcc lattice of Nickel were (α, β, γ)100 = (1, 0, 0) as well as
(1/
√

2, 1/
√

2, 0) and (1/
√

3, 1/
√

3, 1/
√

3) for the (110) and (111) direction, respectively.
The compliance matrix was derived from the literature values given in [32] and summarized
in Table A2. The tensor elements Sii of the compliance matrix Cii were subsequently derived
from the stiffness matrix elements using the well-known formulas

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)
,

S12 = − C12

(C11 − C12)(C11 + 2C12)
,

S44 =
1

C44
.

(A2)
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Table A2. Summary of the elastic constants of Ni gathered from [32]. * Omitted values due to high
deviation.

Reference C11 (1011Pa) C12 (1011Pa) C44 (1011Pa)

Honda et al. 2.52 1.51 1.04
Bozorth1 et al. 2.5 1.6 1.19
Bozorth2 et al.

Saturated 2.52 1.57 1.23

Neighbours et al. 2.53 1.52 1.24
Yamamoto et al. 2.44 1.58 1.02

Levy et al. 2.47 1.52 1.21
DeKlerk et al.

Saturated 2.46 1.47 1.24

Shirakawa et al. 2.55 1.69 0.90 *
DeKlerk2 et al.

Saturated 2.46 1.48 1.22

Alers et al. 2.51 1.5 1.24
Sakurai et al. 2.51 1.53 1.24
Epstein et al.

Saturated 2.5 1.54 1.24

Vintaikin et al. 2.47 1.44 1.24
Salama et al. 2.52 1.54 1.22

Shirakawa2 et al. 2.88 1.81 1.24

Average 2.52 1.55 1.2

Appendix B

The stiffness matrix for TiN is given by (only nonzero elements):

CTiN
ijkl =



ETiN(1−ν)
(1+ν)(1−2ν)

ETiN ν
(1+ν)(1−2ν)

ETiN(1−ν)
(1+ν)(1−2ν)

ETiN ν
(1+ν)(1−2ν)

ETiN ν
(1+ν)(1−2ν)

ETiN ν
(1+ν)(1−2ν)

ETiN(1−ν)
(1+ν)(1−2ν)

ETiN ν
(1+ν)(1−2ν)

ETiN(1−ν)
(1+ν)(1−2ν)

ETiN
2(1+ν)

ETiN
2(1+ν)

ETiN
2(1+ν)


, (A3)

whereas Young’s modulus ETiN = 250 GPa was decreased to consider the nature of the
TiN thin layers [52] and νTiN = ν = 0.25. The stiffness matrix for AlN is given by (only
nonzero elements):

CAlN
ijkl =



4.1 0.99 3.89
0.99 1.49 0.99
3.89 0.99 4.1

1.25
1.25

1.305

× 1011Pa, (A4)

Appendix C

The convergence plots for the magnetic potential and the displacement field are
given in Figure A2. The individual curves are color-coded with a logarithmic scaling.
The tolerance limit used for the solver is marked at 10−6.
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Figure A2. Convergence curves for the solution of the presented model with tNi = 100 nm:
(a) magnetic potential, (b) displacement field.

Appendix D

The normalized eigenfrequency curves determined analytically from EBT using
Equation (8) are shown in Figure A3. For each of the three principal axes, curves with tNi
between 50 nm and 1000 nm were calculated. They were generated using 53 points with
logarithmic scaling and spline interpolation.
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Figure A3. Relative eigenfrequency change f / fsat of the three principal axes (a) (100), (b) (110)
and (c) (111) for Nickel layer thicknesses tNi in the range of 50–1000 nm derived from the Euler–
Bernoulli theory.
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